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Price formation and trade in a large exchange economy is modelled as a non-atomic strategic 
game in two contrasting forms. (1) The ‘pay-later’ form uses paper money or IOUs which the 
players must redeem at the final accounting or face overdraft penalties. (2) The ‘cash-in-advance’ 
form uses a valuable commodity as money with no need for a central clearing house. Several 
results connecting strategic equilibrium (Cournot-Nash) and competitive equilibrium (Walras) are 
obtained for (1) and (2). In the final section, a basic problem of measurability when strategies 
are selected independently by a continuum of agents is raised, and a way of resolving it is 
proposed. 
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1. Introduction 

Non-cooperative game models have been playing an increasing role in the 
study of price formation and trade in pure exchange economies.’ In some of 
these models, now known as trading-post games, a specified monetary 
medium is used for buying and selling the other commodities at single-good 
trading posts - the price at each post being simply the money/good ratio at 
that post.2 The money may be intrinsically valuable or it may be worthless 
paper, and many variations are possible in the rules governing its use. 

One point of interest is the appearance of oligopoly and liquidity effects 
when markets are thin or when money is scarce. Strategic behavior then 
takes precedence over competitive behavior, and diminished trade and Pareto 

Correspondence to: Lloyd S. Shapley, Department of Economics, U.C.L.A., Los Angeles, CA 
90024, USA. 

‘Mas-Colell (1980a, b). 
‘Shapley and Shubik (1977). 

0304-4068/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 
SSDI 0304-4068(93)EOO61-Y 



254 P. Dubey and L.S. Shapley, Noncooperative general exchange 

inefficiency often results.3 The reverse phenomenon is also of interest, 
namely, the disappearance of these effects when money (or credit) is plentiful 
and every trader is small relative to the whole. There is an example already 
in Shubik’s first paper (1973) in which the unique Cournot-Nash strategic 
equilibrium (SE) converges to a classical Walras competitive equilibrium 
(CE) as the number of traders of each type tends to infinity. Such examples 
point to a general principle of asymptotic equivalence between the two 
equilibrium concepts. Our aim in this paper will be to examine the essential 
basis of this equivalence by exploring the limiting case itself - that is, by 
working directly with a non-atomic continuum of traders.4 In such a world 
there is of course no oligopoly. But we shall see that the smallness of the 
individual traders is not sufficient to wipe out the effects of illiquidity, unless 
further conditions on the availability of money or credit are met. 

For better perspective, we shall work with two contrasting sets of rules 
defining the monetary instrument and its manner of use. In our first model, 
which is a non-atomic variant of the finite market of Shubik and Wilson 
(1977), the traders can create as much paper money as they please, but heavy 
spending is inhibited by overdraft penalties for those who are caught short 
when accounts are settled. A rather general equivalence between SE and CE 
can be established for this model when certain requirements are met 
concerning nonsatiation of the traders, desirability of the goods, and 
adequacy of the penalties.5 (See sections 3, 4, Theorems l-3). 

Our second model is a non-atomic version of ‘cash on the barrelhead 
trading6 in which the tangible, monetary good is valuable in itself as well as 
being the medium of exchange. In contrast with the previous ‘credit’ type of 
model, there is no worry about insolvency and no necessity for a central 
clearing house to balance the accounts. The market is truly decentralized. 
Our main result states that if money is well-liked and plentiful throughout 
the economy, then any SE will find ‘most’ of the traders behaving competi- 
tively - that is, optimizing over ordinary fixed-price Walrasian budget sets. 
(See sections 5-7, esp. Theorem 4.) Moreover, if there are only a finite 
number of types of traders, or if stronger conditions are imposed on the 
utilities, the ‘most’ statement can be replaced by an ‘almost all’ statement. 
(See section 8, Theorems 5 and 6.) 

In an appendix we take up a general methodological, measure-theoretic 
question that arises when one attempts to model a strategic-form game 
having a continuum of players making separate decisions. The question, in 
brief, is how to arrange matters both technically and conceptually so that the 

‘Shapley (1976), Dubey and Rogawski (1990). 
“Javnes et al. (1978): cf. also Aumann (1964) and Schmeidler (1973). 
%imewhat simila;. conclusions are ‘reached by Postlewai‘te and Schmeidler (1978), who 

consider a comparable model from the finite, asymptotic standpoint. 
%hap!ey and Shubik (1977). 
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integrals or other functional operators that describe the outcome-in-the-large 
will be well defined. (See appendix; also section 3.) 

2. The non-atomic trading economy d 

Let { ‘l?,%Y, CL} be a non-atomic measure space where T denotes the set of 
traders, % is the a-algebra of measurable subsets of 7; and CL is a non-atomic, 
non-negative, finite population measure on (T%?}.’ Trade occurs in m 
commodities, and we shall denote by Sz” the nonnegative orthant of R”. 
Vectors in Q”’ may represent either commodity bundles or price vectors. For 
any x E 52”, Xj is the jth component of x. The symbol 0 denotes the origin of 
R” and also the number zero; the meaning will be clear from the context. A 
set SE% is null if p(S) =O, otherwise non-null. The phrases ‘almost all’, ‘almost 
everywhere’, or ‘a.a.‘, ‘ a.e.’ (referring to traders) will mean all traders except 
for a null set. 

Given {T,;(&,p}, the remaining data of an economy d are the traders’ 
endowments and preferences. The endowments are written a’, t E T; we 
assume that the function a: T+Qm is integrable and that f afdu>O for 
j=l , . . . , m - in other words, every named commodity is actually present in 
the economy. The preferences are described by utility functions u’: Q”+Iw, we 
assume for each t that u’(x) is continuous, concave and nondecreasing in the 
m-dimensional variable x, and also that the function u: T x P’-+R given by 
u(t,x) =u’(x) is measurable (where T x ~2” is equipped with the a-field 
generated by the product of %? and the Bore1 sets of a”‘). If u’(x) is strictly 
increasing as a function of the component Xj, we shall say that t desires j, 
and if x is such that u’(x) maximizes u’(.) over s2” we shall say that x satiates 
t. 

An allocution is a measurable function z: T+Q” with JTz’dp~JST u’dp; it 
describes the results of a possible redistribution of the goods, with possibly 
some waste. A competitive equilibrium (CE) is an ordered pair (p,z) where 
PE Qm is a price vector and z is an allocation such that z’ is optimal in t’s 
budget set for a.a. t. In other words, following Aumann (1964), we have a.e. 

z’ E B’(p), and 
u’(z’)=max {u’(x): xEB’(p)), (2.1) 

where 

B’(p) = {x E Qrn: px 5 pa’}. (2.2) 

We shall call an allocation z [or a price p] competitive if there is a price p 

‘Without serious loss of generality, { 7; %T, p} may be taken as the closed unit interval with the 
Bore1 sets and Lebesgue measure. 



256 P. Dubey and L.S. Shapley, Noncooperative general exchange 

[an allocation z] such that (p,z) is a CE. Of course, if p is a CE then so is 
(Kp,z), for any K>O, and so also is (p,z’) if z differs from z’ only on a null 
set. We shall call a CE (p,z) normalized if IpI = 1, where 1.1 denotes (say) the 
Euclidean norm, and call it tight if (2.1) holds for all t E T for which the 
maximum in (2.1) is attained. (If all prices in p are positive, it will be attained 
for all t because of the continuity of the u’.) CEs with IpI =0 are not excluded, 
but will be called improper if they occur; note that impropriety implies the 
existence of an allocation that satiates almost all traders. Note also that for 
any CE (p,z) there is a z’ agreeing a.e. with z such that (p,z’) is a tight CE. 
Thus, the tight, normalized CEs serve as representatives for the equivalence 
classes of proper CEs. 

Let us now recall the notion of ‘shadow prices of income’ at a CE.* 
Suppose (p,z) is a CE. Then for a.a. t the bundle z1 maximizes the concave 
function u’(x’) over the convex budget set B’(p). A shadow price for t is a 
number 1’2 0 such that the same bundle zf also maximizes the Lagrangean 
function 

d(xf) + /I’(pa’ - px’), (2.3) 

over the whole orthant 0”. If any such number exists there is a smallest one; 
denote it by At,,,,,. If no such number exists, or if z’ does not maximize u’ 
over B’(p) - i.e., does not satisfy (2.1), then we formally set $,,,, = co. Note 
the inverse homogeneity of this shadow price: ,4\KP,Z) =1&,/K for any 
K>O. 

3. First model: Trade with fiat money and credit 

In order to make the exchange economy d into a strategic-form game 
r(8) we must define the strategy choices open to the traders and specify how 
the market mechanism converts these choices - called collectively a strategy 
selection - into a trading outcome. For each commodity, there will be a 
decentralized trading post, to which the traders bring the commodity to be 
sold and the money for its purchase. 

There are many ways to model the monetary instrument. In our first 
model it is just paper, having no value outside the marketplace. One may 
think of checks or IOUs written by the traders, or a trading script furnished 
interest-free by a bank or clearing house. A trader may spend as much as he 
wants of this money, but if at the end of trading he is in the red, with not 
enough income from his sales to cover his purchases, then he is declared 
‘overdrawn’ and is penalized. We do not attempt to model a bankruptcy 
proceeding, however, with assets being seized and creditors short-changed. 
Instead, we pay off the creditors exogenously and deliver all goods as 

8Henceforth shortened to ‘shadow prices’. 
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ordered, thereby escaping the ‘domino’ effect when one default triggers 
another. We then adjust downward the utilities of the traders that are 
overdrawn, exacting (in the simplest case) penalties proportional to the 
overdrafts.g On the other hand, a positive amount of this paper money at 
the end of the game is assumed to be worthless to its holder. 

The formal treatment begins as follows: Trader r’s strategy set is 

C’=(s’=(q’,r’):q’ES2m,rfES2m,qfIa~,j=l,...,m}. (3.1) 

Here, qi the quantity of good j sent to trading post j to be sold, while I$ is 
the ‘emittanG of money sent to the same post to purchase good j.” Of 
course it is likely (speaking intuitively) that either q: or rf will be zero - why 
trade with yourself? - but we shall not make this a condition in the 
definition of the strategies.” 

