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We define and discuss several notions of potential functions for games in strategic form.
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1. INTRODUCTION

Consider a symmetric oligopoly Cournot competition with linear cost fur
tionsc (g) = cqg, 1 <i < n. The inverse demand functioR(Q), Q > 0, is a
positive function (no monotonicity, continuity, or differentiability assumptio
on F are needed). The profit function of Firinis defined orR? | as

ITi (0, G, - - - On) = F(Q)q — cq,
whereQ = >, q;.

Define a functiorP: R}, — R:

P01, 02, - .-, On) = 10z - - Gn(F(Q) — ©).
For every Firmi, and for everyg_; € R},

I (0, 9-) — i (%, 0-) > 0, iff P(q,q-i) — P(X,0-) >0,
VG, X € Ry (1.1)
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POTENTIAL GAMES 125

A function P satisfying (1.1) is called an ordinal potential, and a game that
sesses an ordinal potential is called an ordinal potential game. Clearly, the
strategy equilibrium set of the Cournot game coincides with the pure-str:
equilibrium set of the game in which every firm’s profitis givenyA condition
stronger than (1.1) is required if we are interested in mixed strategies.

Consider a quasi-Cournot competittomith a linear inverse demand functic
F(Q) = a—bQ, a,b > 0, and arbitrary differentiable cost functiongq;),
1 <i < n. Define a functiorP*((dy, 02, .. ., On)) @S

n n
P*((h, %, ---»Gh) =@y g —bY oa’—b Y  qg
i=1 j=1

1<i<j=<n

—ZCJ' (@)- (1.2)
j=1

It can be verified that For every Firmand for everyy_; € Rifl,
I (G, 9-i) — i (%, 0—) = P*(0,0-) — P*(X,0-i), VG, % € Ry. (L3)

A function P* satisfying (1.3) will be called a potential functidri. The equal-
ities (1.3) imply that the mixed-strategy equilibrium set of the quasi-Cou
game coincides with the mixed-strategy equilibrium set of the game obt:
by replacing every payoff function bf?*. In particular, firms that are jointly
trying to maximize the potential functioR* (or the ordinal potentialP) end up
in an equilibrium? We will prove that there exists at most one potential funct
(up to an additive constant). This raises the natural question about the eco
content (or interpretation) d?*: What do the firms try to jointly maximize?

1 Negative prices are possible in this game, though the prices in any nondegenerate equilibri
be positive.

2 In physics,P* is a potential function fo(IIy, Iy, ..., ) if
oIl aP*
e e

forevery 1<i <n.

If the profits functions are continuously differentiable then this condition is equivalent to (1.3).

3 Slade (1993) proved the existence of a functi®dhsatisfying (1.3) for the quasi-Cournot gam
She called this function a fictitious objective function.

4 Everyg* that maximizesP* is a pure-strategy equilibrium, but there may be pure-strategy e
librium profiles that are just “local” maximum points, and there may be mixed-strategy equilib
profiles as well. Therefore, the argmax set of the potential can be used as a refinement tool for p
games (this issue is discussed in Section 5). Neyman (1991) showed that if the potential fun
concave and continuously differentiable, then every mixed-strategy equilibrium profile is pur
must maximize the potential function. Neyman's result is related by Shin and Williamson (19
the concept of “simple equilibrium outcome” in Bayesian games.
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We do not have an answer to this question. However, it is clear that the r
existence of a potential function helps us (and the players) to better analyz
game>

In this paper we will prove various properties of potential games, and we
provide simple methods for detecting them and for computing their poter
functions.

To our knowledge, the first to use potential functions for games in strat
form was Rosenthal (1973). Rosenthal defined the class of congestion g
and proved, by explicitly constructing a potential function, that every game
this class possesses a pure-strategy equilibrium. The class of congestion ¢
is, on the one hand, narrow, but on the other hand, very important for econor
Any game where a collection of homogeneous agents have to choose fr
finite set of alternatives, and where the payoff of a player depends on the nu
of players choosing each alternative, is a congestion game. We will show
the class of congestion games coincides (up to an isomorphism) with the
of finite potential games.

Recently, much attention has been devoted to several notions of “myo
learning processes. We show that for generic finite games, the existence
ordinal potential is equivalent to the convergence to equilibrium of the learr
process defined by the one-sided better reply dynamic. The new learning
ature raised a new interest in the Fictitious Play process in games in stra
form defined by Brown (1951). It was studied for zero-sum games by Robin
(1951) and for non-zero-sum games by Miyasawa (1961), Shapley (1964),
schamps (1973), and lately by Krishna (1991), Milgrom and Roberts (1991), !
(1992), Fudenberg and Kreps (1993), Jordan (1993), Hofbauer (1994), Kri:
and Spstiom (1994), Fudenberg and Levine (1994), Mondezeal. (1994),
and others. In Monderer and Shapley (1996) we prove that the Fictitious |
process converges to the equilibrium set in a class of games that contair
finite (weighted) potential games. Milchtaich (1996) analyzed classes of ga
related to congestion games. His work, as well as that of Blume (1993), indic
that ordinal potential games are naturally related to the evolutionary learnir
well (see e.g., Crawford, 1991; Kandori and Rob, 1992; Young, 1993; Roth
Erev, 1995; and the references listed therein).

