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1. INTRODUCTION

Consider a symmetric oligopoly Cournot competition with linear cost func-
tionsci (qi ) = cqi , 1 ≤ i ≤ n. The inverse demand function,F(Q), Q > 0, is a
positive function (no monotonicity, continuity, or differentiability assumptions
on F are needed). The profit function of Firmi is defined onRn

++ as

5i (q1, q2, . . . , qn) = F(Q)qi − cqi ,

whereQ = ∑n
j =1 qj .

Define a functionP: Rn
++ −→ R:

P(q1, q2, . . . , qn) = q1q2 · · · qn(F(Q) − c).

For every Firmi , and for everyq−i ∈ Rn−1
++ ,

5i (qi , q−i ) − 5i (xi , q−i ) > 0, iff P(qi , q−i ) − P(xi , q−i ) > 0,

∀qi , xi ∈ R++. (1.1)
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A function P satisfying (1.1) is called an ordinal potential, and a game that pos-
sesses an ordinal potential is called an ordinal potential game. Clearly, the pure-
strategy equilibrium set of the Cournot game coincides with the pure-strategy
equilibrium set of the game in which every firm’s profit is given byP. A condition
stronger than (1.1) is required if we are interested in mixed strategies.

Consider a quasi-Cournot competition1 with a linear inverse demand function
F(Q) = a − bQ, a, b > 0, and arbitrary differentiable cost functionsci (qi ),
1 ≤ i ≤ n. Define a functionP∗((q1, q2, . . . , qn)) as

P∗((q1, q2, . . . , qn)) = a
n∑

j =1

qj − b
n∑

j =1

q2
j − b

∑
1≤i < j ≤n

qi qj

−
n∑

j =1

cj (qj ). (1.2)

It can be verified that For every Firmi , and for everyq−i ∈ Rn−1
+ ,

5i (qi , q−i )−5i (xi , q−i ) = P∗(qi , q−i )− P∗(xi , q−i ), ∀qi , xi ∈ R+. (1.3)

A function P∗ satisfying (1.3) will be called a potential function.2,3 The equal-
ities (1.3) imply that the mixed-strategy equilibrium set of the quasi-Cournot
game coincides with the mixed-strategy equilibrium set of the game obtained
by replacing every payoff function byP∗. In particular, firms that are jointly
trying to maximize the potential functionP∗ (or the ordinal potentialP) end up
in an equilibrium.4 We will prove that there exists at most one potential function
(up to an additive constant). This raises the natural question about the economic
content (or interpretation) ofP∗: What do the firms try to jointly maximize?

1 Negative prices are possible in this game, though the prices in any nondegenerate equilibrium will
be positive.

2 In physics,P∗ is a potential function for(51, 52, . . . , 5n) if

∂5i

∂qi
= ∂ P∗

∂qi
for every 1≤ i ≤ n.

If the profits functions are continuously differentiable then this condition is equivalent to (1.3).
3 Slade (1993) proved the existence of a functionP∗ satisfying (1.3) for the quasi-Cournot game.

She called this function a fictitious objective function.
4 Everyq∗ that maximizesP∗ is a pure-strategy equilibrium, but there may be pure-strategy equi-

librium profiles that are just “local” maximum points, and there may be mixed-strategy equilibrium
profiles as well. Therefore, the argmax set of the potential can be used as a refinement tool for potential
games (this issue is discussed in Section 5). Neyman (1991) showed that if the potential function is
concave and continuously differentiable, then every mixed-strategy equilibrium profile is pure and
must maximize the potential function. Neyman’s result is related by Shin and Williamson (1994) to
the concept of “simple equilibrium outcome” in Bayesian games.
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We do not have an answer to this question. However, it is clear that the mere
existence of a potential function helps us (and the players) to better analyze the
game.5

In this paper we will prove various properties of potential games, and we will
provide simple methods for detecting them and for computing their potential
functions.

To our knowledge, the first to use potential functions for games in strategic
form was Rosenthal (1973). Rosenthal defined the class of congestion games
and proved, by explicitly constructing a potential function, that every game in
this class possesses a pure-strategy equilibrium. The class of congestion games
is, on the one hand, narrow, but on the other hand, very important for economics.
Any game where a collection of homogeneous agents have to choose from a
finite set of alternatives, and where the payoff of a player depends on the number
of players choosing each alternative, is a congestion game. We will show that
the class of congestion games coincides (up to an isomorphism) with the class
of finite potential games.

Recently, much attention has been devoted to several notions of “myopic”
learning processes. We show that for generic finite games, the existence of an
ordinal potential is equivalent to the convergence to equilibrium of the learning
process defined by the one-sided better reply dynamic. The new learning liter-
ature raised a new interest in the Fictitious Play process in games in strategic
form defined by Brown (1951). It was studied for zero-sum games by Robinson
(1951) and for non-zero-sum games by Miyasawa (1961), Shapley (1964), De-
schamps (1973), and lately by Krishna (1991), Milgrom and Roberts (1991), Sela
(1992), Fudenberg and Kreps (1993), Jordan (1993), Hofbauer (1994), Krishna
and Sjöström (1994), Fudenberg and Levine (1994), Mondereret al. (1994),
and others. In Monderer and Shapley (1996) we prove that the Fictitious Play
process converges to the equilibrium set in a class of games that contains the
finite (weighted) potential games. Milchtaich (1996) analyzed classes of games
related to congestion games. His work, as well as that of Blume (1993), indicates
that ordinal potential games are naturally related to the evolutionary learning as
well (see e.g., Crawford, 1991; Kandori and Rob, 1992; Young, 1993; Roth and
Erev, 1995; and the references listed therein).

