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Introduction

Consider n players, engaged in a repeated play of a finite game in
strategic (normal) form. Every player assumes that each of the other
players is using a stationary (i.e., time independent) mixed strategy. The
players observe the actions taken in previous stages, update their beliefs
about their opponents' strategies, and choose myopic pure best responses
against these beliefs. In a ``Fictitious Play,'' proposed by Brown [1], every
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player (except for Player i ) takes the empirical distribution of Player i 's
actions to be his belief about Player i 's mixed strategy.1

The definition of the fictitious play process may depend on first move
rules, weights assigned to initial beliefs, and tie breaking rules determining
the particular best replies chosen at each stage. In this note we stick to the
original definition of fictitious play in which the first moves are chosen
arbitrarily and no tie-breaking rules are assumed. Our result remains valid
under the above-mentioned possible modifications of the definition.

We say that the process converges in beliefs to equilibrium if the
sequence of beliefs (regarded as mixed strategies) is as close as we wish to
the set of equilibria after a sufficient number of stages.2 Equivalently, the
process converges in beliefs to equilibrium if for every =>0, the beliefs are
in =-equilibrium after a sufficient number of stages. We say that a game has
the fictitious play property (FPP) if every fictitious play process converges
in beliefs to equilibrium. Shapley [11] constructed an example of a 3_3
2-person game without the FPP. It is therefore important to identify classes
of games with the FPP.

Robinson [10] proved that every 2-person zero-sum game has the FPP.
Miyasawa [6] proved (using a particular tie-breaking rule) that every
2-person 2_2 game has the FPP.3 Milgrom and Roberts [5] showed that
every game which is dominance solvable has the FPP. Krishna [4] proved
that if the strategy sets are linearly ordered, then every game with strategic
complementarities and diminishing returns has the FPP, if a particular tie-
breaking rule is used. Deschamps [3] proved that 2-person linear Cournot
games have the FPP. Thorlund�Petersen [12] proved that n-person linear
Cournot games have the FPP.4

In this note we show that a fictitious play process converges in beliefs to
equilibrium if and only if it converges in beliefs to equilibrium in the
Cesaro mean. We then show that every game in which all players have the
same payoff function has the FPP. Obviously, the FPP is invariant under
utility transformations that preserve the mixed best response structure of
the game. Consequently, every game which is best response equivalent in
mixed strategies to a game with identical payoff functions must have the

259fictitious play property

1 Brown's original fictitious play was defined for 2-person games. There are other (and perhaps
better) ways to define this process for n-person games; e.g., we can require that every player
choose a myopic best response to the empirical joint distribution of the other players' actions.

2 In this definition, the i th component of the belief sequence is the mixed strategy that is
believed to be used by Player i by all other players.

3 Monderer and Sela [9] show that degenerate 2_2 games in which one and only one of the
players has equivalent strategies and the other player does not have weakly dominated strategy
do not have the FPP. At the end of this note we show that every nondegenerate 2_2 game has
the FPP.

4 This paper deals with a fictitious play-like process in a larger clas of Cournot games. This
process coincides with the standard fictitious play process in the linear model.
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FPP. Such games are called games with identical interests. We further note
in this paper that every nondegenerate 2-person 2_2 game is best response
equivalent in mixed strategies either to a game of the form (A, A) or to a
zero-sum game (i.e., a game of the form (A, &A)). Miyasawa's theorem is
thus derived by combining our theorem with Robinson's.5

1. Fictitious Play

Let 1 be a finite game in strategic form. The set of players is N=
[1, 2, ..., n], the set of strategies of Player i is Yi, and the payoff function
of Player i is ui: Y � R, where Y=Y1_Y2_..._Yn and R denotes the set
of real numbers. For i # N let 2i be the set of mixed strategies of Player i.
That is,

2i={ f i: Yi � [0, 1]: :
yi # Yi

f i ( yi )=1= .

We identify the pure strategy yi # Yi with the extreme point of 2i which
assigns a probability 1 to yi. Set 2=X i # N 2i. For i # N let Ui be the payoff
function of player i in the mixed extension of 1. That is,

Ui( f )=Ui( f 1, f 2, ..., f n)

= :
y # Y

ui( y1, y2, ..., yn) f 1( y1) f 2( y2) } } } f n( yn) for all f # 2.

For i # N and for f # 2 we denote

vi( f )=max[Ui ( gi, f &i) : gi # 2i].

