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Abstract

One assumption in the Shapley—Shubik power index is that there is no interaction nor influence
among the voting members. This paper will apply the command structure of Shapley (1994) to
model members’ interaction relations by simple games. An equilibrium authority distribution is
then formulated by the power-in/power-out mechanism. It turns out to have much similarity to the
invariant measure of a Markov chain and therefore some similar interpretations are followed for the
new setting. In some sense, one’s authority distribution quantifies his general administrative power in
the organization and his long-run influence on all members. We provide a few applications in conflict
resolution, college and journal ranking, and organizational choice.
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1. Preliminaries

The paper treats an organization as an ensemble of simple games: one “command game”
for each member in the organization. The general “authority distribution” would be based
on the internal structure in the long run, instead of some specific external tasks. In litera-
ture, Simon (1951) defined a member’s authority as his right to select actions affecting the
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whole or part of his organization. Aghion and Tirole (1997) analyzed the organizational
issue from another aspect.

1.1. Notations

The conventional notation for simple games was introduced by Von Neumann and
Morgenstern (1947) and extended by Shapley (1962). As far as our present subject is
concerned, we shall distinguish three levels of Boolean abstraction: lower-case italic letters
or numerals forndividuals, italic capitals forsets of individuals, and script capitals faets
of sets of individuals; thusc € C € C. The empty set of individualg, is different from the
empty set of setsg. C is used for set inclusion and for strict set inclusion, and set
subtraction will be indicated by (read “without”). In naming the elements of a set, we
shall often employ the vinculum, thud37” for “{1, 3, 7}.” The number of elements of a
finite setX is denoted X|.

N will conventionally denote the set of all individuals or members in an organization,
andA will denote its power set, i.e., the set of all subsetljtions) of N. If i is any
element ofV, thenn; will denoteN \ i andA; will denote the power set d¥;. We denote
by ST the set of allsupersets of elements ofS, by SY (or ™) the union (or intersection,
respectively) of all elements &, and byS™ the smallestT € S such that7 + = ST,
or equivalently, the set of alR € S that are minimal, i.e., such that ro € S satisfies
T CR.

1.2. Smple games

While asimple game on N is often represented as the ordered |§air W), we denote
it by the symboll" (N, W) where

FCW=WrcWN. 1)

The first strict inclusion in this definition tells us that (given= W) N is always in/y

and the second tells us th@atis never in}. Hence in a simple gamé&y™ # &. In the
absence of any more specific interpretation, the coalitio¥ will be calledwinning and
those inV\ W will be calledlosing. By the equality in Eq. (1), every superset of a winning
coalition is winning while every subset of a losing coalition is losing. Thus in defining a
specific simple game it suffices to list jugt”, the set ofminimal winning coalitions.

A playeri is calledessential if i € WW™V; otherwise he is dummy. We call him adictator

if i =wWmY,

1.3. Shapley—Shubik power indices

For any orderindiiz - - - i,, of all members in the simple ganfé(N, W), we consider
the increasing sequence of coalitions

@, i1, i1i2, i1i2i3, ..., i1i2---ip = N.

In this sequence, there exists a unique numbsuch thatiqiz---i;—1 is losing while
i1i2---i;—1i; IS Winning; we say that; pivotsin the sequence. Now consider all possible
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ways to ordetV. There are:! of them. TheShapley—Shubik (S-S) power index of a player

in the simple game is defined as the fraction of orderings in which he pivots. As already
shown (Shapley, 1953; Shapley and Shubik, 1954), his power index may be defined as his
probability of pivoting when the members are uniformly randomly ordered.

It is easy to see that the S—S power indices of a simple game are nonnegative and sum
up to 1. Dictators, and only dictators, have power 1; dummies, and only dummies, have
power 0. Players who appear symmetricallpthhave equal power indices, and it is not
hard to see that if f outweighs” in the sense that replacirigvith j never hurts a winning
coalition, thenj’s power index is necessarily not less thi& If the game is the winning
rule for voting a bill and the players satisfy certain symmetry conditions, then pi&yer
S-S index is the chance of the two “critical” situations:

(1) the bill is passed unless he votes against it;
(2) the bill is blocked unless he votes for it.

In either of the critical situations, playés vote (either YES or NO) determines the result

of the bill. Two symmetry conditions (SC-1 and SC-Il) are stated in Hu (2001)Slbet the
coalition of the players who will vote for (YES) the bill. In general, it is a random coalition
to the voting body before the bill is voted; otherwise the bill is not necessary to vote (since
the result is known). Clearly \ S consists of the players who vote against (NO) the bill.
The symmetry conditions can be stated as:

e SC-I: ignorance of particular personalities and interdependence. That is, the probabi-
lity of S= T depends only on the size &f.

e SC-II: the size ofSis uniformly distributed o0, 1, .. ., n}. Therefore, the probability
of |Sj=kis1/(n+ 1) foranyk €{0,1,...,n}.