As the potential function is uniquely defined up to an additive constant, the
argmax set of the potential function does not depend on a particular potential
function. Thus, for potential games this argmax set refines the equilibrium set,
at least technically. We show that this refinement concept accurately predicts the
experimental results obtained by Van Huycket al. (1990). We do not attempt to
provide any explanation to this prediction power obtained (perhaps as a coinci-

5 A similar problem is discussed by Bergstrom and Varian (1985).
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dence) in this case.6 A possible way of explaining this can be found in Blume
(1993). Blume discusses various stochastic strategy revision processes for play-
ers who have direct interaction only with small part of the population. He proves
for the log-linear strategy revision process that the strategies of the players in a
symmetric potential game converge to the argmax set of the potential.7

Hart and Mas-Colell (1989) have applied potential theory to cooperative
games. Except for the fact that we are all using potential theory our works are
not connected. Nevertheless, we will show in the last section that combining our
work with Hart and Mas-Colell’s yields a surprising application to value theory.8

The paper is organized as follows: In Section 2 we give the basic definitions
and provide several useful characterizations of finite potential and finite ordinal
potential games. An equivalence theorem between potential games and conges-
tion games is given in Section 3. In Section 4 we discuss and characterize infinite
potential games. Section 5 is devoted to a discussion of the experimental results
of Van Huycket al. In Section 6 we show an application of our theory to the
strategic approach to cooperative games.

2. POTENTIAL GAMES

Let 0(u1, u2, . . . , un) be a game in strategic form with a finite number of
players. The set of players isN = {1, 2, . . . , n}, the set of strategies of Playeri
is Yi , and the payoff function of Playeri is ui : Y → R, whereY = Y1 × Y2 ×
· · · × Yn is the set of strategy profiles, andR denotes the set of real numbers.
When no confusion may arise we denote0(u1, u2, . . . , un) by 0. For S ⊆ N,
−S denotes the complementary set ofS, andYS denotes the Cartesian product
×i ∈SYi . For singleton sets{i }, Y−{i } is denoted byY−i . A function P: Y → R
is anordinal potentialfor 0, if for every i ∈ N and for everyy−i ∈ Y−i

ui (y−i , x) − ui (y−i , z) > 0 iff P(y−i , x) − P(y−i , z) > 0

for everyx, z ∈ Yi . (2.1)

0 is called anordinal potential gameif it admits an ordinal potential.
Letw = (wi )i ∈N be a vector of positive numbers which will be calledweights.

A function P: Y → R is aw-potentialfor 0 if for every i ∈ N and for every
y−i ∈ Y−i

ui (y−i , x) − ui (y−i , z) = wi
(
P(y−i , x) − P(y−i , z)

)
for everyx, z ∈ Yi . (2.2)

0 is called aw-potential gameif it admits aw-potential.

6 Crawford (1991) gave an evolutionary interpretation of these experiments’ results.
7 This argmax set is assumed to be a singleton.
8 Another application to cooperative games is discussed by Qin (1992).
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When we are not interested in particular weightsw, we simply say thatP is
aweighted potentialand that0 is aweighted potential game.9

A function P: Y → R is anexact potential(or, in short, apotential) for 0 if it
is aw-potential for0 with wi = 1 for everyi ∈ N. 0 is called anexact potential
game(or, in short, apotential game) if it admits a potential. For example, the
matrix P is a potential for the Prisoner’s Dilemma gameG described below:

G =
(

(1, 1) (9, 0)

(0, 9) (6, 6)

)
, P =

(
4 3
3 0

)
.

The next lemma characterizes the equilibrium set of ordinal potential games. Its
obvious proof will be omitted.

LEMMA 2.1. Let P be an ordinal potential function for0(u1, u2, . . . , un).
Then the equilibrium set of0(u1, u2, . . . , un) coincides with the equilibrium set
of 0(P, P, . . . , P). That is, y ∈ Y is an equilibrium point for0 if and only if
for every i∈ N

P(y) ≥ P(y−i , x) for every x∈ Yi .

Consequently, If P admits a maximal value10 in Y, then0 possesses a(pure-
strategy) equilibrium.

COROLLARY 2.2. Every finite ordinal potential game possesses a pure-strategy
equilibrium.

A path in Y is a sequenceγ = (y0, y1, . . .) such that for everyk ≥ 1 there
exists a unique player, say Playeri , such thatyk = (y−i

k−1, x) for somex 6= yi
k−1

in Yi . y0 is called theinitial point of γ , and if γ is finite, then its last element
is called theterminal pointof γ . γ = (y0, y1, . . .) is animprovement pathwith
respect to0 if for all k ≥ 1 ui (yk) > ui (yk−1), wherei is the unique deviator
at stepk. Hence, an improvement path is a path generated by myopic players.0

has thefinite improvement property(FIP) if every improvement path is finite.

LEMMA 2.3. Every finite ordinal potential game has theFIP.

Proof. For every improvement pathγ = (y0, y1, y2, . . .) we have by (2.1)

P(y0) < P(y1) < P(y2) < · · · .
As Y is a finite set, the sequenceγ must be finite.