Let g # 2, and let =>0. g is an =-equilibrium if for each i # N,

Ui( g)�Ui( f i, g&i)&= for all f i # 2i.

Denote by K=K(1 ) the equilibrium (in mixed strategies) set of 1, and
denote by & & any fixed Euclidean norm on 2. For $>0 set

B$(K)=[ g # 2 : min
f # K

&g&f &<$].

A path in Y is a sequence y=( y(t))�
t=1 of elements of Y. A belief path

is a sequence f=( f (t))�
t=1 in 2. We say that the belief path ( f (t))�

t=1 con-
verges to equilibrium if each limit point is an equilibrium point; that is, if

260 monderer and shapley

5 Miyasawa's proof is 35 pages long.
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for every $>0 there exists an integer T such that f (t) # B$(K) for all t�T.
Obviously, the belief path converges to equilibrium if and only if for every
=>0 there exists an integer T such that f (t) is an =-equilibrium for every
t�T. We say that the belief path ( f (t))�

t=1 converges to equilibrium in the
Cesaro mean if

lim
T � �

*[1�t�T : f (t) � B$(K)]
T

=0 for every $>0.

Equivalently, it can be shown that the belief path converges to equilibrium
in the Cesaro mean iff for every =>0,

lim
T � �

*[1�t�T : f (t) � K=]
T

=0, (1.1)

where K= denotes the set of all =-equilibrium points. Obviously, con-
vergence to equilibrium implies convergence to equilibrium in the Cesaro
mean.

To each path y we associate a belief path fy :

fy(t)=
1
t

:
t

s=1

y(t) for every t�1.

Note that

fy(t+1)=fy(t)+
1

t+1
( y(t+1)&fy(t)). (1.2)

A path y=( y(t))�
t=1 is a fictitious play process if for every i # N

vi( fy(t))=Ui( yi(t+1), f &i
y (t)) for every t�1. (1.3)

Note that (1.3) means that yi(t+1) is a best response to f &i
y (t). We say

that the fictitious play process ( y(t))�
t=1 converges in beliefs to equilibrium

(in the Cesaro mean) if the associated belief path converges to equi-
librium(in the Cesaro mean).

We say that 1 has the fictitious play property (FPP) if every fictitious
play process in 1 converges in beliefs to equilibrium.

The next lemma will be used in our main theorem. It may also be useful
in identifying other classes of games with the FPP.The proof of this lemma
is similar to the proof of the well�known theorem about bounded sequen-
ces of real numbers: Convergence in the Cesaro mean of the Cesaro means
implies convergence in the Cesaro mean.

261fictitious play property
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Lemma 1. For every game in strategic form, a fictitious play process con-
verges in beliefs to equilibrium if and only if it converges in beliefs to equi-
librium in the Cesaro mean.

Proof. Let y=( y(t))�
t=1 be a fictitious play process, and let f=

( f (t))�
t=1 be its associated belief process. Obviously we have to prove only

the ``if '' part. Let then $>0 be given. Denote

M= max
f, g # 2

& f&g&, (1.4)

and choose '<$�(2$+M). By (1.1) there exists an integer T0 such that for
every T�T0 ,

*[1�t�T : f (t) � B$(K)]<'T. (1.5)

We claim that for every T�T0 , f (T ) # B2$(K).
Suppose T�T0 and f (T ) � B2$(K). Then it can be easily verified (because

the step size at stage t is 1�t) that f (t) � B$ for T�t�T+($�($+M))T.
Hence

* {1�t�T+
$

$+M
T: f (t) � B$(K)=�

$
$+M

T>' \T+
$

$+M
T+ ,

contradicting (1.5). K

Theorem A. Every game with identical payoff functions has the fictitious
play property.

Proof. Denote the joint payoff function by u. That is, ui=u for all i # N.
Recall that U denotes the multilinear extension of u. Let ( f (t))�

t=0 be the
belief process associated with a fictitious play process ( y(t))�

t=1. Assume
without loss of generality that maxf # 2 |U( f )|�2&n. By (1.2), (1.3), and the
multilinearity of U we get

U( f (t+1))&U( f (t))�
1

t+1
:
n

i=1

(vi( f (t))&U( f (t)))&
1

(t+1)2 . (1.6)

For t�1 set

at= :
n

i=1

(vi ( f (t))&U( f (t))). (1.7)

By (1.6), because at�0 for every t�1,

:
�

t=1

at

t
<�. (1.8)

262 monderer and shapley
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We prove that

lim
T � �

a1+a2+ } } } +aT

T
=0. (1.9)

Indeed, for T�1 set bT=��
t=T (att). By (1.8) limT � � bT=0. Therefore

lim
T � �

b1+b2+ } } } +bT

T
=0,

which implies that

lim
T � � \a1+a2+ } } } +aT

T
+bT+1+=0.