In the absence of any more specific information ab®utve shall assume the two
symmetry conditions when a vote is concerned in the present paper. Actually the two
conditions are not essential. As remarked in Section 7, we may relax them to obtain the
asymmetric authority distribution. As stated before, one assumption in the definition of the
S-S index is that every ordering has the same probability. As already shown (Owen,

1971 ; Shapley, 1977; Owen and Shapley, 1989; Cheng, 1994), this assumption is relaxed
in a generalization, called th®n-symmetric Shapley—Owen power index, where the voters

are endowed with different ideologies. Another assumption is that the probabilities are
independent, i.e., no interaction exists among the voting members. In most real democratic
societies, however, there is some degree of political organization, whereby voters influence
each other according to the distribution of authority throughout the organization; we will
address this influence in the present paper.

A local organizational topology is set up for each member in the form of a simple game
in Section 2. In Section 3, an equilibrium authority distribution is derived for organizations
in which each member has some, either direct or indirect, impact on others. Section 4
discusses the ultimate influence between players. In Section 5, we shall show that the
authority distribution is a generalization to the S—S power index. A few related applications,
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such as journal ranking and organizational choice, are addressed in Section 6. Omitted
proofs can be found in the theory of Markov chains.

2. Local topology of authority

In an organization, some members may have a certain degree of discretionary power;
some may even be “free agents,” i.e., dictators in their own “command games,” accountable
to no one else. Others may be merely “cogs in the machinery,” i.e., dummies in their own
command games. Let us develop these ideas formally.

2.1. Boss and approval sets

Leti denote a generic member of the organizatdor- 12.--n (with n > 1 finite). In
general, there will be certain other individuals or, more generally, sets of other individuals,
thati must obey, regardless of his own judgment or desires. We call bosasets and
denote them collectively bg;. Thus, if there is an individud who can “boss’i, this is
indicated byb € B;, not byb € B;. Clearly, the empty coalitiod could never be a boss set
(¥ ¢ B;). Given any boss set € B;, we shall assume that all its supersets\Vinare also
boss sets. That s,

@CB =B NN;CN;, allieN, (2)

which may be contrasted with Eq. (1).ilfs not bossable, thef; = &, or N; ¢ ;.

We shall also associate with eacle N another collection of coalitions4;, called
approval sets, in\;. The consent of any one of these approval sets is sufficient to allow
i to act, if he wishes. But it is not able to force him to act. So approval sets are not boss
sets, and hencd; N B; = @. On the other hand, i ¢ A;, theni cannot act alone without
an authorization from an approval set.f) or an order from a boss set . Imitating
Eq. (2), if S is an approval set, then all its supersetain\ B; are also assumed approval
sets.

The collection of approval setd; is a guide to the amount gersonal discretion that
i enjoys, if any. At one extreme, ifl; = N; theni is called afree agent. He needs no
approval (sincé& € A;), and no one can boss him (sinBe= @). We shall denote the set
of free agents by. At the other extreme, ifd; = &, theni has no discretionary power,
and we shall call him &og. For an intermediate example of “partial discretion,” merely
consider a corporation president who is bossable bABavéajority of the board of directors
butis allowed to follow his own judgment as long as he has the support of a simple majority
from the board. In the US Legislature, the president’s proposal can be vetoea bfithe
senators and/3 of the representatives.

We let Z; = A; U B; be the set of all approval and boss setg.dflowever, if Z; = &,
theni is a cog, but not bossable. The cog takes no action always! We set the convention
Z; D o for anyi € N such that the organization does not contain any non-bossable cog.
Therefore if no coalition can bogdi.e., B; = @), then eithei is a free agent (i.ed € A;)
or he needs at least an authorization from some non-empty approval set. On the other hand,
N; bosseg if he is a cog.
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Lemma2l. 2; = Z NN; CN;.

Proof. It suffices to show thag; 2 Z;" N ;. If S € Z;" N, then there exists a minimal
coalitionT € N; such thatl” € S andT € Z;. Now we have three cases:

(i) if T € B;, thenS € B; by Eq. (2) and s& € Z;;
(i) if T e A; andS ¢ B;, i.e., T is an approval set anfl is a superset of’ in A; \ B;,
thensS € A; andS € Z;;
(iii) if T e A; andS € B;, itis trivial that S € Z;.

ThereforeS € Z; in all cases and we complete the proofa
2.2. Command games

For a coalitionS € N to “command”i € N, eitherS \ i can boss ori can agree to
follow S\ i’s collective suggestion. Formally we defifise command sets as

W E' B USUT: Se zZ). 3)

It is easy to see thatS Ui: Se 2} = Z" \ 2 andB =B, U{SUi: S e B;} from
Lemma 2.1 and Eq. (2). Therefore we have the equivalenige= 5; U [ZI.Jr \ Zi] =
Bru{Sui: Se A}

Proposition 2.1. Z* > W, 2 B;" and W, = W.