As the potential function is uniquely defined up to an additive constant,
argmax set of the potential function does not depend on a particular pote
function. Thus, for potential games this argmax set refines the equilibrium
at least technically. We show that this refinement concept accurately predict
experimental results obtained by Van Huyatlal. (1990). We do not attempt to
provide any explanation to this prediction power obtained (perhaps as a cc

5 A similar problem is discussed by Bergstrom and Varian (1985).
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dence) in this castA possible way of explaining this can be found in Blur
(1993). Blume discusses various stochastic strategy revision processes fo
ers who have direct interaction only with small part of the population. He pr
for the log-linear strategy revision process that the strategies of the playel
symmetric potential game converge to the argmax set of the poténtial.

Hart and Mas-Colell (1989) have applied potential theory to cooper:
games. Except for the fact that we are all using potential theory our work
not connected. Nevertheless, we will show in the last section that combinin
work with Hart and Mas-Colell’'s yields a surprising application to value théc

The paper is organized as follows: In Section 2 we give the basic defini
and provide several useful characterizations of finite potential and finite or
potential games. An equivalence theorem between potential games and ¢
tion games is given in Section 3. In Section 4 we discuss and characterize il
potential games. Section 5 is devoted to a discussion of the experimental |
of Van Huycket al. In Section 6 we show an application of our theory to
strategic approach to cooperative games.

2. POTENTIAL GAMES

Let I'(u,u?, ..., u") be a game in strategic form with a finite number
players. The set of playersié = {1, 2, . .., n}, the set of strategies of Playiel
isY', and the payoff function of Playérisu': Y — R, whereY = Y! x Y2 x
.-~ x Y" is the set of strategy profiles, aftidenotes the set of real numbe
When no confusion may arise we dendt@*, u?, ..., u") by I'. For S € N,
—Sdenotes the complementary set®)fandY S denotes the Cartesian prodt
xicsY'. For singleton setfi}, Y~!"! is denoted byr—'. A functionP: Y — R
is anordinal potentialfor I, if for everyi e N and for everyy™ e Y~

uy ', —-uy",2>0 iff Py, x)-Py'.2>0
foreveryx,ze Y. (2.1)

I is called arordinal potential gaméf it admits an ordinal potential.
Letw = (w');<n be avector of positive numbers which will be calledights
A function P: Y — Ris aw-potentialfor I" if for everyi € N and for every

yfl cY
Uy "0 -u(y .2 =w (Py'.x) - Py 2)

for everyx,ze Y. (2.2)

I is called aw-potential gaméf it admits aw-potential.

6 Crawford (1991) gave an evolutionary interpretation of these experiments’ results.
7 This argmax set is assumed to be a singleton.
8 Another application to cooperative games is discussed by Qin (1992).
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When we are not interested in particular weigttswve simply say thaP is
aweighted potentiadnd thatl" is aweighted potential game

AfunctionP: Y — Ris anexact potentia{or, in short, gpotentia) for I if it
is aw-potential forl” with w' = 1 for everyi € N. T is called arexact potential
game(or, in short, apotential gamgif it admits a potential. For example, the
matrix P is a potential for the Prisoner’s Dilemma ga@elescribed below:

_( @D 90 (4 3
G‘( 0.9 (6.6 ) P—(s o)'
The next lemma characterizes the equilibrium set of ordinal potential game:
obvious proof will be omitted.

LEMMA 2.1. Let P be an ordinal potential function fdr(u*, u?, ..., u").
Then the equilibrium set df(u?, u?, ..., u") coincides with the equilibrium set
of (P, P,...,P). Thatis y € Y is an equilibrium point fol if and only if
foreveryie N

P(y) > P(y"',x)  foreveryxeY'.

Consequentlyif P admits a maximal vald€ in Y, thenT" possesses ¢pure-
strategy equilibrium

COROLLARY 2.2. Everyfinite ordinal potential game possesses a pure-stra
equilibrium

A pathin Y is a sequence = (Yo, Y1, ...) such that for everk > 1 there
exists a unique player, say Playesuch thaty = (y,';, X) for somex # yi._,
in Y'. yp is called thenitial point of y, and ify is finite, then its last element
is called theerminal pointof y. y = (Yo, Y1, . . .) IS animprovement patkvith
respect ta" if for all k > 1 u'(yx) > u'(yi_1), Wherei is the unique deviator
at stepk. Hence, an improvement path is a path generated by myopic playe!
has théfinite improvement propert{FIP) if every improvement path is finite.

