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Abstract

This paper describes methods for conveniently formulating and
estimating dynamic linear econometric models undexr the hypothesis of
rational expectations. An econometrically convenient formula for the
cross-equation rational expectations restrictions is derived. Models
of error terms and the role of the concept of Granger causality in
formulating rational expectations models are both discussed. Tests of
the hypothesis of strict econometric exogeneity along the lines of

Sims's are compared with a test that is related to Wu's.



1. Introduction

This paper describes research which aims to provide tractable procedures
for combining econometric methods with dynamic economic theory for the
purpose of modeling and interpreting ecomomic time series, That we are
short of such methods was a message of Lucas's (1976) criticism of procedures
for econometric policy evaluation. ' Lucas: pointed ocut that agents' decision
rules, e.g. dynamic demand and supply schedules, are predicted by economic
theory to vary systematically with changes in the stochastic processes facing
agents., This is true according to virtually any dynamic theory that
attributes some degree of rationality to economic agents, e.g. various versions
of "ratfonal expectations" and "Bayesian learning" hypotheses. The implica-
tion of Lucas's observation is that instead of estimating the parameters of
decision rules, what should be estimated are the parameters of agents'
objective functions and of the random processes that they faced historically.
Disentangling the parameters governing the stochastic processes that agents
face: from the parameters of their objective functions would enable the

econometrician to predict how agents'

decision rules would change across
alterations in their stochastic environment. Accomplishing this

task is an absolute prerequisite of reliable econometric policy evaluation,

The execution of this strategy involves estimating agents' decision rules

jointly with models for the stochastic processes they face, subject to the
cross-equation restrictions implied by the hypothesis of rational expectations.l/
However, even for very simple models, these cross-equation restrictions are of

a complicated form, so that in applications substantial techmnical Problems

exist even about the best way of expressing these restrictions mathematically,

This paper aims to extend what is known about conveniently characterizing

these restrictions and estimating models subject to them.
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Our work here involves a setup in which the environment and agents' decision
rules can be modeled as time invariant linear stochastic difference equations.
Such setups are attractive because they are ones for which the dynamic stochastic
optimization theory is tractable analytically, and because it is coavenient
for econometric reasons to remain within the well developed domain of time
invariant linear stochastic difference equations. In this paper, we adopt the
device of carrying out the entire discussion in terms of a simple example, that
of a2 firm devising a contingency plan for the employment of a single factor of
Production subject to quadratic costs of adjustment and uncertain technology
and factor rental processes. This has the advantage of keeping the discussion
simple and concrete, while setting aside several technical complications that
arise in more general settings, e.g. models with multiple factors. Virtually
every issue we deal with here appears in the more complicated setups. Included
among the topilcs treated im this paper are the following:

1. Derivation of a convenient expression for the decision rule.

Having tractable expressions for the restrictions across the parameters
of stochastic processes that agents face and their decision rules is necessary
in order to make rational expectations modeling applicable to problems of even
moderate dimension. Success in this part of our work will in effeet extend
the size of rational expectations systems that are manageable.

2. Delineation of the natural role played by "Granger causality" in these

models.

Formulating and estimating models of this type naturally requires use of the
concept ''Granger causality" (1969). In dynamic problems, agents' decision rules
typically involve predictions of future values of the stochastic processes, say
Voo that they care about but can't cemtrel, e.g, in competitive models output

prices and/or input prices. Theory asserts that current and past values of any



stochastic processes that help predict v, belong in the decision rules.

This is equivalent with saying that all processes agents see and that "Granger
cause" v, belong in agents' decision rules. Further, given the appropriate
conditioning set or universe with respect to which Granger causality is defined,
it is usually correct to assume that the decision variable of a competitive
firm fails to Granger cause LA It is for these reasons that analysis of
such models naturally leads to heavy utilization of the concept of Granger
causality. However, it should be recognized that in some settings we fails

to be Granger caused by the firm's decision variable only when the fimm's
information set used to forecast W, includes market-wide totals of the firm's
decision variable, This occurs, for example, when market-wide employment
contributes to the determination of the factor wage w_ .

3. Delineation of the relationship between Granger causality and econometric

exogeneity. Sims (1972) has shown that if x, is to be strictly exogeneous
in a behavioral relatiomship expressing n, as-a one _siddd~<distributed -lag of

®., then n, must fail to Granger cause:.x,+ 5o failure of =n
I A : -

¢ to Granger cause

t

X, is a necessary condition for x. to be strictly exogenous. It is not a
sufficient condition, however, which will be evident in the context of this

paper. Below we develop a statistical test of a stronger sufficlent con-

dition which is applicable to situations in which the economic behavioral relation-
ship in question is a decision rule expressing nt as a one-sided distributed

lag of x, . The restrictions that the assumption of rational expectations imposes
across the decision rule and the stochastic process for X, are essential in
making the test feasible. This test is related to Wu's (1973) test for exogeneity

so that a useful by-product of this paper is to clarify the relationship between

Wu's test for exogeneity and Sims's test.
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4, Development of models of the error terms in estimated decision rules.

This paper develops two different models of the error terms in behavioral
equations., Both madels use versions of the assumption that private agents
observe and respond to more data than the econometrician possesses. Each model
imposes substantial structure: on the error term and limits the freedom of

the econometrician in certain respects to be described. Together with variants
of "errors in variables" models, these models are about the only plausible
models of the error processes that we can imagine. The rational expectations
or equilibrium modelling strategy virtually forces the econometrician to inter-
pret the error terms in behavioral equations in one of these ways. The reason
is that the dynamic economic theory implies that agents' decision rules are
exact (nonstochastic) functions of the information they possess about the
relevant state variables governing the dynamic process they wish to control.
The econometrician must resort to some device to convert the exact equations
delivered by economic theory into imexact (stochastic) equations susceptible

to econometric analysis.

5. Development of estimation strategies for rational expectations models.

The discussion of this topic will draw heavily on each of the preceding
four topics as we discuss methods for the tractable, consistent, and asymptoti-
cally efficient estimation of rational expectations models.

It should be emphasized that the techniques we describe are applicable to an
entire class of problems of which our factor demand example is only one member.
Other setups that invoelve identical conceptual and estimation problems include
linear-quadratic versions of Lucas and Prescott's (1971) model of investment
under uncertainty [e.g. Blanco (1978) or Sargent (1979)71, versioms of Cagan's model
of portfolio balance during hyperinflations [e.g. Salemi and Sargent (1980) and
Sargent (1977)], and rational expectations-versioné of Friedmanfs permanent

income theory of consumption [e.g. Hall (1978) or Sargent (IQ?Sa)E;uThe essential



characteristic of these examples is that each can be reduced to a problem in
which an agent is choosing a linear dynamic contingency plan for a single
variable. Extensions to multivariable dynamic choice problems are deferred

2
tc a sequel to this paper.—j

2. Formulas for Decision Rules

A firm employing a single factor of production chooses a contingency

plan for that factor n, to maximize its expected present value

N . :
. F j . .} L - - .2
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)nt+j_ .

subject to n_q given, where n is employment of the factor at time t,
LN is the real factor rental, and a, is a random shock to technology

. 3/
which is seen by the firm but unobserved by the econometrician.> We shall

think of n, as being employment of the single factor labor and w._ as the

real wage, but it would be equally appropriate to regard n,  as the stock

of capital and w, as the real rental on capital.i/ In (1). yo’yl and A
are each positive constants, while the constant discount factor B satisfies
O0<B<l. The notation E (y) denotes the mathematical expectation of the
random variable vy, conditioned on information available at time t, an

information set to be specified shortly. The firm faces a stochastic process

for a, of the form

a
a = * eee +
t - ¥1%%-1 + aﬁat—q Ve

or

a(L)a, = v:

where L is the lag operator and where (L) =1 - alL-...-aﬁLq,uj being a

scalar for all j. We assume that w. 1is the first element of a vector



autoregregsive .process X, that satisfies
C)x, = v
@)x, = vy

X
where X, and Ve,

are each (px1l) and where
- T - _ T
EL) =T - CyLeeua-C 15, .

The matrix Cj is pXp and so is conformable in dimension with the vector
. a
X, for j=1,...,r. Here (Vt’ v:) are the innovations for the joint

(at, xt) process. More particularly, we assume

vd = - ET '
¢ =3, 8 lap_ 158, 5 evesX 13X, _oseee]
v = - Efx, | ; ' 1
t: . %t T RSV AARRE L o Ry A
It follows that EV: |Qt_1 =0 and Ev:; [Qt-l = 0 where

0.1 = {at-l’at-z"'"xt-l’xt-2’°"1° At time t, the firm is assumed to

know Qtufnt-l’nt-2’°°'1‘ We further assume that a . and x_ are jointly

covariance stationary stochastic processes. Sufficient conditions for this are

that the roots of Qi(z) =0 and det ¢€(z) = 0 1ie outside the unit

circle., Actually, for much of our work, the assumption of covariance stationarity

can be relaxed somewhat and be replaced by the assumption that a, and L

are of mean exponential order less than lﬂfﬂré/
We solve the firm's problem by using the discrete time calculus of

6/ . . .
variations.,— Differentiating the objective function (1)} with respect to

§ =0,...,N -1 and setting each derivative equal to zero gives the

F- I |

n
t+]

system of stochastic Euler equations

=!_5(W . at+j "'Yo), j = O,ocn,N -1

+ .
(2 BE ety Meapd ¢nt+j Te+i-1 t+]

L
where b= - (E— + 1+ 8 .