9 Using Blume’s (1993) terminology we can give an equivalent definition:0 is a weighted potential
game if and only if there exists a payoff function which is strongly best-response equivalent to each
of the players’ payoff functions. Sela (1992) proved that if the two-person game(A, B) does not
have weakly dominated strategies, then it has a weighted potential if and only if it is better-response
equivalent in mixed strategies (see Monderer and Shapley (1996) for the precise definition) to a game
of the form(P, P). This result can be easily generalized ton-person games.

10 See footnote 4.
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It is obvious that for finite games with the FIP, and in particular for finite
ordinal potential games, every maximal improvement path must terminate in an
equilibrium point. That is, the myopic learning process based on the one-sided
better reply dynamic converges to the equilibrium set. However we have obtained
a stronger learning result11:

THEOREM2.4(Monderer and Shapley, 1996).Every finite weighted poten-
tial game has the Fictitious Play property.

It is interesting to note that having the FIP is not equivalent to having an
ordinal potential. A counterexample is the gameG1 described below. The rows
in G1 are labeled bya andb, and the columns are labeled byc andd.

G1 =
(

(1, 0) (2, 0)

(2, 0) (0, 1)

)
.

The gameG1 has the FIP, but any ordinal potentialP for G1 must satisfy the
following impossible sequence of relations:

P(a, c) < P(b, c) < P(b, d) < P(a, d) = P(a, c).

A function P: Y → R is ageneralized ordinal potentialfor 0 if for every i ∈ N
and for everyy−i ∈ Y−i , and for everyx, z ∈ Yi ,

ui (y−i , x) − ui (y−i , z) > 0 implies that P(y−i , x) − P(y−i , z) > 0.

(2.3)

LEMMA 2.5. Let0 be a finite game. Then, 0 has theFIP if and only if0 has
a generalized ordinal potential.

Proof. Let 0 be a game with the FIP. Define a binary relation “>” on Y as
follows: x > y iff x 6= y and there exists a finite improvement pathγ with an
initial point y and a terminal pointx. The finite improvement property implies
that “>” is a transitive relation. LetZ ⊆ Y. We say thatZ is representedif
there existsQ: Z → R such that for everyx, y ∈ Z, x > y implies that
Q(x) > Q(y). Let Z be a maximal represented subset ofY. We proceed to
prove thatZ = Y. Supposex 6∈ Z. If x > z for every z ∈ Z, we extend
Q to Z ∪ {x} by defining Q(x) = 1 + maxz∈Z Q(z), thus contradicting the
maximality of Z. If z > x for everyz ∈ Z, we extendQ to Z ∪ {x} by defining
Q(x) = minz∈Z Q(z) − 1, contradicting again the maximality ofZ. Otherwise
we extendQ and contradict the maximality ofZ by definingQ(x) = (a + b)/2,

11 Several notions of acyclicity are discussed in the recent learning literature. Most of them (unlike
the FIP) are related to the best-response dynamic. See, e.g., Young (1993). Other results relating the
fictitious play property with various types of improvement paths can be found in Monderer and Sela
(1992).
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wherea = max{Q(z) : z ∈ Z, x > z}, andb = min{Q(z) : z ∈ Z, z > x}.
HenceY is represented.12

COROLLARY 2.6. Let 0 be a finite game with theFIP. Suppose in addition
that for every i∈ N and for every y−i ∈ Y−i

ui (y−i , x) 6= ui (y−i , z) for every x 6= z ∈ Yi .

Then0 has an ordinal potential.

Proof. Observe that the condition on0 implies that every generalized ordinal
potential for0 is an ordinal potential for0. Hence, the proof follows from
Lemma 2.5.

Ordinal potential games have many ordinal potentials. For exact potential
games we have:

LEMMA 2.7. Let P1 and P2 be potentials for the game0. Then there exists a
constant c such that

P1(y) − P2(y) = c for every y∈ Y.

Proof. Fix z ∈ Y. For all y ∈ Y define

H(y) =
n∑

i =1

[
ui (ai −1) − ui (ai )

]
,

wherea0 = y and for every 1≤ i ≤ n, ai = (a−i
i −1, zi ).

If P stands for eitherP1 or P2, then by (2.1),H(y) = P(y) − P(z) for every
y ∈ Y. Therefore

P1(y) − P2(y) = c for everyy ∈ Y.

The next results characterize exact potential games in a way that resembles
the standard approach to potential functions in physics.

For a finite pathγ = (y0, y1, . . . , yN) and for a vectorv = (v1, v2, . . . , vn)

of functionsvi : Y → R, we define

I (γ, v) =
n∑

k=1

[
vi k(yk) − vi k(yk−1

]
,

wherei k is the unique deviator at stepk (i.e., yik
k 6= yik

k−1).

12 A constructive and more elegant proof of this result is given in Milchtaich (1996); he showed that
the functionP that assigns to eachy ∈ Y the number of strategy profiles that are connected toy by an
improvement path that terminates iny is a generalized ordinal potential for0.
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The pathγ = (y0, y1, . . . , yN) is closedif y0 = yN . It is asimple closedpath
if in additionyl 6= yk for every 0≤ l 6= k ≤ N−1. Thelengthof a simple closed
path is defined to be the number of distinct vertices in it. That is, the length of
γ = (y0, y1, . . . , yN) is N.

THEOREM2.8. Let0 be a game in strategic form, as described at the begin-
ning of this section. Then the following claims are equivalent:

(1) 0 is a potential game.
(2) I (γ, u) = 0 for every finite closed pathsγ .
(3) I (γ, u) = 0 for every finite simple closed pathsγ .
(4) I (γ, u) = 0 for every finite simple closed pathsγ of length4.