Given a selection of strategies SEC= XtsT~t, the next task is to determine 
prices. The general principle is that each trading post should clear its own 
books, independently of the others. In the finite-trader case, the application 
of this principle is straightforward: the trading post adds up the money 
received and the goods received and sets the price equal to the ratio of the 
two totals. But a peculiar difficulty arises when, as here, we have a non- 
atomic measure space of traders. The analogous procedure to the above 
would be to set pj=JTr~d~/~rq~d~. The difficulty is that we are not sure that 
these integrals exist. Suppose a non-measurable set of traders take it into 
their heads to spend $1.00 apiece, while all others spend $2.00? What then 
will the price be? 

Some readers will not be particularly bothered by this question. Experi- 
ence tells us that when a model makes good economic sense, then concerns 
about mathematical pathologies seldom actually materialize; they are only 
ghosts, to be exorcised by suitable abjurations in a technical appendix. 
Perhaps that is the case here. But we are working with a new type of model 
whose ‘good economic sense’ may not be fully apparent, and the issue we are 
raising is as much conceptual as technical. It goes to the heart of a 
fundamental distinction that separates game-theoretic models from the more 

%uch disutility may be thought of as arising from the cost of borrowing money to cover the 
debt or liquidating other assets not represented in the model, or the forfeit of some bond or 
collateral posted with the market organizers, etc. Or, less specifically, we may think of it simply 
as a measure of the damage done to the trader’s credit rating. 

“‘Alliteration aside, the term ‘remittance’ replaces the less accurate ‘bid’ found in some earlier 
papers. In economics as in Bridge, a ‘bid’ is a conditional act, requiring acceptance by another 
party before it becomes a contract. Our present quantities and remittances are unconditional 
transfers or deliveries whose acceptance is not in doubt. 

“It seems rather unrealistic - in a model or in real life - to impose a restriction on individual 
agents that is easily evaded by sets of two or more, or by a single agent pretending to be several. 
Nevertheless, we shall include this case as a possible rule in our second model; see (5.3). 
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familiar behavioristic approach: Is the economic agent a decisionmaker or an 
automation? 

The technical problem can and will be sidestepped. In the body of the 
paper we shall simply take our SE solutions to be measurable selections by 
definition. I2 In effect, we merg e the rules of the solution with the rules of the 
game, producing thereby a model that is no longer a game, but a behavioral 
process. But this expedient cannot be considered fully satisfactory. Substan- 
tial investigations in the area of rational decisionmaking ought not to be 
based on an incomplete game structure, in which a large class of possible 
strategy selections fail to yield a well-defined outcome. 

Accordingly, in the appendix we shall outline a novel way of attacking the 
conceptual difficulty, using a form of collective strategies for small coalitions 
to bridge the modelling gap between independent decisionmaking by indivi- 
duals and the measurable (and indeed additive) behavior of collectivities. By 
our preliminary treatment we wish to draw attention to the problem in a 
way that may stimulate further thinking on the subject. 

The mechanism of trade. We now assume that the traders have made a 
measurable selection, s = (4, I) E C, and describe the consequences. First each 
trading post j establishes iis &-i&l3 

S’JJ% if Jqj>O, 

Pj’ cc if fqj=O and 

undefined if f qj = J rj = 0; 

(3.2) 

then executes all the buy and sell orders at this price, and finally delivers to 
each trader t the proceeds, namely, either the amount of goods purchased, 

$lPj if O<pj<co, 

1 if pj=O and ri>O, 

lo otherwise, 

or the amount of money realized from the goods sold, 

(3.3) 

“Cf. Schmeidler (1973). It would be better, of course, to be able to derive the measurability of 
the SEs as a theorem; our remark at the end of the appendix suggests a way of achieving this in 
some circumstances. Analogously in the cooperative theory, it can sometimes be proved that all 
core allocations are countably additive, though a priori they are only finitely additive; see 
Kannai (1969), Rosenmtiller (1971), Schmeidler (1973). 

i3Beginning here, we shall use the short form ‘j rj’ for ‘jT r$dp(t)‘, etc. 
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! 
pjq: if O<Pj<oO, 

1 if pj=co and q;>O, (3.4) 

0 otherwise, 

- or both. This will clear the market at the trading posts where a positive, 
finite price is formed [top line of (3.3) and (3.4)]. If pj=O or pj= co we call 
the trading post lopsided, and if both the goods and the money sent in have 
measure zero, so that pj is undefined, we call the post inactive. These 
situations will be discussed more fully in section 4, including an explanation 
of the ‘1’ that strangely appears in the second lines of (3.3) or (3.4). 

When the buying and selling is finished, the final holdings of goods and 
money are described by the function Z=(z,i,,,+ i): T+Q” x R, where 

(3.5) 

with whatever adjustments may be required for lopsided or inactive trading 
posts according to (3.3) and (3.4). 

For overdrafts, we shall adopt for simplicity14 a linear separable penalty 
c: T-Q, measurable in t, making the overall utility to t of his final holding ,? 
equal to 

U’(.S?)=u’(z’)+[‘min {O,z’,+,}. (3.6) 

The game in its strategic form is therefore summed up in the payoff function 

H’(s) = U’(z’), t E IT; (3.7) 

in which Z=,?(s) is linked to s through (3.2)<3.5) while s ranges over the 
measurable elements of C. We shall denote this game in strategic form by 
T,(b) to remind ourselves that it depends on the penalty coefficients ii as 
well as on the data of 8. 

Strategic equilibrium. A strategic equilibrium (SE) of Ts(b) is defined to be a 
measurable” selection sR EC such that, for a.a. t, 

“‘More general penalties are discussed in section 4. 
r51t may be noted that if the word ‘measurable’ were dropped, the present measurable SEs 

would remain SEs no matter how one might extend the n’(s) to more general selections. This is 
because varying the decision of one individual does not affect measurability. But additional, 
nommeasurable SEs might also appear. (See the appendix). 
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II’ =max {ZI’(s, 1 s’): s’ E Z’}, (3.8) 

where the notation ‘s# 1s” means the selection obtained by replacing s’# in 
s, by s’. By an SE allocation of r&8) we shall mean a final allocation of z 
(goods only) that results from some SE of r&6’). 

Note the homogeneity: if (q,r) is an SE of Tdb), then (q, Kr) is an SE of 
T&S) for any K > 0. 

There is always the class of trivial SEs in which (q’, rf) =(O, 0) for a.a. t, 
rendering all trading posts inactive. At other SEs some posts may be inactive, 
some not. This is not unrealistic. Potentially profitable markets often fail to 
form in practice simply because not enought people are willing to make the 
initial commitment. But we shall be interested primarily in active SEs, 
namely, those in which all Jqj and Jlj are positive.16 

Competitive vs. strategic equilibrium. The relationship in this model between 
the CE and SE theories is addressed in the following three theorems. They 
present conditions under which, respectively, all SE allocations are CE, all 
CE allocations are SE, and the sets of SEs and CEs coincide. 

Theorem 1. Every active SE allocation of rd8) that leaves almost every 
trader unsatiated is competitive for 8. 

Theorem 2. If each good is desired by a non-null set of traders, then each 
competitive allocation z of d is an active SE allocation of rX&‘) provided that 
Kc’2 A’(p, z) a.e. for some K > 0 and some p such that (p, z) is a CE of 8. 

Theorem 3 requires a further definition, which identifies the highest 
‘marginal utility of income’ at normalized prices that each player enjoys in a 
CE.’ 7 Define, for each t E 17: 

I’= P[dT] = sup { [p[P(p, z): (p, z) is a tight CE of S}; (3.9) 

this may possibly be infinite. [‘Tightness’ here serves to exclude CEs in which 
t belongs to the null set of traders that violate (2.1).] If d has no CEs, then 
we interpret (3.9) to define P[B] =O. 

Theorem 3. Let each good be desired by a non-null set of traders, and let 
each allocation satiate at most a null set of traders. Then the set of CE 
allocations of 8 and the set of active SE allocations of rd&) coincide, provided 
that Kc’> ,?[&I a.e. for some positive constant K. 

‘Tf. our definition of ‘open’ SEs in section 5. 
“See the next-to-last remark in section 4. 
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Proof of Theorem I. Let p and z” be the price and final outcome at an active 
SE. It is directly verified that Iz=Ja and that jZ,,,+ 1 =O. We claim that 

%I+1= 0 a.e. Indeed, if this were not true, then z”,,, would be positive on a 
non-null set SE%?. Since almost all players are unsatiated at z by hypothesis, 
we may assume that all the members of S are unsatiated. But they still have 
spending money, so that could all improve their individual payoffs, contrary 
to the definition of SE. Hence Z”,,,+ 1 = 0 a.e. It is now immediate that (p,z) is 
aCE. 0 

Proof of Theorem 2. Let p, z, [, and K satisfy the hypotheses of the 
theorem. By the desirability assumption, p>O. Define a strategy selection 
s,=(q,r,)sC by 

i 

q; = max [ai - z:, 01, 
(3.10) 

r$ = max [KpXzf - a:), 01. 

If none of the trading posts are inactive, then (3.2) and (3.3) will yield Kp as 
the price vector of rr(&) and furthermore (since 0 <p< cc and there is no 
waste) will yield Z with Z”,,,+ 1 = 0 as the final allocation. Is s, an SE? 

By (2.3) we have 

uf(zf) =max {u’(x) + XP,zj~(a’ -x): x E am} 

for almost all traders t. For such a trader the payoff is 

(3.11) 

zqs,) = U’(T) = d(z’), 

there being no penalty in view of ~(a’--z~) =O. 
would exist such that 

U’(?) = u’(xf) + c min [O,Zf+ 1] >u’(z’). 

But, by (3.11), 

u’(x’) + ~~P,z>~(u’ - xf) I uf(z’), 

and hence 

~~P,i>~(u’-xx’) <i’min [O,$+ 1]. 

Since Kp(u’ -x2) = 2; + 1, this would imply that 

~;p,&n+l <K~min[O,f’,+,]. 