Differentiating with respect to the last term L. gives the terminal or

transversality condition

: N -— - . . - - =
(3) Lim E BIY, + @pen ™ Yeun ™ Y1%in T2 8 CpayMean-121 = 0 -

N—ben

To solve the Euler equations for j = D,...,®» subject to the terminal con-
dition (3) and the given initial employment LR first obtain the
factovization of the characteristic polynomial of (2),
: 12
1 += = - -
( :%.z :Bz ) (1 plz)(l pzz)

Given our assumptions about the signs and magnitudes of 8§, K and §, it can
7
readily be shown that 0(<p1«< 1 and that Py = 1/Bp1 :—/ It follows

that the unique solution of the Euler equations that satisfies the transversal-

ity condition is

p =+
) | -

3
n_ = p,n__ AE, [w
t 1 t-1 3} §=0 t

45 " at+j"Y0] !

where AEEpz- = Bpl . Equation (4) is derived from the Euler equation (2)

by solving the stable root backwards, and the unstable root forwards in order
to satisfy the transversality condition. See Sargent (1979) for more details.
Equation (4) exhibits the certainty equivalence or separation property. That
is, the same solution for n would emerge if we had maximized the criteriom

E W ) and dropping the

formed by replacing (at+j’wt+j) by (Etat+j Y43

operator Et from outside the sum in the objective function (1).

Equation (4) is not yet a decision rule, for the terms Etwt+j and

Etat+j must be eliminated by expressing them as functions of variables known by
agents at time t. We shall use the classic Wiener-Kolmogorov formulas to

8
derive a closed form for the decision rule.—/ To derive the decision rule we shall

tentativelv restrict our specification of the stochastic processes for L and a

t
_tﬁgfequireithaf‘the roots of det{(z)=0 and of (z)=0 be outside the unit



circle. These conditions on roots guarantee that a and w are
covariance stationary, thereby justifying the use of the Wiener-Kolmogorov
prediction formulas. It will turn out, however, that while our formulas
were initially derived on the assumption that these roots are outside the
unit circle, the formulas remain valid under wider conditions, in fact under

the conditions on the exponential orders of w and a

" r indicated in

footnote 5.

In appendix A we shall derive expressions for the terms on the right side .
of (4) using complex analysis. That derivation seems worthwhile to us in its
own right, since it illustrates a method useful in other contexts and also
carries insights into the nature of the "annihilation operator' used in solving
linear least squares prediction problems. Here we shall derive the formula

in a technically less demanding way using tools more familiar to economists.

We desire formulas for the terms

U EXME x_ . .= TANE, w .
j'bO t t+j j=0 t t+j
and

® a
¥ kJEtat+.
3=0 4

where U is the (1l xp) unit row vector with 1 in the first place and zeroes
elsewhere. The moving average representations fcr a, and X5 which exist

by the assumptions on the zeroes of a{z) and detf(z),. are

1y 7
. a(L) v,

[
Il

-] s
= X@WE = [z x 1t
=09

X = g(L)-lvi

HOLIEN ISR R 3



The Wiener-Kolmogorov prediction formula is

where | ]+ is the annihilation operator that instructs us to ignore

negative powers of L. In other words,

- _] k x
Et xt+k [ .?k;.] Ve

Then we have

w

o ) uﬁ"k“;
EkkEx [Tk L& L7 1w
t-{—k k=0 j=k i- .t
= ¥@Lv,
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-] ﬂﬂ
k—O J—k

Interchanging orders of summation gives

° 3 4 Lk
y(L) = ¥ z Ae.L
3=0 & >
=) j -k
= T g L] b RkL
j=0 k=0
o _]+1 it
ol L ]
= gg.l' [T
=0 3 1-2L
[ . N «©
= vend AL § §j7\3
jzol J _j=0
1 - ad-t

s -t e .
-1
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Even though the above expression for y(L) contains both positive and
negative powers of L, by comstruction the polynomial in the lag operator

§(L) contains only non-negative powers of L. 1In summary it has been shown

that

- [gL(L) - L ?\ﬂl)] V

(s) 5 B x
= 1- lL

Equation (5) is a closed form that is especially useful for estimation in

the frequency domain. The corresponding formula for a, is

-1, .
(6) z - ~{L) =~ L "A¥{LA), . a
AkEtatHc [ -y L-l ]Vt ‘

For time domain estimation, it is desirable to replace the righthand

sides of equations (5) and (6) with equivalent expressions in terms of current

and past values of X, and a., respectively., Using

a1
= g(L)xt = (L) X,

we can substitute into equation (5) to obtain

[jL) - L~ ki(k) ] e

Z lkE t¥t+k

= (L)x
1 -7t t
=[I-L ?\EUQ_Q (L_)]
1 - AL
- _-L__M_(A)_L(_L]x .
1 -~ AL

Now calculate ((L)/(1 - AL_I) by using polynomial long divisicon omn

[- L' Qr-Lr'l Coog=--»-LE+ IV - AL’ to obrain

) lz_;rLr - (Ei'-L + A I;r)Lr'l - e0e = (gl + 7\'_(;2+ eee + ?\r'l;r)L

- Ayt el = WL

1 -1t
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It follows that

-1 -1
L A o L) _ L 1?\@,(?\)-1[-{:1-’: _ (c,_-.,]_ + 7LCL‘)Lr--l .

1-3 L

: r;l =1
= (G F Mt eee B X gr)L] + L Al ]
1-)\1.3l
Therefore

_.1"*’__']'_””'
I-L “Ag) “g(r) _ -1 S P - _ r-1.

o Loac) [o L+ (g +ag) L+

(N yoot )Ll

1t hr
1-3L 1-1L'1

=T+ 0TI+ o +afe )T L

+ (g, +A2g2 oo+ ?\rgr)]
Thus we have

1 -t e ! e

= c07HE) + gy +a%, + e +AT )

1 -t
+ AgrL“1 + O, t kzgr) 2
2 -
QG +ATLy F . T ) L]
Recalling that () =1 - gl A= g2A2 - . - grhr , wWe have
-1 -1
I -L ac() "6y _ -1 2 r-1
R =00 T+ G +AT g+ e F T
2 -2 -1
SRR (S ) gr)Lr +;u;rLr ]

(7)

-1 -1
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Using an analogous argument we have

-1 -1 - -1 ¢ - j
(8) (eldel o)y - ooyt s pcr A Tapudy

-t §=1 k=il

Substituting from (5), (6), (7) and (8) into (&) gives a closed form

expression for the decision rule for ot

o r=1 T . .
1 -1 k-j i
(9) n =pn o -—==UE(N) [I+ £( £ » ‘g )Llx
t 1't-1 8 ol ketjel k t
Pyy¥ q-1 ¢q - :
+ 1% a(h) 111 + ¥ (T kk Jak)LJIat
j=l k=j+l
pPa Y
170 1
o o
where a
oz(L)at=vt
_ X
g(L)xt = vt o

Equation (9) is a convenient closed form that expresses the restrictionms
imposed across the decision rule and the parameters of the stochastic

processes for X, and at° Notice that current and (r ~1) lagged values

of x,  are in the decision rule, while current and (q - 1) lagged values

of a, appear. So the numbers of lagged =x's and a's in the decision rule

are one less than the orders of the autoregressive processes for X, and
at, respectively. Further, notice that current and lagged x's appear in
the decision rule because they help predict future values of the wage. Thus,

any stochastic processes that both Granger cause the wage and that are

included in the firm's information set appear in the decision rule for n
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The above derivation took place under the assumptions that x_ had an

th : . th
T order vector autoregressive representation and a_ a q order
univariate autoregressive representation. Analogous formulas have been
obtained when X, and at are permitted to be mixed autoregressive moving

average processes and when other variables observed by the firm are useful

in forecasting future values of a [see Hansen and Sargent (1979)].

The solution method leading to (9) is usefully compared with the
standard dynamic programming algorithm for computing the optimal decision rule
[e.g. Bertsekas (1976) or Kwakernaak and-Sivan (1972)):. It is straightforward
to show that our problem is a linear optimal regulator problem with a system
representation that is detectable and stabilizable.gl The optimal value
function of the problem can be determined by solving-the matrix "algebraic
Riccati" equation, from which the optimum decision rule is directly calculable.
The algebraic Riccati equation is solved either by iterating on the Riccati
matrix difference equation until convergence is obtained, or else by Vaughan's
(190) procedure of calculating the eigenvalues and eigenvectors of the state-
costate transition matrix. Such procedures do not lead to closed forms but
require the use of iterative procedures either to solve for the stationary
solution of a matrix difference equation or else to calculate eigenvalues of
the state costate transition matrix. Evidently, the solution method leading
to (9) dominates these dynamic programming procedures both in terms of

speedier computation, and in terms of delivering expressions for the decision
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rulés which can conveniently be differentiated with respect to the free
parameters. Each of these features is of substantial practical importance
since the decision rule and its derivatives with respect to the free
parameters {YO, Yo &, a{l), (L)} will have to be evaluated repeatedly in
the course of nonlinear maximum likelihood estimation.