The proof of Theorem 2.8 is given in Appendix A.
A typical simple closed path,γ , of length 4 is described below. In this path,

i and j are the active players,a ∈ Y−{i, j } is a fixed strategy profile of the other
players,xi , yi ∈ Yi , andxj , yj ∈ Y j ,

γ =
A ←−−−− Dy x
B −−−−→ C

,

whereA = (xi , xj , a), B = (yi , xj , a), C = (yi , yj , a), andD = (xi , yj , a).

COROLLARY 2.9. 0 is a potential game if and only if for every i, j ∈ N, for
every a∈ Y−{i, j }, and for every xi , yi ∈ Yi and xj , yj ∈ Y j ,

ui (B) − ui (A) + u j (C) − u j (B) + ui (D) − ui (C) + u j (A) − u j (D) = 0,

where the points A, B, C, and D are described above.

We end this section with an important remark concerning the mixed extension
of finite games.

LEMMA 2.10. Let 0 be a finite game. Then0 is a w-potential game if and
only if the mixed extension of0 is aw-potential game.

Proof. For i ∈ N let 1i be the set of mixed strategies of Playeri and letUi

be the payoff function of playeri in the mixed extension of0. That is,

Ui ( f ) = Ui ( f 1, f 2, . . . , f n)

=
∑
y∈Y

ui (y1, y2, . . . , yn) f 1(y1) f 2(y2) . . . f n(yn), ∀ f ∈ 1,

where1 = ×i ∈N1i . Obviously, if P̄: 1 → R is aw-potential function for the
mixed extension of0, then its restriction toY yields aw-potential for0. As for
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the converse, supposeP is aw-potential for0, then it can be easily verified that
P̄ is a potential for the mixed extension of0, where

P̄( f 1, f 2, . . . , f n) =
∑
y∈Y

P(y1, y2, . . . , yn) f 1(y1) f 2(y2) . . . f n(yn). (2.4)

An example to an ordinal potential game whose mixed extension is not an
ordinal potential game is given in Sela (1992).

3. CONGESTION GAMES

Congestion games were defined by Rosenthal (1973). They are derived from
congestion models that have been extensively discussed in the literature (see
e.g., Garcia and Zangwill, 1981). Consider an illustrative example:

A
c1(1),c1(2)−−−−−→ B

c3(1),c3(2)

y yc2(1),c2(2)

D −−−−−→
c4(1),c4(2)

C

In the congestion model described above, Drivera has to go from pointA
to pointC and Driverb has to go from pointB to point D. AB is called road
segment 1,BC is called road segment 2, . . . etc.cj (1) denotes the payoff (e.g.,
the negative of the cost) for a single user of road segmentj . cj (2) denotes the
payoff for each user of road segmentj if both drivers use road segmentj . The
drivers are therefore engaged in a game (the associated congestion game,CG)
whose strategic form is given below (The rows are labeled by{1, 2} and{3, 4},
and the columns are labeled by{1, 3} and{2, 4}:

CG =
(

(c1(2) + c2(1), c1(2) + c3(1)) (c2(2) + c1(1), c2(2) + c4(1))

(c3(2) + c4(1), c3(2) + c1(1)) (c4(2) + c3(1), c4(2) + c2(1))

)
.

By Corollary 2.9 the congestion gameCG admits a potential. In particular
(and with no restrictions on the payoffcj (i )) it has a (pure-strategy) equilibrium.
For completeness we attach below a potentialP for the congestion game. The
potential is computed by formula (3.2):

P =
(

c1(1) + c1(2) + c2(1) + c3(1) c2(1) + c2(2) + c1(1) + c4(1)

c3(1) + c3(2) + c4(1) + c1(1) c4(1) + c4(2) + c3(1) + c2(1)

)
.

A congestion model C(N, M, (6i )i ∈N, (cj )j ∈M) is defined as follows.N de-
notes the set of players{1, 2, . . . , n} (e.g., drivers).M denotes the set of facilities
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{1, 2, . . . , m} (e.g, road segments). Fori ∈ N let 6i be the set of strategies of
playeri , where eachAi ∈ 6i is a nonempty subset of facilities (e.g., a route).
For j ∈ M let cj ∈ R{1,2,...,n} denote the vector of payoffs, wherecj (k) denotes
the payoff (e.g., the cost) to each user of facilityj , if there are exactlyk users.

The congestion gameassociated with the congestion model is the game in
strategic form with the set of playersN, with the sets of strategies(6i )i ∈N , and
with payoff functions(vi )i ∈N defined as follows:

Set6 = ×i ∈N6i . For all A ∈ 6 and for everyj ∈ M letσj (A) be the number
of users of facility j . That is,

σj (A) = #{i ∈ N: j ∈ Ai },
whereA = (A1, A2, . . . , An).

Definevi : 6 → R by

vi (A) =
∑
j ∈Ai

cj (σj (A)). (3.1)

The following theorem can be deduced from Rosenthal (1973).

THEOREM3.1. Every congestion game is a potential game.

Proof. Let 0 be the congestion game defined by the parametersN, M ,
(6 i )i ∈N , (cj )j ∈M .