LEMMA 2.3. Every finite ordinal potential game has théP.

Proof  For every improvement path = (Yo, Y1, Y2, . . .) We have by (2.1)

P(Yo) < P(y1) < P(y2) <---
As Y is a finite set, the sequengemust be finite. =

9 Using Blume’s (1993) terminology we can give an equivalent definitivis: a weighted potential
game if and only if there exists a payoff function which is strongly best-response equivalent to
of the players’ payoff functions. Sela (1992) proved that if the two-person ga@m8) does not
have weakly dominated strategies, then it has a weighted potential if and only if it is better-resy
equivalent in mixed strategies (see Monderer and Shapley (1996) for the precise definition) to a
of the form(P, P). This result can be easily generalizedhtperson games.

10 5ee footnote 4.
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It is obvious that for finite games with the FIP, and in particular for fir
ordinal potential games, every maximal improvement path must terminate
equilibrium point. That is, the myopic learning process based on the one-
better reply dynamic converges to the equilibrium set. However we have obt
a stronger learning restit

THEOREM 2.4 (Monderer and Shapley, 1996)Every finite weighted poter
tial game has the Fictitious Play property

It is interesting to note that having the FIP is not equivalent to havin
ordinal potential. A counterexample is the ga@®edescribed below. The row
in G; are labeled by andb, and the columns are labeled byandd.

G — (1,00 (2,0
=\ @20 ©1 )

The gameG; has the FIP, but any ordinal potentialfor G; must satisfy the
following impossible sequence of relations:

P@,c) < P(b,c) < P(b,d) < P(a,d) = P(a, c).

AfunctionP: Y — Ris ageneralized ordinal potentidbr I' if for everyi € N
and for everyy™ € Y™' , and for every,z € Y',

u(y ", x)—u'(y",2>0  impliesthat P(y",x)— P(y"', 2 > 0.
2.3)

LEMMA 2.5. LetT be afinite gameThen I' has theFIPif and only ifT" has
a generalized ordinal potential

Proof LetI" be a game with the FIP. Define a binary relatier’on Y as
follows: x > y iff x # y and there exists a finite improvement pathvith an
initial point y and a terminal point. The finite improvement property implie
that “>" is a transitive relation. LeZ C Y. We say thatZ is representedf
there existsQ: Z — R such that for everx,y € Z, x > y implies that
QX)) > Q(y). Let Z be a maximal represented subsetYofWe proceed tc
prove thatZ = Y. Supposex ¢ Z. If x > z for everyz € Z, we extend
Q to Z U {x} by defining Q(x) = 1+ maxz Q(2), thus contradicting the
maximality of Z. If z > x for everyz € Z, we extendQ to Z U {x} by defining
Q(x) = min,z Q(z) — 1, contradicting again the maximality @. Otherwise
we extendQ and contradict the maximality &f by definingQ(x) = (a + b)/2,

11 several notions of acyclicity are discussed in the recent learning literature. Most of them (
the FIP) are related to the best-response dynamic. See, e.g., Young (1993). Other results relz
fictitious play property with various types of improvement paths can be found in Monderer anc
(1992).



130 MONDERER AND SHAPLEY

wherea =max{Q(2):ze Z, x> z},andb=min{Q(12):z€ Z, z> x}.
HenceY is representetf =

COROLLARY 2.6. LetI" be a finite game with thEIP. Suppose in addition
that for everyie N and forevery y' € Y™

u(y ', x)#£u(yt, 2 foreveryx#£zeY'.
ThenI" has an ordinal potential

Proof. Observe thatthe condition @himplies that every generalized ordina
potential forT" is an ordinal potential fol". Hence, the proof follows from
Lemma25. =

Ordinal potential games have many ordinal potentials. For exact pote
games we have:

LEMMA 2.7. Let P, and B be potentials for the ganié. Then there exists a
constant ¢ such that

Pi(y) — Px(y) =c¢ for every ye Y.

Proof. Fixze Y. Forally e Y define

n

Hy) =) [u'@-n - u'@)].

i=1

wherea; = yand forevery I<i <n, g = (a(_‘l, z).
If P stands for eitheP; or P,, then by (2.1)H (y) = P(y) — P(2) for every
y € Y. Therefore

Pi(y) — Pa(y) =cC for everyy € Y. n

The next results characterize exact potential games in a way that reser
the standard approach to potential functions in physics.