It should be mentioned that we are able to obtain a closed form solution
in (9) because the costs of adjustment have a simple first-order form, per-
mitting us analytically to factor the characteristic polynomial (1+-§ z +
%-22). In models with higher-order characteristic polynomials, which result
either when there are higher order adjustment costs or when there are
interrelated costs of factor adjustment, the characteristic polynomial
cannot be factored -amalytically. In such models, one cannot obtain a
completely closed form expression for the decision rule. Still, the method
leading to equation (9) remains useful in such models, and enables one to
get "as close as possible" to a closed form solution. The application of our
method of solution to models with higher-order dynamics will be described in

a sequel to this paper.
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73. Restrictions on the Error Process
In this section we illustrate how our methods can be ugé@ to provide
guidance for interpreting the disturbance or error term in a regression
equation. We shall take the view that a, is a random process that is
chserved by private agents but is not observed by the econometrician, This
indeed is a well known way for justifying the presence of a disturbance term,

Under this interpretation, equation (9) imposes substantial structure on the

ervor process in the equation to be fit by the econometrician, Recalling that

a, = a(L)-lvi;rthe disturbahce in éQﬁEEion (9) is given by
Py -1 -l 9 -1 a
e, =% od) [1+ T (2 A Telledl) v .
=1 kej+l

We can rewrite this equation as

(10) a(L)et = n(L)vi where
P1 -1 -l 4 ey
nd) = Y a(d) [+ v ( T A ak)L ] .
=1 k=il

a | . . , .
Here v, is the serially uncorrelated random process of innovations in

i.e., v: is "fundamental" for a, . 10/

a,,
Equation (l0) shows that the error term in the decision rule (9) is a
mixed moving average, autoregressive process with autoregressive order & and
moving average order gq-«l. The parameters of the autoregressive component g{L)
are inherited from the qth order Markov specification for the technology
shock a - The moving average part (L) is entirely determined by the
parameters of o (L) and the parameters of the objective function (1). Further-
11/

more the roots of 7(z) can in general be on either side of the unit circle.”

This means that moving average polynomial m(L) may not have a stable inverse
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in nonnegative powers of L. Consequently, even though v: is fundamental

for a it is not necessarily fundamental for e That is, vi need not

t’
lie in the space spanned by square-summable linear combinations of current
12/

T

and lagged e, S
It is of interest to contrast our specification for e, with other
time series specification strategies. Unrestricted moving average components
of a2 mixed autoregressive moving average process have multiple representations
in the sense that different moving average specifications imply the same
covariance structure of the process. A common strategy in this situation is to
achieve identification by focusing on the moving average specification that is
invertible, i.e., the specification for which the zeroes of the moving average
polynomial do not lie inside the circle., In our setup we have restrictions
across the autorepgressive and moving average parameters., In particular, we are
not free to assume that the zeroes of m(z) lie outside the circle because the
parameters of w(L) are completely determined by the other parameters of our
model. This has important implications which will be discussed below. Before
proceeding to the discussion of these implications, we should emphasize that
the restrictions which we have derived on the disturbance term depend critically
on the assumption that agents use current and past observations of only the
technology shock to forecast future values of the technology shock., i.e., no
other processes observable to agents Granger cause a, . As noted previously,
it is possible to relax this assumption and instead operate undsr *he no-ion
that the firm observes a vector bt whose first element is a and whose

E

other elements are useful in forecasting future values of a . Unfortunately,
the parameters governing the bt process will not necessarily be identifiable. This

can create problems in identifying the criterion function parameters of the

firm's optimization problem except when the bt process is orthogonal to the

X, Pprocess.
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Some widely used estimation procedures for models with mixed moving
average, autoregressive errors, such as those of Box and Jenkins (1970),
require that the error term be written in a form for which the moving average
component is invertible. If such an estimation strategy is to be used, then

e
it is required to rewrite e, in terms of a new process V such that

a(L)et = B(L)vi

. e
where vi is fundamental for et. The condition that vt be fundamental for

e, amounts to choosing ©(L) so that
-1 -1 _
az)mz L) = a(z)e@ ) for Jz| =1

where 6(z) has no zeroes inside the unit circle. To be more gpecific, if
zl,...,zj are the zeroes of m(z) that are inside the unit circle, then by

multiplying m(z) by Blaschke factors, we obtainlé/

0 (1—z1z) 1~z .z)
z) —‘Ir(z)[‘(—z:é—.l)—] .o ('Z.-zj)]

which satisfies the above requirements. Other estimation procedures are
available that do not require that the moving average polynomial for the error
process e, in (10) be invertible. Such procedures are directly applicable

t

without need to replace w(L)v: by G(L)vi . We shall describe these pro-
cedures in section 5.

An alternative to the model of the error term described above can be
derived by simply positing that the exrror term e in the decision rule (9)
is an m?h order autoregressive process, and then to work backwards and
determine what assumptions are implied about the a  process in the ovjective

function. In particular, suppose that

e
+ eao +.g¢ & + Vv
m

S ST | t-m t
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or

(11) eLye, = v

m . . ,
where €(L) =1 - e_1]_. . ee. - emL » €y is covariance stationary and

vi is the innovation in the e, Pprocess. We then can invert (11), to get

e = d(L)_lvi s

since €(z) has its zeroes outside the unit circle by the assumption of
covariance statienarity.

Let

ALY = @) tm-N+ ae@ .
L

It iqigagi}y-gg;ifiégf;hat QA(L)J;isfbne-sided,?i.e., that the-expansion

for A(z) about zero contains only nonnegative powers of L. Define
. e
at = A(L)vt

e . . . + + .
and assume that ve is contained in agents' information set at time t,
We know that the technology shock a, must be related to the disturbance

e, in the decision rule by

p «© .
(12) e =—&1 r AE

Using the formula (A3) in Appendi: A. we have that

[LA(L)_] _ La@) - M)
L-) '+ L-%\

e - Faem - a@t
L - X

e(L)-l .



Substituting into (l2) we have that

y=1 e
e, = e(L) v,
and therefore equation (11) has been verified. We should note that A(z)
is not necessarily imvertible. Consequently, vi might not be recoverable from
current past observations on as so that for this model of the error term
it must be assumed that agents observe the vi process itself and not just
the a, pProcess.
A disadvantage of this model for e as a purely autoregressive process
is that it requires that the covariance structure of the technology shock a
be linked in a particular way to parameters in the firm's criterion function.

In our view, this is not plausible; thus we prefer the model (10) for e .
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4. Granger Causality and Econometric Exogeneity
Let us write the dynamic demand schedule for labor, i.e., the firm's

decision rule for nt as

+
. plnt_1 + p(L)xt ﬂ(L)at

where

-1 -1 r k=3 :
SrugoTir+ £ g Ao
& j=1 k=j+l

]

p(L)

_P - ERUE BN S
TT(L)-?IQ()\) e r ooz Aol

j=1 kejil k

For the sake of simplicity, the constant term has been omitted. Solving for
n_ asa function of current and past x's and a's we have that
@, + -, L) @)
(13) n = (1-plL)¢ku£Ev§£ ;f_f;?i' T e
This provides us with an expression for the firm's demand schedule for n, as

a sum of distributed lags of current and past x's and current and past a's.

- -1 a
Recalling that xt = (L) 1v: and at = (L) 1v£, we can substitute into
eguation (13) to obtain:
- -1 -1 x -1 -1 a
(14) n = (1-911) p@ICA) v * (1. L) Ta(L)a(L) v,

. a X . N . . .
Since (vt,vt) are the innovations in the joint (at,xt) process, it follows

that v: and vi are serially uncorrelated and that E vivx:, =0 for j % 0.

t-]
. a X .
Contemporaneous correlation between v, and v, cannot in general be ruled

out .

Let us introduce a new process e such that
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b'4 ) N . . X
where Ect v = 0 and v 1is a (lxp) row vector. This defines vv, as

. a
the linear least squares predictor of v

X , s
¢ given V- In the case in which

a X . a . .
Ve and v, are uncorrelated, v 1is equal to zero and ct = Ve Substituting
into equation (1l4) we have

(15) ny = @ @@ T+ w@e@) IV

+(l-plL)-lﬁ(i.);)g(Lj-1Ct .