If t could improve, a bundle f’ 

This statement is clearly false of 5ZL+ 1 2 0, whereas 26+ I < 0 it implies that 
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Krq,,.,. By hypothesis, this can happen only on a null set. So the set of 
players who can improve is null, and s* is an SE. 

What if (3.10) yields one or more inactive trading posts? This would mean 
that the original CE just happened to call for zero trade in one or more 
goods i.e., ~;=a; a.e. Fortunately, this sort of inactivity is a ‘removable 
singularity’, since there is an equilibrium price Pj available for any such j, 
despite the absence of trade. la Since j aj>O, there is an aj>O and a non-null 
Sj~%? such that a;>~~ for all t E Sj. Let us modify the selection s* defined 
above SO that qf = Ej and r)=pJcj for all t E S, and do the same for any other 
trading posts that happen to be inactive. After these modifications, the 
selection is obviously still feasible (and measurable), and since the disconti- 
nuities in (3.3) are avoided there is now no waste and it yields the desired 
final allocation z. The rest of the proof is as before. 0 

Proof of Theorem 3. If z is an active SE allocation of r,(a), then by 
Theorem 1 it is a CE allocation of 8. 

Going the other way, let (p,z) be a CE of 8’. Let T’ be the set of 
‘well-behaved’ traders .in T for whom (2.1) holds. Of course, p(T’) =p( 7’). 
Moreover, we can construct a tight CE with price vector p and allocation z’ 
that agrees with z on T’. It follows that &,,,, =I2&) a.e. We therefore have 

almost everywhere. Taking the constant in Theorem 2 to be ~/lp(, we 
conclude that z is an active SE allocation. 0 

4. Example and remarks 

Theorems l-3 may be better understood if we deliberately violate their 
conditions. In the following example, the ‘equivalence’ between CE and SE 
breaks down in both directions. 

We take { T,%?,p} to be the unit interval with the Bore1 sets and Lebesgue 
measure. Let m= 1 and let a\ = 3 for t E [O, i] (the ‘rich’ traders), and a: = 1 
for t E($ l] (the ‘poor’ traders). Let them all have the same basic utility 
function, 

l&(z) = u(x) = 
{ 

4x1-x: for 05x, 12, 
4 

for x1>2, 

and the same overdraft disincentives, 

U’(Z) = u’(x) + L min (0, Z,}, 

‘*Called virtual price in Shapley (1976); cf. also the discussion in section 5 below. 
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Fig. 1 

Y 

where L is some positive constant (see fig. 1). We first describe a parametric 
family of SEs. Let 0 I y < 1, and let gY denote the following strategy selection: 

rich t: 4’=y. qf=O 

#CO poor t: f+(l-y)/2i 

The resulting price, if y # 0, is 

p=p1 =(I -YK% 

and the final holdings, for any y, are 

rich t: z’=(3-y,y(l -y)/2L), 

poor t: 2’ = (1 + y, - y( 1 - y)/2L), 

yielding utilities of 4 and 3 + y2, respectively; the latter is indicated in fig. 1 
by the lower curved segment. 

Thus, at the end of the game the ‘rich’ are still satiatied and have picked 
up some worthless money. The ‘poor’ are overdrawn, but have 1 + y units of 
the good to enjoy. Their marginal utility at that level of consumption works 
out to be 2 (1 - y), which by no accident is equal to pL - the penalty rate per 
unit of the good. So they, like their richer brethren, are making best 
responses to the overall strategy selection, and (r, is an SE as claimed. 

Note that cy continues to be an SE at y =0, but is inactive. On the other 
hand, at y= 1 the trading post is lopsided (see below) and is not in 
equilibrium. 

Although these strategy selections oy are not the only SEs, they s&ice to 
show that the SE allocations include all symmetric transfers from ‘rich’ to 
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‘poor’, up to the point that equalizes their holdings. But it is easily shown 
that there is no SE that yields full equality between the types - i.e., z1 = 2. 

The situation with respect to CEs is very simple since there is only one 
good. In fact, there are just two tight CE allocations, namely z’ =ut and 
zf= 2. The first is supported by any p>O, since the ‘rich’ have no desire to 
sell and the ‘poor’ can’t afford to buy. This group of CEs is more or less 
equivalent to the inactive SE oe, with its indeterminate price. The second is 
supported only by the improper price p =0: here the poor can glut 
themselves and the righ don’t care. It corresponds more or less to the 
selection frl, which, as already remarked, is a limit of SEs but not an SE 
itself. 

To sum up, this example exhibits satiation, which makes overdrafts 
possible, and lack of desirability, which makes improper CEs possible. As a 
result, the sets of SE and CE allocations are quite different. 

Remark on lopsided trading posts. It is not surprising that there should be a 
singularity in the rules when a trading post receives goods but no money, or 
money but no goods; the only question is what to do about it. The finite 
model offers some guidance. There it made sense for an individual trader, 
assuming that no one else is going to attempt to buy one of the goods, to 
move in and make a ‘killing’ by buying out the entire stock at the trading 
post at an arbitrarily low price. Our present, nonatomic trader t, however, 
lives in a world of infinitesimals. His number ri is a density (more precisely, 
an integrand), not comparable to a globally significant quantity like Jqj. In 
order to clear out the trading post’s entire stock, our lone trader would have 
to achieve not a density equal to the number Jqj, but an infinite density 
which would make him an atom in the distribution of good j. This would 
not only require an extension of our mathematical model, but would also 
create new problems,l’ and the added complications would not be worth the 
trouble considering that such lopsided situations are generally far from the 
equilibria we are interested in. 

For that reason we have adopted the admittedly artificial device of 
awarding the nominal amount of 1 density-unit of good j or money to the 
buyers or sellers of j when they fail to form a set of positive measure.20 This 
simple expedient serves to prevent the appearance of spurious SEs in these 
extreme situations and allows us to concentrate on more interesting 
questions. 

Remark on the proof of Theorem 2. The selection s* at (3.10) is the most 
direct route to the desired allocation z, since no one both buys and sells at 

19For example how does one divide j qj when the set of buyers is null but uncountable? 
“‘Any other pkitive number would do as well as 1. 
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the same trading post. The volume of trade in each good is therefore 
minimized. But the proof might equally well have used other selections 
yielding the same price and income. For example, the selection s** =(q,r) 
with 

all j=l,...,m, all tE17: (4.1) 

would avoid the need for special treatment of inactive trading posts. In 
particular, (4.1) shows that Theorem 2 remains valid if the ‘sell-all’ condition 
q:-af is imposed, requiring all goods to pass through the market before 
being consumed. Such a condition will be imposed on one of the variants in 
section 5. 

Remark on the rate of penalty. The free factor of K in Theorems 2 and 3, 
which adds greatly to the strength of the conclusions, comes from the fact 
that the model as a whole, except for the overdraft penalty, is independent of 
the size of the money unit. Multiplying all remittances by K has only one 
‘real’ effect, namely, to multiply by K the disutility of overspending. If K is 
large, the SEs are in a certain sense less likely to involve overdrafts, and 
therefore more likely to yield competitive allocations.‘i 

This feature of the model might indeed be considered contrary to the spirit 
of the penalty rule. If so, it can easily be corrected by ‘indexing’ the penalties, 
simply replacing (3.6) by 

U’(Z1)=~‘(x’)+~min{O,~~+~}, 
IPI 

all teT 

The entire model is now unaffected by price inflation or deflation, and 
Theorem 2 takes the following new form: 

Theorem 2’. Zf each good is desired by a non-null set of traders, and if (p,z> 
is a normalized CE of 8, then z is an active SE allocation of the ‘indexed’ game 
P,(8), provided that ii2 A&,,, a.e. 

The proof is essentially the same. A similar adjustment can be made to 
Theorem 3. 

Remark on more general penalties. The linear separable form of the over- 
draft penalty in (3.6) is not at all essential. It would be sufficient to require in 
T<(S) that 

“It is easy to see that if (q, r) is an SE without overdrafts, then so is (q, Kr) for all K > 1. 
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{ 

V( 2) = u’( z’) if Tm+r20, 
U’(?)l~‘(z’)+r’?~+,, if ?m+,<O. (4.3) 

In other words, the linear penalty may be replaced by anything that is 
harsher, including penalties that depend on the holding of other goods. 
Concavity does not matter, nor does continuity or monotonicity, but U’ 
must be taken measurable across t E T. 

Remark on the bound n^[&] in Theorem 3. If each U’ is smooth and strictly 
concave, it is well known that in the finite-trader case, there are generically 
at most a finite number of (normalized) CEs.” From this it follows 
immediately that the bound A[&] in the finite-type case (with types of equal 
measure; see section 8) will be finite a.e., and we can at least assert the 
existence of a set of penalty rates that are sufficient for SE/CE equivalence, 
even though the determination of fir&J from (3.9) might be extremely 
difficult. 

Even without the finite-equal-type restriction, f[KJ will exist whenever 
there are only finitely many normalized, tight CEs. If we already know that 
there are only finitely many normalized CE prices, this would be assured, for 
example, if the prices are all positive and the utilities are strictly concave.23 
No doubt there are milder conditions that guarantee the existence of the 
bound I[&], not involving finiteness of the set of normalized, tight CEs, but 
we have not explored this question. 

Remark on the existence of SEs. From Theorem 2 (or 2’ or 3), we can infer 
the existence of SEs from the existence of CEs. Indeed, let d satisfy the 
standard assumptions which guarantee a competitive equilibrium [Aumann 
(1966)]. If (p,z) is a CE, then there exists a measurable L such that each ;1’ is 
a shadow price for t. (The measurability of 1 follows from the fact that u and 
z are measurable.) Then Theorem 2 immediately gives the class of measur- 
able c for which the game rd&) has SEs; e.g., c = K1+ r, for any positive 
scalar K and any nonnegative measurable r. 