For a finite pathy = (Yo, Y1, ..., yn) and for a vectow = (v*, v, ..., v")
of functionsv': Y — R, we define

n

L(y.ov) =) [y — v™* (Y]

k=1

whereiy is the unique deviator at stéq(i.e., y,i(k #* yli(k_l).

12 A constructive and more elegant proof of this result is given in Milchtaich (1996); he showed
the functionP that assigns to eaghe Y the number of strategy profiles that are connectedtig an
improvement path that terminatesyris a generalized ordinal potential fbr
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The pathy = (Yo, Y1, ..., Yn) is closedif yp = yy. Itis asimple closeghath
if in additiony; # yx forevery 0< | #£ k < N — 1. Thelengthof a simple closec
path is defined to be the number of distinct vertices in it. That is, the leng

Y = (Yo, Y1, ---> Yn) iSN.

THEOREM2.8. LetI" be a game in strategic formas described at the begir
ning of this sectionThen the following claims are equivalent

(1) T is a potential game

(2) 1 (y, u) = Ofor every finite closed paths.

(3) I (y, u) = Ofor every finite simple closed paths

(4) 1 (y,u) = 0for every finite simple closed pathsof length4.

The proof of Theorem 2.8 is given in Appendix A.

A typical simple closed pathy, of length 4 is described below. In this pat
i andj are the active players, € Y~} is a fixed strategy profile of the othe
playersx,yi € Y', andx;, y; € Y!,

A«——D

r=| T

B—— C
whereA = (X, Xj, @), B = (\i, Xj, @), C = (Vi, yj, @), andD = (x;, y;, @).

CoRroLLARY 2.9. T is a potential game if and only if for everyji € N, for
every ac Y~UJ) ‘and for every x yi € Y' and X, y; € Y/,

u'(B) —u'(A) +u/(C) — u!(B) +u'(D) — U (C) + ul (A) —u!(D) =0,
where the points AB, C, and D are described above

We end this section with an important remark concerning the mixed extel
of finite games.

LEMMA 2.10. LetT be a finite gameThenT is a w-potential game if anc
only if the mixed extension ofis a w-potential game

Proof. Fori € N let A’ be the set of mixed strategies of Playeand letU’
be the payoff function of playérin the mixed extension df. That is,
U'(f) = U'(FL 2, ..., "
= Y uh YA LYY YY) NN, Ve,
yeY

whereA = x;cnyA'. Obviously, ifP: A — Ris aw-potential function for the
mixed extension of, then its restriction t& yields aw-potential forl". As for
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the converse, supposgeis aw-potential forl", then it can be easily verified tha
P is a potential for the mixed extension Bf where

mﬁ#w”m=2mﬁfwﬁmmwﬂﬁmﬂmy@@

yeY [ |

An example to an ordinal potential game whose mixed extension is no
ordinal potential game is given in Sela (1992).

3. CONGESTION GAMES

Congestion games were defined by Rosenthal (1973). They are derived
congestion models that have been extensively discussed in the literature
e.g., Garcia and Zangwill, 1981). Consider an illustrative example:

c1(1),c1(2)
—

03(1),03(2)l lcz(l),cz(Z)

D——C
ca(1).c4(2)

In the congestion model described above, Drigdras to go from pointA
to pointC and Driverb has to go from poinB to point D. AB is called road
segment 1BC is called road segment 2.. etc.c; (1) denotes the payoff (e.g.,
the negative of the cost) for a single user of road segmeqt(2) denotes the
payoff for each user of road segmgnif both drivers use road segmentThe
drivers are therefore engaged in a game (the associated congestiorCfame
whose strategic form is given below (The rows are labele@lb?} and{3, 4},
and the columns are labeled Hy, 3} and{2, 4}:

o (€c1(2) + (1), c1(D +c3(1)  (c2(2) +c1(D), C2(2) + ca(D))
(C3(2) +c4(1), c3(2) + c1(1))  (Ca(2) +ca3(D), Ca(D) +¢2()) )

By Corollary 2.9 the congestion gan@G admits a potential. In particular
(and with no restrictions on the payaff(i )) it has a (pure-strategy) equilibrium
For completeness we attach below a poterfiidbr the congestion game. The
potential is computed by formula (3.2):

P:<Qm+q®+@m+%m wn+ma+mn+mn)

C3(1) +C3(2) + Ca(1) +€1(1) ca(D) +Ca(2) +c3(1) +C2(D) /-

A congestion model N, M, (Z))icn, (Cj)jem) is defined as followsN de-
notes the set of playefs, 2, ..., n} (e.g., drivers)M denotes the set of facilities
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{1,2,...,m} (e.g, road segments). Fore N let =' be the set of strategies «
playeri, where eachA’ € ' is a nonempty subset of facilities (e.g., a rout
Forj € M letc; € R:2--" denote the vector of payoffs, wheegk) denotes
the payoff (e.g., the cost) to each user of faciiifyif there are exactlk users.