For eachA ∈ 6 define

P(A) =
∑

j ∈∪n
i =1 Ai

(
σj (A)∑
l=1

cj (l )

)
. (3.2)

The proof thatP is a potential for0 can be deduced from Rosenthal (1973) or
directly using Corollary 2.9.

Let 01 and02 be games in strategic form with the same set of playersN. For
k = 1, 2 let (Yi

k)i ∈N be the strategy sets in0k, and let(ui
k)i ∈N be the payoff

functions in0k. We say that01 and02 are isomorphic if there exist bijections
gi : Yi

1 → Yi
2, i ∈ N, such that for everyi ∈ N

ui
1(y1, y2, . . . , yn) = ui

2(g
1(y1), g2(y2), . . . , gn(yn))

for every(y1, y2, . . . , yn) ∈ Y1,

whereY1 = ×i ∈NYi
1.

THEOREM3.2. Every finite potential game is isomorphic to a congestion
game.

The proof, as well as several relevant discussions, is given in Appendix B.
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4. INFINITE POTENTIAL GAMES

Let 0 be a game in strategic form as described in Section 2.0 is called a
bounded gameif the payoff functions(ui )i ∈N are bounded.

LEMMA 4.1. Every bounded potential game possesses anε-equilibrium point
for everyε > 0.

Proof. Note that by (2.2) every potentialP for 0 must be bounded. Let
ε > 0. There existsz ∈ Y satisfying

P(z) > sup
y∈Y

P(y) − ε.

Obviouslyz is anε-equilibrium point.

Recall the concept of a path from Section 2. Letε > 0. A pathγ = (y0, y1, . . .)

is anε-improvement pathwith respect to0 if for all k ≥ 1ui (yk) > ui (yk−1)+ε,
wherei is the unique deviator at stepk. The game0 has theapproximate finite
improvement property(AFIP) if for every ε > 0 everyε-improvement path is
finite. The proof of the next lemma is obvious and will be omitted.

LEMMA 4.2. Every bounded potential game has theAFIP.

Note that for games with the AFIP, and in particular for bounded potential
games, every maximalε-improvement path terminates in anε-equilibrium point.

A game0 is called acontinuous gameif the strategy sets are topological spaces
and the payoff functions are continuous with respect to the product topology.
Note that by (2.2), the potential of a continuous potential game is continuous.
Therefore we have:

LEMMA 4.3. Let 0 be a continuous potential game with compact strategy
sets. Then0 possesses a pure-strategy equilibrium point.

We now proceed to deal with differentiable games. We assume that the strategy
sets under discussion are intervals of real numbers. We omit the obvious proof
of the next lemma.

LEMMA 4.4. Let0 be a game in which the strategy sets are intervals of real
numbers. Suppose the payoff functions ui : Yi → R, i ∈ N, are continuously
differentiable, and let P: Y → R. Then P is a potential for0 if and only if P is
continuously differentiable, and

∂ui

∂yi
= ∂ P

∂yi
for every i∈ N.

The next theorem is well-known (and very useful).
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THEOREM4.5. Let 0 be a game in which the strategy sets are intervals of
real numbers. Suppose the payoff functions are twice continuously differentiable.
Then0 is a potential game iff

∂2ui

∂yi ∂y j
= ∂2u j

∂yi ∂y j
for every i, j ∈ N. (4.1)

Moreover, if the payoff functions satisfy(4.1) and z is an arbitrary(but fixed)
strategy profile in Y, then a potential for0 is given by

P(y) =
∑
i ∈N

∫ 1

0

∂ui

∂yi
(x(t))(xi )′(t) dt, (4.2)

where x: [0, 1] → Y is a piecewise continuously differentiable path in Y that
connects z to y(i.e., x(0) = z and x(1) = y).

Consider for example the quasi-Cournot game described in the Introduction.
It can be easily verified that (4.1) is satisfied (because∂2ui /∂yi ∂y j = a for
everyi 6= j ∈ N), and applying (4.2) yields the potential given in (1.2). Unlike
(weighted) potential games, ordinal potential games are not easily characterized.
We do not know of any useful characterization, analogous to the one given in
(4.1), for differentiable ordinal potential games.

5. THE POTENTIAL AS AN EQUILIBRIUM REFINEMENT TOOL

Let0 be a potential game and letP be a potential for0. The set of all strategy
profiles that maximizeP is a subset of the equilibria set. By Lemma 2.7, this set
does not depend on a particular potential function.13 Thus, at least technically,
the potential defines a refinement concept.

Consider the version of the Stag Hunt game of Rouseau, as described in
Crawford (1991): There aren players. Player i choosesei ∈ {1, 2, . . . , 7}. The
payoff5i of Player i is

5i (e1, e2, . . . , en) = a min(e1, e2, . . . , en) − bei + c,

wherea > b ≥ 0, andc is a constant that guarantees positive payoffs. Define a
potential functionP as

P(e1, e2, . . . , en) = a min(e1, e2, . . . , en) − b
j∑

j =1

ej .