5. The second model: Trade using a commodity money 

The rules of trade in our second model differ in several respects from the 
previous case. Rather than paper money, of no intrinsic worth, the traders 
use one of the real commodities as a medium of exchange. The terms are 
‘cash in advance’ so there is no need for a clearing house (indeed, the market 

“Debreu (1970). 
‘sFor the generic finiteness of normalized CE prices in non-atomic economies with smooth 

utilities see, Dierker (1975). 
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is now completely decentralized), and no one is ever overdrawn so there is 
no need for penalty functions. But with the traders’ spending limited to ‘cash 
on hand, there is the more interesting possibility that an insufficient or 
maldistributed money supply could affect the SEs and their relationship to 
the CEs. Our results in this and the next three sections will address this 
possibility. 

The notation requires only a slight modification from that of the first 
model (see section 3). The economy B = {(T %7, ~)a, u} is as before, except that 
‘m+ 1’ now stands for a tangible commodity and the vectors a’, z’, etc. now 
live in Qmf ‘, not 0”. The utility functions u’ therefore map Qm+i into R, and 
from this point forward it will s&ice to assume that they are merely quasi- 
concave. Our results, however, will require certain additional assumptions 
relating to the desirability of money, which we shall discuss in sections 6-8. 

We shall simultaneously treat three different games based on the same 
economy 8, denoting them r,(J), r,(g), and r3(6).24 They differ only in 
their strategy spaces C:, i= 1,2,3. In the buy-and-sell case the traders have 
the most latitude: 

C\= sf=(qf,rf)~SZ2”‘:q~~af,j=1,...,m,and f r;<a’,+, . (5.1) 
j=l 

In the sell-all case the qi are predetermined: 

c:={stEC;: q;=a;,j= l)...) m}. (5.2) 

Finally, in the buy-or-sell case the traders must decide between buying and 
selling: 

C\=(s’EC~:q$r$=O, j=l,..., m}. (5.3) 

In all three variants the rules of pricing and distribution are defined 
exactly as in (3.2)-(3.5) with the exception of the bottom line of (3.5), which 
must be amended as follows: 

(5.4) 

The payoff function in all variants is 

nr(s) = uf(zf), t E IT: (5.5) 

and, as before, an SE of ri(&) is any measurable selection s#eZi such that 

24The ‘(8)’ may be omitted when the context is clear. 
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ZF(s,) = max {ZZ’(s, 1 s’): s’ E Ci}. (5-h) 

It is obvious that if s is an SE of Z1 that happens to belong to z, or C, 
then it is an SE of Zz or ZJ as well. We shall presently see that SEs of Z1 
that do not belong to C, are also closely related to the SEs of Z3.25 The SEs 
of the sell-all model Z2 may be quite different, however. 

Inactive posts and open SEs. The key differences between the present games 
and the fiat-money game of section 3 are the absence of overdraft penalties 
and the presence of spending limits. We no longer have to worry about 
insolvency, but there are other complications. In particular, we shall have to 
consider more carefully the use of ‘wash sales’ (as used in the proof of 
Theorem 2; see the discussion in section 4), and the situation at inactive 
trading posts. 

Recall that an inactive trading post is like a ‘black hole’, into which an 
agent’s goods or money may disappear without a trace. Such a post is in 
effect closed to trade, and no price is formed. A kind of forced equilibrium is 
created. Indeed, if we arbitrarily inactivate one or more trading posts, 
eliminating their terms from the strategy vectors of Z1 or ZJ, then any SE of 
this modified game is automatically an SE of the original game. In particular, 
the null selection (i.e., no trade in any good) is always an SE in the buy-and- 
sell and buy-or-sell cases. 

There is a less arbitrary kind of inactivity, however, that occurs when a 
virtual price can be defined for the inactive good.26 This is a kind of local, 
‘spot price’ for a good that is not being traded because its initial distribution 
just happens to be in equilibrium w.r.t. the given strategy selection and the 
other virtual prices, if any. Imagine a well-stocked, fixed-price Walrasian 
store which is ‘open for business’, but has no customers. 

To formalize this idea, let s=(q, r) be an SE of Zi(s), and let Z(s) denote 
the set of all trading posts that are inactive at s, in the sense that 

z(s)={jE{l,..., m}:J qj=Jrj=O}* 

Then s is an open SE of Zd&), 27 if we can associate a price pj (not 
necessarily finite) to every j~Z(s) in such a way that (q’, I’) maximizes u’(z) 
over Ci for almost all traders t, where as usua12* 

i 

z5=a$-q;+r;/pj, j=l,..., m, 

zi+1=a6+1- m t j:I ‘j + j$I PA. 

25See the remark at the end of this section. 
26See Shapley (1976, p. 171). 
“The reader will observe that the case i=2 is trivial: all SEs are open since no trading posts 

are inactive. 
**If any pj is 0 or co, these formulas must be modified according to (3.3) and (3.4). 
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Thus all active SEs are open SEs, but many others may be open. Even the 
identically-zero SE is open when the initial allocation is Pareto optimal. 

Interior and competitive traders. Let s =(4, r) be an open SE for ri(~), 
i = 1,2,3, with a price vector p and a final allocation z. Let p” be defined by 

~j=pj for j=l,..., m, and fi,,,+r=l. 

We shall call a trader t interior if he refrains from spending all his money: 

(5.7) 

and if no prices are infinite, we shall call him competitive if he weakly prefers 
z’ to every other bundle in his budget set: 

(5.8) 

Lemma 1. Assume that almost all traders have strictly monotonic utility for 
the money commodity. At any open SE of ri(s), i= 1,2,3: 

(i) all prices are finite; and 
(ii) almost all interior traders are competitive. 

Proof: (i) Let s=(q, r) be an open SE of rig), and suppose 
some j. Then, by (3.2), f qj= 0 and s rj> 0, so post j is neither 
inactive, but lopsided. In particular, there is a non-null set SC T 

pj=co for 
active nor 
with r$>O, 

all t ES, and each t ES could reduce his remittance ri (but keeping it positive), 
and end up with more money and the same amount of the other goods. 
Since money is almost always desirable by assumption, almost every t’s 
payoff would increase - a contradiction. 
(ii) Since individual traders cannot affect prices, choosing s’EC: to maxi- 
mize R(s) [see (5.6)] is equivalent to choosing z’ES~~+’ to maximize u’(z’) 
subject to two constraints: the spending limitation (5.1) and the money- 
balance equation (5.4). As u’ is quasi-concave by assumption, the former is 
inoperative for an interior trader, while the latter reduces to 

zk+l=&+l- jgl pjzi + j$l pja:p 

which is valid even if some of the pis are 0. Collecting terms, this may be 
re-stated. 
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The conclusion is now apparent. 0 

Remark on open and active SEs. It often turns out (see the examples in 
section 6) that many traders t at an open SE are not interior, i.e., 
Cjm=,r~=af,+,. In this case there are typically bundles in B’(p) that t strictly 
prefers to the bundle he gets at the SE. Moreover, rfPf=O for all j for such t 
since t is at his spending limit and cannot afford the luxury of ‘wash sales’. 
Thus, for a non-interior t, the difference between Zi and Ci is not serious: 
the best responses in Z\ are available in C\ anyway. Even when t is interior, 
it is clear that he can obtain exactly the same set of final bundles through C\ 
as he can through C:, without disturbing the rest of the traders. So the prices 
and allocations achieved at open SEs in r1 are also achieved at open SEs in 
f3. Indeed, the converse being obvious, the two sets coincide. 

Formally, let (q,r) be an open SE of r1 with prices p, and define (q’,r’) in 

C, by 

qy=maxk,--z+qi}, +=maxb,pj(-q$+z)}, all teT. 

Clearly (q’,r’) is an open SE of r3 with the same prices and allocations as 
(q,r). But, in the above transition, some trading posts that were active in 
(q,r) may have been rendered inactive in (q’,r’) with their prices changed 
from ‘real’ to ‘virtual’. 

6. Convergence to competitive behavior 

If we are to establish a link between CEs and SEs when the latter are 
based on a commodity money in fixed supply, we must find conditions that 
will neutralize the spending limit in the SE model - a constraint that has no 
counterpart in the CE model. It comes down to a question of liquidity: the 
traders must be given enough money. But how to define ‘enough’? If an SE is 
to have prices and allocations that are competitive (or approximately 
competitive in a sense to be described), then all or most of the traders must 
willingly stop spending before their limits are reached. It is easy enough to 
pump more and more money into the initial endowments (see below), but we 
shall also need a condition to assure that the money commodity holds its 
value vis-A-vis the other commodities as the supply increases.29 

29The utility imputed to the commodity money may be regarded as coming from its economic 
value in consumption or production, or from its strategic value as a medium of future exchange 
_ or a combination of the two (e.g., gold). In the present static setting it doesn’t much matter 
which interpretation is adopted. 
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Fig. 2. Illustrating Assumption A. 

It would be sufticient for us to assume a uniform upper bound on the 
ratios of marginal utility: 

R;(x) = g, I +, j=l ,...,m. 
1 mfl 

But, seeking a sharper result we assume less: we permit R;(x) to grow 
without bound as Xj~O and we also allow for the possible nondifferentiabi- 
lity of the u’. In the following, ej will denote the jth unit vector of LY”+ ‘. 

Assumption A. For each 6 > 0 there is a measurable function P,: T-+R+ 
such that, for each j= 1,. . . , m, 

u’(x+P~~Ie,+~)>u’(x+Ae~) (6.1) 

holds a.e. for all sufficiently small A > 0 and all x E am+ i with xj 2 6. 

A somewhat stronger version will sometimes be useful: 

Assumption A’. As in Assumption A, but for each 6, P, is ‘essentially 
bounded’ in the sense that there is a constant B, such that Pi 5 P, a.e. 

In either version, the function Pd serves to keep the relative value of 
money w.r.t. each of the other goods j away from zero, measurably in t E T 
and uniformly in xl, I# j. Thus, if the utilities are quasi-concave and 
differentiable, and if the above-mentioned upper bounds do exist, say 
Ri(x)lRi, then we could simply take Pi= l/maxjR$ for all 6~0. (See fig. 2). 
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Under this assumption, in either version, we shall show that if money is 
‘everywhere plentiful’ amd ‘well distributed’, then the SE allocations will be 
‘approximately competitive’. Of course, the terms in quotation marks will 
have to be given precise meanings. 