The congestion gamassociated with the congestion model is the gam
strategic form with the set of playels, with the sets of strategigX');cn, and
with payoff functions(v');cn defined as follows:

SetY = x;cnX'. ForallA € X and for everyj € M leto; (A) be the numbel
of users of facilityj. That is,

oj(A) =#{i e N: j e A},

whereA = (Al A2, ..., AM).
Definev': ¥ — Rby

v'(A) =) G(0j(A). (3.1)

jeA
The following theorem can be deduced from Rosenthal (1973).

THEOREM3.1. Every congestion game is a potential game

Proof. Let I' be the congestion game defined by the parameters/,
(ZDien, (€)jem-
For eachA € X define

0 (A)
PA= > (Zq(l)). (3.2)
jeU Al \ =1

The proof thatP is a potential fol” can be deduced from Rosenthal (1973)
directly using Corollary 2.9. =

LetI'; andI"; be games in strategic form with the same set of plajersor
k = 1,2 let (Yp)ien be the strategy sets i, and let(u,)icn be the payoff
functions inTx. We say thal"; andI"; are isomorphic if there exist bijectior
g: Y] — Y;,i € N, such that for every e N
U(yh Y2, YD = U@t ), YD), 8N Y™)
forevery(yl, y?,...,y") e Yy,
whereY; = x;cnYi.

THEOREM3.2. Every finite potential game is isomorphic to a congest
game

The proof, as well as several relevant discussions, is given in Appendix
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4. INFINITE POTENTIAL GAMES

Let " be a game in strategic form as described in Section & called a
bounded gamé the payoff functiongu');n are bounded.

LemmA 4.1. Everybounded potential game possessesequilibrium point
for everye > 0.

Proof. Note that by (2.2) every potenti& for I' must be bounded. Let
e > 0. There existz € Y satisfying

P(z) > supP(y) —e.
yeY

Obviouslyz is ane-equilibrium point. =

Recallthe concept of a path from Section 2.4 et 0. Apathy = (Yo, V1, - - -)
is ane-improvement pattvith respecttd ifforall k > 1 u' (yx) > U'(Yk_1) + ¢,
wherei is the unique deviator at stép The gamd™ has theapproximate finite
improvement propertyAFIP) if for every ¢ > 0 everys-improvement path is
finite. The proof of the next lemma is obvious and will be omitted.

LEMMA 4.2. Every bounded potential game has thielP.

Note that for games with the AFIP, and in particular for bounded poten
games, every maximatimprovement path terminates in arequilibrium point.

A gamel is called acontinuous gamiéthe strategy sets are topological spact
and the payoff functions are continuous with respect to the product topol
Note that by (2.2), the potential of a continuous potential game is continu
Therefore we have:

LEmmA 4.3. LetT be a continuous potential game with compact strate
sets ThenI” possesses a pure-strategy equilibrium point

We now proceed to deal with differentiable games. We assume that the strz
sets under discussion are intervals of real numbers. We omit the obvious |
of the next lemma.

LEMMA 4.4. LetT be a game in which the strategy sets are intervals of re
numbers Suppose the payoff functions &' — R, i € N, are continuously
differentiableand let P. Y — R. Then P is a potential foF if and only if P is
continuously differentiableand

au 9P
ayr  ay

The next theorem is well-known (and very useful).

for everyie N.
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THEOREMA4.5. LetT" be a game in which the strategy sets are interval
real numbersSuppose the payoff functions are twice continuously differentic
ThenI is a potential game iff

a2ul a2ul .
—— = —— foreveryij € N. (4.1)
ay'ay! ay'ay!
Moreover if the payoff functions satisfi¢.1) and z is an arbitrary(but fixed
strategy profile in Ythen a potential fol" is given by

P(y) = / —(X(t))(X ) (1) dt, 4.2
ieN

where x [0,1] — Y is a piecewise continuously differentiable path in Y t

connects z to Yi.e, x(0) = z and 1) = v).

Consider for example the quasi-Cournot game described in the Introdu
It can be easily verified that (4.1) is satisfied (becad@e/dy' 9yl = a for
everyi # j € N), and applying (4.2) yields the potential given in (1.2). Unli
(weighted) potential games, ordinal potential games are not easily characte
We do not know of any useful characterization, analogous to the one giv
(4.2), for differentiable ordinal potential games.

5. THE POTENTIAL AS AN EQUILIBRIUM REFINEMENT TOOL

LetI" be a potential game and IBtbe a potential fof". The set of all strateg
profiles that maximizé is a subset of the equilibria set. By Lemma 2.7, this
does not depend on a particular potential functibfhus, at least technically
the potential defines a refinement concept.

