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The “market games”-games that derive from an exchange economy 
in which the traders have continuous concave monetary utility functions, 
are shown to be the same as the “totally balanced games”-games which 
with all their subgames possess cores. (The core of a game is the set of out- 
comes that no coalition can profitably block.) The coincidence of these 
two classes of games is established with the aid of explicit transformations 
that generate a game from a market and vice versa. It is further shown 
that any game with a core has the same solutions, in the von Neumann- 
Morgenstern sense, as some totally balanced game. Thus, a market may 
be found that reproduces the solution behavior of any game that has a 
core. In particular, using a recent result of Lucas, a ten-trader ten- 
commodity market is described that has no solution. 

1. INTRODUCTION 

Recent discovery of n-person games in the classical theory which either 
possess no solutions [S, 91, or have unusually restricted classes of solutions 
[6, 7, 10, 181, has raised the question of whether these games are mere 
mathematical curiosities or whether they could actually arise in applica- 
tion. Since the most notable applications of n-person game theory to 
date have been to economic models of exchange, or exchange and pro- 
duction [3, 13, 15, 16, 19-231, the question may be put in a more concrete 
form: Are there markets, or other basic economic systems, that when 
interpreted as n-person games give rise to the newly-discovered counter- 

1 This research is supported by the United States Air Force. under Project RAND 
-Contract No. F44620-67-C-0045-monitored by the Directorate of Operational 
Requirements and Development Plans, Deputy Chief of Staff, Research and Develop- 
ment, HQ USAF. Views and conclusions expressed herein should not be interpreted 
as representing the official opinion or policy of the United States Air Force or of The 
RAND Corporation. 
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examples? If SO, can they be distinguished from the ordinary run of 
market models, on some economic, heuristic, or even formal grounds 
-i.e. do they give any advance warning of their peculiar solution 
properties ? 

These questions stimulated the present investigation. The answers 
are “bad news”: Yes, the games can arise in economics; No, there are 
no outwardly distinguishing features. In reaching these conclusions, 
however, we were led to a positive result: a surprisingly simple mathe- 
matical criterion that tells precisely which games can arise from economic 
models of exchange (with money). In fact, this criterion identifies a 
very fundamental class of games, called “totally balanced”, whose further 
study seems merited quite apart from any consideration of solution 
abnormalities. Of technical interest, our derivation of the basic properties 
of these games and their solutions makes a substantial application of the 
recently-developed theory of balanced sets [I, 2, 11, 171, as well as of the 
older work of Gillies on domination-equivalence [4, 51. 

In the present note we confine our attention to the classical theory 
“with side payments” [23]; this corresponds in the economic inter- 
pretation to the assumption that an ideal money, free from income effects 
or transfer costs, is available.’ We further restrict ourselves to exchange 
economies, without explicit production or consumption processes, in 
which the commodities are finite in number and perfectly divisible and 
transferable, and in which the traders, also finite in number, are motivated 
only by their own final holdings of goods and money, their utility functions 
being continuous and concave and additive in the money term. 

For our immediate purpose, these strictures do not matter, since the 
anomalous games are already attainable within the limited class of ideal 
markets considered. But for our larger purpose--that of initiating a 
systematic study of “market games” as distinct from games in general- 
some relaxation may be desirable, particularly with regard to money. 
The propects for significant generalizations in this direction appear good, 
and we intend to pursue them in subsequent work. 

1.1 OUTLINE OF THE CONTENTS 

The notions of game, core, and balanced set are reviewed. A game is 
called “balanced” if it has a core, and “totally balanced” if all of the 
subgames obtained by restricting the set of players have cores as well 
(Section 2). 

A “market” is defined as an exchange economy with money, in which 
the traders have utility functions that are continuous and concave. The 
method of passing from a market to its “market game” is described. 

“, For a discussion of this assumption, see [20], pp. 807-808. 
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The market games with n traders form a closed convex cone in the space 
of all n-person games with side payments. Every market game not only 
has a core, but is totally balanced (Section 3). 