Since limT � � bT+1=0, (1.9) follows.
Let K= be the set of all =-equilibrium points of 1. By (1.9), for every =>0

lim
T � �

*[1�t�T : f (t) � K=]

T
=0.

Therefore (1.1) is satisfied, and the proof follows from Lemma 1. K

Consider fixed strategy sets Y1, Y 2, ..., Yn. The game 1(u1, u2, ..., un),
with the payoff functions u1, u2, ..., un, is best response equivalent in mixed
strategies to the game 1(w1, w2, ..., wn) if for every i # N, and for every
mixed strategy profile f &i # 2&i, maxf i # 2i U i( f i, f &i) is obtained at the
same subset of 2i as maxf i # 2i Wi( f i, f &i).

A game with identical interests is a game which is best response equiv-
alent in mixed strategies to a game with identical payoff functions.
By Theorem A, every game with identical interests has the fictitious play
property.

2. Remarks

(1) Deriving Miyasawa's theorem. Consider a 2-person 2_2 game
described by the bimatrix (A, B)=(a(i, j), b(i, j))2

i, j=1. We say that the
game is nondegenerate, or that it has the diagonal property if :{0 and
;{0, where

:=a(1, 1)&a(2, 1)&a(1, 2)+a(2, 2),

and

;=b(1, 1)&b(2, 1)&b(1, 2)+b(2, 2).

It is easily verified that every nondegenerate 2_2 game that does not have iden-
tical interests is best response equivalent in mixed strategies to a zero-sum

263fictitious play property
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game. So, either by Theorem A or by Robinson's theorem, every non-
degenerate 2_2 game has the FPP.

(2) Converging to a purely mixed equilibrium. The next example shows
that a fictitious play process may converge in beliefs to a purely mixed
strategy profile. Consider the 2-person 2_2 pure-coordination game with
(1, 1) on the diagonal, and (0, 0) elsewhere. If the initial belief of the
players consists of a pair of pure strategies in which they do not coor-
dinate, the fictitious play will converge to the unique purely mixed equi-
librium of the game.

(3) Utility transformations. Deschamps [2] showed that the FPP is
not necessarily invariant under increasing transformations of the utility
functions that do not preserve the best response structure in mixed
strategies. Monderer and Sela [8] introduced the concept of FPPS (fic-
titious play property in strategies). A game has the FPPS if every fictitious
play process converges to a (necessarily pure strategy) equilibrium.6 The
FPPS is invariant under all increasing transformations of the utility func-
tions. Moreover it is invariant under increasing transformations that
depend on the other players' actions. That is, Player i 's utility function, ui,
is transformed to vi by

vi( y)=Ty&i (ui( y)), (2.1)

where Ty&i is an increasing function. The previous example shows that not
every 2-person game of the form (u, u) has the FPPS. We conjecture,
however, that every generic such game (and consequently every game
which can be transformed to such a generic game by (2.1)) has the FPPS.
Our conjecture is based on the improvement principle of [8] . According
to this principle, if Player i switches to a new pure strategy yi(t+1), then
ui( yi(t+1), y&i(t))>ui( y(t)). Therefore if the two players never switch
simultaneously, then u( y(t)) never decreases and it increases whenever any
player switches to a new strategy. It follows that the sequence ( y(t))�

t=1 is
constant after sufficiently large t. That is, it must converge. So, to prove
our conjecture one can show that for a generic game of the form (u, u),
simultaneous moves are impossible. We further conjecture that every 2-per-
son game that can be transformed to a game of the form (u, u) by (2.1) has
the FPP. Note, however, that the improvement principle does not hold7 for
n-person games with n�3.

264 monderer and shapley

6 Their definitions involves the tie-breaking rules which assumes that a player never switches
to a new pure strategy if his previous action is a best response to his beliefs.

7 However, it does hold with the other definition of fictitious play, where each player believes
that all other players behave according to a fixed mixed joint strategy.
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