Proof. First of all, W; = B; U[Z" \ Zi]1 € Z; U2\ Zi1= Z. SecondlyW; 2 B
is from the above equivalent definition. To provg = Wl.*, for VT € Wfr, there exists a
minimal coalitionS € W, suchthats C 7. If S € B; thenS C T'\i € B; and hencd e W,.
Orifi e SandS\i e Z;, theni e T and by Lemma 2.1 (together with\ i € T \ i),
T \i e Z;. ThereforelT e W;. O

Itis not hard to see that the following statements are equivalent:

(i) iisacog;

(i) zH=w;=B8;
(i) Wi =B,
(iv) 2" =wi.

We can also show thaw; \ Z; = W;\Bi = {iUT: T € Z;},and thatZ; \W; = ZH\ W, =
Z; \ B; = A;, the personal discretion.

As Z; #£ @ and @ ¢ B;, Proposition 2.1 and Eq. (3) imply that; dzefF(N, W) is
a well-defined simple game. We shall cal} the command game for i. The ensemble

of all command game§& d=‘af{G,-: i € N} completely specifies the authority structure or
“constitution” of the organization. In particular, if memberis a free agent, then his
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command game is jusE(N, {i}T); if memberj is a cog, then his command game is
(N, B;“). However, this does not imply that a cog is not an essential player in other
members’ command games, nor that a free agent is a dictator or is even essential in other
members’ command games.

The Confucian model of society has a simple organizational form. According to the
Confucianism, there are many principles a society should follow, among them:

(P1) The man follows the king;

(P2) The son follows his father;

(P3) The wife follows her husband,;

(P4) The king should respect his people.

This authority structure has circular commands with different degrees of discretion. In
most of the Chinese history, this orderly organization worked properly. Violations got
punished. This also applies for (P4) because the people would exercise their command
by overthrowing the king if his evils are insufferable to the vast majority, say 90%, of the
governed.

3. Authority distribution

If memberi has some power in membgs command gamé& ;, and;j has some power
in i's command gamé;; at the same time, then how can we define a fair distribution of
“power” throughout the organization? We shall call it “authority distribution” to distinguish
it from other uses of the word “power.” A Markov-chain structure is introduced.

3.1. Authority equilibrium

An authority distribution 7 : N — [0, 1] over an organizatioQN, G) satisfiesr; > 0
foranyi e N and} ;. y 7 = 1. For convenience, we let be a 1x n row vector. Denote
by P(i, j) memberj's S-S power index in membeéls command gamé;. And we call
then x n matrix P = [P(i, j)]?,j:1 the power transition matrix of the organization. If
P(i, j) > 0, then some of membeis “power,” if he has, transfers to membgr P (i, i)
measures’s personal discretion;. Clearly the power transition matriR is astochastic
matrix, with nonnegative entries and each row sums to 1.

The Shapley value was first derived from three fairness axioms for superadditive games.
As far as simple games are concerned, Dubey (1975) modifies one of the axioms and proves
the existence and uniqueness of the S-S power index without reference to general (non-
simple) games. To state these axioms, wé€ (&) denote the set of all simple gamesin
and we use the functiom; 2V — {0, 1} to indicate an elemente C(N). Thatis,vu(S) = 1
if and only if S is winning. Moreover for simple gamesw € C(N), the operations’ and
A are defined by

v w)(S) Emaxu(s). ws). @A w)S) Emin(u(s), w(s)).

As already shown (Dubey, 1975), there exists a unique fungtiagi{N) — [0, 1]" such
thaty satisfies the following axioms:
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(A1) foranyv € C(N), ZjeN @j(v)=1andg;(v) =0if j isa dummy inv;
(A2) if members andj have symmetric roles in e C(N), theng; (v) = ¢; (v),
(A3) p(v VvV w) +oAw)=e)+ew) foranyv, w € C(N);

and ¢; (v) is i's S-S power index in the simple game= C(N). In an organization, we
assume that membés authority is derived from his “command powers” in all members’
command games, which assume the Axioms (A1)—(A3)i'Soommand power iY; is

just P(j,i). We also note, in reality, that one’s command power over those with higher
authority makes more contribution to his authority than his command power over those
with lower authority, other things equal. For example, the computers in our society have

no authority even though they work well; however, a manager has more authority than a
programmer, not because the manager knows the computers better, but because he has more
command powers over the programmer than that the programmer has over the manager.
Formally, we propose that an authority distributiershould follow Axiom (A4).

(Ad) m; = ZjeN 7 P(j,i)forVi e N, orin matrix,m =mP.