A canonical market form-the “direct market”-is introduced, in 
which the commodities are in effect the traders themselves, made infinitely 
divisible, and the utility functions are all the same and are homogeneous 
of degree one. The method of passing from any game to its direct market 
is described, the utilities being based upon the optimal assignment of 
“fractional players” to the various coalitional activities. The “cover” of a 
game is defined as the market game of its direct market; the cover is at 
least as profitable to all coalitions as the original game. Every totally 
balanced game is its own cover, and hence is a market game. This shows 
that the class of market games and the class of totally balanced games are 
the same. Moreover, every market is game-theoretically equivalent to a 
direct market (Section 4). 

The notions of imputation, domination, and solution are reviewed. 
Games are “d-equivalent” if they have identical domination relations on 
identical imputation spaces. They therefore have identical solutions (or 
lack of solutions), and their cores, if any, are the same. It is shown that 
every balanced game is d-equivalent to a totally balanced game. Hence, 
for every game with a core, there is a market that has precisely the same 
set of solutions (Section 5). 

Using Lucas’s solutionless game [8, 91, a direct market is constructed 
that has ten traders and ten commodities (plus money), and that has no 
solution. Another version in the form of a production economy is also 
presented. Several other examples of market games with unusual solution 
properties are mentioned, and in one case, where the solutions contain 
arbitrary components, the utility function is worked out explicitly 
(Section 6). 

2. GAMES AND CORES 

For the purpose of this note, a game is an ordered pair (N; v), where 
N is a finite set [the players] and 27 is a function from the subsets of N 
[coalitions] to the reals satisfying v(0) = 0, called the characteristic 
function. A payof vector for (N; v) is a point CI in the ]N[-dimensional 
vector space EN whose coordinates cli are indexed by the elements of N. 
lf a E EN and S c N, we shall write a(S) as an abbreviation for xi E s o!* 

The core of (N; v) is the set of all payoff vectors CI, if any, such that 

and 
cl(S) 2 v(S), all S E N, (2-l) 

a(N) = v(N). Q-2) 
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If no such CI exists, we shall say that (N; U) has no core. (Thus, in this 
usage, the core may be nonexistent, but is never empty.) 

2.1 BALANCED SETS OF COALITIONS 

A balanced set a is defined to be a collection of subsets S of N with the 
property that there exist positive numbers ys, SE ~8, called “weights”, 
such that for each i E N we have 

&5 = 1. (2-3) 

If all ys = 1, we have a partition of N; thus, balanced sets may be regarded 
as generalized partitions. ---- 

For example, if N = 1234, then { 12, 13, 14, 234) is a balanced set, by 
virtue of the weights l/3, l/3, l/3, 213. 

A game (N; v) is called baZanced if 

s;aYs4s) 2 av (2-4) 

holds for every balanced set %I with weights {Y~}.~ 

THEOREM 1. A game has a core if and only if it is balanced. 

This is proved in [17]. In Scarf’s generalization to games without 
transferable utility [ll], all balanced games have cores, but some games 
with cores are not balanced. If our present results can be generalized 
in this direction, we conjecture that it will be the balance property, rather 
than the core property, that plays the central role. 

2.2 TOTALLY BALANCED GAMES 

By a subgame of (N; v) we shall mean a game (R; v) with 0 c R E N. 
Here u is the same function, but implicitly restricted to the domain con- 
sisting of the subsets of R. A game will be said to be totally balanced if 
all of its subgames are balanced. In other words, all subgames of a totally 
balanced game have cores. 

Not all balanced games are totally balanced. For example, let N = 1234 
and define v(S) = 0, 0, 1, 2 for IS] = 0, 1, 3,4 respectively, and, for 
ISI = 2: 

v(12) = u(G) = v(23) = 1 

V(G) = v(Z) = 434) = 0. 

3 These conditions are heavily redundant; it suffices to assert (2-4) for the minimal 
balanced sets ,@ (which moreover have unique weights). In the case of a superadditive 
game, only the minimal balanced sets that contain no disjoint elements are needed. 
(See [17].) 
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This game has a core, including the vector (4, f, $, +) among others. But 
it is not totally balanced, since the subgame (123; v) has no core. 