Consider the version of the Stag Hunt game of Rouseau, as descrit
Crawford (1991): There ane players. Player i chooses € {1, 2,...,7}. The
payoff IT; of Playeriis

(e, &, ...,6) =amin(e, &, ..., &) — bg +c,

wherea > b > 0, andc is a constant that guarantees positive payoffs. Defi
potential functionP as

i
P(el,ez,...,en)=amin(e1,e2,...,en)—bZe,-.

13|t can also be proved that for weighted potential games, the argmax set of a weighted pc
does not depend on a particular choice of a weighted potential (even though distinct weighted po
may be based on different sets of weights (i.e., neither vector of weights is a multiple by a scala
other vector)).
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Note that ifa < nb, thenP is maximized at the profile with g = 1 for every
1 <i <n.If a> nb, thenP is maximized at the strategy profile satisfyin
e = 7foreveryi. Surprisingly, the equilibrium selection predicted by the argm
set of the potential is the one that is supported by the experimental resul
Van Huycket al. (1990). In Experimen# (using Crawford’s notationg = 0.2,

b = 0.1, and 14< n < 16. Thusa < nb. In ExperimentB, b was switched
to 0, and therefora > nb. In ExperimentsCq andCs, a = nb. In this case,
every equilibrium profile maximizes the potential, and thus the potential car
be used for a prediction. Indeed, @y, the players were not using a particule
equilibrium profile. In Experimen€s, which was the same &3 except for
the fact that the two players were fixed (and not randomly matched), pla
tended to choose, = e, = 7. This, to our opinion, reflects the principal that
repetition is a substitute to cooperation in repeated games.

We do not attempt to explain the success of the argmax set of the pote
to predict behavior in the above potential game. It may be just a coincidén
We hope that further experiments will be conducted to test this new refiner
concept.

Van Huycket al. (1991) conducted another set of experiments on aver
opinion games. In this experiments the payoff function of Player i is given k

Hl(elseZaven):aM_ﬂ(M_a)z—i_ya

wherew, B, andy are positive constants, ald = M(e, e, ..., &) is the
median of(e, e, ..., &).

It can be seen easily that this game does not have a weighted potential
thus we are unable to analyze their results via the potential approach. How
if the median functiorM is replaced by the mean functioA(e;, &, ..., €, =
1> &, then by Theorem 4.5 the game does have a potential. The un
strategy profile that maximizes this potentiagis= 7 for everyi. Unfortunately,
we do not know of any experiment conducted with the mean fundion

6. AN APPLICATION TO THE STRATEGIC APPROACH TO VALUE
THEORY

Let N = {1,2,...,n} be the set of players. For each nonempty coaliti
S C N we denote byG(S) the space of all cooperative games with transferal
utility on the set of player$. That is,v € G(S) if and only if v is a real-valued
function defined on the sedf subsets ofS with v(¥) = 0. A solutionis a
functionyr : Useon G(S) — Useon RS such thaty (v) € RSwheneven e G(S).
A solutiony is efficientif ", sy v(i) = v(S) for everyS € 2N and for every
v e G(9).

14 see, however, the Introduction for references to a possible explanation suggested by Blume (
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For each solutiony and for eactt ¢ RN we will define a game in strateg
form "' (¢, ¢, v) for everyv € G(N) as follows:

The set of players idl. The set of strategies of playieis Y' = {0, 1}. Player
i can decide not to join the game (choosing 0) and to get a payofir to
participate in the game (choosing 1). [4be the set of all players that choose
Then each € Sreceives the payoff (vs) (i), wherevs € G(S) is the restriction
of v to 25. More precisely, foe € Y = {0, 1}N denoteS(s) = {i € N : ¢ = 1J.
Then the payoff function' of playeri is

o] c if el =0
VE =1 oo, ife =1

The gamed” (v, ¢, v) will be called theparticipation gamesWe now presen
two characterizations (a local characterization and a global one) for the St
value in terms of the strategic properties of the participation games.

THEOREM6.1. Lety be an efficient solution on & Us.nG(S), letc e RN,
and letv € G(N). Theny is the Shapley value ofvs: S € 2V} if and only
if ' = ['(y, ¢, v) is a potential game

Proof Leti € N. Then
uE ™ ) —uE, 0 =ysy)i) —c  forallee, (6.1)

whereS={j #i ¢l = 1}. _ '
ForSC N letes € Y be defined as followssg = 1if i € S, andely = 0O if
i €S
From (6.1) we deduce thdt is a potential game if and only if there exis
Q: Y — Rsuch that

Q(es) —Qlesyiy) = w(vsu{i})(i)—ci for everyS C N and for everyi € S.
(6.2)
SetP(es) = Q(es) + Y j.sC, thenQ satisfies (6.2) iffP satisfies

P(es)—P(esyiy) = ¥ (vsuip (i) forall SC N and for evenyi € S. (6.3)
Thus, the proof follows from Theorem A in Hart and Mas-Colell (1989

THEOREMG6.2. Let 1 be an efficient solution on G= UsonG(S), and let
¢ € RN. Theny is the Shapley value on G if and onlyity, c, v) is a potential
game for every € G(N).

