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Abstract

We approach the problem of preference aggregation by endowing both individuals and coalitions with
partially-ordered or incomplete preferences for decision under risk. Restricting attention to the case of
complete individual preferences, and assuming complete preferences for some pairs of agents (interpersonal
comparisons of utility units), we discover that the Extended Pareto Rule (if two disjoint coalitions A and
B prefer x to y, then so does the coalition A ∪ B) imposes a “no arbitrage” condition in the terms of
utility comparison between agents. Furthermore, if all the individuals and pairs have complete preferences
and certain non-degeneracy conditions are met, then we witness the emergence of a complete preference
ordering for coalitions of all sizes. The corresponding utilities are a weighted sum of individual utilities,
with the n − 1 independent weights obtained from the preferences of n − 1 pairs forming a spanning tree in
the group.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the modeling of social or group preferences, it is common to assume that groups have
transitive and complete preference orderings (Harsanyi, 1955; Arrow, 1963; Karni, 2003; Dhillon
and Mertens, 1999).1 We feel that such assumption has been taken for granted, and it deserves
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1 An exception here is Sen’s (1970) study of incomplete group preferences.
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more attention and discussion because groups should not be conceived to act as individuals from
the outset.

Our approach to the problem of modeling group preferences begins by endowing coalitions
with cardinal preference orderings that may fail to be complete, i.e., some pairs of outcomes may
be regarded as incomparable. Allowing incompleteness in the group preference is particularly
appealing because one should not expect that the group is able to agree on how to compare
every pair of alternatives. Rather, if we insist on a unanimous agreement, a group will very likely
produce only a partial ordering of the alternatives.

Given this relaxation, our aim is to provide a minimal set of sufficient conditions that lead to
complete preferences for the group and the rest of coalitions, thus giving an axiomatic basis for
the existence of a cardinal social utility function which is additive in individual utilities. Even at
an individual level, the assumption of completeness is not innocuous, as argued by Von-Neumann
and Morgenstern (1944). In fact, Aumann’s (1962) groundbreaking work on incomplete prefer-
ences, as well as the more recent work by Dubra et al. (2004), deals with individuals. Here, we
will assume individuals exhibit completeness, but the coalitions do not.2

Although Von-Neumann and Morgenstern (1944), in an appendix of the 2nd edition, intro-
duced axioms to justify the use of cardinal utility as required by their mixed strategies, they
failed to provide similar axiomatic support for the use of comparable and transferable utilities3

in the characteristic-function games that occupy the final two thirds of their great book. The
present work is a step in a long-term project, first envisioned by the senior author more than 40
years ago, to fill this gap with the aid of incomplete preferences.4

We will present a few technical conditions, but given these, a weak property called the Ex-
tended Pareto Rule (EPR) is necessary and sufficient for all coalitions to have utility functions
(the EPR says that if two disjoint coalitions A and B prefer x to y, then their union prefers
x to y). That EPR may have important consequences for the social aggregation of individual
preferences was already claimed in Shapley and Shubik (1982, p. 66):

A “With the Pareto Principle thus strengthened, we can often weaken some of the other hy-
potheses [regarding completeness]... and still obtain the existence of a social utility function.
For example, we can [assume completeness]... only for two-member groups. ... With the aid
of the Extended Pareto Rule, we can then derive utility functions for all other subsets of N ,
including N itself.”
Moreover (p. 68), “even stronger conclusions can sometimes be drawn when we are working
with conditions that lead to cardinal utility.”

In this paper we formalize and prove A utilizing a cardinal framework. In this regard, this
paper can be seen as an extension of Harsanyi’s (1955) work. The multiperson setup does not
add or subtract any support to the normative appeal of the Independence Axiom that leads to
cardinal or linear utility. Because linear utilities are a special case, it should be understood that
our work is restricted to coalitions that abide by the independence axiom. Equipped with this

2 Several studies such as Bewley (1986), Schmeidler (1969), and Rigotti and Shannon (2004) explore the implications
of incomplete individual preferences.

3 Of course, transferable utility is even more demanding than comparable utility because one needs to further assume
that there is a kind of risk-linear “money,” with which the transfers may be carried out. These transfers may be realized
by exchanging this “money” commodity in accordance with the utility comparison rates that we derive.

4 We know of no indication that either von Neumann or Morgenstern were ever aware of this logical gap.
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axiom and the Pareto rule, Harsanyi showed that the utility representing the group preference is
a weighted sum of individual utilities. We use the same framework, but relax the completeness
axiom.

Section 2 begins with a brief review of the theory of incomplete preferences. Next, it presents
our first important result, a characterization of EPR in an environment where all the coalitions are
endowed with incomplete preferences for risky prospects. We progressively explore the implica-
tions of this characterization when individuals are assumed to have complete preferences. Next,
we introduce bilateral agreements, or pair preferences that happen to be complete. The utility of
such bilateral agreements takes an additive form. If individual i has utility ui , the utility of the
pair ij takes the form uij = (ui + δi,j uj )/(1 + δi,j ).5 The weight δi,j serves as a comparison
rate of utility units (utility differences), that we call the utility comparison rate between i and j .

With three (or more) individuals we find that EPR is surprisingly powerful in forcing com-
pleteness of group preferences. If the pairs 12 and 23 have complete preferences, with utility
comparison rates δ1,2 and δ2,3, then the preference for the triple 123 is necessarily complete and
is given by u123 = (u1 + δ1,2u2 + δ1,2δ2,3u3)/(1 + δ1,2 + δ1,2δ2,3). Interestingly, we find that
EPR implies a “no arbitrage” condition in the utility comparison rates, analogous to the relations
that hold among currency exchange rates, namely, that if 13 were to have a complete preference,
then it necessarily has the utility comparison rate δ1,3 ≡ δ1,2δ2,3.

Section 3 presents the main result, which is the extension of the above findings to n indi-
viduals. They are both stated under minimal requirements regarding linear independence of the
individual utilities (EPR allows us to relax substantially the Independent Prospects condition
implicit in Harsanyi’s theorem). In essence, and barring degeneracy, if we are given complete
preferences for some pairs forming a spanning tree in the complete graph where the individ-
uals are the nodes, then EPR implies the emergence of a complete preference for some more
coalitions, including the set N of all individuals. It follows that if all the pairs have complete
preferences, then all the coalitions have complete preferences. Any such complete preference is
represented by a weighted sum of the individual utilities, i.e., uS = ∑

i∈S λiui for all S ⊆ N . The
n− 1 weights are determined up to a positive multiple from the utility comparison rates between
any n − 1 bilateral agreements forming a spanning tree.

Harsanyi’s formulation does not provide a clue on how to obtain these weights. Here, we
provide some guidance, the weights can be uniquely obtained by means of bilateral agreements
between n − 1 pairs of individuals. Moreover, these n − 1 pairs cannot be arbitrarily chosen, but
must form a spanning tree in the graph where the players are the nodes. This insight might prove
fruitful to develop practical procedures to reach group consensus (Baucells and Sarin, 2003).

Section 4 discusses the previous results. For example, the geometrical representation provided
by the cardinal framework uncovers a surprising connection with Desargues’ Theorem, a geo-
metrical result attributed to the 17th century French mathematician Girard Desargues. We also
point out the relation between “stability” of the group preference and a very mild assumption
called “minimal consensus,” namely, that there exist two prospects x, y such that all individuals
strictly prefer x to y. In the absence of minimal consensus, the group preference might exhibit
disproportionate sensitivity to the terms of utility comparison produced by any given bilateral
agreement. We also introduce a certain weakening of EPR in the subsection “Masters and Ser-
vants.” Section 5 concludes and suggests some extensions. Proofs are provided in Appendix A.