Since we wish to study the role of the initial distribution of money, it is 
convenient to introduce the notation d = (0, a,,,+ 1) where d represents all the 
data of d except for the function a,,,: T+G. In this section and the two 
following we focus on the effect of increasing the money supply attached to a 
fixed 8. Accordingly, we set up a sequence of economies 

cP=(&u;+l), v=l,2 )...) 3o (6.2) 

and assume that 

a;+oc) as v+co, (6.3) 

where a: denotes the essential injimum of the set {a:, I: t E T} - i.e., the 
largest number a such that the set of t with u:+~ <a has measure zero.31 

Suppose ri(s’), i= 1,2 or 3, possesses at least one open SE for each v, say 
$‘=(q’, r”)i. Recall that t E T is interior at sr if and only if cim,l $‘<a’,‘+,, and 
let QI denote the set of traders in Ti(B’) who are not interior at sr. Thus, 

Qi= tET: 5 ry=a2+, . 

j=l 

Armed with Lemma 1, which tells us that at an open SE the set of traders 
who are interior but not competitive has measure zero, we claim that p(QY) 
is a reasonable measure of the ‘noncompetitiveness’ of that SE - i.e., of how 
far it falls short of being a CE. 

We now state the main theorem. 

Theorem 4. Let the sequence &=(&,a~+ 1), v= 1,2,. . ., satisfy (6.3), and let 
the u’ satisy Assumption A with the bounding function Pa. Then, for i = 1,2,3 
we have: 

(i) If the ratio32 JaL+, lag is bounded as v+co, then ,u(Qr)+O. 

30Notation: We shall consistently put the tag ‘Y’ in the superscript position, where it may 
collide with the ‘t’ that owns that spot. When both letters occur, ‘Y’ will be given the outside 
position. The divergence of meaning between, say, a’,+l and al,, 1 should cause no problem 
since almost always the affixes will be literally ‘t’ or ‘v’. 

sIThis number represents the ‘density of money’ in the poorest sector of the economy - 
poorest, that is, in terms of ready cash. It corresponds to the derivative at the origin of the well- 
known Lorenz curve, commonly used to depict the distribution of wealth throughout a 
population; see e,g, Atkinson (1970). 

32Since we have normalized p( 7’)= 1, this ratio is a direct comparison of the monetary 
endowment of the average trader with that of the (essentially) poorest trader. 
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(ii) Zf Assumption A’ is satisfied, then ,u(Ql) = 0( l/a:). 

The following lemmas prepare for the proof of Theorem 4. 

Lemma 2. Let 6 > 0 be arbitrary, and let zy be the final allocation and p’ the 
price vector at an open SE of some game rip), i= 1,2 or 3, whose utilities 
satisfy Assumption A with bounding function Pg. Suppose that for some 
j=l , . . . , m there is a non-null set Vj such that zy > 6 for all t E vj. Then pJ < Pf, 
for almost all t E 5. 

Proof. Apply Assumption A to x = zfv - Aej, with ‘all sufficiently small A >O 
including the added assumption A ~6. Then (6.1) will hold for a.a. t in the 
non-null set 5, and such traders t will prefer the bundle 

y’= z’” - Aej + PbAe m+l 

to the given bundle z’. So y’ must be infeasible for almost all t E 5, since 
almost all traders are utility maximizers at an open SE and would buy the 
better bundle if they could. On the other hand, it is clear that the similar 
bundle 

jf=zfv - Aej+pJAe,+ 1 

is feasible. Therefore, the infeasibility of y’ can be due only to YL+~ being 
greater than jL+ 1. Comparing the two expressions displayed above, we see 
that this means that pJ < Pf, for a.a. t in I$:., as was to be shown. 0 

The next lemma is a useful corollary to Lemma 2. 

Lemma 3. For any 6 >O, define the function fd: [0, co)+[O, l] by 

fa(pj)=p({tE T: P’d>pj>). 

Then under the hypotheses (and notation) of Lemma 2, p( 5) I f,(pJ). 

Proof. Apparent from Lemma 2. 0 

Our final lemma is designed to do service in section 7 as well as in the 
present proof. First, some definitions. Given an economy 8, we say that a 
pair (q,r) is associated to d (where q: T-+lRy and r: T+rWy are measurable 
maps) if any of the following conditions are satisfied: 

(a) s=(q,r) is an open SE of T,(b) or r,(a), 
(b) r alone is an open SE of r,(a) and q;=ai, a.e., 

(c) qi=max{a;-z$O} and ri=Pjmax(z;-a;,O}, a.e, 



274 P. Dubey and LX Shapley, Noncooperative general exchange 

(d) qj = uf and ri = pjz;, a.e., 

for all j=l,..., m, where (for (c) and (d)) (6, z) is a CE of 8 with33 jm+ 1 = 1. 
Thus the pair (q,r) may arise from an SE (needed for Theorem 4) or from a 
CE (needed for Theorem 5), and in either case there will be an accompanying 
price vector p E Sz”. 

We also define Q(q,r)c T to be associated to B if (q,r) is associated to d 
and 

Q(q,r)= tET: i r~>a~+, . 

j=l 

Lemma 4. Let d satisfy Assumption A’, and let 

P=ird,20, where 0<6,< min jaj. 
lsjsm 

Suppose that (q,r) and Q(q,r) are associated to 8, with accompanying prices p. 
Then: 

(i) pjlP for all j=l,...,m. 
(ii) A positive constant L exists such that p(Q(q,r)) I L/a,; it depends on C? 

but not on the money endowments aa+ 1. 

Proof By assumption, (q,r) (or r alone) is an open SE of one of the ri(s) 
or is derived from a CE of 8. Hence, by Lemma 1 and the definition of CE 
(which excludes pj = co), there are in every case prices p E 52” and allocations 
Z’ELP+l for t E T which correspond to the (q, r) in question. 

If pj=O, then (i) is obviously true. If pj>O, then it is evident that j aj= j zj. 
Consider the non-null set of traders {t E T: zj2Jaj}, and suppose, contrary to 
(i), that pj>B. Then by Assumption A’ almost any trader t in this set could 
improve his utility by reducing zf by a small A > 0 (which we assume to be 
less than J aj) and increasing zh+ i by the amount pjA. This maneuver is 
available whether we are dealing with an SE or a CE, and contradicts the 
assumed equilibrium. Thus, Lemma 4(i) is proved. 

For (ii), suppose that p(Q(q, r)) >O. Then there is a good j #m + 1 and a 
subset Q’ of Q(q,r) such that 

$>a’,,, /m for all t EQ~ (6.4) 

and 

AQ’) 2 AQh 4)/m. (6.5) 

Clearly pj> 0, since otherwise almost any trader t E Q’ could reduce r: 

33Recall that f! is the (WI+ 1)-dimensional vector (p.&,,+ 1). 
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without affecting his consumption of j but increasing his consumption of 
money, thereby improving his utility and upsetting the assumed equilibrium. 
But pj > 0 implies that 

hence by (6.4) and (6.5) we have 

and by Lemma 4(i) and (6.6), 

(6.6) 

a0,4Q(cl, r)) < p 
rn2JUj - ’ 

from which Lemma 4(ii) follows by taking L to be the maximum of m2PsUj 
over 1 I j I m, which is clearly independent of a,,,+ 1 as claimed.34 0 

Proof of Theorem 4. First let i= 1,2 or 3 and consider a sequence of games 
ri(rP)) v = 1,2,. . . ) having open SEs sl = (q’, r”) [where we set q’= (al,. . . , a,) 
if i=2]. We may suppose that p(Q;) >O. Then there is a good i’ and a 
subset &’ c Q! such that 

and 

r$2az+,/m, a.a. t in &;, (6.7) 

Denote by p’ and z” the prices and final allocation produced at (q”,r”). By 
(6.7) and (6.8), 

(6.9) 

Let Sj={tE T: u:zJu~} ( i.e., the set of traders whose supply of good j is at 
or above average) and define K = min 1 ~j~nr {I} >O. For each V, define 

s’(v) = { t E S,,: q$ > &/2} and S”(v) = {t E S,,: q:Z I a$/2} 

which are complements in S,,. There are two cases to consider: 

34The value of a,,,+, plays an incidental role in the proof, but does not enter even indirectly 
into the expression for L, 
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Case A. Assume p(S’(~))>p(S,~)/22K/2. [Note that T,(b) always falls into 
this case.] Then 

from which we get, for a.a. t in 01, 

(6.10) 

which by hypothesis is bounded away from zero - say, by 6 1 > 0. By Lemma 
3 with 6, for 6, jy for j, and Q; for 5, it follows that 

P(&Y) s fs,(P$). (6.11) 

Case B. Assume that Case A does not hold. Then 

P(s’(V)) <P(S,7)/2, 

and so 

/.L(S’(V)) > ,U(Sjv)/Z 2 K/2. (6.12) 

By the definition of S”(v), we see that for a.a. t E S”(v), 

z; 2 a$ - q$2 a:,/2 2 J aj,/2 2 min {J aj/2} 
19j5m 

(6.13) 
=&, say. 

Again, we invoke Lemma 3, this time with 6, for 6, jy for j, and S’(v) for vj. 
This gives 

P(S”(V)) s fd2(PJd. (6.14) 

With this preparation, we finish the proof of Theorem 4(i) by a contradic- 
tion. If p(Q;) does not go to 0 with v then there is a subsequence N of the v’s 
and a positive number y such that 

~(Q;)>Y, all VEN. 

Observe then that, by (6.3) and (6.9), 

p;w-+~ as v-+cc in N. 

Now partition N into complementary 

(6.15) 

(6.16) 

subsequences: 
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N, = {v E N and Case A applies}, and 

N, = {v E N and Case B applies}. 

We remark that at least one of these is infinite. 
If NB is infinite, then it is clear that by (6.16) the right-hand side of (6.14) 

goes to 0 as v+cc in N,, contrary to the assertion in (6.12) that 
p(S’(v)) > K/2 for all v E N,. 

If N, is infinite, then once again by (6.16) the right-hand side of (6.11) goes 
to 0 as v+co in N,. However, by (6.8) and (6.19, the left-hand side is 
bounded from below by y/m > 0, a contradiction. This completes the proof of 
Theorem 4(i). 