Proof. The proof follows from Theorem 6.1. m

By Theorem 5.2 in Hartand Mas-Colell (1989) we can also prove the follo
characterization of weighted Shapley values.
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THEOREM6.3. Lety be an efficient solution on & Us.nG(S), letc e RN,
letv € G(N), and letw be a vector of positive weighfBheny is thew-Shapley
value on{vs : Se 2N} if and only ifI" = I"'(y, ¢, v) is aw-potential game

Other results relating noncooperative potential games with cooperative ¢
tions are discussed in Qin (1992).

APPENDIX A

Proof of Theoren2.8. Obviously(2) = (3) = (4). We prove thai1)
< (2) and that(4) = (2).

(1) = (2) SupposePR is a potential foT". Lety = (Yo, Y1,..-, Yn) be a
closed path. Then by (2.2)

I (7/» u) =1 (7/, (P7 P7 s P)) = P(YN) - P(YO) =0.

(2) = (1) Supposd (y,u) = 0 for every closed path. Fixz € Y. Let
y € Y. We claim that for every two pathg andy, thatconnecttoy, | (y1, u) =
| (y2, u). Indeed, supposg = (z, V1, ..., Yn) andy, = (2, z, . . ., Zw), Where
yn = zw = Y. Letu be the closed pattyy, v, 1). That is,

=(ZVY1,..-, YN, ZM-1, ZM—2, - - -, 2).

Thenl (u, u) = 0. Thereforel (y1, u) = | (32, U). For everyy € Y choose a
path, sayy (y), connectingzto y. DefineP(y) = | (y(y),u) forally € Y. We
proceed to prove tha® is a potential fol". We have just proved that

P(y) =1(y,u) for everyy that connectz to y. (A1)

Leti e N,lety” e Y7, andleta# b e Y'. Lety =z, -, (y™', a) be
a path connectingto (y‘I a). Sety = (z, Y1, ..., (Y™, a), (y™', b)). Then by
(A1)

Py ', b)— Py, a)=l(uu—I(y,uy=uy", b-uy"a.

ThereforeP is a potential for".

(4) = (2) Supposd (y, u) = 0 for every simple closed pathof length 4.

We denote the length of a closed path= (yo, Y1, ..., Yn) () (= N).
Suppose that for some closed path, gay (y, u) ## 0. ObviouslyN =1(y) >
5. Without loss of generality we may assume thatk,u) = 0, whenever
[(u) < N.

Suppose’ = (Yo, Y1, Y2, ..., Yn). Leti(j),0 < j < N—1, be the unique de-
viator atstefy . Thatis,yj 1 = (y; "D @i (j))), wherex(i(j)) # y'(” Without
loss of generality assume th&d) = 1. Since (0) = 1, andyy = Yo, there exists
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1< j=<N-1suchthat(j)=1.1fj =1orj = N—1,we geta contradictiol
to the minimality assumption about the length/ah the following way: Assume
w.l.o.g. thati (1) = 1. Defineuw = (Yo, V2, ..., Yn)- Then,I (i, u) = 1 (y, u),
andl (1) < N. Assume therefore that2 j < N — 2. We show that there exist
zj € Y such that the path = (Yo, Y1, - .-, ¥j-1, Z, Yj+1, - - - - Yn) Satisfies

l(u,u)=1(y,u) and i(j—1) =1 (A.2)

Indeed, define

_ G- G-y 1
Zj = (y]'_l Vil s y]'+1)-

Then, by our assumption on closed paths of length 4,

F((Yj-1, Yi» Vi+1, Z), u) = 0.

This implies (A.2).

Continuing recursively, we finally find a closed patlof lengthN such that
I (z,u) #£ 0,and (0) =i(1) = 1, in contradiction to the minimality assumptic
We conclude that (v, u) = 0 for every closed pathg. =

APPENDIX B

The payoff functions in the congestion game are given in (3.1). We nee
equivalent formulationin order to prove Theorem 3.2. Ree (AL, A2, ..., A")
e ¥ and forS < N we denoteA(S) = Uj.sA', and we denotéd\(—S) = A(S),
where § is the complementary set & For S = {i}, A@i) and A(—i) stand
for A({i}) and A(—{i}) respectively. Fox € RM and forB € M we denote

X(B) = ;g X()).