5 The overhead bar indicates set membership. Thus, “ij” is a concise synonym for “{i, j}”.
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2. Incomplete coalition preferences and the Extended Pareto Rule

2.1. Review of the theory of incomplete preferences

The underlying domain of prospects over which the preferences are given is M, a closed,
convex subset of R

m. We further stipulate M to have dimension m, so that M contains interior
points. For example, the simplex M = {(x1, . . . , xm) ∈ R

m:
∑m

k=1 xk � 1, xk � 0} could rep-
resent the set of probability mixtures over m + 1 “pure” prospects k ∈ {0,1, . . . ,m}, where the
pure prospect k = 0 occupies the origin of R

m. Probability mixtures of two prospects x and y

are identified with the prospect αx + (1 − α)y, for suitable α ∈ [0,1].
We stipulate the following four axioms for an incomplete preference relation � —they are

asserted for all x, y, z ∈ M and all α ∈ [0,1]:
(P 1) Reflexivity: x � x.
(P 2) Transitivity: If x � y and y � z, then x � z.
(P 3) Independence: For all α �= 0, x � y if and only if αx + (1 − α)z � αy + (1 − α)z.
(P 4) Continuity: The set {α : x � αy + (1 − α)z} is closed.
Besides the strict preference and indifference relations induced by � (defined in the usual

way), it is also possible that neither x � y nor y � x, i.e., that x and y are incomparable. If M
has no incomparable pairs then � is said to be complete; this can be expressed axiomatically by
replacing (P 1) with

(P 1′) Completeness: Either x � y or y � x.
Let us denote by M∗ the set of all real-valued functions on M that are both linear and

homogeneous, i.e., u(αx) = αu(x). In our finite-dimensional setting, M∗ coincides with (Rm)∗,
so that the space of all linear homogeneous functions on R

m can be viewed as a copy of R
m.

Thus, if u ∈ M∗, then u(x) becomes the inner product of the vector u = (u1, . . . , um) and the
prospect x = (x1, . . . , xm). If x is a probability mixture, then u(x) is the “expected utility” of x.

Profiting from the recent work of Dubra et al. (2004), the previous four axioms lead to the
following representation theorem:

Theorem 1. (a) If � is an incomplete preference relation defined on M, then there exists a
non-empty subset U ⊆ M∗ = Rm such that for all x, y ∈ M,

x � y ⇔ u(x) � u(y) for all u ∈ U. (1)

Conversely, given any set U ⊆ R
m, the relation defined by (1) is an incomplete preference rela-

tion.

The details and proofs of Theorem 1 in this general setting can be consulted in Dubra et al.
(2004), as well as in the preliminary section of Shapley and Baucells (1998). See also Vind (2000)
for related work in large spaces, as well as Nau’s (2006) for extending a similar formulation to
both utility and probability.

Without loss of generality, the set U in (1) can be taken to be a closed convex cone in R
m, not

containing the origin except if U = {0}. This can always be done by replacing any given set U

by its double polar, (U∗)∗ (Rockafellar, 1970, p. 121). If � is a non-trivial complete preference,
then U is a half-ray point at, but not containing, the origin. Hence, any element of U is a non-
negative multiple of any other element of U . In this case, we pick any u ∈ U , different from 0
unless U = {0}, and say that � is complete and has utility u.
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2.2. Definition and representation of the Extended Pareto Rule

Given a set N = {1, . . . , n} of individuals, we fix M as the common prospect space. We
endow each non-empty coalition S ⊆ N with an incomplete preference �S on M, and let US be
its corresponding utility cone. Unless stated otherwise, the term coalition refers to a non-empty
coalition. We shall restrict our attention in this account to the case where singletons (i.e., the
individuals) have non-trivial, complete preferences �i with utility 0 �= ui ∈ R

m, for all i ∈ N . Of
course, the utility cone Ui associated with �i is the ray of positive multiples of ui .

Let Sp(u1, u2, . . . , uk) denote the vector subspace of R
m spanned by some collection of util-

ities, and d(u1, u2, . . . , uk) its dimension.

One might want to identify the coalition preference �S with the Paretian preference
p

�S given
by the unanimity rule: for all x, y ∈M,

x
p

�Sy ⇔ x �i y for all i ∈ S. (2)
p

�S is an incomplete preference in the sense of Axioms P 1 − P 4, and has utility cone U
p
S =

Co(
⋃

i∈S Ui), where Co(·) indicates the convex hull. Unless all the members of S share identical
preferences, the Paretian preference will contain incomparable pairs so that for completeness
of group preference to arise we need the ability of certain coalitions to establish comparisons
beyond the ones given in (2).

Our setting, which treats individuals as one-person coalitions, allows for an important
strengthening of the Pareto rule. A collection of preferences �S , S ⊆ N , satisfies the Extended
Pareto Rule (EPR) if for all disjoint coalitions A and B , and for all x, y ∈M,6

x �A y,x �B y ⇒ x �A∪B y, and (3)

x �A y,x �B y ⇒ x �A∪B y. (4)

As stated, EPR is equivalent to the seemingly more general rule in which the statements
corresponding to (3) and (4) hold for any partition.7 In particular, the two EPR conditions imply
the corresponding Pareto conditions:

x �i y for all i ∈ N ⇒ x �N y, and (5)

x �i y for all i ∈ N, and x �j y for some j ∈ N ⇒ x �N y. (6)

Let CoA,B denote the convex hull of UA ∪ UB , and Cori
A,B denote the set of relative interior

points in CoA,B .8 EPR can be characterized in terms of utility cones as follows.

6 EPR has been recently used in Dhillon (1998) and Dhillon and Mertens (1999). A similar condition is used in the
literature on conditional preferences (Luce and Krantz, 1971; Fishburn, 1973; Skiadas, 1997), where it is assumed that
a decision maker possesses a collection of preferences conditional on events. Such collection satisfies EPR as applied to
disjoint events. Our results indicate that the completeness axiom is redundant in some of these conditional preferences,
and sets a framework to study incomplete conditional preferences. This last application is related to Bewley’s (1986)
work on “Knightian uncertainty,” where he argues that incompleteness is natural in an environment with uncertainty
(randomness with unknown probability distributions).

7 For example, if {A,B,C} is a partition of S and x �A y, x �B y, and x �C y, then imposing (4) to A and B produces
x �A∪B y; and imposing (4) to A ∪ B and C yields x �S y.

8 In finite-dimensional spaces, a point is relatively internal to a convex set if and only if it is relatively interior (in the
usual topology). Formally, given that UA and UB are convex sets, a point

u∗ ∈ CoA,B ≡ {
(1 − α)uA + αuB ∈ R

m: uA ∈ UA,uB ∈ UB,0 � α � 1
}
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Theorem 2. The Extended Pareto Rule holds if and only if for any two disjoint coalitions
A and B ,

UA∪B ⊆ CoA,B, and (7)

UA∪B ∩ Cori
A,B �= ∅. (8)

2.3. Harsanyi’s theorem

Because (3) and (4) imply (5) and (6), the same argument in Theorem 2 shows that the latter
two conditions are equivalent to UN ⊆ CoN ≡ Co(Ui, i ∈ N) and UN ∩ Cori

N �= ∅. If both the
individuals and the whole group are assumed to have complete preferences, then both Ui, i ∈ N

and UN are utility rays represented by positive multiples of some utility functions ui, i ∈ N and
uN . That uN ∈ CoN and uN ∩ Cori

N �= ∅ imply that uN can be expressed as weighted sum of
the ui ’s, and that these weights are strictly positive. In this setting, the weights are unique, up
to a positive multiple, if d(u1, u2, . . . , un) = n. This is precisely Harsanyi’s (1955) aggregation
theorem, which is easily derived using our framework of utility cones.

In this paper we shall use the following special case of Theorem 2, which coincides with
Harsanyi’s Theorem for n = 2.

Corollary 3. Let A and B be two disjoint coalitions, and for S ∈ {A,B,A ∪ B}, assume that
�S is complete and has utility uS . Then (3) and (4) hold if and only if �A∪B has utility uA∪B =
λ[(1 − α)uA + αuB ], for some 0 < α < 1 and λ > 0.