We callr = 7 P theauthority equilibrium equation. The existence of is well known
from the Markovian theory. In a naive sense of “counterbalance equilibrigpP(j, i)
is the authority flowing fromj to i. So x; is the sum of those flowing inté: 7; =
ZjeN m;P(j,i). However, in generat; P(i, j) # m; P(j,i). For example, lefv = 123
wherew; = {12, 13, 237, W, = {21, 23}+, andWs = {23}*. Then

142
and =7 =|(=,=,=1;
<7 7 7)
butmiP(1,2) #m2P(2,1).

We should remark that our present interpretation of the “command games” does not
envisage “commands” as being instructions that must be absolutely obeyed, as in a military
or legal setting. Rather, perhaps, we might here call them “recommendation,” “influence,”
or “advising” games, although we have up to this point excluded the so-called “improper”
simple games, in which two disjoint coalitions can both be winning.

However, if there is no clear command-game setting in the organization, it is not hard
to formulate the power transition matrixto designate how much the members “influence
each other directly,” either by prestige, moral, or else on personal decision making. For
example, a 10-year-old child’s direct decision may be determined by his parents’ guidance
with probability 03, by peer children with probability.d, and his own interest with
probability 03, although there may be no specific command game on the child. The direct
person-to-person impadt(i, j) can also be estimated by linear regressions given lots of
historical data. The restriction is th&tshould be a stochastic matrix.

A concrete organization also holds financial and physical assets, besides its human
resource. To include these bossable members into an organization, we introduce the
concept ofyesman. A memberi is called ayesman if i is a dummy in all command
games. Equivalently, th&h column in P is a zero vector. A yesman, such as a slave,

~
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shows no sign of personal opinion until his bosses have given him some instructions or
hints of the direction. A typical yesman is a computer, which follows all instructions from
its users. A secretary sometimes is a yesman, when he is only responsible to his boss sets
and takes no positions in all command games. By (A4), the existence of yesmanship in
an organization does not affect the authority distribution; and hence we may remove them
when calculating the authority distribution. However, yesmen may have some capability,
and cost as well, in some tasks with the same capability—cost structure as that of other
members; so we can treat the organization’s capability—cost in a uniform way. Clearly,
a yesman is a cog, but a cog is not necessarily a yesman. On the other paald;kah,

who holds many public or private posts should be in a high rank of authority or of great
influence, as indicated in (A4).

3.2. Administrative power

In some sensey; is playeri’s probability of being critical in organizational decisions
in the long run. This is our second interpretation for the authority distribution. Say, there is
a bill to vote in the organization and we assume that each member has to vote either YES
or NO. Then the winning rule for the bill can be formulated as a simple gaife, )
on N. As we see in many organizations, different bills may have different voting rules,
even within the same organization.

Let ¢ be a probability distribution to pick a player from the organization whgie
equals to playet's S-S index in the voting gamE(N, V). One could propose a “process”
interpretation for the transition probabilitigs In this interpretation, the r\X; denotes
the player who is “influential” to the bill in period. At time ¢+ = 0, a player is chosen
to be the initial influential player according to the probability distributiorif Xo = io,
then playelig is influential in the sense that the organizational decision is made in period
t = 0 according to the voting gamE (N, V). Given Xg = ip, the influential player in
periodt = 1 will be chosen according tép’s command game. That is, conditional on
Xo = ig, the influential player in period= 1 will be player; with probability P (ig, j).
Hence,P(ip, j) = Proh( X1 = j | Xo = ip) can be interpreted as the “one-step” influence
of player; on playerip. More generallyP™ (i, j) is interpreted as the-step influence of
player j on playeri. Given the initial distributiory, it follows that};_y P™(, j)q (i)
is interpreted simply as player's m-step influence on the bill. In the irreducible and
aperiodic case (see Section 3.3), it is well known thag,lima, Y ;. n P" (0, j)g (i) =
for all initial distributiong. In other words, playej’s long-run influence on the bill exists
and equals tor;. This long-run influence does not depend on the specific bill to vote
or its winning ruleI" (N, V). Furthermore, if we take (i) = 1 for any fixedi € N, then
m; =lim,, 00 P™(, j). This justifies the interpretation far; as the long-run influence of
player; on other players. We shall address this point in Section 4.

If we reverse the above process, we could obtain another interactive process. Let the
bill be proposed in period= 0 and let the proposed bill be formally voted in period &

(6 > 0). If the players are not well organized and they vote independently (i.e., all players
are free agents), then playes probability of being critical in the voting gamE(N, V)
equals to his S-S index in the game (given the conditions SC-I and SC-Il are satisfied). In
general, before the periad= §, every member can exercise his power in others’ command



140 X. Hu, L.S Shapley / Games and Economic Behavior 45 (2003) 132-152

games to alter or re-confirm their preference of choices, if he can. And these “exercises of
power” make a stochastic point process during the time peflads 2, .. ., §}. We want to

find out how frequently each member is critical in the interactive decision-making process.
In the absence of any specific pattern of randomness except the two symmetry conditions,
we can figure out an embedded and truncated Markov dhvairYs, Yo, ..., Ys} where the

r.v. Y, is the critical player in period — ¢.