3. MARKETS AND MARKET GAMES 

For the purpose of this note, a market is a special mathematical model, 
denoted by the symbol (T, G, A, U). Here T is a finite set [the traders]; 
G is the nonnegative orthant of a finite-dimensional vector space [the 
commodity space] ; A = (ai: i E T) is an indexed collection of points in G 
[the initial endowments]; and U = {ui: i E T} is an indexed collection of 
continuous, concave functions from G to the reals [the utility functions]. 
When we wish to indicate that ui 5 U, all i E T [the special case of “equal 
tastes”], we shall sometimes denote the market by the more specific 
symbol (T, G, A, {u}). 

If S is any subset of T, an indexed collection Xs = {xi: i E S} c G such 
that X:,X’ = &a’ will be called a feasible S-allocation of the market 
U’, G, A, u>. 

A market (T, G, A, U) can be used to “generate” a game (N; a) in a 
natural way. We set N = T, and define v by 

v(S) = max C ui(xi), all S c N, (3-l) 
Xs is.5 

where the maximum runs over all feasible S-allocations. Any game that 
can be generated in this way from some market is called a market game.4 

In the special case of identical utility functions ui = 1.4, we have 

v(S) = ]S(u(‘&a’/[Sl), all S c N; (3-2) 
this is a simple consequence of concavity. In the still more special case 
where u is homogeneous of degree 1, we have simply 

u(S) = u(Csai), all S c N. (3-3) 

3.1 SOME ELEMENTARY PROPERTIES 

The following two theorems are of a routine nature; they show that the 
property of being a market game is invariant under “strategic equiva- 
lence”, and that the set of all market games on N forms a convex cone 
in the (2 INI - 1)-dimensional space of all games on N. 

THEOREM 2. If (N; v) is a market game, if J. 2 0, and if c is an additive 
set function on IV, then (N; Iv+c) is a market game. 

Proof. We need merely take any market that generates (N; v) and 
replace each utility function U’(X) by la’(x) + c({i}). Q.E.D. 

4 For examples, see [13,1.5, 16, 20,21,22]. The abstract definition of “market game” 
proposed in [13] is not equivalent to the present one, however. 
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THEOREM 3. If (N; v’) and (N; v”) are market games, then (IV, v’+v”) is 
a market game. 

Proof. Let (N, G’, A’, U’) and (N, G”, A”, U”) be markets that generate 
(N; v’) and (N; a”) respectively. We shall superimpose these two markets, 
keeping the two sets of commodities distinct. Specifically, let G be the set 
of all ordered pairs (x’, x”) of points from G’ and G” respectively; let A 
be the set of pairs (a”, a”‘) of correspondingly-indexed elements of A’ 
and A”; and let U be the set of sums: 

d((x’, x”)) = di(x’) + tP(X”) 

of correspondingly-indexed elements of U’ and U”. One can then verify 
without difficulty that the elements of U are continuous and concave on 
the domain G (which is a nonnegative orthant in its own right), so that 
(N, G, A, U) is a market. Finally, one can verify without difficulty that 
(N, G, A, U) generates the game (N; v’+u”). Q.E.D. 

3.2 THE CORE THEOREM 

THEOREM 4. Every market game has a core. 

This theorem is well known, and has been generalized well beyond the 
limited class of markets we are now considering. Nevertheless we shall 
give two proofs, both short, for the sake of the insights they provide. 
In the first, we in effect determine a competitive equilibrium for the 
generating market (a simple matter when there is transferable utility), 
and then show that the competitive payoff vector lies in the core. In the 
second proof, we show directly that the game is balanced, and then 
apply Theorem 1. 