As argued in the previous section, m(z) may not be invertible. Thus if

we define a disturbance term

(16) d = (1-p1L)-1n(L)o{(L)-1ut ,

t

o, may not be fundamental for dt' Using the transformation with Blaschke

factors described in section 3, there exists a ©(L) such that
-1 -1
mz)n(z ") = 0(z)8(z 7)) for |z]=1

wher 8{(z) does not have any zerces inside the unit circle, This allows us to

‘define a new serially uncorrelated process vi that is fundamental for dt

such that
_ <l -1 d
(17) dt = (l—plL) 8(L)a(L) Ve .
Since E:ctv:_j = 0 for all j it follows that E:dtvx_, = 0 and consequently
E d x

vtvt-j = 0 for all j. We can substitute equations (17) and (16) into

(13) and determine that
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vk -1 -1
(18) o= (=p L) [R(@LIEM) T+ aLIa@) vIvy
-1 -
+ (1-p;1) 0 (L)a(L) lvct' .
Equation (18) together with the fact that X, = C(L)-lv: provide us

with the representation of the joint (nt,xt) process given below:

.
(19) n, (1-plL)-1B(L)cr(L)-l (1-p, 1) " g @) 4 m W) oy v
= -1 . X

Kt Q Q(L) vt

This system expresses (nt,xt) as one-sided square summable moving averages

of the serially uncorrelated processes vi and vt which satisfy E‘vxvd =0

t t-j
for all j. The joint (vi,vt) process is fundamental for the joint (nt,xt) process.
Thus (19) provides us with a Wold moving average representation of the joint
(nt,xt) process. WNote that we have a2 rero yectriztion in this representation
in that X, is not dependent upon vi. The triangular character of this
moving average representation together with Sims's theorem 1 (1972) imply that

14/

n, fails to Granger cause X o

Sims's theorem 2 informs us that if n fails to Granger cause x, then

there exists a representation of the form

(20) n, =17 {L)xt + u
where
m -
) = £ oLt
i=0

The coefficients of TH(L), i.e., the ﬂj's, are square summable matrices and

u, is a covariance stationary stochastic process obeying the orthogonality

conditions
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Ex,u ., =20 for all j .

These orthogonality conditions say that X, ig strictly exogenous in (20)

and that the projection of n, onto the entire X, process is one-sided

on present and past x's. So Sims's theorem 2 informs us that if n fails
to Granger cause X, then there exists a regression of n on a one-sided
distributed lag of X, in which X, is strictly exogenous, A candidate for
the representation guaranteed by Sims's theorem is the dynamic labor demand
schedule (13)%§‘QMI purpose here is to indicate that this schedule need not bhe
the representation in which X, is strictly exogenous. The upshot is that

econometric exogeneiry of X, in the firm's decision rule for o, is a

stricter condition than the Granger non-causality of x, by n . As we

t t.

have seen, this latter condition is an implication of the assumptions we have
used in our model derivation.

It is useful to substitute vi = Q(L)xt and equation (17) into equation

{18) yielding

-1 -1
(21) »B = (l-p, L) "[p@¥ s(L)aL) "v{ L= +d,
Since Ed vy _, = O for all j, it follows that Ed x . =0 for all j. Letting
e = de
and

LY = Lop2) M p@) + 1o v @)

we see that equation (21) is the representation insured by Sims's theorem. 1In -
other words, X, is strictly exogencus in equation (21). Comparing equations
(13) and (21) it is immediately apparent that equation (21) is the labor demand

schedule if and only if v = 0, The condition v = 0 is equivalent to the
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requirement that Evive = 0.

tt

Summarizing our argument, Sims's theorem 1 indicates that the failure
of o, to Granger cause X, is manifest in the existence of a triamgular
moving average representation for the joint (nt,xt) process. Egquation
system (19) displays such a representation for our model. The existence of
this triangular moving average rvepresentation is a necessary condition for
X, to be strictly exogenous in the firm's demand schedule for labor as Sims's
theorems 1 and Z show, but it is not a sufficient condition. Sufficient con-
ditions ane.poth that (a) there exists a triangular moving average representation,
i.e., n, does not Granger cause X, and (b) the vector of regression perameters

X _a

vw=0, 1.e., Evtvt = 0 . Thus the conditions under. whicll- x; -is-exogenous

in the labor demand schedule are more stringent than the conditions under which

n fails to Granger cause X, .

The hypothesis that n, fails to Granger cause X, is a key onerin
formulating the model. Furthef,many variable that Cranger causes the real
wage W, ought be included in the vector X s at least if there is a pre-
sumption that that variable was observable by the firm, Using the standard
tests of Granger and Sims, these specifications can be subjected to empirical
checks, before proceeding with estimation of the model. Now it happens that the
parameters of the model, i.e., the parameters of the firm's objective function
and the Markov processes governing X, and a_, are all identifiable with-
out imposing the exogeneity assumption that v = 0. Consistent estimators

of these parameters can be constructed imposing only the Granger non-causality

of x by n

but leaving Vv unrestricted in (21). Then under the maintained
t

t 2

hypotheses that n does not Granger cause X, and that the other specifica-
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tions of the model are correct, the null hypothesis that v = 0 can be

tested.

This latter test is similar in spirit to the test for exogeneity proposed
by Wu (1973) in a classical simultaneous equations setting. The idea of Wu's
test for exogeneity was to examine the covariance between the disturbance of
the reduced form equation for a stochastic regressor appearing in a particular

structural equation and the disturbance term in that same structural equation.

x.a
tc
which is equivalent te v = 0. It should be pointed out, however, that the

In the context of our model, this is analogous to testing whether E v =0,
estimation environment which we are considering differs somewhat from the one
which Wu considered in that we are allowing for serial correlation in distur-
bance terms and that we achieve parameter identification via nonlinear cross-
equation restrictions implied by the hypothesis of rational expectations.

The preceding amounts to a description of the representation theory
underlying our proposed test for strict exogenelty under the maintained hypoth-
esis of the model. That is, we have shown that the hypothesis of strict econo-
metric exogeneity in the labor demand schedule in terms of current and past n's
and a's translates into the hypothesis that v = 0 in the population Wold
representation (19). We now briefly describe two statistical procedures for
testing the null hypothesis v = 0, each of which has a justification in terms
of asymptotic distribution theory. The first procedure involves first estimat-
ing all of the free parameters of (19) by a quasi-maximum likelihood procedure,;é/
including v among the free parameters. Then the model (19) is re-estimated
imposing the strict exogeneity assumption v = 0. On the null hypothesis that
v = 0, the likelihood ratic statistic is asymptotically distributed as chi-

square with p degrees of freedom, where v is a (pxl) vector.
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A second testing procedure is closely related. It involves estimating
(19) with v a free parameter by a quasi-maximum likelihood procedure, and
then using the asymptotic covariance matrix of the estimated v to test the
null hypothesis that v = 0.

The preceding representation of the hypothesis of strict exogeneity
maintains the hypothesis that the specification of the model is correct. As.
it happens, the model often imposes overidentifying restrictions on the lag
distribution on x, on the right side of (21). This means that (21) is a
regression equation (i.e, Edtxt-j =0 for j > 0) only if the overidentifying
restrictions are true. One can compute various specification tests for the
model, which are closely related to exogeneity tests, and are based on esti-
mates of the sample moments corresponding to E dt'xt—jm‘ fq; j=0. Rejgction
of the hypothesis that these moments are zero can be viewed as evidence
against the specification of the model. Failing such a test would leave
open whether the specification is faulty because of an incorrect criterion
function being attributed to the maximizing agent, or because of a failure
of X, to be Granger non-caused by n,, as the model assumes. Presumably,

careful application of Granger causality tests in the "model-free" setting

of Granger and Sims could be used to help isolate the source of failure.
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5. Estimation of the Model Parameters

E T Ji o T
The system that we want to estimate is

n, = (1- plL)-l[p,(L)'!' ﬂ(L)af(L)_lvg(L)]xt+ (1- plL)-ln (L)a(L)"lct

(22)
Cx, =V
where

n(L) = il a(k)-l[l + qél ( g Rk-jak)Lj] ’
6 j=1  k=j+l

s =PLeena T B oo
5 =l k=il

E € Coy = 0, E<vai:j =0 for j 40 and

B ctvi_J =0 for all j .

Equation system (22) displays the cross~equation restrictions on the regression
equations which emerge from our wmodel. The underlying parameters which are
to be estimated are v, £y §, A and the parameters of o(lL) and g(L).iZ/
As was noted in section 4, x, is; strictly exogenous in the first equation

of this system.

Equation system (22) can be estimated by using the method of quasi-maximum
likelihood with a normal density function. The word "quasi' is included be-
cause it is not necessary to assume that the stochastic processes are Gaussian
in order to obtain the desired asymptotic properties of the maximum likelihood
estimateg e.g., consistency and asymptotic efficiency. Suppose that we have a

sample on (nt, xt) for £=1,...,T. Let us stack the observations into

vectors (nT, xT) where
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r 4 b
kst %1
1l X
- 2 - 2
b T N Xp = s
By l x7
L J

Now write the Wold moving average representaticn (19) in the form

v 4

nt t
(23) x = o(L)

t Vt

where ¢(L) 1is the matrix of polynomials in L on the right side (19)

’

and where

(Recall that by construction E vtdvEx'= 0 .)* Then the covariance generating

function for the joint (nt, xt) process is Q(z)VQ(z-l)' . We can use the
covariance generating function for the (nt, xt) process to generate the
population elements of the covariance matrix of the stacked random vector
]

(ET , ET') in terms of the underlying parameters of the model. Let the

covariance matrix of (E&, x%) be

where recall that the mean of (5&, E&) is zero by virtue of the means hav ing

been subtracted off.
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The normal leg likelihood function for (ET, ;T) is given by

n
-1 7T
I

) 1 1 1 -, =
(24) & = = (T + Tp) log 27 - 5 log det Iy = 5 {né x%] r .