Without loss of generality, we assume that is chosen fromV with a probability
distributiong’. Therefore, the result of the bill will be determined Bys critical vote in
periodé: the bill is passed ifty votes YES or the bill is blocked ifp votes NO. If the
organization knows that will be the critical player in voting the bill, then all players will
exercise their powers ifa’'s command game in peridd- 1. More formally, in period — 1,
givenYg = ip, there would be a vote to determiiygs choice (YES or NO) of period. The
vote has the winning rulV;,. Of coursejg has to obey the decision by his command game
and in period he will take the choice, which is determined by his command game in period
8 — 1. Mathematically, givel¥g = ig, ig’s choice in period is determined by his command
game of period — 1. If the command game decides the choice YES (or NOjgfdhenig
must vote YES (or NO) in periodl. Now inig's command game, membaris critical with
probability P (ig, i1). We takeY to be the critical member in the vote of peridd 1. Then
Y1 has the conditional probability distribution: Pxah = i1 | Yo = io) = P(ip, i1). So if
Y1 votes YES (or NO) in period — 1, thenYp has to vote YES (or NO) in periodéland
therefore the bill is passed (or blocked). Thatigsis the real critical member in the last two
periodss ands — 1. Once again, given that is critical in periods — 1,i1’s critical decision
is subject toY>'s critical vote in the command gam@é(N, W;,) of periods — 2, andY;
has the conditional probability distribution Pidb = io | Y1 = i1) = P(i1,i2). Therefore
Y» is the real critical member in the last three peridds2,§ — 1, ands. We continue this
process and let — oo; then we obtain a homogeneous Markov chéib, Y1, ...} (see
Fig. 1) with probability transition matrix.

If the process is irreducible and aperiodig,is the frequency of players presence in
the chain. On the other hand, the distributions independent of the specific bill to vote
and its respective voting rule; it is also independent of the initial probability distribgtion
by whichYg is chosen.

In the above senses, we say thatis playeri’s “general administrative power” in the
organization.

3.3. Asymptotic properties
The Markov-chain setting of authority distribution shall lead to some similar implica-
tions. For any nonnegative integenwe denoteP* thekth power of P with the convention

PO =1, then x n identity matrix. We letPX(j, i) be the entry at thgth row and the'th

------ Yy Y3 Yo Yy Yo Y;

§—4 §—3 §—2 §—1 8 time

Fig. 1. Interpretation of authority by Markov chains.
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column of the matrixP*, and calli influences j (or influences j directly) if PX(j,i) >0
(or P(j,i) > 0) for some integek > 0. We denote this ag — i ori «<— j. Otherwise,
Jj —> i ori </ j. Although— or «<— is reflexive and transitive, it is not symmetric
in general. Two membersand j are said tocommunicate if they influence each other,
denoted <— j. Communicatiork— is symmetric. Communication defines an equiva-
lence relationship over the members: two members that communicate with each other are
said to be in the same equivalence class. Therefore, any two classes are either disjoint or
identical. We say that an organization (or a coalitionirigducible if any two members
in the organization (or coalition) communicate with each other. Otherwiseedigible.
In a naive sense, one influences all members and vice versa, in an irreducible organization
or coalition. Moreover, if — j andj «<— k, theni — k; if i «— j andj — k,
theni — k. That is, influence is a class property as well. This implies that there is no
free agent in an irreducible organization since no one else influences a free agent except
himself.

The organization withV = 123, Wy = {12, 13 23}*, W, = {21, 23}*, and W3 =
{23}* is irreducible. The organization witlv = 123456, W, = {12, 13 15", W, =
{12, 24, W3 = (347, Ws = (3, 4}F, W5 = {6}F, and W = {5} is reducible. Here
{3, 4} is an irreducible class whil¢, 6} is another irreducible class. However, neither
member 1 nor member 2 belongs to any irreducible class. We also note that there
exists no influence between the two irreducible classes. In general, the members in an
organizationN can be classified, in a unique manner, into non-overlapping coalitions
T,Cq,C>,...,Cy suchthat eacli; is an irreducible class and

T={ieN|i— jbuti </ jforsomeje N}.

We call the members df authority-transient. EachC; has no impact on other irreducible
classes, and vice versa. 8p is actually“ independent” of all other irreducible classes.

For our further convenience, we shall assume that the organization has the above
decomposition and therefofe has the form (after some possible re-arrangements) of

Pr Q1 - O
Pc,
P= . ) (4)

Pc,

wherePs is the restriction of? to S € N. We letm = |T|. Itis easy to see that lim, o, P},
is a zero matrix. This implies that:

(i) I — Prisinvertible;
(i) members inT have no authority, i.eq; =0 foralli € T; and
(iii) for any organizationV, there exists at least one irreducible class.