Finally, Theorem 4(ii) is immediate from Lemma 4(ii). 

7. Remarks and examples 

The hypotheses in parts (i) and (ii) of Theorem 4 say that the endowment 
of money - or its value relative to the other goods - is not too ‘skewed’ 
across the traders. If either one of these hypotheses is satisfied, then the 
measure of the noncompetitive traders becomes arbitrarily small as the total 
money supply increases, through we have as yet no assurance that an actual 
CE will be found at the limit (see section 8). But if both hypotheses are 
violated, then the sequence of SEs need not approach full competitivity, in 
the sense of the theorem, no matter how much money we pour into the 
economy. 

As in section 4, we shall see that the best way to illustrate our theorem is 
to violate its hypotheses. 

Example 1. Consider a sequence of ‘sell-all’ market games {r,(&‘)}~=, with 
just one good besides money - i.e., m= 1. Let the traders T comprise the 
half-open unit interval, and for each v, let the initial endowments be 

1 

,tV = 1 1 all t E (0, 11, 

a:Y=v’+’ if O<tlv’-&, (7.1) 

at’ = v 
2 if vA-&<tl 1, 

where E > 0, d > 0, A --E ~0. [See fig. 3(a)]. Note that the ratio J-a;& is of 
the order vl+‘/v, so the hypothesis of part (i) is here violated. To describe 
the utility functions, let p > 0, y > 0, be real parameters and define 

n’(xl,x2)=t-YxSy-Bdy+x2 
1 
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p=3 

Y=6 
A=1 

E=2 

a:’ 
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a2 

40 
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0 1 2 3 

(W 

Fig. 3. (a) Initial distributions of money, showing the endowments of the two classes of traders. 
(b) The utility of money (at t =0X909, x2 = 0). 

for t ~(0,1], x1 ~(0, co), x2 E 10, co). (Here the ‘1’ could be any positive 
number, and !;I = - j&). Then define u’: Q2+lR by 

eG,x2)= 

{ 

@(xl*x2) if x1 >O, 

0 if x,=0. 

Note that, for each t~(0, 11, U’ is quasi-concave but not concave. [See fig. 
3(b)]. Also, denoting 13u~(x)/Lk~, by us(x) and Xt(x)/axj by G;(x), j= 1,2, we 
have 

U:(x)/u:(x) = u”:(x)/i;:(x) (7.2) 

whenever x1 >O. Finally, the {u’>~,, satisfy Assumption A with Pi= 
1 +t-y8-~. But they do not satisfy Assumption A’, so the hypothesis of part 
(ii) is violated. This completes the description of the sequence {~,(~‘)}~~ r. 

Suppose the parameters B, y, A, E satisfy the inequalities 

I 

l+A+(A-E)(Y-8)<0, 

l+A-Afi<O, (7.3) 

A-&CO. 

The numerical choices /?= 3, y = 6, A = 1, and a= 2 demonstrate that the 
system (7.3) is feasible. We claim that the strategies r” =ry= a?, t ~(0,1], 
constitute an open SE of T,(b’) for all sufficiently large v. 
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To check this, first let us compute the price p’=p; of good 1 at the above 
strategy selection. Since everything goes to market, we have 

P~=Sa:‘/Sa:‘=v’+“vA-~+V(l-vA-e) 

[see (7.1)], and hence 

v1+A<pV<2v1+A. 

So, if t~(0, v’-&], then 

I 
Z~~V1+e/Pv<Vl+e/V1+A~Ve-A, 

z’2’ = p’; 

while, if tE(v’-&, l] then 

For any t ~(0, l] and x~s2’ with x1 >O, let R”(x) denote u\(x)/u:(x) = 
i&(x)/r&(x) and note that R”(x)=ii~(x) since u”$(x)=l. Now, if t~(O,vAme], 
then for sufficiently large v, say v>v,, we have 

1 ~ ~ 
V(~-A)B 

=v (~-4(~-8)>2~l+A>~v_ (7.4) 

The first ‘>’ here sets the limit on v1 with the aid of the first ‘>’ of (7.3). 
[For the numerical parameter values suggested at (7.3) one can take v1 = 11. 
On the other hand if t E(V’ -e, 11, then for sufticiently large v, say v>v2, we 
have 

p(Z’v) = I 1 > I 1 
p (z:‘)8 = 1 v-AS 

(7.5) 

The first ‘>’ in this case sets the limit on v2, using the second ‘>’ of (7.3). 
(Again we may take v2 = 1 in the numerical case). 

From (7.4) and (7.5) we have obtained that for all v>max{v,,v,}, 
RrV(z”‘)>pv for all traders t, which implies they would all spend more if they 
could. So we are at an SE. Moreover the set of non-interior traders is (O,l], 
so p(Q;) = 1 for all v > max { vl, v2} and the conclusion of Theorem 4 follows. 
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Example 2. Similar examples for the games Ti, i= 1 and 3, can be con- 
structed by adding another commodity and doubling the player set, as 
follows. Indeed, let m = 2 and T =(O, 21. The endowments of the non-money 
goods are given by 

1 1 
“= 0 

for te(O,l], 
for t~(1,2], 

i 

0 for t~(O,l], 
“= 1 for tE(1,2], 

and of the money good by 

a\= 1 vl+’ for tE(O,v’-‘1 u(l,l+~~-~], 

V for ~E(v’-&, l] u(1 +vA-&,2]. 

For the utility functions, define 

E’(x,, x2, x4 = 1 u’(xz, x3) for t E (0, 11, 

ul(xl,xJ) for tE(1,2], 

where u’: CJ2 -+ R is defined for t E (0, 1) exactly as in Example 1. 
Thus each trader likes only the good he does not start with, and between 

money and this good his utility is as before, once we identify the points t in 
(0, l] with the points 1 + t in (1,2]. This completes the specification of the 
sequence of economies {6’y}~zl and hence the associated market games rY, 
and r;. 

Now consider the strategy selection wherein each trader puts up all his 
goods for sale at the appropriate trading post and sends all his money to the 
other trading post. We submit that for all v>max (v1,v2} this selection 
constitutes an open SE of pi for i= 1 or 3; the argument is exactly the 
same as in Example 1. 0 

Discussion of Example 2. Since p(QI) = 2 (for i = 1 and 3, and large enough 
v), almost all traders are ‘liquidity-constrained’ at the above SE. The question 
is how severely does the constraint bear on them. We have yet to devise a 
measure of this severity (for any player at any given strategy selection in our 
games). But, armed with such a measure, it would be easier to discuss how 
‘far’ the SEs are from being competitive. If, for a given E, most traders are 
eventually liquid-constrained up to at most the ‘level E’ and for large enough 
v, then the SE may be viewed to be c-close to competitive - this in spite of 
the fact that the p(Q;) stay large. On the other hand, if there is a K>>O such 
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that eventually most traders are constrained up to at least the ‘level K’, then 
the SE are ‘K-far’ from competitive. This view is consistent with the notion 
already used in Theorem 4, where the p(Q;)+O, i.e., most traders are not 
liquidity-constrained at all, so that we do not need to worry about what the 
measure is for them. 

For better focus, we consider the numerical case p= 3, y = 6, A = 1, E = 2. 
Let 2” denote the (unique) optimal bundle of trader t ~(0,2] in his ‘CE 
budget set’ calculated with respect to the SE price vector j’ = (rc”, rr”, l), where 
7cy= vz + v- 1 is the common price of goods 1 and 2 in terms of good 3 at 
the SE of ri(&‘), i= 1,3. Thus 2’ is the unique maximizer of U’ over the set 

Trader t would demand .P were he to behave as in the CE world, facing 
prices fi’. 

It will also be useful at this point, for our purposes, to think of an 
imaginary extension P; of the games ri(&‘“), for i= 1,3, in which each t can 
borrow, before trade and at zero interest, as much of good 3 as he likes. If he 
fails to repay the loan after trade, then his payoff in fi is some given 
numbers less than ~‘(u”‘). Otherwise it is the utility of his consumption. It is 
clear that, with the price of good 3 normalized to 1, the SE outcomes of r; 
coincide with the CE outcomes of 8’. 

We observe that the SE of ri(s”) that we have calculated are feasible in Pr 
but do not constitute an SE of p. This is because each trader t would have 
an incentive to deviate by borrowing and spending more -of good 3. How 
much more? The optimal amount, as called for in his best response to b’ in 
?;r - or better, this amount divided by t’s money endowment af,y+1 - may be 
taken to indicate how ‘thirsty for money’ (i.e., severely liquidity-constrained) 
he is at the SE of ri(8”) in question. 

To examine this, it will help first to calculate the individual excess demand 
(in the CE sense) of trader t for good j, namely the quantity 

2jv-ay. (7.6) 

Denote 

tY = (v2 + v - 1)“3(V2 + 2v - 1) - 1’2 

and 

r’r(v2+~-l)1~3(~2+~-l+~3)-1~2. 

For large enough v, tY E v- ‘I3 > v- ’ and r”x vm5/‘j > v- ‘, and for such v we 
obtain, by a straightforward computation, the results given in table 1. 

The aggregate excess demand for good j is 
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Table 1 

Individual excess demand. 

Fort in... 

(o,V-‘I 
(v_‘,t”) 
(t’, 11 

Good 1 Good 2 Good 3 

-1 1+v3(n’)-’ -9 
-1 1 +v(a’)-’ --Y 
-1 t - Z@V) - l/3 R"-_t-2(11y/3 

l+vyn’)- -1 -v3 
l+v(n’)-’ -1 -V 

t-2(KV)-113 -_1 X”-_t-2(Ry3 

(7.7) 

by (7.6). It is positive for j = 1 and 2 and goes to 0 as v+ co. For j= 3, 
however, it is negative and diverges to - co as v-co. But once we scale it 
down by dividing by the aggregate endowment JG a? dt, it too goes to 0. 

The agregate picture, however, misses the enormous thirst for money that 
exists at the individual level. Indeed, since t’+O as v+oo, the overwhelming 
majority of the traders are in the set 

(P, l] u (1 + t”, 23. 