LEMMA B.1. Suppose C is a congestion game as described in Sektion
For every r e N define the vector'xe RM as

X"(j) = ¢j(m) for every je M.
Then for every ie N and for every Ac X

v (A) = xE(AG) N A=)
+ X (U [AG) N AK) N A= i, kD))
-+ X" (Nken AKK)) (B.1)

Proof. The proof follows from (3.1). =
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Proof of Theoren3.2. LetI" be a finite potential game as described in Se
tion 2. The set of players N = {1, 2, ..., n}, the strategy sets at¥');cn, and
the payoff functions aréu');cn. Let P be a potential for.

Letk(i) = #Y' be the number of strategies of playeand assume

={al, a....a)
Fori € N, setK (i) ={1,2,...,k(i)}, and seK = x{_;K(i).
We proceed to define an isomorphic congestion game. The facilitiyl 9et

defined to be the set of al = (¢, %, ..., "), where for every € N ¢' is a
vector of 0’s and 1's of lengthk(i). That is,e' € {0, 1}¥®. In other words,

M = x {0, KO,
The strategy set&:'); .y in the congestion games are defined as
={AL A, ..., Ay}  foreveryi e N,
where
A={seM:e =1  foreveryl e K(i).

We now define vector&x"), .y in RM such that the payoffev');cn defined in
Lemma B.1 satisfy

n

v (Am17 mza"'7A2’]n) = ul(a'[:'lhls a'lilz""’a'ﬂ'ln)’
Vi € Nandv(my, m,, ..., m,) € K.

Forl<r <nsetx' =0.
Forr = n, X" is defined to be a solution of the following system of equatior

XM(ALNALN---NAL) = P@n,, 8, .- am ), (M, My, ..., my) Elg
(B.2)
We have to show thata solution to (B.2) exists. For each (my, my, ..., my) €

K lete(m) € M be defined as follows;,, = 1 for everyi € N, ande, = 0 for
everyi € N and for everk = mj; in K(|) Set

M; = {e(m): m e K}. (B.3)
Note that fom # | € K, e(m) # ¢(l). Therefore we can define' as

no_ | P@n.a3.....an), if e =e(m) e M;
X(g)_{o, if £ & M,.
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It can be verified easily that for eveny € K
AL NAL NN AL N My = {e(M)}.
Thereforex" satisfies (B.2).

We proceed to defingl.' Note that by (2.2) for every € N and for every
a~' e Y', theexpression'(a™',a') — P(a™,a') does notdepend a € Y'.
That is,
u@',a)—P@',a)=u@",b)—P@',b) foreverya,b €Y.
For everyi € N defineQ~': Y~ — Rby

Q@h=u@' a)-Pa’,a), (B.4)

wherea' is arbitrarily chosen frony'. _ _
For eachi € N and for eachm' = (mj)i € K™' defines(m') e M as

el = 1for everys € K (i), and for everyk, k # i, ¢k = 0iff s = m}..

Set
M, = {e(m): m e K7'}. (B.5)
Definex! as
xi(e) = { Q ((ar'qu)k?éi) , if ¢ € My ande = e(m')
0, if & & M.
It can be verified that for evergn = (Mg, m,, ..., my) € K and forA =

(AL, A2, ..., Al)€ET,

x* (A, N A=) =x'(em)) =u'(@ — P'(@ foreveryi e N, (B.6)

wherem' = (M) anda = (a,, a3 ,....ah ).
Combine (B.6), (B.2), and Lemma B.1 to get that for eviegy N,

V(AL AL A =U @b ag A ), Y(mg, My, ..., mp) € K.
|

We conclude this Appendix with a remark about the minimal number o
cilities that are needed to represent potential games by congestion game:
Let the number of players, and the strategy set(')'_,, be fixed. Then the
dimensiond of the linear space of all potential games witlplayers and with
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the strategy set&/")", is

d= K + K + 1t K +k-1
T k(D) k(2 k(n) ’
where for every e N, k(i) = #Y' andk = k(1)k(2) - - - k(n).

Suppose we are looking for a fixed set of facilitiswith m elements and
for fixed strategy set&x');n With #2' = k(i) for everyi € N, such that each
potential game will be represented by a congestion gamerwjtlayers, with
the facility setM, and with the strategy setX')icn. Then by Lemma B.1 each
such congestion game is uniquely definechbyectors(x');cn in RM. Suppose
also that we wish the representation operation to be linear, then we must h

. S L. S (B.7)
= n\k@® "k k(n) ' '
In the proof of Theorem 3.2n = 2kW+k@++k) However, instead ol we

could have defined our facility set to be eitiy or M, ( the one with the greater
number of elements). Hence, the number of facilitresould be reduced to

k k k
_ k 44—, B.8

m=max(k 5+ i+ k) E9
Comparing (B.7) to (B.8) indicates that it may be possible to improve upon
result.
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