Influences can also be illustrated by directed graphs. Let the set of vertice§ and
the set of (directed) edgés= {(i, j) € N x N | P(i, j) > 0}. A path fromu to v is a linked
list of verticesu = ug, u1, uz, ..., u; = v such that(u;, u;+1) € E. In the terminology of
graph,i — j if and only if there is a path from to j. Therefore, an organization is
irreducible if and only if there exists a path frano j for Vi, j € N.
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Memberi is said to haveperiod 4 if P’(i,i) = 0 whenevert > 0 is not divisible
by d andd is the greatest integer with this property. A member with period 1 is said
to beaperiodic. Let d(i) denote the period of. Periodicity is also a class property: if
i < j,thend(i) =d(j). Foran example,letV; ={i +1,i —1}T fori=2,...,n—1,
W1 = {n, 2}7,andW, = {n — 1, 1}T. Then each member has period 2 i even or 1 ifz
is odd. From the theory of Markov chains, for an irreducible organization with period
we can decompos¥ as a union of disjoint nonempty coalition§:= D1 U Do U---U Dy
such thatD; influencesD; 1 directly (we use the modular notatieh+ 1 = 1). That is,
P(j,k) > 0 for somej € D; andk € D; 1. Therefore, in an irreducible organization with
periodd, we let

s, L'{j e N| P, j)> 0 for somer > 0)

forvi e N. Thenj € §; ifand only ifi € S;. We list a few asymptotic behaviors here.
Proposition 3.1.

(i) If i has period d(i) and P*(j,i) > O, then PST4@(; i) > 0 for all  sufficiently
large.

(i) In an irreducible organization with period d, lim,_, o P' (i, j) exists for Vi Si;
furthermore, there is a unique method to assign an authority distribution = to
the authority equilibrium equation = = = P, that is, 7; = %IimHOO P (i, j) for
Vi € §;; and given any initial distribution 7@ and define 7 "*Y =7 P, thenr; =
%Iimt%m(n(’d))j, the j-th component of the vector = “4), Moreover, Yjes M= %
for Vi € N. The convergenceislinear.

(i) Inanirreducible organization, r; > O for Vi € N.

Proposition 3.1 (i) says thatifinfluencedj sometime in the past, thémvill influence j
periodically in some future. Proposition 3.1 (ii) can be used to approximate the authority
distribution by the numerical iterations. However, when there are two or more irreducible
classes in the organization, the solution to the authority equilibrium equation P is
not unigue. More generally, for the organization with the decomposition as in Eq. (4),
{mel0,1]"|m=nP, ) ;,cym =1} is ak — 1 dimensional convex hull ifi0, 1]*. One
remedy is to assign a specifiathority quota to each class. Actually, if we assign clags
with authority quotay; such that 0< ¢; <1 and)‘_; ¢; = 1, then there exists a unique
authority distribution to solve the authority equilibrium equatior= = P and the quota
restriction) ., 7; = ¢; for all 1 <i < k. Another remedy is to consider tfieternal
authority distribution within each class only.

3.4. Authority within a class

Let C be an irreducible class anB- be the restriction ofP to C. Formally, we can
define thenternal authority distribution for members within the class, denotedr ¢, by

7€ =2CPc, dorf=1 =zf>0VviecC. (5)
ieC
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Proposition 3.2. (i) 7€ exists uniquely; (ii) if C has period d and j € C, then
im0 P (i, j) =dn§ for Vi € S;.

Each member in an organization is directly concerned with only a fraction of all the
official orders, requisitions, etc. that flow through the organization, so the power transition
matrix P will likely be quite sparse—i.e., have lots of zeros. By (A4), the existencg of
does not affect the authority distribution. So we may renib¥eom N before we calculate
the authority distribution. This reduction is useful when a large organization has a large
portion of authority-transient members. For example, given

1 1 1
a2 0 3
1 1 1
p_|% 3 3 3
“lo o % z¢[
3 3

1 1
0025

after we remove the authority-transient memties 12, we have

mi=(3 1)

S0 (13, m4) = (73, w4) Py\7, together withry = o = 0, gives thatrs = 3/7, m4 = 4/7.

As a remark, given a command ganig, we can compute its S-S power indices
uniquely. But the inverse is not true. For example Nin= 12345, both sets of minimal
winning coalitionsWy" = {123 145 and W}" = {124 135 have the same S-S power
index vector(7/15,2/15,2/15,2/15,2/15). Moreover, if ZjeS P(i, j) = 1 for some
individuali and coalitionS, thensS necessarily commandsHowever, the inverse is false.
In the above exampld234 commands 1; bQE ;_; 534 P(1, j) =13/15< 1.