13 It can also be proved that for weighted potential games, the argmax set of a weighted potential
does not depend on a particular choice of a weighted potential (even though distinct weighted potentials
may be based on different sets of weights (i.e., neither vector of weights is a multiple by a scalar of the
other vector)).
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Note that ifa < nb, thenP is maximized at the profilee with ei = 1 for every
1 ≤ i ≤ n. If a > nb, then P is maximized at the strategy profile satisfying
ei = 7 for everyi . Surprisingly, the equilibrium selection predicted by the argmax
set of the potential is the one that is supported by the experimental results of
Van Huycket al. (1990). In ExperimentA (using Crawford’s notation),a = 0.2,
b = 0.1, and 14≤ n ≤ 16. Thusa < nb. In ExperimentB, b was switched
to 0, and thereforea > nb. In ExperimentsCd andCf , a = nb. In this case,
every equilibrium profile maximizes the potential, and thus the potential cannot
be used for a prediction. Indeed, inCd, the players were not using a particular
equilibrium profile. In ExperimentCf , which was the same asCd except for
the fact that the two players were fixed (and not randomly matched), players
tended to choosee1 = e2 = 7. This, to our opinion, reflects the principal that a
repetition is a substitute to cooperation in repeated games.

We do not attempt to explain the success of the argmax set of the potential
to predict behavior in the above potential game. It may be just a coincidence.14

We hope that further experiments will be conducted to test this new refinement
concept.

Van Huycket al. (1991) conducted another set of experiments on average
opinion games. In this experiments the payoff function of Player i is given by

5i (e1, e2, . . . , en) = αM − β(M − ei )
2 + γ,

whereα, β, andγ are positive constants, andM = M(e1, e2, . . . , en) is the
median of(e1, e2, . . . , en).

It can be seen easily that this game does not have a weighted potential, and
thus we are unable to analyze their results via the potential approach. However,
if the median functionM is replaced by the mean function,A(e1, e2, . . . , en) =
1/n

∑n
i =1 ei , then by Theorem 4.5 the game does have a potential. The unique

strategy profile that maximizes this potential isei = 7 for everyi . Unfortunately,
we do not know of any experiment conducted with the mean functionA.

6. AN APPLICATION TO THE STRATEGIC APPROACH TO VALUE
THEORY

Let N = {1, 2, . . . , n} be the set of players. For each nonempty coalition
S ⊆ N we denote byG(S) the space of all cooperative games with transferable
utility on the set of playersS. That is,v ∈ G(S) if and only if v is a real-valued
function defined on the set 2S of subsets ofS with v(∅) = 0. A solution is a
functionψ : ∪S∈2N G(S) → ∪S∈2N RS such thatψ(v) ∈ RS wheneverv ∈ G(S).
A solutionψ is efficientif

∑
i ∈S ψv(i ) = v(S) for everyS ∈ 2N and for every

v ∈ G(S).

14 See, however, the Introduction for references to a possible explanation suggested by Blume (1993).



POTENTIAL GAMES 137

For each solutionψ and for eachc ∈ RN we will define a game in strategic
form 0(ψ, c, v) for everyv ∈ G(N) as follows:

The set of players isN. The set of strategies of playeri is Yi = {0, 1}. Player
i can decide not to join the game (choosing 0) and to get a payoffci , or to
participate in the game (choosing 1). LetSbe the set of all players that choose 1.
Then eachi ∈ Sreceives the payoffψ(vS)(i ), wherevS ∈ G(S) is the restriction
of v to 2S. More precisely, forε ∈ Y = {0, 1}N denoteS(ε) = {i ∈ N : εi = 1}.
Then the payoff functionui of playeri is

ui (ε) =
{

ci , if εi = 0
ψ(vS(ε))(i ), if εi = 1.

The games0(ψ, c, v) will be called theparticipation games. We now present
two characterizations (a local characterization and a global one) for the Shapley
value in terms of the strategic properties of the participation games.

THEOREM6.1. Letψ be an efficient solution on G= ∪S∈2N G(S), let c ∈ RN ,
and letv ∈ G(N). Thenψ is the Shapley value on{vS: S ∈ 2N} if and only
if 0 = 0(ψ, c, v) is a potential game.

Proof. Let i ∈ N. Then

ui (ε−i , 1) − ui (ε−i , 0) = ψ(vS∪{i })(i ) − ci for all ε ∈ Y, (6.1)

whereS = { j 6= i : ε j = 1}.
For S ⊆ N let εS ∈ Y be defined as follows:εi

S = 1 if i ∈ S, andεi
S = 0 if

i 6∈ S.
From (6.1) we deduce that0 is a potential game if and only if there exists

Q: Y → R such that

Q(εS)−Q(εS\{i }) = ψ(vS∪{i })(i )−ci for everyS ⊆ N and for everyi ∈ S.
(6.2)

SetP(εS) = Q(εS) + ∑
i ∈S ci , thenQ satisfies (6.2) iffP satisfies

P(εS)−P(εS\{i }) = ψ(vS∪{i })(i ) for all S ⊆ N and for everyi ∈ S. (6.3)

Thus, the proof follows from Theorem A in Hart and Mas-Colell (1989).

THEOREM6.2. Let ψ be an efficient solution on G= ∪S∈2N G(S), and let
c ∈ RN . Thenψ is the Shapley value on G if and only if0(ψ, c, v) is a potential
game for everyv ∈ G(N).

Proof. The proof follows from Theorem 6.1.

By Theorem 5.2 in Hart and Mas-Colell (1989) we can also prove the following
characterization of weighted Shapley values.
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THEOREM6.3. Letψ be an efficient solution on G= ∪S∈2N G(S), let c ∈ RN ,
letv ∈ G(N), and letw be a vector of positive weights. Thenψ is thew-Shapley
value on{vS : S ∈ 2N} if and only if0 = 0(ψ, c, v) is aw-potential game.

Other results relating noncooperative potential games with cooperative solu-
tions are discussed in Qin (1992).