T

Directly maximizing the log likelihood function is difficult computaticnally,
since FT is a complicated function of the underlying parameters of the
model, and since inversion of the large (T + Tp) x (T + Tp) matrix TT

is required for each evaluation of the likelihood function.ig/ An alternative

"
strategy is to express the normal likelihood function as a product of conditional

the conditional means and variances [see Rissanen and Caines (1979)73. This
relinquishes the burden of inverting the TT matrix but requires the

use of recursive formulas in order to evaluate the likelihood function. By
virtue of the highly nonlipear nature of the cross-equation rational expectations
restyictions, the likelihood function will have to be maxzimized via some
numerical method which requires repeated evaluation of the likelihood. For

this reason, we mention a pair of strategies for simplifying the calculations

by approximating the likelihood function.
{i) Likelihood conditional on some initial observations.

It is convenlent to rewrite system (19) or (22) in the regression

equation form

(L) (-py1)n, = [a(LIu(L) + 7(LIvCL)Ix, + BLIvE
(25)

X

C(L)xt =V,

The equations express n, asa mixed moving average autoregressive process

with an exogenous driving process X In the first equation of (25), there
are (q + 1) lagged n's, (g + r - 1) lagged x's, and (gq-1) vtd's.
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Now represent the joint denmsity f; of (ﬁ%, ET') by
(26) fJ(nT, xT) = fc(nTle) . fm(xT)

where fc is the density functiom for o, conditioned on X and fm

is the marginal density of Xx,_ . It is convenient to approximate each

T
density on the right hand side of (26) with a density conditioned on some

initial observations. First, approximate fm(QT) by

Epleps Fpogoeeer®y)

By (%> xT—-l"_'"xr+1!xr’ Bpepree0¥p)
(27)
=g (plxpgs ooy ) 8 Gopy I gs e ¥ )

. v gc(xr+llxr’ xr_l,...,xl)

where gm and g, are the appropriate marginal and conditional density

functions. Taking logarithms on both sides of (27) we obtain

log gm(xT, xT—l""’xr+l|xr’ xr_l,...,xl)

(28) T

I log g (X |X__se0u,x
t=r+l1 cTtieml

I

)

t-r
Using the normal density and equation (25) we have

log gc(xt[xt_l,...,xt_r) =

- B-log 27 - % log det ¥V

2 22

r r

-1
-z E-v'x )'V22 (X = C-x

v -
2% T2 e RS N

).

Using this expression for log 8, in (27) gives
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log gm(x.r! XT_l,---,xI+1]Xr, xr_l,---,xl)

(29) = - EL%ZEL log 27 - 62559 log det V,,
1 T ) r X -l( T )
-= L x - I g.x__ v x =~ Iz.x__
2 t = p41 F =1 joe=47 22 7t j=1 3 e=]

Next approximate the term fc(nTle) in (26) with

fc(nT,nt_l,...,nlle, xT_l,...,xl) =

d d
hm(nT’nT—l’""nq+rlnq+r—l""’nl’xT’xT-l"'"xl’vq+r~1""’v1)

d d

(30) he(@glapgeeeosmp (@ryr Xp o % (gree1)r Vra20e V1o (g-1))

]

d d

. hc(nT~1[nT—2"'"nT—(q+2)’ xT—l""’ xT—(q+r—2)’ vT—Z"“’ vT_qx

L] .
..

o4

hc(nq+rinq+r-l""’nr—l’ xq+r’""xl’ q+r~l""’vr+l)

where hm and hc are the appropriate marginal and conditional densities.lg/

The nermal density with (25) leads to

d d
h (o ln _ oS (a1)? Rprt 0 Fem (qire1)® Ve-10t 0 vt—(q-l))

(L) (B-p L)
T ]

~vo N n_y + [e@r@) + 7@)ve(L)] = +

g (L) d 2

5 ]+Vt-1’eoV11

}

Substituting the normal density into (30) and taking logs leads to
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logh (n_, n PP 11 ]n goeesllyy KoyaoasXqs vd ,...,vd)
m- T T-1 gtr ! qtr-1 1’ 71 1’ "g4r-l 1

11 = 8CL), .d. {2
=37 - {a@U~pWn, - [a@u@d+r Lve @) Ix - =771, v}
30 V11 =g+T

Adding, (29) and (31) and viewing the result as an approximation to the

log of (26) leads to the approximate log likelihood function

& - {--P%':r—) log 21 = (55) log der V

T 22
21 el s +
2 t=r+1 t 22 t
(32) {_'(T+1 ; {q+r)) log 27 - (T+L ; (q+r)) log egvll
11 T -
-5 £ (afL) (l-p]_L)nt ~ [a@u@) + Tr(L)vc(L)]xt
eOVll t=q+r

9 (L) d 2
(=1 v_ )%
L + t-1

This approximation to the log likelihood is to be maximized over the free
parameters v, Py, 8, A, a(l), (L) and V: subject to the cross-equation
restrictions exhibited in (22). The expression (32) for the approximate

log likelihood indicates that it is desirable to estimate all of the equations
of (22) jointly, even though x, is strictly exogenous in the first equation
of (22). The reason for joint estimation is that the parameters of £(L)
appear in the first equation of (22) via the assumption of rational expecta-
tions. Evidently, estimating (L) by maximizing the first term in braces

in (32) and then maximizing the second term in braces;gg/ taking (L) as

given, leads to a lower value of the approximate likelihood.
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Since the initial values V2+r_1,...,vg+l are unobservable,
implementing the approximation (32) requires one additional approximation
be used to generate estimates of these initial values of vd. Box and
Jenkins (1970) describe several ways to select the initial vtd's. Cne
permissible procedure would be to set the initial values of the v d's
at their unconditional means of zero. The invertibility built into the
Wold representation (19) guarantees that the impact of these initial

v's becomes negligible as T —+ =,

(ii) Spectral Approximations

Hannan (1970) has suggested an alternative approximation to the log
likelihocd function £T in (ZH).gl/ Using the compact representation (23), we
know that the theoretical speciral density matrix of the (nt,xt) process is given

by
Sw) = (e ¥yva(et®yr,

Let I(mj) be the pericdogram for the (nt,xt) process at frequency wy * 2u3/T.
Now make the following approximations
' (R E L »~ T .
(o, xTe | 5 _E trace [S(mj) mJ)]
T j=1
and
T
log(det Tp) ] log{det{S(w )1}
j=1

Substituting into (2%), the corresponding approximate log likelihood function is

T
1 1
§* = - 2(T+Tp)log 2n - -2—3_);1 Log{ det Sy ;)1}
1§ (St ) I )]
-3 X trace i (mj) .

3=1
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The computational gain in employing £§* instead ST is evident by the fact that
evaluation of £T requires inversion of the (T+Tp)} x (T+Tp) matr-ixI‘T whereas
evaluation of S;* requires the inversion of the much smaller {p+1) x (p+1)

matrices S(w,) for § = 1, 2, +««y T. The justification for approximating i, by

J
S%‘ relies on the sample size T being large. In contrast to £% defined in
expression (32), computation of E%* does not compel one to zhift to the
invertible representation for (nt,xt).

A note of caution about these approximate likelihood functions is

pertinent. In a somewhat different context, Phadke and Kedem (1978) show that when

2 zero of the moving average polynomial is close to unity in modulus, maximiza-
tion of approximate likelihood functions analogous to £§ and £§* can give rise to
prarameter estimates that are substationally inferior to the ones obtained by
maximizing the actual likelihood function. They found this especially to be true
for the frequency domain approximizationaZZJ

In situations in which the parameter wvector v 1s specified to be zero,
an alternative estimation procedure is available. The linear least squares projection
of n, on current and past x's is not dependent on the parameters of the generating
equation of the a_ process. This can be witnessed by examining equation (21).
The serial correlation properties of the disturbance term of this projection can
be consistently estimated by employing the residuals obtained from least squares
estimation of the projection. Using a variant of generalized least squares,
the projection and the autoregression for X, can then be estimated jointly sub-
ject to the cross-equation restrictions implied by the model, thus delivering
estimates of the criterion function parameters of the firm's dynamic optimization

problem.
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In practice, the selected approximation to the likelihood function
would be maximized by using an "acceptable gradient method". Let

¥obe the free parameters of the model and let Yé be an initial

estimate. - (Where the model is overidentified, i.e., if p and r
are large enough, there is a variety of ways to get an initial consistent

estimate.) Then the approximate likelihood function is maximizing by

iterating on

(3) Yoo =Y - 400

where Ai is a scalar step size, Qi a positive definite matrix, and Gi
the gradient of the approximate log likelihood function. The reader is
referred to Bard (1974) for a detailed description of alternative procedures
for choosing Ai and Qi, and for calculating the gradient Qi. For
present purposes it suffices to point out that the explicit closed form
solution (22) exhibiting the cross—equation restrictions makes it possible.
to calculate the gradient Gi analytically fairly directly. Similarly,
for methods in which Qi is set equal to Hi-l where Hi is the second
derivative matrix of the approximate likelihood, the formulas ia (22)
make analytical calculation of the Hessian feasible. The explicit formulas
(22) are thus of potential advantage both in facilitating rapid and accurate
computation of estimates, and in facilitating computation of the asymptotic
covariance matrix of the estimates.