NI Wi
NI wIN

4. Ultimateinfluence by authority

The S-S power indeX (i, j) measuresi’s direct influence on. For the “ultimate
influence” or “ultimate power,” accordingly, is related to Jimw, P’ (i, j), if it exists. By
Proposition 3.1z; = lim,_.» P’(j, i) if the organization is irreducible and aperiodic; and
the limit is independent of the choice ¢f This is our third interpretation ot; asi’s
“uniform ultimate influence” to any other members in the organization. Proposition 3.2
provides the ultimate influence among members within the same irreducible class.

In other situations, we notice the less practical importance when both members are
authority-transient or when both members belong to different irreducible classes. In these
two cases, the ultimate influences between the two members are zeros. In this section, we
will go to details for the case of non-transient over transient members.

4.1. Limit influence of a class

For anyi € T, there may be somg e T such thatj influences. But since;j has no
authority in the organization, his influencesioshould come from the membersin\ 7.
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Division | «— Division I — Division 11l

Fig. 2. An example of authority-transient sub-organizations.

In some sensej, acts as “messenger” only, passing the influences fsonT to i. This
argument can also be generalized to the case of influence between sub-organizations. In
Fig. 2, both Divisions | and IIl have influence on Division Il; however the later has no
impact on Division | or Ill. One question is their relative importance on Division Il and by
how much.

Given an irreducible clas€ and anyi € T, we propose an authority accumulative
sequencéu’ (1)}, defined by

uft+1 =Y PG HuS®+Y P, j)
JeT jeC
with the initial conditionujc(O) =0 for Vj € T. Intuitively uic(t + 1) is the authority
absorption inC from i at or before ther + 1st step:) ;.. P(i, j) is the “authority”

absorbed directly byC from i, while ZjeT P(i,j)uf(t) is the “authority” absorbed
indirectly by C from i before ther + 1st step. Therefore the ultimate authority absorption
lim;- oo /,Ll-c (1), if it exists, measures the ultimate influence®yn membet.

Proposition 4.1. The limit u& = lim,_,o 1§ () exists and it is the minimal nonnegative
solution of the system of inhomogeneous equations
uf =" Pa. jHus + > PG ). (6)

jeT jeC

Proof. Foranyi e T, /,Ll-c (1) is non-decreasing in(by induction), but it remains bounded
by 1. So Iim_muic(t) exists. The limit obviously satisfies Eq. (6). Conversely, if
{uf} is any nonnegative solution of Eq. (6), we havg > " . P, j) = uf (1). By
induction,u& > u€ (¢) forallt > 1, and so the limits linL, oo {11 (1)} represents a minimal
nonnegative solution. O

Corollary 4.1. Given T,C1,Cp,...,Cy in N as of Eqg. (4), for any i € T and any
irreducible class C,

() uf @)= cc P'G. )

(i) Z’;zl Mic,- =1, theirreducible classes have total ultimate influence over T';

(iiiy if 7 =12---m, then

7

LN

ZIEC P(1,1)
= ~-pPp7t :

Mo 2iec Pm, 1)
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Proof. Clearly part (i) holds true for = 1. Now if we assume that it is true for some: 1,
then

Y PG )= Z[Z P(i,s)P'(s, j)+ Y P(i,$)P'(s, j)}

jeC jeC*=seT seC
=Y P,$)Y P, )+ Pli,$)) Ps,j)
seT jeC seC jeC
=Y Pl @+ Pl)l=uft+1).
seT seC

By the principle of induction, the statement (i) is true forzalt 1. Part (i) is from (i) and
that lim,_, o P'(i, j) =0 forVi, j € T. Part (iii) is from Eq. (6). O

4.2. Redistribution of ultimate influence

The next proposition illustrates how to re-distribute the irreducible cl@sstotal
ultimate influence+¢ oni € T among the members &f.

Proposition 4.2. For any i € T and any aperiodicirreducibleclass C, lim;_.» P'(i, j) =
njcuf forVjecC.

Proof. As stated before, lim,, P’ (i, s) =0 for anyi, s € T. Now,

. t+1l: N _ t,. . . to: .
tll)mooP (l,])_tll[Tgo E P (l,s)P(s,])+t|l)mOo E P'(i,s)P(s, j)
seT seC
= § lim P'(i,s)P(s, j) + § lim P'(i,s)P(s, j)
t—00 —00
seT seC

=) 0P(s.j)+)_ lim P'(i.5)PGs. j)

seT seC
:Z( lim P’(i,s))P(s,j).
—00
seC
We solve the system of equations, contrasted with Eq. (5),
. tre o\ . to: . .
lim P!, jy=( im P'G,)PGs. ). VieC,
seC
> lim PG, j)=puf,
t—0o0
jeC

to get lim_o P'(i, j) = nful.c. O
Corollary 4.2. In an aperiodic organization, lim;_, », P’ exists.

