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ABSTRACT

A prediction formula for geometrically declining sums of future forcing
variables is derived for models in which the forcing variables are generated
by a vector autoregressive-moving average process. This formula is useful in
deducing and characterizing cross-equation restrictions implied by 1linear
rational expectations models.

The views expressed herein are solely those of the authors and do not neces-
sarily represent the views of the Federal Reserve Bank of Minneapolis or the
Federal Reserve System.
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In linear rational expectations models it is commonplace to encounter
infinite geometrically declining sums of expected values of future variables.
For example, in models studied by Sargent (1977, 1978a, 1978b), Salemi and
Sargent (1978), and Hansen and Sargent (1980, 1981b), the actions of economic
agents depend on geometrically declining sums of expected values of variables
that agents view as beyond their control. These sums also occur in rational
expectations competitive equilibrium models whose equilibrium time paths can
be obtained by solving a fictitious quadratic objective function - linear con-
straint social planning problem. There the decision rule of the fictitious
social planner oftentimes embeds the solution of an optimal forecasting problem
involving geometrically declining sums of forecasts of variables that cannot
collectively be influenced by the competitive agents [see Sargent (1981),
Hansen and Sargent (198la), and Eichenbaum (1981)]. Thus from the standpoint
of rational expectations model. derivation and parameter estimation, it is con-

venient to have an explicit solution to the prediction problem

where X, is a p x 1 vector of variables observed by economic agents, E is the
mathematical expectations operator, Qt is an information set that is a subset
of that used by rational economic agents, 1/ and \ is a scaler parameter such
that ‘X\ < 1. 1In dynamic optimizing models, the parameter A\ typically depends
on the criterion function parameters of the optimization problem assumed to be
solved by private agents or by the fictitious social planner. Previously
[Hansen and Sargent (1980)], we have demonstrated how to use Wiener-Kolmogorov
least squares prediction theory in obtaining a solution for Ve under special

assumptions about X, and the information set Qt. In this note we extend those

results.
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To begin, we specify Qt more precisely and suppose that there is a q dimen-

sional stochastic process z that generates Qt in the sense that

Ot = {zs : =0 < g < t}. In other words, current and past values of z summarize
all of the information in Qt. As a special case, x_ can be a subvector of z, .
Next we assume that the joint stochasitc process (z', x')' is covariance station-
ary and linearly indeterministic and has mean zero. 2/ Furthermore, we assume

that linear least squares predictors coincide with conditional expectations.

Applying Wold's Decomposition Theorem to the z process, we know that z, can be

represented as

=
2) z, = @(Lu,
where (L) = ao +'a1,L + ... is an infinite order matrix lag operator that
gsatisgfies
[oe]
2 trace 0 ' < 4w,
3=0 J

u,_ is orthogonal to Qt-l’ and u e Qt. This provides us with an orthogonal de-

composition of the information set Qt since Qt = {us : -0 < g <t} and

EutuS = 0 for s # t. The linear least squares forecast of X, given Qt can be

represented as
(3) Brx |01 = 8@y,

where E is the linear least squares projection operator. In the special case

in which X, = Z, B (L) and @(L) are equal. It is an implication of (3) that

Xt satisfies

4 x = B(L)ut + v

where Ve is orthogonal to Qt.
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We can obtain an infinite, geometrically declining sum of future x's by
1

applying the operator 1-kL—l to . Operating on both sides of (4) yields
(5) 1 x B(L) u, + 1 v, .
) N Y
1-AL — 1-AL | 1-AL

An iterated projection argument implies that ﬁ[vslﬂt] =0 for s > t, so that

taking projections of both sides of (5) results in

-

Ve [1 AL 1)" l QJ = ﬁ[f-):'l e, | QtJ :

Using the Wiener-Kolmogoro¥ prediction formula we obtain

6 e T ° L-1 Yt
(L-AL )
where [ ]+ is the annihilation operator that instructs us to ignore negative

powers of L. At this point we can employ the Lemma in Appendix A of Hansen and

Sargent (1980) to ascertain that

7 B | _IB@ -8

[1-)&'1]_!_ L -2\
Both the numerator and denominator of (7) have the common factor (L - \) which
can be divided out. 3/ The contribution of this note is to investigate the im-

plications of (6) and (7) for a class of rational parameterizations of the in-
finite order matrix polynomial in the lag operator B8 (L).