Proof 1. Let (N; V) be a market game and let (N, G, A, U) be a market 
that generates it. Let B = (b’: ie N} be a feasible N-allocation that 
achieves the value v(N) in (3-l) for S = A? The maximization in (3-l) 
ensures the existence of a vector p [competitive prices-but possibly 
negative !] such that for each i E iV, the expression 

d(x’)-p-(xi-d), xi E G, (3-4) 
is maximized at xi = b’. Define the payoff vector jl by 

pi = u@i)-p.(bi-aQ; 

we assert that B is in the core. Indeed, let S be any nonempty subset of N, 
and let Ys be a feasible S-allocation that achieves the maximum in (3-l), 
so that u(S) = ‘&ui(yi). Since b’ maximizes (3-4), we have 

#L?’ 2 u’(yi)-p.(y’-a’). 
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Summing over i E S, we obtain 

/!qs) 2 ~sui(yi)-p*o = v(S), 

as required by (2-l). Moreover, if S = N we may take Ys = B and 
obtain P(N) = v(N), as required by (2-2). Q.E.D. 

Proof 2. Let (N, G, A, U) be a generating market for (N; u), and, for 
each S s N, let Ys = (yi: i E S> be a maximizing S-allocation in (3-l). 
Let 99 be balanced, with weights (~8: S E a}. Then we have 

,lp@) =,I& ,$wi(Y~) =i;N JaYsU’(Yb). 
S3i 

Now define 

Note that zi is a center of gravity of the points ys, by virtue of (2-3). Hence, 
by concavity, 

(3-5) 

But 2 = (zi: i E Nj is a feasible N-allocation, since 

Hence the right side of (3-5) is g u(N), and we conclude from (2-4) that 
the game is balanced and from Theorem 1 that it has a core. Q.E.D. 

COROLLARY. Every market game is totally balanced. 

Proof. If (N; o) is generated by the market (N, G, A, U), and if 
0 c R E N, then we may define a market (R, G, A’, U’), where A’ and U’ 
come from A and U by simply omitting all ai and ui for i not in R. This 
market clearly generates the game (R; v). Hence (R; v) is balanced. 

Q.E.D. 

Our next objective will be to prove the converse of this corollary-i.e. 
that every totally balanced game is a market game. 

4. DIRECT MARKETS 

A special class of markets, called direct markets, will play an important 
role in the sequel. They have the form 

(T,E:J=,{u}), 
where u is homogeneous of degree 1 as well as concave and continuous. 
Here ET denotes the nonnegative orthant of the vector space ET with 
coordinates indexed by the members of T, and IT denotes the collection 
of unit vectors of ET-in effect, the identity matrix on T. 
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Thus, in a direct market, each trader starts with one unit of a personal 
commodity [e.g. his time, his labor, his participation, “himself”]. When 
it is brought together with other personal commodities, we may imagine 
that some desirable state of affairs is created, having a total value to the 
traders that is independent (because of homogeneity and equal tastes) 
of how they distribute the benefits. 

Let es denote the vector in EN in which es = 1 or 0 according as i E S 
or i $ S; geometrically, these vectors represent the vertices of the unit 
cube in EF. Then the characteristic function of the market game generated 
by a direct market can be put into a very simple form: 

u(S) = u(eS), all S c N (4-l) 

(compare (3-3)). Note that only finitely many commodity bundles are 
involved in this expression. 

4.1 THE DIRECT MARKET GENERATED BY A GAME 

Thus far we used markets to generate games. We now go the reverse 
route, associating with any game (not necessarily a market game) a 
certain “market of coalitions”. Specifically, we shall say that the game 
(N; v) “generates” the direct market (ZV, Ey, IN, {u}), with u given by 

u(x) = max C ysu(S), all x E I$, (4-2) 
frsl SCN 

maximized over all sets of nonnegative ys satisfying 

ss~ = xi, all i E N. (4-3) 

To explain this market,5 we may imagine that each coalition S has an 
activity d, that can earn a(S) dollars if all the members of S participate 
fully. More generally, it earns ysv(S) dollars if each member of S devotes 
the fraction ys of “himself” to d,. The maximization in (4-2) is then 
nothing but an optimal assignment of activity levels ys to the various 
&‘,‘s, subject to the condition (4-3) that each player, i, distribute exactly 
the amount xi of “himself” among his activities, including of course the 
“solo” activity dii). 