Next, we note that where Qi = Hinl, asymptotically efficient estimates
can be obtained by taking one-step with (35) starting from an initial
consistent esgtimate Tb. A variety of such two step estimators that exploit

the locally quadratic character of the normal log likelihood function have

been proposed in contexts somewhat similar to the present one.
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Finally, hypotheses can be tested either using the estimated asymptotic
covariance matrix of the coefficients or likelihood ratio tests. For example,
where the model is averidentified, the model can be tested by nesting it
within a more loosely specified model, say one that doesn't impose the cross-
equation rational expectations restrictions; and then coﬁpﬁting_awifkelihood
ratio statistic. Examples of this specification test strategy are given by

Sargent (1977;-i§73b):
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=

0. An Omitted Information Variables Model for the Error Term
In this section, we describe an alternative model of the error term

which is related to a model of the error proposed by Shiller (1972) in -another

context, This model of the disturbance term permits estimation of the

parameters of the firm's objective function under conditions which are
more stringent in some respects but less stringent in other respects than

are required for the model of the error term used in the preceding parts

of this paper.

Let us write the demand schedule for employment as

(36)

5
Ry TP T

.
: A Ewt+jlxt + ﬂ(L)at

j=0

where Xt = {xt’xt-l""]'

iti = X +» Here is a x 1) vector and
Let us partition X, as x (xlt, Zt) X, {p )

X1, 2 (plxl) vector. We assume that X1 includes ut least w_. Let

= {x, .X secs js We make the following assumptions:
%t 16711

(i) The firm uses the entire information set Xt' to form its

expectations of future w's, so that (13) or (36) is the appropriate

demand schedule for employment,

(ii) The econometrician has access only to a subset of the information
Xlt = Xt which private agents use,

(iii) The random shock a, obeys the extensive orthogonality conditions

: =0 £ 1 j .
E atxlt-j or all j
Notice that the model ( 36) can be rewritten as

PL &
= — 3
nt plnt—l T A Ew

x
8 1=0 t+j ' Lt

pl @ 3
+1T(L)at+-€- T A [Ew

A b X, -Ew X1

1t t+j ' t
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or
pl o 3
me= o0yt E jfok Ewt+j|X1t + ﬂ(L)a.t + s,
where
Dl @ 3
"t T % J.EO}‘ v eLs 1%, - E Vet %1 .

Let X1t have the vector autoregressive representation

Cl(L)xlt = Vl

t
where Wl =x -~ Ek ]x X .s)
t Lt 1t Mle-17"1e-27"
T
and g]:(L) =1 - giL ~ see gi L 1 Y

1
and assume that the roots of det gl(z) = 0 are outside the unit circle,

Then equation (22) can be written as

1
(37) n, = PR + (L)xlt-+ ﬂ(L)at + 8,
where
r.~-1
p _ 1 T -3 ;
(38) v =-2ocdwtre 5okt

=l k=j+l
and U1 is the unit vector conformable to X5, with 1 in the (first) place
corresponding to L and zeroes elsewhere,

Now the random term a, has been assumed orthogonal to for all

xlt—g

integer 3. Therefore n(L)at is orthogonal to x for all integer i.

1t-j

Further, by the law of iterated projections, we have for all j§x0,

E(L Bw, 1%, - By 1% X ] =

Eve,s 1%, - Eveyy 1% =0
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It follows that E sthit = 0. Therefore, we have that E stxlt-j = {

for j » 0 so that the random variable s, 1s orthogonal to
xlt—j for j » 0. We have therefore established that the composite error

term n(L)at + S, is orthogonal to x for .j » 0, i.e.,

1t-j

(39) E{[-n(L)at + 3] xit_j] =0 for j 0.

However, rr(L)at + St is not in general orthogonal to no_q? since lagged

values of both Tr(L)at and s, influence n__y» and since both W(L)at

t
and st' may be serfally correlated.

Under our current model assumptions we cannot rule out the possibility
that for the joint (nt,xlt) process, n Granger causes X,, . Even though
o, fails to Gramger wcause -the | complete ?block'f'xt , telative to the

information set {nt, xlt}’ n, wmay Granger cause X for "omitted

t 1c?

variable" reasons [see Granger (1969)]. Thus no claim can be made that

X, is exogencus in equation (37). As noted above, the composite error

term in equation (37) may be serially correlated. Without specifically
‘modeling the joint covariance properties of the variables unobservable

to the econometrician, fully efficient parameter estimation procedures such

as quasi-maximum likelihood are not feasible. Indeed, a more richly specified
model is needed in order even to write down the joint likelihood function

for (nt, xlt). One possible strategy is to trace through the restrictions
that our model places on the moving daverage representation for the joint

(nt, %._) process. Although conceptually this is a feasible approach,

1t
the restrictions are cumbersome and estimation of the moving average repre-
sentation subject to these restrictions appears to be computationally im-

practical, Rather than pursue this line further, we consider an alternative,

computationally simpler strategy. This procedure can be viewed as a generalization
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of the method of moments, and it exploits the orthogonality conditious

implied by our model. We now examine these orthogonality conditions in

more detail.

Solving equation (37) for ﬂ(L)at + 5 and writing out the orthogonality

conditions (39) for j = O,l,...,rl-l gives

rl-l

. 1 P
Blnc-pyney - o P el ¥ig.g = 0

or
r, - .
En X' p n xt.- - 2 EX xl _
tlt-j 17 Teel Tlt-j kﬁouk 1t~k "1t-j
or '
g
(40) C (Y - 0,6, G-1) - e MiCyy (1 =KD = 0
i= 0,...,1:'1 -1
where
(j) =En xJ' | and C  (j) = Ex.  x! 23/
Cax'37 = B0 Freey XX 1£51e-§ ’

Each pi is a (lxpl) row vector while each xlt-j is a (Plxl) column vector.
S0 {(3%) is a system of Py°Ty> equations in the (pl'rl + 1) parameters
(ué,pi,,..,ui _1,p1)o Therefore, the normal equations (39) by themselves

are incapablelof identifying this list of parameters. But recall that not

all of the parameters in this list are free. For the model imposes the ex~-
tensive set of restrictions across the ul's and the parameters of gl(L)
which are summarized in formula (38). The parameters of gl(L) are identified

1 1 . .
from the vector autoregression ( (L)xlt = v, and its normal equationms

S ot
A

(61) ¢, - 2

1 . _
lgk CXX(J-R) = 0,

1
Given that (¢ (L) 1is sufficiently rich (i.e., P and ¥, are large enough -
and for the current problem each can be quite small, namely one) the free

1 . .
parameter of u (L) in (37) and 0; are identified or over-identified by the
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population orthogonality conditions (4¢) and (41). It is clearly the
presence of the cross equation restrictions summarized in (38) that allows the
oxthogéinality conditions (40) and (41) to identify the free structural
parameters despite the fact that we are one orthogomality condition short
in (40). Thus, (36) fails to be a regression equation, yet consistent
estimation of the %free parameters 1s still possible because of the presence
of the cross-equation restrictions delivered by rational expectations.