2.4. Bilateral agreements

A complete preference for a pair ij is called a bilateral agreement. By setting λ = 1 in Corol-
lary 3 we have that a bilateral agreement �ij has utility uij = (1 − αi,j )ui + αi,j uj , for some
0 < αi,j < 1. Letting δi,j ≡ αi,j /(1 − αi,j ) ∈ (0,∞) we shall prefer to write

uij = (ui + δi,j uj )/(1 + δi,j ). (9)

If d(ui, uj ) = 2, i.e., ui and uj are linearly independent, then δi,j is unique. This single parameter

has the natural interpretation of a “utility comparison rate” between i and j . Note that “ij” is
not an ordered set, but the order of i and j in δi,j matters. In fact, δj,i = 1/δi,j and uij =
(δj,iui + uj )/(1 + δj,i).

The choice of δi,j is exogenous in our model. In fact, it can encompass the idea that different
individuals may have different susceptibilities to satisfaction, as discussed by Harsanyi (1955,
p. 318). Several methods to elicit the value of δi,j are discussed in Baucells and Sarin (2003).
Because we can re-scale the individual utilities, the selection of δi,j = 1 should not be associated
with a “fair” or symmetric pair agreement (Dhillon and Mertens, 1999; Karni, 2003; Sobel,
2001).

Of course, the assumption of a complete pair agreement, with its representation by a single
utility comparison rate, is a strong assumption. Our framework allows for a natural relaxation
of this assumption in which an incomplete pair agreement �ij is represented by an interval

[δ�
i,j , δ

h
i,j ] of utility comparison rates. If the pair just accepts unanimity as the basis to form

is relatively internal to CoA,B if for all u ∈ CoA,B there is a u′ such that u∗ = (1 − α)u + αu′ for some 0 < α < 1.
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pair preferences, then δ�
i,j = 0 and δh

i,j = ∞. In general, one would hope for an intermediate

resolution where 0 < δ�
i,j � δh

i,j < ∞.

2.5. Three individuals and “no arbitrage” in utility comparison rates

To visualize the restrictions that EPR imposes on preferences consider a special case with
m = 3, which would be the case if there are just four pure prospects, and n = 3. Assume
d(u1, u2, u3) = 3 and let W be the plane in R

3 containing the points u1, u2, and u3. These
points can be pictured as the intersection of W with the rays Ui , with the origin (0,0,0) not
in W . For i �= j , if �ij is some incomplete preference, then the intersection of the utility cone
Uij with W is a closed line segment contained in uiuj (the line segment between ui and uj ). In
Fig. 1 we abuse notation and use US to indicate such intersections.

By applying EPR to all the partitions of 123 we obtain

U123 ⊆ Û123 ≡ Co(U1 ∪ U23) ∩ Co(U2 ∪ U13) ∩ Co(U3 ∪ U12). (10)

If the pair preferences coincide with the Paretian preference, then U
p

ij
∩ W is just the closed line

segment uiuj and (10) does not restrict U123 ∩ W . However, if the pair preferences are more
nearly complete, then Uij ∩ W is strictly contained in uiuj and (10) begins to be very effective

in restricting Û123, and hence �123. In particular, if Û123 ∩ W were a point, then �123 would
necessarily be complete. But notice that �123 has to be complete if �12 and �23 are complete.
Applying (10), the utility rays associated with u23 and u12, along with u1, u3, determine a unique
utility ray U123 represented by u123, the intersection of u1u23 and u12u3. Thus, a complete pref-
erence �123 emerges from two bilateral agreements.

Figure 2 illustrates this fact, and it also reveals that U13 has to include the utility labeled as
u13, the intersection of the line segment u1u3 and the extension of u2u123; otherwise U123 ⊆
Co(U2 ∪ U13) fails. If �13 were a complete preference, then u13 ∈ U13 would be the unique
utility candidate consistent with EPR.

If the bilateral agreement between 1 and 3 were not to contain u13, then EPR would not hold.
Specifically, one could find prospects x and y such that x �2 y and x �13 y, but the coalition 123
would not weakly prefer x over y. This generalizes the violation of the Pareto rule that occurs if
U12 were not contained in Co(U1 ∪ U2).

To illustrate with an example this violation, suppose I am a junior professor who is “bad” at
negotiating with superiors, but “good” at negotiating with equals. In our terminology, this means
that the utility of a pair containing me and any one of my superiors is close to my superior’s

Fig. 1. Geometrical illustration of EPR. U123 must lie within Û123.
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Fig. 2. Given u12 and u23, �123 is complete and δ1,3 = δ1,2δ2,3.

utility; and the utility of a pair in which there is me and another junior is close to my utility. We
also suppose that everybody else is such that the utility of a two person coalition is the average
utility. Then, the arbitrage condition does not hold, and neither does EPR.

The location of u13 in the geometrical construction of Fig. 2 has an interesting “no arbitrage”
property. Let δ1,2 and δ2,3 be the utility comparison rates of the bilateral agreements �12 and
�23, respectively. If δ1,2 “utils” of individual 1 are comparable to one “util” of individual 2;
and δ2,3 “utils” of individual 2 are comparable to one “util” of individual 3, then it should the
case that δ1,2δ2,3 “utils” of individual 1 are comparable to one “util” of individual 3. Similar to
“no arbitrage” in currency exchange rates, the natural utility comparison rate between 1 and 3
is δ1,3 = δ1,2δ2,3. This indeed holds for the δ1,3 associated with u13, since this equality is well
known, mostly in its symmetric form δ1,2δ2,3δ3,1 = 1, as Ceva’s Theorem (Brannan et al., 1999,
pp. 75–76).

Lemma 7 in Appendix A formalizes the results of this sub-section. In summary, we begin
with bilateral agreements �12 and �23 with utility comparison rates δ1,2 and δ2,3 that determine
u12 and u23. Next, we let δ1,3 ≡ δ1,2δ2,3. Then, under some non-degeneracy conditions, �123
is complete and has utility u123 = (u1 + δ1,2u2 + δ1,3u3)/(1 + δ1,2 + δ1,3). Moreover, if u2 /∈
Sp(u1, u3), then u13 ∈ U13, so that if �13 is complete, then it necessarily has utility u13 = (u1 +
δ1,3u3)/(1 + δ1,3).

3. The case of n individuals: a utility comparison system

To generalize the previous construction to more than three individuals requires at least one
comparison channel between each pair of individuals. If we view the individuals as the nodes
of a graph and the bilateral agreements as the edges, then this requirement means a connected
graph. The “no arbitrage” condition indicates that a chain of bilateral agreements that “cycles”
(starts and finishes in the same individual) contains redundancies. Therefore, if individuals are
seen as nodes and bilateral agreements as edges of a graph, what is needed is a set of edges that
form a connected and acyclic graph, i.e., a spanning tree. We now proceed to show that, for a
given spanning tree of bilateral agreements, the preferences of certain “connected” coalitions are
complete.

To formalize this, we begin by introducing some definitions. An (undirected) graph is pair
(N,G), where G is a collection of two-member coalitions of N . If ij ∈ G, then we say that
i is adjacent to j in (N,G). Individual i is connected to individual j �= i in (N,G) if there
is a sequence of individuals (i = i1, i2, . . . , ik = j) in N such that ir ir+1 ∈ G for every r ∈
{1, . . . , k − 1}. Any such sequence is called a path in (N,G); it is a simple path iff no individual
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is repeated. T is a spanning tree of N iff there is a unique simple path in (N,T ) connecting any
individual to any other individual. It follows that T contains precisely n − 1 pairs. We use T
instead of G whenever T is a spanning tree of N .

Equipped with a spanning tree T , and the respective utility comparison rates between ordered
pairs in T , we propose the appropriate weights to determine the utilities for coalitions. We chose
an arbitrary “numeraire” individual, say i = 1, as the “root” of the tree. Define λ1 ≡ 1, and for
j �= 1, if (1 = i1, i2, . . . , ik = j) is the unique simple path from 1 to j in T , then let

λj ≡
k∏

r=1

δir−1,ir . (11)

A moment’s reflection reveals that a different choice of numeraire, say i∗ �= 1, would produce
weights λj/λi∗ , j ∈ N . Because the utility representation of �S that we are seeking is uS ≡
(
∑

i∈S λiui)/(
∑

i∈S λi), the choice of numeraire is immaterial.
Given a spanning tree T of N , we say that S is connected in T if TS ≡ {ij ∈ T : i, j ∈ S} is a

spanning tree of S. Let C denote the collection of connected coalitions in T . Singleton coalitions
are always connected; a pair ij is connected if and only if ij ∈ T . Although the number of
connected coalitions will depend on the form of T ,9 the grand coalition N is always connected.