The utility function defined by (4-2) is obviously homogeneous of 
degree 1, as required for a direct market. But before we can claim to 
have defined a market, let alone a direct market, we must also establish 
that (4-2) is continuous and concave. Continuity gives no trouble. To 
show concavity, it suffices (with homogeneity) to prove that 

u(x)+u(y) S u(x+y), all x,y E ET. 

5 The essence of this model was suggested by D. Cantor and M. Maschler (private 
correspondence, 1962). 
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This is not difficult. By definition, there exist sets of nonnegative coeffi- 
cients {ys} and (6,) such that 

4x) = 1 Ys@), U(Y) = c &v(S); 
SCN SSN 

and 

Hence {ys + S,} is admissible for x+y, and (4-2) yields 

4x + Y> 2 c (Ys + ww = u(x) + U(Y), 
as required. 

4.2 THE COVER OF A GAME 

We shall now use the direct market generated by a game (N; v) to 
generate in turn a new game (N; $-schematically: 

arbitrary game -----A direct market ----+ market game. 

We shall call (N; fi) the cover of (N; u). 
Combining (4-l) with (4-2) and (4-3), we obtain the following relation 

beteen v and V: 

i;(R) = max 1 ysv(S), all R G N 
{rs) S&R 

maximized over yS 2 0 such that 

s;> = 1, alliER. 

Sei 

(4-4) 

(4-5) 

Note that we could have taken (4-4), (4-5) as the definition of “cover”, 
bypassing the intermediate market. Indeed, the cover of a game proves 
to be a useful mathematical concept quite apart from the present economic 
application. 

We see immediately that 

C(R) 2 u(R), all R c N, (4-6) 

since one of the admissible choices for {yS} in (4-4) is to take yR = 1 and 
all other yS = 0. Moreover, the equality cannot always hold in (4-6); 
indeed, V comes from a market game while 2, was arbitrary. Thus, the 
mapping v + V takes an arbitrary characteristic function and, by perhaps 
increasing some values, turns it into the characteristic function of a 
market game. 

LEMMA 1. If (N; v) has a core, then E(N) = v(N), and conversely. 
P 
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Proof. Let u be in the core of (IV; u). Then 

wo = n-&XSTNYS w  c 
5 max C ysa(S) = max 1 mix ys 

frsl SEN (YS) isN Ssi 

= max C c? = a(N) 
frs) iEN 

= 4m 
the successive lines being justified by (4-4), (2-l), (4-5), and (2-2). In view 
of (4-6) we therefore have G(N) = u(N). 

Conversely, if (N; U) has no core, then (2-4) fails for some balanced 
set 99 with weights {ys}. Defining ys = 0 for S +! 99, we see that (4-5) 
holds (for R = N). Then (4-4) and the denial of (2-4) give us 

W) 2 c Ys 69 = ,&Ys 4s) > 4w ; 
SCN 

Hence fi(N) # v(N). 

LEMMA 2. A totally balanced game is equal to its cover. 

Q.E.D. 

Proof. Let (N; 5) be the cover of (N; c), and let 0 c R E N. Then it is 
clear from the definitions that the cover of (R; u) is (R; 6). But if (N; o) 
is totally balanced, then (R; u) has a core and G(R) = v(R) by Lemma 1. 
Hence ti = v. Q.E.D. 

THEOREM 5. A game is a market game if and only fit is totally balanced. 

Proof. We proved earlier (corollary to Theorem 4) that market games 
are totally balanced. We have just now shown that totally balanced games 
are equal to their covers, which are market games. Q.E.D. 

4.3 EQUIVALENCE OF MARKETS 

There is one more result of some heuristic interest that we can extract 
from the present discussion, before entering the realm of solution theory. 
This time, we follow the scheme: 

arbitrary market -- market game ~---+ direct market. 