A generalized method of moments estimator of the model parameters can
be obtained by replacing the population moments in the orthogonality conditions
(40) and (41) with the corresponding sample moments. When the model parameters
are over-identified there are more orthogonality conditions than there are
parameters to be estimated. Consequently, it is not in general possible to
select parameter estimates that allow all of the sample orthogonality con-—
ditions to equal zero, This necessitates an alternative strategy for obtaining
parameter estimates that allows linear combinations of the sample orthogonality
conditions to be as close to zero as possible, The number of linear combimations
is dictated by the number of underlying parameters to be estimated. Discussions
of consistency for generalized method of moments estimators of this form when

the underlying stochastic processes are stationary and ergodic are provided

in Hansen (1979).2&/

Given that there is latitude as to the choice of which linear combinations
of the sample orthogonality conditions to employ, a quegtion remains as
to what is the "best' choice. In this context we mean best in sense of deliver-
ing the smallest asymptotic covariance matrix among the class of estimators
under consideration. In other words, all cther estimators in this class have
an asymptotic covariance matrix that exceeds the "best" estimator by a positive
definite matrix. It turns out that the "best"™ cholice iz dependent upon the

serial correlation properties of the composite residual term. Consistent
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estimators of the residual covariances can be obtained from some first step
consistent parameter estimates. In appendix B we show how to determine
the optimal or best weighting scheme for the sample orthogonality conditions
as well as how to compute the asymptotic covariance matrix for the para-

meter estimates. These results are developed in much more detail in Hansen

(1979).
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7. Conclusions

A hallmark of rational expectations models is that they typically impose
restrictions across parameters in agents' decision rules and the parameters
of equations that describe the uncontrollable random processes that agents
face passively. These cross-equation restrictions are an important source
of identification in rational expectations models, a source that helps to
fill the vacuum created by the fact that in these models there are often
too few exclusion restrictions of the classic Cowles commission variety to
achieve identification.gé/ The cross—equation restrictions play a critical
role in the statistical models and tests proposed in this paper. For
example, it is the presence of overidentifying cross-equation restrictioms
on the labor demand schedule that makes it feasible to test both the necessary and
sufficient conditions that assure that X, "is strictly exogenous in the labor demand
schedule. Again, the feasibility of consistent estimation with the "omitted
information variable™ model of the error term rests on the presence of cross-
equation restrictions which compensate for what would be a short-fall of
orthogonality conditions in their absence. Again, the presence of restrictions
across the parameters of the processes generating the exogenous and endogencus
variables is the reason that joint estimation of the parameters of the
exogenous and endogenous processes is required for statistical efficiency,
in contrast to the more familiar case in which the parameters of the strictly
exogenous processes can be efficiently estimated by themselves.

The methods that we have described in this paper are fairly directly
applicable to a host of problems that can be reduced to that of an agent
choosing a linear dymamic contingency plan for a single variable;gé/ It
is desirable and nontrivial to extend our methods to the case where the
agent is choosing linear contingency plans for a vector of interrelated
variables. An interrelated dynamic factor demand model would be a good

exanple. This generalization will be described in a sequel to this paper

[see Hansen and Sargent (1980)17.
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Appendix A

This appendix contains a derivation of formulas (5) and (6) of the
text obtained by using some analytic function theory. We use results from
elamenhai}éﬁomp}?x_aéglﬁéis.tha&;ggg Eé'fdﬁn&;igfméhy“ééoﬁuﬁboks on the
subject, e.g., Churchill (196Q? and Saks and:Zygmund (ié?l);u The technique
delivers a fast way of evaluating the annihilation operator [Jp(z)]+ by
employing a partial-fractions-like decomposition of 2Y(z). This method turns
out to be useful in solving a variety of classical'sigpal extraction problems
in addition to our present application.

Let us begin with a two-sided lag operator (L) where

+ @ .
$O) =zl
j:':-cn
and
-+, @
T ¢2. < tw
j=‘_' -0

The "z transform' of this operator is given by
4o

4(z) = ¥ y.z)

j=-e d

= ¢ () + 4 ()

where
4o

+

¢ ()= T y.z°
j=0
+ = .

y-(z) = T w_jz . .
j=1

¢+(z) defines an analytic function for |z]<land

¢_(z) defines an anmalytic function for |zf>l. Furthermore
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limy (z) =0 .
7~

Using a result from Zygmund (1959). it follows that

. .
limy (Rel®y . (™
RAL

1imy” ®Rel®) = ¢ (1%
R+l
27/
exist for almost all o €[0,2n]. Thus (2} is at least well defined almost

everywhere for |z|=] and in particular
i - + = ) - )
B(@) = ™) = ¢ ™) Hy ()

is the transfer function for the linear filter {(L). The annibilation

operator | }+ applied to 2z transforms is defined by
@)1, = ¥ (o).

In other words the annihilation operator imstructs us to ignore megative powers
of z. We now restrict ourselves to cases in which $ (z) defines an analytic
function for lz[>R for some R<l. By this we gsimply mean that the power
series

e s
.E.w_jZ*J
j=1
is convergent for ]z[>R. Under this additional assumption, {.(z) defines an
analytic function in the annular region R< |z|<l. This prepares us for con-

sideration of the following lemma.

Lemma. Suppose A(z) is a regular fumction in Izl(]_such that

(1) A(z) = y(z) for R<|zlcl;

(i1) A(z) has at most a finite pumber -of singularities LT

in [z[<i with Pl(z)’P2(z)""’Pk(z) denoting the

corresponding principal parts of the Laurent series

28/

expansion of A(z) at these points.™ ™
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Then
k
[4(2)], = AG)- TP () .
int J
i=1
k
Proof: Let B(z) = A(z) ~ ¥ Pj (z). A standard result from analytic function
=1

theory::asgugesf us that B(z) is analytic in Izl<1.._‘Since (i) is true,

R max { |zll,|22|,...,]zk[]. Pj(z) is analytic for [zH;zvj and

lim P (z) = 0 .
Z=o i
k
Hence D(z) = © Pj (z) 1is analytic for Iz]>R and
1=1

lim D(z) = 0,
Z-¥o

Using these results we have that

m -
B(z) = £ Bzl for |z|«l
j=0 1
and
m _-
D{(z) = v D.z 3 for lz!>R .
=1

Since A(z) = B(z) + D(z) it follows that

@ . o
£ Bz + =Dz
3=0 1 j=1 7

i

is the Laurent series expansion for A(z) = y(z) in the region R < [z[ < 1.

Since this expansion is unique,

+ s
§ (8 = ¥ B.z7
j=0 4

= B(z) .
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This lemma provides a simple and computationally convenient formula
for computing [w(i)]+. In order to see the value of this computational
technique, let us reconsider the prediction problem examined in the text,

We are interested in determining the linear least squares predictor of

' >k
(A1) ‘ yt = I{EO?\ I'{t—(’-k.
given information available up until time t, We assume that the only
information useful for predicting Yo is current and past observations of
X . We also assume that x, is a linearly indeterministic, covariance
stationary process. Wold's theorem provides us with a representation of

X, given by

e
X
(A2) ceee X = L BNV
t j=0.tt;!

where vtx is gthe linear least squares one-step ahead prediction error and

X_X , .
v v = 0 for 0.
Eviv,.) it
X +
Current and past v_'s encompass the same information set as current and past

x 's. Wold's theorem also assures us that the elements of {gj} are square

summable. The =z transform of

o
by lkL k is
k=0
+ @ ,
PR\ IS T for |zl .

={) l1-%z z - A
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The =z transform corresponding to the Wold representation is

gz) = % B2 - for lzk}_ .
=0 7

Combining (Al) and (A2) we can represent

b
Ve T E Ve
js=e

where

= for ]\<|z|<1 .

> i 8¢
((z) = -!g_" “,jz.] _ g,*z&:’z_%

_]:;? =

The Linear least squares predictor of Y, is

txf

ey = [w(L)]+ Ve .

Thus we need to coﬁpute [¢(z)]+ .

Now A(z) = 2542

z - X is regular in !z]<i snd has a simple pole at )
A(z) = §(2) i, for A<<]z|<j, In the Laurent series expansion of A(z)

around A, the residue of A(z) is given by

lim (z-A) A(z) = lg(k) ]
A TN

This informs us that the principal part of the expansion of A(z) at A is

AE ()
zZ =X

Using the lemma we have that

H’(z)]_'_ = ig-(:) . :Eﬁ(;) .

]

Elz) - Kz-lggkz

1"K2"l
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This agrees with equation (5) in the text.
In the text it is claimed that the covariance stationarity assumption
for a and X, can be relaxed. We shall examine this claim for X, and
th

asgert that the logic for a, is completely analogous. We make an r

order vector Markov specification
C(L)x, = v, for t » O
t 't 2

T s s
where {(L) =1 - CIL- ess ™ CrL , Wwhere x_l,...x_r ave given initial
values, and where vt is a contemporaneousiy uncorrelated vector white noise.
We assume that the roots of det {(z) = 0 1lie outside the region lz]<vrﬁ.

Define

%, =0 for £f<~r and let
¥ g(L)x,_ for t<@
Vi t < *

Using the assumption on the roots det {(z), we know that [(z) has an
inverse with elements analytic for ]z[‘<VB. Taking the Taylor series

expansion about zero we have

il
%t B
Ui
N

°

cz) ! = g2

Since vtx =0 for t < -r, E(L)vtx is a well defined stochastic process and

L

(AS) : Xt = g(L)V’; .

Even though the coefficients gj may neot be bounded, equation (A3) provides
a valid representation of the X, Pprocess to which the Wiener-Kolmogorow

prediction formulas can be applied.
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As was argued in the text ) <fVB. Therafore
§(2) = f_’g_-(? is analytic for aclzl<VB .

Its Laurent series expansion given by
+ o 3
,ﬁ(z) = Z ¢jz
j2ea

provides a representation for Ve of the form

= ¥ ¥V .
Ve ” q’j t-j
f= -

Using the Wiener-Kolmogorov solution to the prediction problem we know that

= Y@ v .