Certain non-degeneracy conditions are required for the aggregation procedure to work. In
addition to bilateral agreements, we will need that all triplets have independent utility functions.
We say that T is non-degenerate if d(ui, uj , uk) = 3 for any ijk ∈ C; and N is non-degenerate if

d(ui, uj , uk) = 3 for any ijk ⊆ N . Of course, if N is non-degenerate, then so is any spanning tree
of N . Note that we need m � 3 to have non-degeneracy, and that for any such m, non-degeneracy
is a “generic” property. This condition is much weaker than the Independent Prospects condition
implicit in Harsanyi’s aggregation theorem.10

Theorem 4. Assume n− 1 pairs of individuals reach bilateral agreements δi,j , for ij ∈ T , where
T is a non-degenerate spanning tree of N . Use δi,j in (11) to calculate (λ1, . . . , λn). If the
Extended Pareto Rule holds, then (a) for all S ∈ C, �S is complete and has utility

uS ≡
(∑

i∈S

λiui

)/(∑
i∈S

λi

)
. (12)

Moreover, (b) for all ik ⊆ N, uik ∈ Uik , so that if �ik is complete, then it necessarily has util-
ity uik .

9 Consider the two extreme examples: a line tree T � = {{i − 1, i}: i = 2, . . . , n}, and a star tree T ∗ = {{1, i}: i =
2, . . . , n}. In T � there are n(n + 1)/2 connected coalitions, which is small with respect to 2n − 1, the total number of
non-empty coalitions. In T ∗, in addition to the singletons, a coalition is connected iff it contains 1, and there are 2n−1 −1
such non-empty coalitions, yielding 2n−1 +n−1 connected coalitions. The fraction of connected coalitions tends to 1/2
as n increases.
The number of spanning trees, by Cayley’s formula, is nn−2.
10 Independent Prospects demands that for all distinct i, j, k ∈ N , there exist prospects x, y ∈ M such that x �i y,
y �j x, and x ∼k y. This amounts to demanding d(u1, u2, . . . , un) = n, which can hold only if m � n. In particular,
the example where M is a list of m + 1 public projects cannot be handled under Harsanyi unless m � n. Here, we just
require Independent Prospects for triples of individuals, which can be satisfied when m � 3. For more on the Independent
Prospects condition, see Weymark (1991).
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It is clear from Theorem 4 that if all pairs have complete preferences, and N is non-degenerate,
then all coalitions will also have complete preferences. This establishes claim A using minimal
premises regarding linear independence. Of course, the weights or utility comparison rates can
be calculated as before using any chosen spanning tree. Moreover, the choice of spanning tree is
immaterial.11

One would expect the (b) part of the theorem to hold for all coalitions, and not just pairs.
However, an example can be devised so that under the assumptions of Theorem 4, uS /∈ US for
some S /∈ C. Such examples are pathological, in the sense that uS ∈ US for all S /∈ C is a generic
property.

4. Discussion

An interesting observation is that the utility comparison rates can be extended to coalitions.
Thus, δA,B ≡ (

∑
i∈B λi)/(

∑
i∈A λi) is the utility comparison rate between coalition A and B so

that uA∪B = (uA + δA,BuB)/(1 + δA,B). This fact is verified in the proof of Lemma 8.
Having the weights λi invites us to modify the scales of the corresponding utilities uS so as to

drive all the utility comparison rates to 1. Such an additive representation is readily obtainable if
we set, for all S ⊆ N , ûS ≡ (

∑
i∈S λi)uS . It follows that for any two disjoint coalitions A and B ,

ûA∪B = ûA + ûB , and so ûS = ∑
i∈S ûi . Recall that individual 1 was chosen as a numeraire

to compute the individual weights λi in (11). As a consequence, the additive representation ex-
presses all the utilities in the units of individual 1. If we want to use the utility units of some
other individual i∗ �= 1, it suffices to re-scale each uS by the factor δi∗,1 = 1/λi∗ .

4.1. Four individuals and Desargues’ theorem

In the same way that the Extended Pareto Rule construction of Section 2.5 was connected with
Ceva’s theorem, the case of four individuals is connected to another classical result in geometry.
For expository purposes we maintain the affine plane W as in Fig. 2 with m = 3 prospect dimen-
sions and n = 4 individuals. The fourth individual has utility u4 ∈ W such that d(u2, u3, u4) = 3
(see Fig. 3). Let T = {12,23,34} be the spanning tree of bilateral agreements.

Using our “no arbitrage” construction of Section 2.5 with u2, u3, u4, δ2,3, and δ3,4 produces
a complete preference �234, with u234 as the intersection of u2u34 and u23u4. Because we have
complete preferences for �123, we obtain a complete preference �1234 with u1234 given by the
intersection of u123u4 and u1u234. However, there is a third segment available, namely u12u34.
Moreover, the two applications of the “no arbitrage” construction yield u13 ∈ U13 and u24 ∈ U24.
Consequently, if �13 and �24 were complete, then the segment u13u24 would also be avail-
able. But notice that it is impossible to have consistent and complete preferences unless these
four segments are concurrent, i.e., they have a common point of intersection. This difficulty
can be addressed in geometric terms by means of Desargues’ theorem (Field and Gray, 1997,
pp. 130–131).

11 To verify that uS does not depend on the choice of spanning tree suffices to check that if λ̂i and λi are the
weights computed as in (11) using spanning trees T̂ and T , then λ̂i = λi . Clearly λ̂1 = λ1 = 1, and for i �= 1,
let (1 = i1, i2, . . . , i� = i) be the unique path between 1 and i in T̂ . By Theorem 4b, all pairs ir−1ir ∈ T̂ have
complete preferences with utilities u

ir−1ir
= (λir−1u

ir−1 + λir uir
)/(λir−1 + λir ). Thus, δir−1,ir = λir /λir−1 and

λ̂i = ∏�
r=1 δir−1,ir = ∏�

r=1(λir /λir−1 ) = λi .
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Fig. 3. Desargues’ theorem.

Theorem 5 (Desargues 1648). Let pi and qi , for i = 1,2,3, be two sets of points in a vector
space satisfying pi �= qi (i = 1,2,3), and that the lines pipj and qiqj meet at sij , 1 � i < j � 3.
Then, the three lines defined by the points piqi , i = 1,2,3 are concurrent if and only if the three
points sij , 1 � i < j � 3, are collinear.

Figure 3 represents Desargues’ theorem as applied to

p1 = u1 p2 = u12 p3 = u123
q1 = u234 q2 = u34 q3 = u4

}
⇒ s12 = u2 s13 = u23 s23 = u3.

By EPR, s13 ∈ s12s23 so that the line segments u1u234, u12u34, and u123u4 are concurrent and
u1234 is well defined. To see that u1234 ∈ u13u24, declare p′

2 = u13 and q ′
2 = u24, and maintain

the other four points. The desired conclusion follows from s′
13 = u23 ∈ u3u2 = s′

12s
′
23.12

4.2. Individuals with trivial preferences

Individuals with trivial preferences, i.e., ui = 0, find all pairs of prospects indifferent. These
individuals can be included in the formulation, provided the following precaution is considered:
if N∗ is the coalition of individuals with non-trivial preferences, then choose T in Theorem 4 so
that N∗ ∈ C and TN∗ is non-degenerate.

Both claims are verified by observing that Lemma 7 holds if u1 = 0 and u2 �= 0, or if u1 =
u2 = 0. However, Lemma 7 fails if u1 �= 0, u3 �= 0, and u2 = 0.