Let us call two markets game-theoretically equivalent if they generate the 
same market game. Then the two markets in the above scheme are 
equivalent in this way, since the cover of the game in the middle is just 
the market game of the market on the right, and these two games are 
equal by Lemma 2. This proves 

THEOREM 6. Every market is game-theoretically equivalent to a direct 
market. 
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5. SOLUTIONS 

An imputation for a game (N; v) is a payoff vector M that satisfies 

cc(N) = u(N) (j-1) 
and 

cli 2 u({i}), all i E N. (5-2) 

A comparison with (2-l) and (2-2) shows that the imputation set is 
certainly not empty if the game has a core.6 

Classical solution theory [23] rests upon a relation of “domination” 
between imputations. If CI and /3 are imputations for (N; ZJ), then CY is 
said to dominute j? (written c( E+ p) if there is some nonempty subset S 
of N such that 

cti > pi, all i E S, (5-3) 
and 

cc(S) 5 u(S). (5-4) 
A solution of (N; u) is defined to be any set of imputations, mutually 

undominating, that collectively dominate all other imputations. Our 
only concern with this definition, technically, is to observe that it depends 
only on the concepts of imputation and domination; any further informa- 
tion conveyed by the characteristic function is disregarded. 

The core is also closely dependent on these concepts. In fact, the core, 
when it exists, is precisely the set of undominated imputations. The 
converse is not universally true-there are some games that have undomi- 
nated imputations but no core.7 We can rule this out, however, by imposing 
the very weak condition: 

u(S) +NFsu({i}) 5 u(N), all S c N, (5-5) 

which is satisfied by all games likely to be met in practice.* 

5.1 DOMINATION-EQUIVALENCE 

Two games will be called d-equitv&wt (domination-equivalent) if they 
have the same imputation sets and the same domination relations on them. 
It follows that d-equivalent games have precisely the same solutions, or 
lack of solutions. Also, if they have cores, they have the same cores; 

6 Some approaches to solution theory omit (.5-2), relying on the solution concept 
itself to impose whatever “individual rationality” the situation may demand [5, 121. 
This modification in the definition of solution would make little difference to our 
present discussion, except for eliminating the fussy condition (5-5). In particular, 
Theorem 7 and all of Section 6 would remain correct as written. 

7 We are indebted to Mr. E. Kohlberg for this observation. 
8 Thus, (S-5) is implied by either superadditivity or balancedness, but is weaker 

than both. For a game in normalized form, i.e. with o({ij) G 0, it merely states that no 
coalition is worth more than N. 
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moreover, within the class of games satisfying (5-5) the property of being 
balanced is preserved under d-equivalence. However, the property of 
being totally balanced is not so preserved, as the following lemma reveals. 

LEMMA 3. Ever-y balanced game is d-equivalent to its cover. 

Proof. Let (N; v) be balanced. By Lemma 1, ij(N) = v(N) and by (4-4), 
ij({i>) = v({i}); h ence the two games have the same imputations. Denote 
the respective domination relations by C+ and w’. By (4-6) and (5-4) we see 
at once that the latter is, if anything, stronger than the former-i.e. cc C+ B 
implies c( w fl. It remains to prove the converse. 

Assume, per contra, that a and p are imputations satisfying a c-r’ p 
but not CI E+ b. Then for some nonempty subset R of N we have 

ai > pi, all i E R, 
and 

a(R) i ii(R). (5-6) 
To avoid CI C+ /3 we must have 

4s) > VW (5-7) 
for all S, 0 c S E R. Referring to the definition of fi, we see that there 
are nonnegative weights ys, S c R, such that 

@) =s&~st.(S) 
c 

and 
ST3 = i, all i E R. 

Sci 

Hence, using (5-7) 

W) <s~Rysa(S) = a(R). c 

The strict inequality here contradicts (5-6). Q.E.D. 

By a “solution” of a market, we shall mean a solution of the associated 
market game. 

THEOREM 7. Zf (N; v) is any balanced game whatever, then there is a 
market that has precisely the same solutions as (N; v). 