Suppose that z_ can be represented as

t

(8) A(L)zt = B(L)ut

where A(L) and B(L) are q x q finite order polynomials in the lag operator,

det A({) has its zeroes outside the unit circle (‘Cl = 1), and det B([)



-4-

does not have any zeroes inside the unit circle. In our previous papers
[Hansen and Sargent (1980) and Hansen and Sargent (1981b)] we assumed
that B(L) = I or equivalently that z has a finite order autoregressive

representation. We can invert the A(L) operator and conclude that
-1
A(L) "B(L) = a(L)

where & (L) is the Wold Decomposition polynomial in the lag operator given in (2).

We also suppose that
(9) E[x |Q.] = c(Wz,

where C(L) is a finite order p x q matrix polynomial in the lag operator.

Specifications (8) and (9) imply that
(10) B(L) = C(L)A) 'B().

We shall use this specification of B (L) together with relations (6) and (7) to

ascertain a solution for Ve in terms of a finite number of z's and a finite

number of u's.

Substituting (10) into (7) we deduce that

(11) [—B-Q%J = Le@A@ '@ - aemam By
1-\L + L-X :

The left-hand side of (11) can be split into two pieces:

(12) O e@ - remamaw] aw @
+ L - A J

1-\L
+ae)A) T [B L) - B .
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We let B(L) = Bo + BlL + ... F BnLn and for convenience we assume that

m
C(L) = Cy+ CL+ ... +CL

mi-1

AL) = A+ AlL + ...+A L

0 mrtl

The restriction on the orders of A(L) and C(L) can always be satisfied by de-
fining some of the Aj or C, matrices to be matrices of zeroes. To allow for

A

the order of C and A to be arbitrarily related is straightforward but notation-

ally cumbersome.

Next we perform polynomial division and determine that

LC(L) - ACOVAN) “TA(L) = Dy + DL+ ... + Dm;m = D(L)
L -2
where
D)=C +CA+ ... +C A - ACVA) S, +AA+ ... +A 2D
0 0 1 e m 1 2 e w1
_ m-1 -1
D) =C +CA+ ... +C A = MDA (A, + AN+ LA
(13)
_ ) -1
D_=C_ - ACQ)AQ) AL
and that
_ n-1 _
\CONAQ) "L B = BQ) =F + FL+ ...+ F_,L = F(L)
L -2\
where

_ -1 n-1
FO = AC(MAQ) (B1 + BZK + .00 F Bnk )

Xm-l)
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-1 n-1
Fl = ACOVDA) (B2 + BBK + ... + Bnh i

(14) )

F . o= xec(M)AQ) T B_.

n~-1

Substituting into (6) we see that
(15) y, = D(L)A(L)-lB(L)ut + F(Lyu,
= D(L)zt + F(L)Ut.

Equations (13) - (15) provide the solution to the optimal prediction problem of
forecasting an infinite geometrically declining sum of expected future values

of x. Both D(L) and F(L) are finite order lag polynomials where the coefficlents
are explicit functions of Ao, Al’ A2, cees Am+1, Bo, Bl’ cees Bn’ CO’ Cl’ cees Cm’
and A. Hence (15) expresses Y, as a function of the current value and m lagged
values of z, and the current value and n-1 lagged values of the one-step shead
forecast error in z, . This extends results in our previous papers [Hansen and
Sargent (1980) and Hansen and Sargent (1981b)]. There the F(L) polynomial was
implicitly assumed to be zero. Formulas guch as (13) - (15) are important in
making econometric estimation of rational expectation models computationally
tractable., In this particular case, they help make it practical to accommodate

forcing variables with finite order vector autoregressive-moving average repre-

sentations.



Footnotes

1/ Hansen and Sargent (1981b) discuss how to estimate parameters and test
restrictions when Qt is a proper subset of the information set used by economic
agents. As has been noted by Shiller (1972), by making Qt a proper subset one

introduces a distrubance term that is orthogonal to elements in Qt.

2/ Hansen and Sargent (1980) show how predictions formulas derived under co-
variance stationarity can be applied to certain nonstationary processes with

time invariant representations in which the exponential order of the process is

less that 1/\%].
2B(z) - ML)

3/ In the language of complex analysis the function O has a re-

movable singularity at z = A,
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