4.3. Trivial group preferences, stability and Minimal Consensus

Theorem 4 encompasses the curious case where the group (or some coalition) exhibits total
indifference while the individuals have non-trivial preferences.

12 For the use of Desargues’ theorem with larger coalitions, consider three lines given by uAi
uS\Ai

, i ∈ {1,2,3}. For
1 � i < j � 3, suppose that Ai ⊂ Aj , and that coalitions Ai , S\Ai , Aj \Ai have complete preferences. Then, letting
pi = Ai and qi = S\Ai , produces sij = Aj \Ai . That s13 ∈ s12s23 follows from A3\A1 = (A2\A1) ∪ (A3\A2) and
EPR.
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Example 6. Let N be non-degenerate. EPR is consistent with trivial preferences for some S ⊆ N .
Let m = 3, N = {1,2,3,4,5}, and individual utilities given by u1 = (0,2,0), u2 = (2,0,0)

u3 = (−1,−1,1), u4 = (−1,−1,−1), and u5 = (−1,0,0). Let T = {12,23,34,45} and
δi,j = 1, 1 � i < j � 5, so that uS = (

∑
i∈S ui)/|S|. It follows that u1234 = 0 and u12345 =

u5/5 �= 0. To determine �1234, observe that any partition {A,B,C} of 1234 satisfies (19), but
exhibits d(uA,uB,uC) < 3. This shows that EPR is compatible with a trivial �1234. The proof
of Theorem 4 shows that u1234 = 0 is not a problem to establish that N has complete preferences
with utility u12345.

When uS = 0, the preference �S is extremely unstable. Had some individual utility been
slightly different, say u′

i
= ui + u, for some u �= 0, then the corresponding group preference

would have had utility u′
S = u. However, the choice u′′

i
= ui − u would produce u′′

S = −u, i.e.,
exactly the opposite preference. This unstable behavior is ruled out by imposing the condition of
Minimal Consensus: there exist two prospects x, y ∈ M such that for all i ∈ N , x �i y. Clearly,
Minimal Consensus and (4) imply x �S y, and no coalition has a trivial preference.

4.4. Continuity under Minimal Consensus

Non-degeneracy of N is a “generic” property whenever m � 3, i.e., it holds for an open
dense set in the space R

mn of individual profiles (ui)i∈N . Intuitively, if we choose n utilities at
random from R

m, then the probability that any three of them are linearly dependent is zero. This
observation suggests extending our results to degenerate individual profiles by using continuity.

Suppose that (ui)i∈N is a degenerate individual profile, i.e., the non-degeneracy condition of
Theorem 4 is not met. Fix n − 1 bilateral agreements forming a spanning tree. If m � 3, one
can construct a sequence (ui,k)i∈N of non-degenerate individual profiles, and use Theorem 4 to
find a sequence of (uS,k)S⊆N , with uS,k given by the n − 1 bilateral agreements and (12). By
continuity, if (ui,k)i∈N → (ui)i∈N , then (uS,k)S⊆N → (uS)S⊆N , where uS are the utilities cal-
culated using (ui)i∈N , the bilateral agreements, and (12). In summary, this continuity argument
extends Theorem 4 to degenerate domains, provided that we are willing to accept the following
Continuity Condition:

If �S,k is complete and uS,k → uS, then �S is complete and has utility uS.

The Continuity Condition is meaningful whenever uS �= 0. If uS �= 0 and uS,k → uS , then the
domination cone Dk associated with uS,k approaches DS , the domination cone associated with
uS . This means that if x �S y, then there is some k0 such that x �S,k y for all k � k0. However, if
uS = 0, then the sequence uS,k = u/k, for some u �= 0 satisfies uS,k → uS , but �S,k is the non-
trivial preference with utility u, whereas �S is trivial. Thus, �S,k does not converge to �S in
terms of preference. 13 Under Minimal Consensus there are no coalition with trivial preferences,
uS �= 0 for all S, and this assures that the continuity condition is meaningful.

13 It is illustrative to examine the corresponding preference cones: the preference cones of �S,k are identical to the
half space with normal u �= 0, but this sequence of cones does not converge to R

m, the preference cone of the trivial
preference �S .



M. Baucells, L.S. Shapley / Games and Economic Behavior 62 (2008) 329–347 341
4.5. Masters and servants

It is interesting to explore a variation of the strong condition (4) in EPR, in which individuals
are treated in an asymmetric way. An example will be illustrative. Let N = {1,2,3,4} and T =
{12,23,34}. We still impose the weak condition (3) in EPR to all disjoint coalitions, but now
reserve the strong condition (4) to certain pairs of individuals as follows: if 1 � i < j � 4, then

for all x, y ∈M, x �i y, x �j y ⇒ x �ij y. (13)

Compared to (4), (13) imposes less restrictions on the pair preference uij . For example, i < j ,
x �j y, and x �i y, we now can have x ∼ij y. This means that δi,j = 0 and uij = ui is possible,
i.e., i may prevail over j in the bilateral agreement �ij . We may think of i as a master and j as
i’s servant. For example, let δ2,3 = 0 and δi,j = 1 for all other pairs in T so that 2 dominates 3.
Noting that Lemma 7 encompasses u23 = u2 whenever u34 �= u4, we find that EPR produces that
both 1 and 2 dominate 3 and 4. Thus, if we require completeness of the pair preference, then we
obtain that EPR implies the following utilities

u13 = u14 = u134 = u1,

u23 = u24 = u234 = u2, and
u123 = u124 = u1234 = u12.

Taking i = 1 as numeraire, Formula (11) gives λ1 = λ2 = 1 and λ3 = λ4 = 0, which produces the
correct utilities for all coalitions except for u34 = (u3 + u4)/2 �= 0. This calls for the following
modification in the procedure to compute a given uS . First, choose a numeraire individual in S

who is undominated in S, and compute λi,S as in (11) for all i ∈ S. Then, (11) yields

uS ≡
(∑

i∈S

λi,Sui

)/(∑
i∈S

λi,S

)
. (14)

The example could be extended as follows. First we establish a relation of dominance between
pairs of individuals, assumed irreflexive and acyclic. Then we impose (13) to all pairs i and j

such that i dominate j . The application of EPR after assuming complete preferences for all the
pairs produces complete preferences for all coalitions, with utilities computed as in (14). The
set of individuals divides itself in hierarchical classes of masters and servants, with λi,S = 0 if S

contains some individual whose class is higher than i’s, and λi,S > 0 otherwise.

5. Conclusions and extensions

Our theory naturally leads to an interpretation of preference aggregation as a process that
begins at the individual level, where complete orderings are assumed. If we recognize the ability
of pairs to form complete pair orderings, i.e., establish terms of utility comparison, then EPR
dictates consistency conditions that build complete orderings from smaller coalitions to larger
coalitions. Consequently, we discover that once the problem of welfare comparisons is resolved
at a pair level, then it is resolved for the group at large.14

We assumed a finite-dimensional prospect space for reasons for simplicity. The extension
to infinite-dimensional spaces is quite direct, if we bear in mind that the preliminary section

14 See Elster and Roemer (1991) for a collection of articles that discuss the problem of interpersonal comparisons of
welfare, and also Shapley (1988).
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of Shapley and Baucells (1998) articulates the theory of incomplete preferences in such large
spaces. One also imagines the extension to countably many individuals once the natural defi-
nitions using limits are in place. More challenging seems the extension to uncountable many
non-atomic individuals, as Aumann and Shapley (1974) accomplished in the context of cooper-
ative game theory.

Regarding the interpretation of cardinal utility as representing preferences over lotteries,
Shapley and Shubik (1982) and Shapley (1975) emphasizes the ability of a cardinal utility scale
to represent strength or intensity of preference.15 In any case, cardinality of the group preference
then gives us the possibility of aggregating and averaging individual intensities of preference.
Thus, it is convenient to develop the theory of incomplete strength of preference. With this in
mind, one could introduce a quarternary relation, (x, y)1 �12 (z,w)2, as the basis to express
interpersonal comparisons of strength of preference. Such a relation could be incomplete, and
hopefully represented by a cone of utility functions. Thus, a cardinal framework for group utility
could be obtained without involving lotteries.