Proof. The main work has been done in Lemma 3. Indeed, let 
(N, ET, IT, {u}) be the direct market generated by (N; v). Then the 
solutions of this market are the solutions of (N; a), which by the lemma 
is d-equivalent to (N; v) and hence has the same solutions. Q.E.D. 

5.2 A TECHNICAL REMARK 

The notion of d-equivalence is essentially due to Gillies [4,5], though 
he works with a broader definition of imputation, not tied to the charac- 
teristic function by (5-l). He defines a vital coalition as one that achieves 
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some domination that no other coalition can achieve, and shows that 
two games are d-equivalent (in the present sense) if and only if they have 
(i) the same imputation sets, (ii) the same vital coalitions, and (iii) the 
same v-values on their vital coalitions. 

A necessary (but not sufficient) condition for a coalition to be vital is 
that it cannot be partitioned into proper subsets, the sum of whose 
u-values equals or exceeds its own v-value. Sufficiency would require the 
generalized partitioning provided by balanced sets. 

Given a game (N; v), we can define its “least superadditive majorant” 
(N; 8 by 

i;(S) = max Ch v(S,), 

he maximization running over all partitions (&) of S. (Compare (4-4), 
4-5).) It can be shown that i?(N) = v(N) if and only if (N; v) has a core 

(cf. Lemma 1 above), in which case the two games are d-equivalent. Thus, 
every game with a core is d-equivalent to a superadditive game. 

However, as Gillies observes, d-equivalence can also hold nontrivially 
among superadditive games. That is, it may be possible to push the v-value 
of some nonvital coalition higher than the value demanded by super- 
additivity, without making the coalition vital.’ We are using the full 
power of this observation, since the cover V can be thought of as the 
“greatest d-equivalent majorant” of v. Thus, v s v” 5 fi, and all three 
may be different. 

6. EXAMPLES 
Lucas’s IO-person game [8, 91 with no solution has 

N = 1234567890 and the following characteristic function: 

v(12) = 434) = v(56) = v(G) = v(F0) = 1 - - - 
U(137) = v(Z) = v(157) = v(159) = v(357) = v(359) = 2 

~(1479) = ~(2579) = ~(3679) = 2 - I 

v(1379) = v(1579) = v(3579) = 3 1 

v(13579) = 4 
v(N) = 5, and 
v(S) = 0, all other S E N. 

players 

b (6-l) 

The game has a core, containing among others the imputation that 
gives each “odd” player I. lo It is not superadditive (for example, - ~, 
v(z) +v(34) > ~(1234)); however it is d-equivalent to its least super- 
additive majorant (N, i;), which can be calculated without difficulty, 

9 For example, at the end of Sec. 2, ~(123) may be increased from 1 to 3/2 without 
making 123 vital. 

lo The full core is a five-dimensional polyhedron, having vertices es : S = 13579, ____ - 
23579.14579, 13679, 13589, and 13570. 
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using (5-8). Moreover, one can verify that the latter is totally balanced, 
i.e. that v” = V in this case. Thus, (N, fi), defined by (6-l) and (5-8), is a 
market game with no solution. 

The corresponding market with no solution, provided by Theorem 7, 
has ten traders and ten commodities, plus money. The traders have 
identical continuous concave homogeneous utilities U(X), which may be 
calculated by applying (4-2), (4-3) to (6-l). Note that positive weights ys 
need be considered only for the eighteen vital coalitions and the ten 
singletons.’ r Of course, this is not the only utility function that works, 
since only a finite set of its values are actually used (cf. (4-l)). 