APPENDIX A

Proof of Theorem2.8. Obviously(2) H⇒ (3) H⇒ (4). We prove that(1)

⇐⇒ (2) and that(4) H⇒ (2).
(1) H⇒ (2) SupposeP is a potential for0. Let γ = (y0, y1, . . . , yN) be a

closed path. Then by (2.2)

I (γ, u) = I (γ, (P, P, . . . , P)) = P(yN) − P(y0) = 0.

(2) H⇒ (1) SupposeI (γ, u) = 0 for every closed pathγ . Fix z ∈ Y. Let
y ∈ Y. We claim that for every two pathsγ1 andγ2 that connectz to y, I (γ1, u) =
I (γ2, u). Indeed, supposeγ1 = (z, y1, . . . , yN) andγ2 = (z, z1, . . . , zM), where
yN = zM = y. Let µ be the closed path(γ1, γ

−1
2 ). That is,

µ = (z, y1, . . . , yN, zM−1, zM−2, . . . , z).

Then I (µ, u) = 0. ThereforeI (γ1, u) = I (γ2, u). For everyy ∈ Y choose a
path, sayγ (y), connectingz to y. DefineP(y) = I (γ (y), u) for all y ∈ Y. We
proceed to prove thatP is a potential for0. We have just proved that

P(y) = I (γ, u) for everyγ that connectsz to y. (A.1)

Let i ∈ N, let y−i ∈ Y−i , and leta 6= b ∈ Yi . Let γ = (z, y1, . . . , (y−i , a)) be
a path connectingz to (y−i , a). Setµ = (z, y1, . . . , (y−i , a), (y−i , b)). Then by
(A.1)

P(y−i , b) − P(y−i , a) = I (µ, u) − I (γ, u) = ui (y−i , b) − ui (y−i , a).

ThereforeP is a potential for0.
(4) H⇒ (2) SupposeI (γ, u) = 0 for every simple closed pathγ of length 4.
We denote the length of a closed pathγ = (y0, y1, . . . , yN) l (γ ) (= N).

Suppose that for some closed path, sayγ , I (γ, u) 6= 0. ObviouslyN = l (γ ) ≥
5. Without loss of generality we may assume thatI (µ, u) = 0 , whenever
l (µ) < N.

Supposeγ = (y0, y1, y2, . . . , YN). Let i ( j ), 0 ≤ j ≤ N−1, be the unique de-
viator at stepj . That is,yj +1 = (y−i ( j )

j , x(i ( j ))), wherex(i ( j )) 6= yi ( j )
j . Without

loss of generality assume thati (0) = 1. Sincei (0) = 1, andyN = y0, there exists
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1 ≤ j ≤ N −1 such thati ( j ) = 1. If j = 1 or j = N −1, we get a contradiction
to the minimality assumption about the length ofγ in the following way: Assume
w.l.o.g. thati (1) = 1. Defineµ = (y0, y2, . . . , yN). Then,I (µ, u) = I (γ, u),
andl (µ) < N. Assume therefore that 2≤ j ≤ N −2. We show that there exists
zj ∈ Y such that the pathµ = (y0, y1, . . . , yj −1, zj , yj +1, . . . , yN) satisfies

I (µ, u) = I (γ, u) and i ( j − 1) = 1. (A.2)

Indeed, define

zj = (y−{i ( j −1),1}
j −1 , yi ( j −1)

j −1 , y1
j +1).

Then, by our assumption on closed paths of length 4,

I ((yj −1, yj , yj +1, zj ), u) = 0.

This implies (A.2).
Continuing recursively, we finally find a closed pathτ of lengthN such that

I (τ, u) 6= 0, andi (0) = i (1) = 1, in contradiction to the minimality assumption
We conclude thatI (γ, u) = 0 for every closed pathsγ .

APPENDIX B

The payoff functions in the congestion game are given in (3.1). We need an
equivalent formulation in order to prove Theorem 3.2. ForA = (A1, A2, . . . , An)

∈ 6 and forS ⊆ N we denoteA(S) = ∪i ∈SAi , and we denoteA(−S) = A(Sc),
whereSc is the complementary set ofS. For S = {i }, A(i ) and A(−i ) stand
for A({i }) and A(−{i }) respectively. Forx ∈ RM and for B ⊆ M we denote
x(B) = ∑

j ∈B x( j ).

LEMMA B.1. Suppose C is a congestion game as described in Section3.
For every r ∈ N define the vector xr ∈ RM as

xr ( j ) = cj (m) for every j∈ M .

Then for every i∈ N and for every A∈ 6

vi (A) = x1 (A(i ) ∩ A(−i )c)

+ x2
(∪k 6=i [ A(i ) ∩ A(k) ∩ A(−{i, k})c]

)
+ · · · + xn (∩k∈N A(k)) . (B.1)

Proof. The proof follows from (3.1).
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Proof of Theorem3.2. Let0 be a finite potential game as described in Sec-
tion 2. The set of players isN = {1, 2, . . . , n}, the strategy sets are(Yi )i ∈N , and
the payoff functions are(ui )i ∈N . Let P be a potential for0.

Let k(i ) = #Yi be the number of strategies of playeri , and assume

Yi = {ai
1, ai

2, . . . , ai
k(i )}.

For i ∈ N, setK (i ) = {1, 2, . . . , k(i )}, and setK = ×n
i =1K (i ).