We have provided a result under minimal conditions. If one is willing to assume that individual
utilities are linearly independent, then the proof of Theorem 4 can be shortened, and embedded
in a more general result (Baucells and Shapley, 2007).

Two further papers are planned. In the first, we use the current framework, that encompasses
both complete and incomplete group preferences, and consider pair agreements that exhibit some
degree of incompleteness. The Extended Pareto Rule then determines an incomplete group pref-
erence, but not as incomplete as the preference derived from the usual Pareto rule. We attempt
to measure the degree of incompleteness of such partial orderings by introducing an invariant
measure on the interior of any given simplicial “conic section” of the cone of utility functions—
invariant, that is, under the group of all projective transformations that hold fixed the vertices of
the given simplex. Then, we explore how the degree of incompleteness in the pair-preferences
restricts the incompleteness of the group preference. This enables us to study the convergence of
incomplete preferences to complete preferences as n grows, exploiting the very rapid growth of
the number of partitions of N .

In the second paper we will further develop the more general non-cardinal approach described
in claim A of the Introduction. As illustrated in a three-individual example in Shapley and Shu-
bik (1982, p. 66), a complete group preference is derived from two pair preferences and the
Extended Pareto Rule, both the individual and social preferences being expressed by means of
ordinal utilities. Thus, our cardinal setting appears as a special framework to illustrate a more
general phenomenon. While the cardinal setting allows us to use a convenient representation of
incomplete preferences in terms of convex cones, the ordinal extension seems to require a to-
tally different conceptual machinery. This, we hope, will shed light on the aggregation procedure
leading to non-linear welfare functions.
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Appendix A

Proof of Theorem 2. By the definition of preference cone, (3)is equivalent to DA∩DB ⊆ DA∪B ;
and by the properties of polar cones (Rockafellar, 1970, pp. 125 and 150), DA ∩ DB ⊆ DA∪B ⇔
D∗

A∪B ⊆ (DA ∩ DB)∗ = Co(D∗
A,D∗

B) = (D∗
A ∪ D∗

B)∗∗. Because (·)∗∗ is the closure of the set of
positive multiples of convex combinations of a given set, and (D∗

A ∪D∗
B) is already a closed cone,

we have that (D∗
A ∪D∗

B)∗∗ = Co(D∗
A ∪D∗

B), whence (3) is equivalent to D∗
A∪B ⊆ Co(D∗

A ∪D∗
B).

A moment’s reflection reveals that this last inclusion, together with the condition

If UA∪B = {0}, then 0 ∈ CoA,B, (15)

is equivalent to (7). But (4) implies (15). Thus, if 0 /∈ CoA,B , then CoA,B is a pointed cone, i.e.,
both �A and �B contain strict preferences, so that �A∪B also contains strict preferences and
UA∪B �= {0}. Consequently, [(3), (4)⇒(7)], and [(7)⇒(3)].

[(3), (4)⇒(8)] Suppose that (8) fails so that UA∪B ⊆ CoA,B\Cori
A,B . We enlarge CoA,B and

define the full dimensional cone KA,B = CoA,B × Sp(CoA,B)⊥, which is the Cartesian prod-
uct of CoA,B with the subspace orthonormal to Sp(CoA,B). Of course, Cori

A,B is contained in
the interior of KA,B . Because UA∪B is convex and contained in the boundary of CoA,B , it has
dimension strictly less than that of CoA,B and KA,B . It follows that there is a hyperplane H con-
taining UA∪B and supporting KA,B . Full dimensionality ensures that H does not intersect the
interior of KA,B . Thus, H supports CoA,B and does not intersect Cori

A,B . If x −y is some normal
vector of H , then u(x − y) = 0 for all u ∈ UA∪B , and u(x − y) � 0 for all u ∈ CoA,B . Because
CoA,B is non-empty, Cori

A,B is non-empty: there is a u ∈ CoA,B such that u(x − y) > 0, and we
can find one such u in either UA or UB , say UA. Thus, x �A y and x �B y, but x ∼A∪B y, a
contradiction of (4).

[(7), (8)⇒(4)] If for some x, y ∈M, x �A y and x �B y, then u(x−y) � 0 for all u ∈ CoA,B ,
and uA(x−y) > 0 for some uA ∈ UA. By (8), let u∗ ∈ UA∪B ∩Cori

A,B so that for some u′ ∈ CoA,B

and α ∈ (0,1), u∗ = (1 − α)uA + αu′. By (7) and the argument above u(x − y) � 0 for all
u ∈ UA∪B , and u∗(x − y) > 0, showing that x �A∪B y. �

In order to prove Theorem 4 we need two lemmas. The first is basically Ceva’s theorem
under minimal assumptions of degeneracy. Indeed, degeneracies may preclude the aggregation
procedure discussed for the n = 3 individual case. For example, if u1, u2, and u3 are collinear,
then the segments u1u23 and u12u3 are parallel and the procedure does not work. The following
lemma requires a condition weaker than d(u1, u2, u3) = 3.

Lemma 7. Assume that EPR holds, and consider bilateral agreements �12 and �23 with utility
comparison rates δ1,2 and δ2,3 that determine u12 and u23. Let δ1,3 ≡ δ1,2δ2,3.

(a) If either u1 /∈ Sp(u3, u12) or u3 /∈ Sp(u1, u23), then �123 is complete and has utility u123 =
(u + δ1,2u + δ1,3u )/(1 + δ1,2 + δ1,3).
1 2 3
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(b) If, moreover, u2 /∈ Sp(u1, u3), then u13 ∈ U13, so that if �13 is complete, then it necessarily
has utility u13 = (u1 + δ1,3u3)/(1 + δ1,3).

Proof of Proposition 7. (a) By (7), for any u∗ ∈ U123 there are α,β ∈ [0,1] and λα,λβ > 0 such
that

λα

[
(1 − α)u1 + αu23

] = u∗ = λβ

[
(1 − β)u12 + βu3

]
. (16)

From the definitions of u12 and u23, u12 = {u1 + δ1,2[u23 + δ2,3(u23 − u3)]}/(1 + δ1,2). Sub-
stituting this expression in the right-hand side of (16) produces an expression involving only
u1, u23, u3. Because u3 /∈ Sp(u1, u23) (in particular u3 �= 0), we equate the coefficients of u3
in the modified expression (16) to conclude that β = δ1,3/(1 + δ1,2 + δ1,3). Replacing β and
u12 = (u1 + δ1,2u2)/(1 + δ1,2) in the right-hand side of (16) yields u∗ = λβu123. We can con-
struct a similar argument if u1 /∈ Sp(u3, u12) by replacing u23 for an expression that involves u3,
u12, and u1. Thus, �123 has utility u123 and (a) follows.

(b) Let �13 be complete with utility u∗∗. By Corollary 3, there is some α′ ∈ (0,1) and λ′
α > 0

such that u123 = λ′
α[(1 − α′)u2 + α′u∗∗]; similarly, some β ′ ∈ (0,1) and λ′

β > 0 such that u∗∗ =
λ′

β [(1 − β ′)u1 + β ′u3]. Thus,

λ′
α

[
(1 − α′)u2 + α′λ′

β

[
(1 − β ′)u1 + β ′u3

]] = u123 = u1 + δ1,2u2 + δ1,3u3

1 + δ1,2 + δ1,3
. (17)

That u2 /∈ Sp(u1, u3) implies λ′
α(1 − α′) = δ1,2/(1 + δ1,2 + δ1,3) and λ′

αα′u∗∗ = (u1 +
δ1,3u3)/(1 + δ1,2 + δ1,3) = u13. Because α′, λ′

α > 0, if �13 is complete, then it has utility u13.
Upon reflection, this is equivalent to u13 ∈ U13. �

Next, we generalize Lemma 7 as follows:

Lemma 8. For some collection of weights (λ1, . . . , λn) > 0, consider the utility functions uT =
(
∑

i∈T λiui)/(
∑

i∈T λi), for T ⊆ N . Let A,B,C be disjoint coalitions and S = A ∪ B ∪ C. The
following are consequences of the EPR.