They wish to spend ?‘-2(d’-1’3= t-2(d’)2’3 units of good 3 (money) to 
purchase their favored non-money good, and so wish to borrow 

max (0, t-2(7cy)2’3 -v} - /?“, (say). 

Define, for any K > 0, 

Bi={t: p/a:‘>K}. 

Then, remembering that (7~“)~‘~ x v4’j and that a:” = v for t E (t”, l] u (1 + t”, 21, 
we see that for any K >O there exists v(K) such that if v>v(K) then 

A(&) > 1 - f , 

where A denotes the Lebesgue measure. 
Thus, most traders become unboundedly liquidity-constrained in our 

sequence of SEs. 

Monotonicity of the money supply. If we pick the subsequence {P)zl so 
that v. 2v! +’ for all i, then ayi is increasing in i for each t in [0, 11. Thus a ,+1 I 
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requirement that the money be put in monotonically for each trader does 
nothing to stop the examples. 

Concavity u. quasi-concavity. Our examples are based on utility functions 
that are quasi-concave but not concave. We have not found a way of 
adapting our examples to concave utility functions, not do we know if the 
assumption of concavity, in conjunction with Assumption A, would enable us 
to dispense with the special hypotheses in (i) and (ii) and still obtain the key 
conclusion of Theorem 4 that ,u(Q~)--+O as v+co. 

Remark on the existence of SEs. We cannot infer the existence of SEs of 
ri(&‘), for i= 1,2,3, from the existence of CEs of 8, since the two are not 
equivalent in general. Thus, the issue of the existence of SEs becomes 
important in the commodity-money models. 

Let us say that t ‘likes’ j if u’ is strictly increasing in the jth variable and 
‘has’ j if a$ > 0. Our conjecture is as follows: 

Let a be integrable, u measurable, and U’ nondecreasing, continuous, and 
quasi-concave for all t E 7: Suppose further that for each j = 1,. . . , m there is 
(i) a non-null set of traders who have money and like j, and (ii) a non-null 
set of traders who have j and like money. Then for i= 1,3 an open SE exists 
for ri(&?) with all prices positive and finite, while for i= 2 the same holds 
without condition (ii). 

While we have not checked the details, an analogous result has been 
provided 3s for the case of a finite number of traders, with ‘non-null set’ in 
the above replaced by ‘at least two’. 

8. Exact equivalence 

Although Theorem 4 shows that the SE solutions become more and more 
nearly competitive as the money supply is increased, it falls short of asserting 
the actual coincidence of the CE and SE allocations. No matter how much 
money is pumped into the economy b, Assumption A still permits a small 
band of ‘fanatics’ to persist whose unusual endowments or tastes cause them 
to hit the spending limit and want to spend more. Further conditions can be 
adduced, however, that exclude this possibility. The easiest is the familiar 
simplifying assumption that there are only finitely many types of traders, but 
we shall first consider other conditions. Recall.. . 

Assumption A’. For each 6 ~0 there is a number P,>O such that, for each 
j=l ,..*, m, 

35Dubey and Shubik (1978). 
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U’(X + AP,e,+ 1) > U’(X + Aej) 

holds a.e. for all sufficiently small A > 0 and all x E am+1 with xj 2 6. 

This says in essence that the marginal utility of money relative to that of 
the other goods always ‘holds up’ - uniformly across the traders - unless 
they happen to be near zero levels in their consumption of those goods. We 
previously used this assumption in Theorem 4, where it was enough to 
establish an explicit rate of convergence for p(Qr), i= 1,2,3. But we shall 
require further conditions to get the exact equivalence we now seek. 

Assumption B. For each E>O there is a number G, > 0 such that, for each 
j=l ,..., m, 

U’(X + &de,+ 1) > U’(X + Aej) 

holds a.e. for all sufficiently small A > 0, and all x E a”‘+ i with xj2 G,. 

This assumption further differentiates the goods from money. It says that 
there is a tendency towards satiation in each good, relative to money, as the 
traders get swamped by that good. 

Our final assumption is that for every good, there is a non-null set of 
trader who like it so well that they are never wholly satiated: 

Assumption C. For each j= 1,. . . , m, there is a non-null set Tj with the 
property that given any cc >O, a number sj(~) >O exists such that 

U’(X + Sj(a)Ae,+ 1) < U’(X + Aej) 

holds a.e. in q for all sufficiently small A >O and for all x E CP’+ ’ with 
maxl.,.,xI<E. 

Theorem 5. Let the sequence {P=(b,a~+,)}~~, satisfy (64 and let the u’ 
satisfy Assumptions A’, B, C. Then there is a v” such that, if v 2 G, the CE prices 
and allocations (and hence payoffs) of b’ coincide with those achieved at the 
open SEs of r,(P), for i = 1,2,3. 

Proof: To prove the theorem, it will s&lice to show that there is a v” such 
that ,u(Q(q”, P)) = 0 for all v 2 3, for all Q(q”, r”) associated to 6”. 

First observe that, by Assumption A’ and Lemma 4, there is a constant L 
depending on d such that 
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Let p” and zy be the prices and allocation at (q”,?). Let Tj be as in 
Assumption C and define, for any v, and /I > 0, and 1s j I m, 1 I 1 I m, 

Tj(v,8,I)={tE~:zf”2B}. 

Then 

Denote min {p( 7;): j= 1,. . . , m} by M, and choose /I* and y* sufficiently large 
to ensure that 

M>,fl ++;. 
Y 

Next choose v* to ensure that cl; > y* whenever v > v*. Then, if we let 

TJ= tEq:zi’<,!i* for l=I,...,m, 5 r~‘<a~+, , 
I=1 

it follows that 

hence 

QW,r’) u fi Tj(v,B*, 1) , 
I=1 > 

,u(Tj’)> M- c - - k>O In Sal 
l=lB* Y* 

(8-l) 

for all v>v* and j=l,...,m. 
Now, by Assumption C and the definition of Tj’, we have 

U’(Z” + dj(/l*)Lle,+ 1) < U’(Z” + Llej) (8.2) 

for sufficiently small A, all v > v*, 
then since I?= I 17 < a: + 1 

and a.a. t E Tj. If pJ<6#*) for some v> v*, 
for a.a. t E TJ, almost every trader in Tj’ could 

improve his payoff by buying a bit more of good j. But by (8.1), T; is 
non-null for all v> v*, which contradicts the assumption that (q”,?‘) is 
associated to 8’. So we must have 

pi’2 sj(a*) > 0 (8.3) 

for all v>v*. On the other hand, by Lemma 4 (which applies because 
Assumption A’ has been made), we also have 
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pj”lL (8.4) 

for all v, where L is provided by Lemma 4. 
Suppose there is a subsequence iii of the v’s such that p(Q(q’, r”)) > 0 for all 

v in m. Then there exists a good 1 I j I m and a further subsequence R such 
that, for each v E fi, we can find a subset S’ of Q(q”, I”) with 

PW) ‘0 

and 

rfi” 2 ac+ l/m for a.a. t E S’. 

But, from (8.4) and (8.6) we obtain, for all v E m and a.a. t E s’, 

(8.5) 

(8-b) 

(8.7) 

Finally, take {E,: n= 1,2 ,... } such that s,+O. By (8.7), we can find a 
subsequence {v,} CR with zfi’“> GEn for all n and almost all t ES”, where G,” 
is as in Assumption B. Therefore, by Assumption B, 

u’(zfyn + z,Ae,+ 1) > u’(z”‘~ + Aej) (8.8) 

for all sufficiently small A, almost all t E S’” and all n = 1,2,. . . . If pj’” > E,, then 
by (8.8) almost every trader in SYn could unilaterally improve his payoff by 
selling a little bit of good j. Since #)>O by (8.5), this contradicts the 
assumption that (qy,ry) is associated to cP. So 

PjYn<&,-+O. (8.9) 

But (8.9) contradicts (8.3), so we conclude that there is a 0 such that 
,u(Q(q”,r”))=O for all v2ir. 0 

Finite type economies. Let us call d a finite type economy if its trader set T 
admits a finite partition {T,, . . . , T,} such that any two traders in the same IT;: 
have identical endowments and utility functions. It is clear that at any SE of 
T(b) the members of a given T are facing exactly the same optimization 
problem; moreover almost all of them are solving it - though not necessarily 
in the same way. This means that either a.a. t E T are competitive or a.a. t E IT;: 
are not competitive, since either the maximum utility in B’(F) [see (5.8)] is 
attainable without exceeding the spending limit or it is not. It follows that 
the measure p(Q) of the set of all noncompetitive traders at the SE must be 
some partial sum of {p(T), i = 1,. . . , z>. This indicates that if p(Q) is small, it 
must be 0. Formally, 
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Theorem 6. Consider a class of Jinite type economies (6, a,,,+ t), difiring only 
in their money endowments a,,I and admitting a common type partition 

{T,,..., T,}. Let the utilities satisfy Assumption A’. Then there is a bound 
D= D(8) such that if a,> D then: 

(i) FF; rces and allocations (and hence, payoffs) of any open SE of 
) are competitive, for i = 1,2,3. 

(ii) The’pryiei and payofi of any CE of (8,a,+ ,) are achieved at some open 
SE of TX8,a,+I), for i= 1,2,3. 

Proof. Let (9, r) be an open SE of ri(b, a,,,+ 1) for i = 1,2 or 3. By Lemma 4, 

dQ(q, 4) 5 Way 

where L depends on 8 but not on a,, 1. Let /+,=min15i5,p(T) and 
D = L/u,. If a0 > D, the only way the inequality displayed above can hold is if 
u(Q(q,r)) <uO. Hence, in each type i= 1,. . . ,z, there is a non-null set of 
traders who are interior and who (by Lemma 1) achieve their maximum 
utility in B’(fi)rB’@) for t E Ti. But all players in Ti face the same optimiza- 
tion problem at the SE. So almost all of them must have achieved their 
maximum utility in B’(p). This being true for i = 1,. . . , z, we have proved (i) of 
Theorem 6. 