E[ytlxt,xt_l,...,x_ Ve

"

If we modify the domain specified in the lemma to be |z]| <\ 8, we conclude

that

H!(z)].,. = EELEZL:?\&;A(M

This extends our prediction formula to nonstationary finite order Markov
processes,

The lemma turns out to be handy in solving classical signal extraction
problems of the kind discussed by Whittle (1963, p.66). For example let a

signal Ve be governed by an rth order Markov process

(1-p4L) (1= L) ... (1~p L) Y, = e, s lpj <1
while xt = yt + ut.
B e = = = ']
Here E u caj 0 Et;t E € for all t and j, where u, and e, are

serially uncorrelated white noises, The problem is to form the linear least
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squares projection [ytlxt’xtvl""]' This can be solved using formula
(3) of Whittle (1963, p.66). The lemma is useful in solving this problem
since ‘it makes  application of the annihilation operator { ] + fairly

routine,
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APPENDIX B

In this appendix we discuss the asymptotic distribution of the family
of generaiized method of moments estimators proposed in section 6. We
ebstainfrqm a detailed presentation and refer the interested reader to
Hansen-(ié?Q); Both Hansen's discussion and the present ‘discussion exploit
a framework developed by Sims in lectures tslhis graduate econometrics ¢lass
at the University of ﬁinnesota.

In this appendix we adopt different notation than is used in the text.
We do this in order to facilitate the presentation. We let X, denote the
underlying observable vector process including both endogenous and exogenous
variables and all relevant lags of these variables. We assume that this
process is stationary and ergodic. ﬂm denoctes the vector of parameters to
be estimated and is of dimension k. The sample orthogonality copditions
discussed in section 6 are compactly written

1 B 4
0® =7 T faxp®

The dimensionality gf OT is assumed to be pp k. Our model assumptions

imply that

E f(xt,am) = 0 for all t,

and therefore

EO (8) =0 .

Let us introduce & matrix A that is qxp where k £ q < p and define

BT to be that value of 8 such thatr IA 0T (BT)I is as small as possible,
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We assume that HT converges in probability to B Let

- p Of
B=E 38 (xt’Bm)

and let

e
i

E[f(xtsen) f(Xt_j,_Bm_)'l .
The infinite sum

-+
5= ¥ R

fomoco

i

is assumed to converge absolutely. Employing some mild side conditions
Hansen obtains the result that VT(BT- Qm) converges in distribution to a

normally distributed random variable with zero mean and covariance matrix
(B‘A°AB) 1 B’A‘Asa‘aB (BAAB) P .

In order for this covariance matrix to be as small as possible, it is

desirable to select A so that

and the resulting covariance matrix 1is

-1 -1

(B8 ~ B) .

The '"best" choice of A 1is dependent on 5, which is not known a priori and
must therefore be estimated. Consistent estimators of § can be obtained
from a first step estimator of R, employing a not necessarily "optimal"

choice of A . This allows us to obtain a sequence
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. . S ) 'E
ATAT - ST
that converges in probability to . S-l. 1f we substitute AT for A

in our definitiom of BT we still obtain the same asymptotic distribution

for VT(ﬁr- Qﬂ). This provides the "optimal” estimator alluded to in

Section 6.



NOTES

1. Examples of such cross-equation restrictions in simple setups are in
Lucas (1972), Sargent (1978a, 1978b), and Taylor (1978, 19380).

2. Aspects of estimating models under rational expectations are discussed
by McCallum (1976), Shiller (1972}, Wallis (1980), Taylor (1978, 1980), and
Revankar (1980). While our estimation problems share many common features
with the ones treated in these papers, our setup tequ to impese more
gtructure on the estimation problem because the process that we estimate
is in effect a "closed loop system" resulting from the solution of an
optimum problem by private agent or by a fictitious planner. The paper
by Kennan (1980) estimates parameters of a model similar to ours by

estimating the stochastic Euler equation.

3. The price of the butput good has not been included in our formulationm,
One can view this as world in which there 1s only one consumption good.
Alternatively, we could formally introduce the output price into the
analysis. However Y would have to be set to zero so that no third
order terms enter into the objective function.

4. 1In particular, we could assume that the firm chooses capital kt to

maximize

] - =k -J k -k
B [(YO + at+j)kt+j 2 j + € 3

(k y2

t+j kt+j—1

subject to k given. Here Jt is the relative price of capital at

t-1

time t, relative to the firms output. Using "summation by parts' it is

easy to verify that the above expression is equivalent with

=]
= Jre +
Ve = Epdikep Y B, jzoa & * 2ty
2
W2k (Jt-!-j -8 Et*‘j‘]t“"j+l)kt+j Z(kt-i-.] t+j-1) !



10.

11.

12.

13.

Since kt 1 is given, the same decision rule for kt will be found by
maximizing (1) in the text with k =n  and J - B Et+jJt+j+l =W o

Here Jt - BEtJ can-be interpreted as the rental rate on.capltal.

t41

Sufficient conditions for this requirement of mean exponential order leés

than 1/¥ B are that the roots of a(z) = 0 and det z(z) be greater
than ¥ 8 in absolute value. This is the general condition on uncontrolled

random processes required for the class of problems we are studying.

See Sargent (1979) for an exposition of this technique and application

to some simple models.

See Sargent (1979).

These formulas are derived by Whittle (1963).

But not controllable. See Kwakernaak and Sivan (1972).

Some authors impose the additional requirement that the contemporaneous

covariance matrix of the serially uncorrelated process be the identity

matrix as one of the conditions for being "fundamental™. In our exposi-
tion we do not impose this additional requirement.

Throughout this paper we will continually make substitutions of "z" for

"L" and vice versa. It should be remembered that w(L) is an operator

defined on the space of stochastic processes while w{z) is an analytic

function.

We have produced examples in which some of the roots of m(z) are inside
the unit circle. This happens only if q > 3. For g = 2, 7(L) turns

out to be (1 - &l&ZAL) where (1 - oL - usz_) = (-&1L)(1~&,L). Since
I%J <1, l&zl <1, it follows that the zero of (1 - aT&zkz) is outside
the unit circle.

The factor multiplying w(z) 18 an example of the "Blaschke factors"

described, for example, by Saks and Zygmund (1971, p. 221). The Blaschke



14,

15.

16.

17.

19.

20.

21.

22.

factors that we employ differ from the standard form by a constant
and a conjugation. We have left out the constant because it has
modulus equal to one, and we have left out the conjugation since the
complex zeroes of T(z) come in conjugate pairs.

Formally Sims's theorems are for a bivariate process; however, they

readily generalize to a partitioned vector process,

We are identifying the labor demand schedule as the representation of

n in terms of current and past x's and a's.

For a precise definition of the term "quasi-maximum likelihood procedure",
see Section 5.

In actuality, one may be interested in knowing 8 and Yys since B, Y7 and
6 are the parameters of agents objective functions. The parameters B and
Tl can easily be recovered from the other parameters being estimated.

This is a well known problem in models with moving average errors. See
Anderson (1975, chapter 5) or Hanman (1970, chapter VI).

Recall that by virtue of the invertibility built into representation

(19) or (23), vg is in the space spamnned by current and lagged n's

and x's. 1In effect, lagged vd‘s are conditioned on in (30) as proxies
for the more extensive set of lagged n's and x's whose information

they fully summarize.

This amounts to estimating the second equation of (22} for the exogenous
process x. first,land then estimating the first equation of (22) taking
the estimate of Z(L) as given.

See Hannan (1970), Chapter.Vi, sections 4-and 5.

Phadke and Kedem (1978) ran Monte Carlo simulations on estimators obtained
from maximizing the approximate likelihood functioms and the exact

likelihood function for finite order vector moving average processes.
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24,

25.

26.

27.

28.

29,

Additioqfl orthogonality conditions can be obtained by allowing j to
exceed rl—l. In particular, it may be desirable to exploit as many
orthogonality conditions as there are sample moments that can be computed.
The determination of the appropriate number of these orthogonality con-
ditions is dependent on the serial correlation properties of the composite
residual. We intentially choose not formally to specify these residual
properties and instead to focus on a fixed number of orthogonality con-
ditions, i.e., the number of orthogonality conditions we use is not
dependent on sample size.

Sims has illustrated that a wide class of econometric estimators is
encompassed in the generalized method of moments framework. He has
demonstrated this in his graduate econometricsg course at the University
of Minnesota.

The implicationsof rational expectations models for achieving
identification with exclusion restrictions are discussed by Sims (1980),
Lucas and Sargent (1978), and Sargent and Sims (1977).

A linear version of the Lucas-Prescott (1971} model of investment undef

uncertainty fits in since their fictitious "planner" faces a problem

of this form.

See Zygmund (1959, p. 276).

Let the Laurent series expansion of A(z) about zj be given by

o

A(z) = z %m(z—z

m==

)

j)
-1

The principal part is given by £ Am(z-zjfn. The function A(z) is

said to be regular in the region |z| < 1 if it is analytic in that

region except at isolated singularities.

See Saks and Zygmund (1971, p. 146).
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