6.1 A PRODUCTION MODEL 

Perhaps the most straightforward economic realization of Lucas’s 
game is in the form of a production economy. (Compare the “activity” 
description in Section 4.1.) The production possibilities are generated by 
18 specific processes, which produce the same consumer good (at constant 

TABLE 1 

Inputs output 

Xl 
1 

1 
1 
1 
1 

1 

1 
1 

1 

x2 x3 
1 

1 

1 
1 

1 
1 

1 
1 

1 

1 

1 

x4 X5 

1 
1 

I 
1 
1 
1 

1 
I 

1 
1 

1 

X6 X7 

1 
1 

I 

1 

1 

1 
1 

1 1 

1 
1 
1 

1 

1 
1 1 

1 

1 

1 

1 

x11 
1 
1 
1 
1 
1 

2 
2 
2 

3 
3 
3 

4 

I1 The singleton weights are needed as slack variables, because we used “=‘I in 
(4-3) instead of “5”. 
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returns to scale) out of various combinations of the raw materials (see 
Table I). Each entrepreneur starts with one unit of the correspondingly 
indexed raw material. The utility is simply the consumer good: U(X) = x1 1 ; 
hence it is not necessary to postulate a separate money. 

This type of construction is perfectly general: a production model can 
be set up in a similar fashion for any other game in characteristic function 
form, one activity being required for each vital coalition. The market 
game generated by such a model will be the cover of the original game, 
and will have the same core and solutions provided that the original 
game was balanced. 

6.2 OTHER EXAMPLES 

Lucas [6, 7, 101 gives several examples of games in which the solution 
is unique but does not coincide with the core. In [IO] he also describes a 
symmetric g-person game, very similar to the above lo-person game, 
that has an infinity of solutions but none that treats the symmetric players 
symmetrically. Shapley [18] describes a 20-person game, of the same 
general type, every one of whose many solutions consists of the core, 
which is a straight line, plus an infinity of mutually disjoint closed sets 
that intersect the core in a dense point-set of the first category. A common 
feature of all these “pathological” examples is the existence of a core; 
hence, by Theorem 7, they are d-equivalent to market games that have 
the same solution behavior. 

We close with another “pathological” example, of an older vintage [14], 
which because of its simple form leads to a direct market with utilities 
that we can write down explicitly. The game has players N = 123. . .n, 
with n 2 4, and its characteristic function is given by 

v(N-{i})=u(N-{2})=u(N-{3})=u(N)= 1 
v(S) = 0, all other coalitions S. 1 

(6-2) 

Thus, to win anything requires the participation of a majority of 123, 
plus all of the “veto” players 4,. . . , n. The core is the set of all imputations 
M that satisfy a, = CQ = a) = 0. It is easily verified that the game is 
totally balanced: u = 5. There are many solutions ; but the remarkable 
feature of the game is a certain subclass of solutions, as follows: 

Let B, denote the set of imputation CI that satisfy a, = 0, M~ = CI~ 2 e > 0. 
Thus, B, is a (n-3)-dimensional closed convex subset of the imputation 
space. In [14] it was shown that one may start with any closed subset 
of B, whatever, and extend it to a solution of the game by adding only 
imputations that are at least e/2 distant from Be.12 The arbitrary starting 

I2 The metric used here is ~(a, 8) = max, jai - ~3~1. Our present claim entails a 
slight change in the construction given in [14], which merely keeps the rest of the 
solution away from the arbitrary subset of B,, rather than from II, itself. 
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set remains a distinct, isolated portion of the full solution. For example, 
if n = 4 (the simplest case), an arbitrary closed set of points on a certain 
line can be used. 

To determine the direct market of this game, we apply (4-2), (4-3) to 
(6-2) and obtain the utility function 

u(x) = max (y1+y2+y3), 
(Y’) 

maximized subject to 

Y1 20, Y2 2 0, y3 2 0; 

y2+y3 5 Xl, Y1+Y3 5 x2, y1 +y2 5 X3’ , 

y1+y2+y3 2 Xi, i = 4,. . .,n; I 
where y i abbreviates yN- pi). This reduces to the closed form: 

#(x)=min x1+x2,x1+x3,x2+x3, 
[ 

X1 +X2+X3 

2 
,x~,...,x, . (6-3) 1 

We see that u is the envelope-from-below of n+ 1 very simple linear 
functions. 

Thus, an n-trader n-commodity market having the solutions containing 
arbitrary components, as described above, is obtained by giving the ith 
trader one unit of the ith commodity, i = 1,. , . , IZ, and assigning them 
all the utility function (6-3). 
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