We proceed to define an isomorphic congestion game. The facility setM is
defined to be the set of allε = (ε1, ε2, . . . , εn), where for everyi ∈ N εi is a
vector of 0’s and 1’s of lengthk(i ). That is,εi ∈ {0, 1}K (i ). In other words,

M = ×n
i =1{0, 1}K (i ).

The strategy sets(6i )i ∈N in the congestion games are defined as

6i = {Ai
1, Ai

2, . . . , Ai
k(i )} for everyi ∈ N,

where

Ai
l = {ε ∈ M : εi

l = 1} for everyl ∈ K (i ).

We now define vectors(xr )r ∈N in RM such that the payoffs(vi )i ∈N defined in
Lemma B.1 satisfy

vi (A1
m1

, A2
m2

, . . . , An
mn

) = ui (a1
m1

, a2
m2

, . . . , an
mn

),

∀i ∈ N and∀(m1, m2, . . . , mn) ∈ K .

For 1< r < n setxr = 0.
Forr = n, xn is defined to be a solution of the following system of equations:

xn(A1
m1

∩A2
m2

∩· · ·∩An
mn

) = P(a1
m1

, a2
m2

, . . . , an
mn

), (m1, m2, . . . , mn) ∈ K .

(B.2)

We have to show that a solution to (B.2) exists. For eachm = (m1, m2, . . . , mn) ∈
K let ε(m) ∈ M be defined as follows:εi

mi
= 1 for everyi ∈ N, andεi

k = 0 for
everyi ∈ N and for everyk 6= mi in K (i ). Set

M1 = {ε(m): m ∈ K }. (B.3)

Note that form 6= l ∈ K , ε(m) 6= ε(l ). Therefore we can definexn as

xn(ε) =
{

P(a1
m1

, a2
m2

, . . . , an
mn

), if ε = ε(m) ∈ M1

0, if ε 6∈ M1.
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It can be verified easily that for everym ∈ K

A1
m1

∩ A2
m2

∩ · · · ∩ An
mn

∩ M1 = {ε(m)}.

Thereforexn satisfies (B.2).
We proceed to definex1. Note that by (2.2) for everyi ∈ N and for every

a−i ∈ Y−i , the expressionui (a−i , ai ) − P(a−i , ai ) does not depend onai ∈ Yi .
That is,

ui (a−i , ai ) − P(a−i , ai ) = ui (a−i , bi ) − P(a−i , bi ) for everyai , bi ∈ Yi .

For everyi ∈ N defineQ−i : Y−i → R by

Qi (a−i ) = ui (a−i , ai ) − P(a−i , ai ), (B.4)

whereai is arbitrarily chosen fromYi .
For eachi ∈ N and for eachmi = (mi

k)k 6=i ∈ K −i defineε(mi ) ∈ M as

εi
s = 1 for everys ∈ K (i ), and for everyk, k 6= i , εk

s = 0 iff s = mi
k.

Set

M2 = {ε(mi ): mi ∈ K −i }. (B.5)

Definex1 as

x1(ε) =
{

Qi
(
(ak

mi
k
)k 6=i

)
, if ε ∈ M2 andε = ε(mi )

0, if ε 6∈ M2.

It can be verified that for everym = (m1, m2, . . . , mn) ∈ K and for A =
(A1

m1
, A2

m2
, . . . , An

mn
) ∈ 6,

x1
(
Ai

mi
∩ A(−i )

) = x1(ε(mi )) = ui (a) − Pi (a) for everyi ∈ N, (B.6)

wheremi = (mk)k 6=i anda = (a1
m1

, a2
m2

, . . . , an
mn

).
Combine (B.6), (B.2), and Lemma B.1 to get that for everyi ∈ N,

vi (A1
m1

, A2
m2

, . . . , An
mn

) = ui (a1
m1

, a2
m2

, . . . , an
mn

), ∀(m1, m2, . . . , mn) ∈ K .

We conclude this Appendix with a remark about the minimal number of fa-
cilities that are needed to represent potential games by congestion games.

Let the number of players,n, and the strategy sets,(Yi )n
i =1, be fixed. Then the

dimensiond of the linear space of all potential games withn players and with
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the strategy sets(Yi )n
i =1 is

d = k

k(1)
+ k

k(2)
+ · · · + k

k(n)
+ k − 1,

where for everyi ∈ N, k(i ) = #Yi andk = k(1)k(2) · · · k(n).
Suppose we are looking for a fixed set of facilitiesM with m elements and

for fixed strategy sets(6 i )i ∈N with #6i = k(i ) for everyi ∈ N, such that each
potential game will be represented by a congestion game withn players, with
the facility setM , and with the strategy sets(6 i )i ∈N . Then by Lemma B.1 each
such congestion game is uniquely defined byn vectors(xi )i ∈N in RM . Suppose
also that we wish the representation operation to be linear, then we must have

m ≥ 1

n

(
k

k(1)
+ k

k(2)
+ · · · + k

k(n)
+ k − 1

)
. (B.7)

In the proof of Theorem 3.2,m = 2k(1)+k(2)+···+k(n). However, instead ofM we
could have defined our facility set to be eitherM1 or M2 ( the one with the greater
number of elements). Hence, the number of facilitiesm could be reduced to

m = max

(
k,

k

k(1)
+ k

k(2)
+ · · · + k

k(n)

)
. (B.8)

Comparing (B.7) to (B.8) indicates that it may be possible to improve upon our
result.
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