(a) Suppose uA /∈ Sp(uC,uA∪B) [or uC /∈ Sp(uA,uB∪C)]. For T ∈ {A,C,A ∪ C,B ∪ C}, if
�T is complete and has utility uT , then �S is complete and has utility uS .

(b) Suppose uB /∈ Sp(uA,uC). For T ∈ {A,B,C,S}, if �T is complete and has utility uT ,
then uA∪C ∈ UA∪C , i.e., if �A∪C is complete, then it has utility uA∪C .

Proof. To see that the utility comparison rates between two disjoint coalitions A and B is δA,B ≡
(
∑

i∈B λi)/(
∑

i∈A λi), consider

uA∪B =
∑

i∈A λiui + ∑
i∈B λiui∑

i∈A∪B λi

= (
∑

i∈A λi)uA + (
∑

i∈B λi)uB∑
i∈A∪B λi

= uA + δA,BuB

1 + δA,B

.

(18)

The result then follows from Proposition 7 by using uA, uB , uC , δA,B , and δB,C in place of
u1, u2, u3, δ1,2, and δ2,3; and checking that (uA + δA,BuB + δA,CuC)/(1 + δA,B + δA,C) =
(
∑

i∈S λiui)/(
∑

i∈S λi) = uS . �
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Proof of Theorem 4. (a) If C is the collection of connected coalitions in T , let Cr indicate
the connected coalitions of size r . We claim that for r � 3 and S ∈ Cr , then there is a partition
{A,B,C} of S such that {A,C,A ∪ B,B ∪ C} ⊆ C and16

uA /∈ Sp(uC,uA∪B) and uC /∈ Sp(uA,uB∪C). (20)

The result easily follows from the claim. If S ∈ C3, then the partition of S given by the claim
has its elements in C1 ∪ C2. Because �T is complete and has utility uT for all T ∈ C1 ∪ C2,
Lemma 8(a) establishes this property for �S . Similarly, once this is established for all T ∈ C�,
� < r , then it also holds for all S ∈ Cr ; the partition {A,B,C} of S given by the claim has its
members in C�, � < r , and (20) allow us to apply Lemma 8(a).

We establish the claim by induction. For r = 3, let ijk ∈ C3 and define the partition
{A,B,C} = {i, j , k} of ijk, so that {i, k, ij , jk} ⊆ C. T non-degenerate guarantees (20).

For r � 4, assume that the claim is true for all the coalitions in C�, � < r . If degeneracies were
not a problem, the proof would be as follows. If S ∈ Cr and i ∈ S is a terminal node of S,17 then
S\i ∈ Cr−1. Let {Ã, B̃, C̃} be the partition of S\i given by induction, and j the unique adjacent
of i in S\i. The partition {A,B,C} of S is defined as follows: if j ∈ Ã, then use {Ã ∪ i, B̃, C̃};
if j ∈ B̃ , then use {Ã, B̃ ∪ i, C̃}; and if j ∈ C̃, then use {Ã, B̃, C̃ ∪ i}. One observes that {A,C,

A ∪ B,B ∪ C} ⊆ C in all three cases. However, condition (20) may fail if d(uA,uB,uC) < 3.
The remedy consist of first replacing the terminal node i by a connected coalition R ∈ C1 ∪ C2

such that S\R ∈ C and uS\R �= 0. If {Ã, B̃, C̃} is the partition of S\R given by induction, we
ensure condition (20) by choosing which two coalitions to “glue” from {Ã, B̃, C̃,R} to produce
the partition {A,B,C} of S.

To find R, let j be the node with a maximal number t (j) of terminal adjacent nodes in Cr .
If t (j) = 1, then let i be this terminal node and define R = i if uS\i �= 0, and R = ij otherwise
(because λjuj �= 0, uS\ij �= 0). If t (j) � 2, let i and k be two terminal adjacent nodes of j

and define R = i if uS\i �= 0, and R = k otherwise (if uS\i = 0, then d(ui, uj , uk) = 3 implies
uS\k �= 0). Thus, R ∈ C, S\R ∈ C� for some � � 3 (note that when r = 4, a non-degenerate T
guarantees that R = i and S\R ∈ C3), and uS\R �= 0. By induction, let {Ã, B̃, C̃} be the partition
of S\R satisfying the claim. Because of the symmetric role of Ã and C̃, we can assume without
loss of generality that either R ∪ Ã ∈ C or R ∪ B̃ ∈ C and define the partition {A,B,C} of S as
follows:

R ∪ Ã ∈ C A B C Case
(1) R Ã B̃ ∪ C̃ if u

C̃
∈ Sp(u

Ã∪R
,u

B̃∪C̃
)

(2) R Ã ∪ B̃ C̃ if u
Ã∪R

∈ Sp(u
C̃
, u

Ã∪B̃∪R
)

(3) C̃ B̃ Ã ∪ R otherwise.

16 If Minimal Consensus holds, then we can replace (20) by d(uA,uB,uC) = 3. To see this, notice that condition (20)
holds if either d(uA,uB,uC) = 3 or

uA = −γ uB∪C �= 0 and uC = −γ ′uA∪B �= 0, for some γ, γ ′ > 0. (19)

But Minimal Consensus rules out (19).
17 An individual i ∈ S is terminal in a connected coalition S if there is only one j ∈ S such that ij ∈ TS .
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R ∪ B̃ ∈ C A B C Case
(4) R B̃ ∪ C̃ Ã if u

C̃
∈ Sp(u

Ã
, u

B̃∪C̃∪R
)

(5) R Ã ∪ B̃ C̃ if u
Ã

∈ Sp(u
C̃
, u

Ã∪B̃∪R
)

(6) Ã B̃ ∪ R C̃ otherwise.

Upon examination one confirms that {A,C,A ∪ B,B ∪ C} ⊆ C holds in all six cases. By
construction, (20) holds in cases (3) and (6). We now give the details showing that (20) holds
in (1), i.e., that uR /∈ Sp(u

B̃∪C̃
, u

Ã∪R
) and u

B̃∪C̃
/∈ Sp(uR,uS\R). An adaptation of the same

argument establishes cases (2), (4) and (5). Recall that by the inductive hypotheses given by (20),
both u

Ã
/∈ Sp(u

C̃
, u

Ã∪B̃
) and u

C̃
/∈ Sp(u

Ã
, u

B̃∪C̃
).

If (1) applies, then u
C̃

∈ Sp(u
Ã∪R

,u
B̃∪C̃

) (see Fig. 4), and so u
C̃

= αu
Ã∪R

+βu
B̃∪C̃

for some
α and β . That u

C̃
/∈ Sp(u

Ã
, u

B̃∪C̃
) rules out α = 0, and using u

Ã∪R
= (uR + δ

R,Ã
u

Ã
)/(1+ δ

R,Ã
)

as in (18) we write

uR = (1 + δ
R,Ã

)(u
C̃

− βu
B̃∪C̃

t)/α − δ
R,Ã

u
Ã
. (21)

Also, u
Ã

/∈ Sp(u
C̃
, u

Ã∪B̃
) is incompatible with u

B̃∪C̃
= −γ u

Ã
, for some γ � 0. Otherwise,

we write (1 + δ
Ã,B̃∪C̃

)uS\R = u
Ã

+ δ
Ã,B̃∪C̃

u
B̃∪C̃

= u
Ã
(1 − γ δ

Ã,B̃∪C̃
). uS\R �= 0 implies

γ δ
Ã,B̃∪C̃

�= 1 and u
Ã

∈ Sp(uS\R). This, coupled with US\R ⊆ Co(u
C̃
, u

Ã∪B̃
) contradicts u

Ã
/∈

Sp(u
C̃
, u

Ã∪B̃
).

Now, assume that uR ∈ Sp(u
B̃∪C̃

, u
Ã∪R

) so that uR = α1uB̃∪C̃
+ β1(uR + δ

R,Ã
u

Ã
) for some

α1, β1. If β1 �= 1, then use (21) to eliminate uR and obtain u
C̃

∈ Sp(u
Ã
, u

B̃∪C̃
), a contradiction.