To prove (ii), let (fi,z) be the prices and allocation at a CE of ($,a,+ 1) 
with i~S2”‘+l and &+ 1 = 1. Define the allocation ? by 

if= f z’dp/p(7J, if t l T, 
Ti 

for 15 i 5 T. It is readily checked that (p, z) is also a CE of (8, a,, t); and by 
the quasi-concavity of u’, we have u’(2) = uf(z’) for almost all t. Define 

$=fijmax {zf-a:,O}, 

d;=max{a;--z;,O} 

for 1 I j I m. Then (4, F) is associated to 8, and 

(The < follows from Lemma 4; the < holds because L=poD by definition 
and D < a0 by assumption). But from our construction, Q(& F) must be one of 
the sets T,,..., T, or else the empty set. Since each ~(7;:) 2po, Q(& i) is the 
empty set. This shows that (&i) is an open SE of rl(8,am+l) and 

rs(~,a,+,). 
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For ~2(~,a,+l), set gf = a5 and ?;=fijzf and repeat the above 
argument. 0 

Appendix: Non-atomic games in strategic form 

In this final section, we turn to the problem of building a satisfactory 
connection between the strategic decisions of the individual players in a non- 
atomic game and the events that take place in the model-at-large as a result 
of those decisions. The principal source of difficulty lies in the conflict 
between the ‘noncooperative’ ideal of strictly independent decision-making 
and the technical demands of measurability and integrability. Although we 
sidestepped this issue in the body of the paper, we are unwilling to walk 
away from it. Some readers may agree that the problem is real, and the 
rather intricate approach that we suggest below is appropriate; others may 
only find in this discussion merely a renewed reason for wanting to evade the 
issue - or, better, an incentive for seeking alternative resolutions.36 

In order to focus on the main question we shall make the simplifying 
assumption that the players’ strategy spaces are all the same, say, C’r [0, 11. 

A strategy selection is then any function g: T-r[O, 11. Let 3 denote the set of 
all such functions and ~4 the subset of those that are measurable. While g 
may represent the declared intentions of the individual players, to implement 
these intentions in the market as a whole will require passing from g to a set 
function G:V+R - hopefully by simple integration: 

G(S)=Jg(t)dp(t), all SE%?. 
s 

(A.11 

But this step is not directly permissible unless g EA. What if gEY\&? 
We begin with the observation that any set function gE9 can be ‘trapped’ 

or ‘squeezed’ between two measurable functions, say g,,g*E&, in such a 
way that the value of the integral IT k*(t)-g,(t)] d,u is minimized subject to 
g,(t) <g(t) <g*(t) a.e. 37 Moreover, these minimizing functions are uniquely 
determined a.e., so the corresponding set functions G, and G* [cf. (A.l)] are 
uniquely determined and are of course countably additive, being bounded by 
the functions 0 and p. The function G that we seek will presumably be found 

36Bierlein (1981) (which contains reference to earlier work), compares our present construction 
to a promising method of measure extension that seeks out ‘measurable neighbors’ of non- 
measurable functions. Unfortunately not all non-measurable strategy selections possess measur- 
able neighbors, as there defined. 

3’The reader will note the similarity with the inner and outer measures of a not-necessarily- 
measurable set. 
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somewhere between G, and G*. But there are many such functions, and to 
define a particular G will require further specification. 

At this point we could make an arbitrary modeller’s decison and, for 
example, write 

G=cG,+(l-c)G*, (A.2) 

where c is a constant between 0 and 1. Without further motivation, however, 
this is unsatisfactory. Accordingly, we shall devise a method of extending the 
underlying strategic model that has some heuristic substance. A formula like 
(A.2) might be the result of such an extension, but other results might 
perhaps be more suitable in a given application. 

Our basic idea is to put the job of ensuring integrability into the hands of 
the players. Since this will require some sort of collective action, we 
introduce the notion of a ‘group’ strategy. The members of a set SE%? get 
together and jointly declare the total amount, say 4(S), that they expect to 
send to market. This will be a number between 0 and P(S).~’ In keeping with 
the noncooperative canon, we take these joint declarations to be all 
independent, i.e., not constrained by the declarations of other, possibly 
overlapping groups. Moreover, we shall require declarations only from very 
small groups, since only the limiting properties of 4 on very small sets will 
matter in the end. We thereby keep to a minimum the intrusion of 
‘cooperative’ action into the extended model. No group of positive measure, 
or set of groups whose measure is bounded away from 0, can affect the result 
by their declarations. If a ‘group-decision theory’ - by which we mean a 
mapping from the individual-intention functions g to the group-declaration 
functions 4 - can be found that behaves well in the limit, then a mode of 
determinate play based on arbitrary (possibly non-measurable) strategy 
selections will have been achieved. 

We may imagine that there is a referee or game-master who can hear only 
measurable instructions. So the players band together in order to make their 
moves audible. But they do not band together to play the game cooper- 
atively in the usual sense. 

Let us now turn attention to the passage to the limit. There is no reason 
to suppose that the set function 4 will be additive. But it is possible that, if 
we look at its values only on very small sets, it will be ‘nearly’ additive. If 
SE%? and 6 > 0, let gP=.!??(S, 6) denote the set of finite partitions ZZ = 

{R 1,“‘, RP} c%’ of S into nonempty sets of measure O<p(Rj) I 6. Partially- 

38Note that p(S) is the total amount available to S in our simplified set-up. We do not require 
a priori that 4(S) lie between G, and G*, though it is not implausible that a reasonable group- 
decision theory would confine C$ within that interval. 
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order 9’ by refinement. 39 Then ($ I) is a directed set,40 and we can define a 
set function 40, called the additive part of 4, by 

40(S) = dir lim 1 #J(R), (A.3) 

under the assumption that these directed limits exist for all SE%. If by 
chance 4 was already additive, then of course CJ~~=$. More generally, 4. is 
the additive function that is ‘tangent’ to 4, in the sense that it most closely 
approximates 4 on small sets. 

One way to assure that a set function possesses an additive part is to 
require that it be superadditive or subadditive, or more generally, that its 
total deviation, be bounded. 41 That all such functions have additive parts 
follows easily from the observation that the inequalities. 

01 c 4(W s 1 4(R), 
R'E IT REIl 

all nlIII@, 

which hold for every nononegative, superadditive 4, ensure the monotonic 
convergence of the directed limit (A.3). 

Examples. We now give some examples of group decision rules that lead to 
coalitional strategy selections that are of bounded deviation. 

One simple rule is the following: 

4(S) = cl(S) infds). 

In other words, the group takes its cue from its most timid member. 
Alternatively, the group could ignore ‘timid’ sets of measure zero and replace 
‘inf’ by ‘ess inf’.42 In either case, C$ is obviously subadditive and hence (since 
4-p is nonpositive) a member of BD. When we take the additive part of C#J 
the distinction disappears, since during the refinement sequence we can 

3gI.e II>II’ means that each element of I7 is a subset of some element of Il’. 
40ThHt is,every finite subset of 9 has a lower bound in B [See Dunford and Schwartz (1958, 

p. 45)]. By the directed limit of any f: 2 ‘AR is meant the number f0 (unique if it exists) such 
that for every E > 0 there is a II, in B such that I7 < IZE implies (f(n) - fa 1 <E. 

4’Shapley (1953), Armstrong (1991). The total deviation of a set function r#~ is most simply 
defined as the minimum of g(T) - h( T) where g and h are nonnegative and superadditive and 
r$-(g-h) is additive. At the minimizing g, h the latter is precisely I&,. The set functions of 
bounded deviation form a Banach space BD, in which total deviation is a pseudonorm, i.e., a 
norm on the subspace defined by &=O. [Cf. the rather similar notion of bounded variation 
employed by Aumann and Shapley (1974).] 

4ZSee section 6 at (6.3). 
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always split off any null sets that cause ‘inf’ and ‘ess inf’ to be different. In 
fact, it is not difficult to show that &, = G,, in each case. 

The ‘bold’ rule analogous to (A.4) leads similarly to &,= G*, or we might 
suppose that groups divide the range between these two extremes in some 
definite ratio: 

9(S) = cl(S) Cc infds) + (1 - 4 sup g(S)l. 

where O<c < 1. The leads of course to the formula (A.2). 
A more interesting possibility is the following. Let a: T+[O, l] be a fixed 

measurable function, and define 

4 = j med CinfdS), sup g(S), a(t)1 W), 
s 

(A.5) 

where med [x, y, z] denotes the median of x,y and z. Perhaps a(t) might 
represent a generally held ‘preconceived idea’ of what player t will choose, 
before his actual intention g(t) becomes known. The spokesman for the 
group S, unable to process all the disorderly information contained in the 
non-measurable function g, bases his declaration instead on the preconcep- 
tions a(t), except where they are inconsistent with the more easily observed 
inf and sup of g(S). 

Thus, let 

S,=(tES:a(t)<infg(S)}, 

S,={tES:a(t)>supg(S)}, 

SJ = s\s,\sp 

Since these sets are measurable, we may rewrite (A.5) as 

4(S) = ASA infds) + PC&) sup@) + s a(t) Wt). 
S3 

This function can be shown to be in BD,43 and its additive part is given by 

h(S) = f med k,(t)x*(th 401 Wt), 
s 

% is neither subadditive nor superadditive in general, but its total deviation can be shown to 

be ~~(T)Csupg(T)-infg(T)l. 
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which lies between G, and G* as expected, but is not a simple average as in 
(A.2). Note that if g E JZ! then a drops out of the calculation. 

These examples, though based on strategy sets simpler than those in the 
economic models treated in this paper, suffice to show that by including a 
small touch of cooperative detail in the model, the strategic form of a non- 
atomic game can be made ‘complete’, in the sense that arbitrary choices by 
the individual players always lead to a definite and reasonable outcome, and 
the ‘group decision rule’ adopted for the completion will not affect the 
measurable SEs of the game. 

Moreover, without going into further detail at this time, we may remark 
that for certain classes of utility functions the best-response mapping applied 
to any selection produces a measurable selection. This means that non- 
measurable SEs are not possible. (Cf. the discussion in section 3). 
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