If β1 = 1, then u
B̃∪C̃

= −δ
R,Ã

u
Ã
/α1, contradicting u

Ã
/∈ Sp(u

C̃
, u

Ã∪B̃
).

Similarly, assume that u
B̃∪C̃

∈ Sp(uR,uS\R), so that u
B̃∪C̃

= α2uR + β2(uÃ
+ δ

Ã,B̃∪C̃
u

B̃∪C̃
)

for some α2, β2. If α2 �= 0, then use (21) to eliminate uR and obtain u
C̃

∈ Sp(u
Ã
, u

B̃∪C̃
), a

contradiction. If α2 = 0, then u
B̃∪C̃

= β2uÃ
/(1 −β2δÃ,B̃∪C̃

), contradicting u
Ã

/∈ Sp(u
C̃
, u

Ã∪B̃
),

provided β2δÃ,B̃∪C̃
�= 1. This same contradiction arises if β2δÃ,B̃∪C̃

= 1 and u
Ã

= 0.

(b) The result is trivial if ik ∈ T . For ik /∈ T , let (i = i1, . . . , i� = k) be the path in T
between i and k, and T = ∪�−1

r=2ir �= ∅. We claim that there is a coalition R ⊆ T such that
R ∈ C, uR /∈ Sp(ui, uk), and uR∪ik ∈ UR∪ik . Indeed, because �R is complete, the result fol-
lows from letting A = i, B = R, and C = k in Lemma 8(b). To establish the claim we define
R as follows. If uT /∈ Sp(ui, uk), then let R = T (this is always the case if � = 3). On the con-
trary, if uT ∈ Sp(ui, uk), then T non-degenerate implies d(ui, ui2

, ui3
) = 3, so that either ui2

/∈
Sp(ui, uk) or ui3

/∈ Sp(ui, uk), the former being always true by T non-degenerate if � = 4. Ac-

cordingly, let R = i2 or R = i2i3 so that T \R �= ∅, uT ∈ Sp(ui, uk), and uR /∈ Sp(ui, uk). Having
(1 + δR,T \R)uT = (uR + δR,T \RuT \R) for some δR,T \R > 0 implies uT \R /∈ Sp(ui, uk). Because
{R ∪ i, T \R,k,T ∪ ik} ⊆ C we use A = R ∪ i, B = T \R, and C = k in Lemma 8(b) to conclude
uR∪ik ∈ UR∪ik .

Fig. 4. Identify A = R, B = Ã, and C = B̃ ∪ C̃ when u
C̃

∈ Sp(u
Ã∪R

,u
B̃∪C̃

).



M. Baucells, L.S. Shapley / Games and Economic Behavior 62 (2008) 329–347 347
Geometrically, uR∪ik is found as the intersection of the line segment uR∪iuk and the half line
uT ∪ikuT \R . Similarly, uik is found as the intersection of the line segment uiuk and the half line
uR∪ikuR . Because uik = (λiui + λkuk)/(λi + λk), the utility comparison rate between i and k is
given by δi,k = λk/λi = ∏�

r=1 δir−1,ir . �
References

Arrow, K.J., 1963. Social Choice and Individual Values. Cowles Found. Monogr., vol. 12. Yale Univ. Press.
Aumann, R.J., 1962. Utility theory without the completeness axiom. Econometrica 30, 445–462; and: A correction,

Econometrica 32 (1964) 210–212.
Aumann, R.J., Shapley, L.S., 1974. Values of Non-Atomic Games. Princeton Univ. Press, Princeton.
Baucells, M., Sarin, R., 2003. Group decisions with multiple criteria. Manage. Sci. 49 (8), 1105–1118.
Baucells, M., Shapley, L.S., 2007. Multiperson utility: The linearly independent case. IESE Business School. Available

at http://webprofesores.iese.edu/mbaucells/.
Bewley, T., 1986. Knightian decision theory: Part i. Discussion paper No. 807. Cowles Foundation, Yale University.

Published in: Dec. Econ. Finance 25 (2002).
Brannan, M., Esplen, F., Gray, J.J., 1999. Geometry. Cambridge Univ. Press, Princeton.
Dhillon, A., 1998. Extended Pareto Rules and relative utilitarianism. Soc. Choice Welfare 15, 521–542.
Dhillon, A., Mertens, J.F., 1999. Relative utilitarianism. Econometrica 67 (3), 471–498.
Dubra, J., Maccheroni, F., Ok, E.A., 2004. Expected utility theory without the completeness axiom. J. Econ. Theory 115

(1), 118–133.
Dyer, J.S., Sarin, R.K., 1979. Group preference aggregation rules based on strenght of preference. Manage. Sci. 25 (9),

822–832.
Elster, J., Roemer, J.E. (Eds.), 1991. Interpersonal Comparisons of Well-Being. Cambridge Univ. Press.
Field, J.V., Gray, J.J. (Eds.), 1997. The Geometrical Work of Girard Desargues. Springer-Verlag, New York.
Fishburn, P.C., 1973. A mixture-set axiomatization of conditional subjective utility. Econometrica 41 (1), 1–25.
Harsanyi, J.C., 1955. Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. J. Polit. Econ-

omy 63, 309–321.
Karni, E., 2003. Impartiality and interpersonal comparisons of variations in well-being. Soc. Choice Welfare 21 (1),

95–111.
Luce, R.D., Krantz, D.H., 1971. Conditional expected utility. Econometrica 39 (2), 253–271.
Nau, R., 2006. The shape of incomplete preferences. Ann. Statist. 34 (5), 2430–2448.
Rigotti, L., Shannon, C., 2004. Uncertainty and risk in financial markets. Econometrica 73 (1), 203–243.
Rockafellar, T.R., 1970. Convex Analysis. Princeton Univ. Press, Princeton, NJ.
Sarin, R.K., 1982. Strength of preference and risky choice. Operations Res. 30 (5).
Schmeidler, D., 1969. Competitive equilibria in markets with a continuum of traders and incomplete preferences. Econo-

metrica 37 (4), 578–585.
Sen, A., 1970. Interpersonal aggregation and partial comparability. Econometrica 38, 393–409; and: A correction, Eco-

nometrica 40 (1972) 959.
Shapley, L.S., 1975. Cardinal utility from intensity comparisons. RAND report R-1683-NSF, Santa Monica. See also

Shubik (1982, Appendix A. 3).
Shapley, L.S., 1988. Utility comparisons and the theory of games. In: Roth, A.E. (Ed.), The Shapley Value. Cambridge

Univ. Press, Cambridge, MA, pp. 307–319. Originally appeared in La Decision, Editions du CNRS, Paris, 1969,
pp. 251–263.

Shapley, L.S., Baucells, M., 1998. Multiperson utility. Working paper No. 779. Department of Economics, UCLA. Avail-
able at http://webprofesores.iese.edu/mbaucells/.

Shapley, L.S., Shubik, M., 1982. Preferences and utility. In: Shubik, M. (Ed.), Game Theory in the Social Sciences:
Concepts and Solutions. MIT Press, Cambridge, MA. Originally appeared in Preferences and Utility, RAND report
R-904/4-NSF, Santa Monica, 1974, Chapters 4 and 5.

Shubik, M., 1982. Game Theory in the Social Sciences: Concepts and Solutions. MIT Press, Cambridge, MA.
Skiadas, C., 1997. Conditioning and aggregation of preferences. Econometrica 65 (2), 347–367.
Sobel, J., 2001. Manipulation of preferences and relative utilitarianism. Games Econ. Behav. 37, 196–215.
Vind, K., 2000. Von Neumann–Morgenstern preferences. J. Math. Econ. 33, 109–122.
Von-Neumann, J., Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton Univ. Press.
Weymark, A., 1991. A reconsideration of the Harsanyi–Sen debate on utilitarianism. In: Elster, J., Roemer, J.E. (Eds.),

Interpersonal Comparisons of Well-being. Cambridge Univ. Press.