In contrast to authority-transient coalitions or sub-organizations, a closed coalition
keeps all authority inside, although it may influence the outdidg S. In Fig. 3, the
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abcd

56 — 89 «— 123

Fig. 3. A closed coalition89, keeps all authority inside.

coalition89 influenced 23 ands6. But none of the coalitior23,56, orabcde influences
89.

We say a coalitior$ is authority-closed if no authority flows out ofS, i.e., P(i, j) =0
foralli € S andj € N \ S. However, authority may flow fronv \ S into S. Examples of
closed coalitions includg/, F, ¢, etc. Clearly, irreducible classes are closed. Furthermore,
if §1 andS> are closed, the§; U S> andS1 N S2 are also closed. Whefis closed, then
any authority flowing intaS will be preserved insidé forever: P'(i, j) =0, forVi € S,

j ¢ S andr > 0. To see the authority-garnering mechanism, we haveﬁhj@rs P'(,j)is
increasing irr for any closed coalitiol§. As a consequence, the “total authority” absorbed
by a closeds fromi, lim;_, Zjes P'(i, j) exists.

5. Voting with diverse preference

When we talk about a voting result, we have a scenario of diverse responses. The same
result may mean winning for some players to certain degrees; it also means losing for
others. Notice, moreover, that the degree to which the result means winning is not the
same for the players within the same winning side. For many, the result may even be
indifferent. Actually the players have different levels of support for the bill before voting.
In this section, we shall show that the S—S power index itself is also an authority distribution
associated with the diverse preference of the voters.

Let us return to the simple ganié(N, W) whereN = 12.-.n being the set of voters
andW being the set of winning coalitions. The voting rulgN, W) is set up from the
point of “passing the bill.” From the viewpoint of the blockers who are against the bill,
we can also define “winning” by that “the bill is not passed” or “the bill is blocked” and
re-define its “winning” rulel™*. A coalition T in I"* then has the players who vote against
the bill. A “winning” T in I'* then makes “passing the bill” impossible,ocks forming
any winning coalition in". Therefore it is “winning” in/"* if and only if it has nonempty
intersection with any winning coalition ifr. It is not hard to see thdt™* is also a simple
game, denoted™ (N, W*), where

W Z 1 ZNT £0, VT e Wy = (N\T | T ¢ W),
The gamel™* (N, W*) is called thedual of I'(N, W). Given the characteristic function
v(+) for I, the characteristic function af* is v*(T) dzefl —uv(N\T). ItislifT e W*
and 0 otherwise.

For the bill to vote, playet has certain level of preference to vote either YES(1) or
NO(0), or certain level of intensity to support the bill. It is natural to consider a whole
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spectrum of preference or intensity from “Absolutely vote NO,” “Strongly Preferred NO,”
“Slightly Preferred NO,” “Indifference between YES or NO,” “Slightly Preferred YES,”
“Strongly Preferred YES,” to “Absolutely Vote YES,” among other levels. A normal way
to quantify the whole spectrum is to map, by one-to-one, the preference level®oifo

We denote’s preference to voting YES or the intensity to support the bilppySo ap; of

1, 05, or 0 indicates the preference level of “Absolutely vote YES,” “Indifference between
YES and NO,” or “Absolutely vote NO,” respectively.

Let us first explain this by the stochastic preference in whictdenotes playei’s
probability to vote for the bill. Denote the vote YES (or NO) by the numerical 1 (or O,
respectively). Say, his vote or vote functibh: [0, 1] — {0, 1} is then determined by his
preferencep; in a stochastic way,

B { 1 with probabilityp;,
‘71 0 with probability 1— p;,

i.e., U; is a Bernoulli random variable with parametgr. Note that there exists no
continuous vote function from the continuum of the preference spacH onto the
discrete spacg0, 1}. Therefore, “playet has more preference to vote YES than player
j has” is indicated byp; > p;, or by ProgU; = 1) > Pro(U; = 1), or by “i is more
likely to vote YES thanj,” but not by U; > U;. This, however, does not exclude the
case that /' votes NO andj votes YES.” This case has the probability — p;)p; <
min{(1 — p;)pi, (1 — p;)p;} <0.25. The more likely cases are that > U;.

More generally, one could explain the stochastic preference by a process. As each bill
generally takes some period to be proposed and to be discussed in public before it is
formally voted, a player learns the potential advantages and disadvantages to himself if
the bill is passed or blocked. He may also be misled by others. In the interactive process,
pi could be playei’s preference at the time when the bill is proposed. Finally, the player
has to decide &; for himself. We can imagine that larggr generally leads to largey;,
but not always.

To determine g;, one could assume thatexpects a (random) payodf o if the bill
is blocked and (randong 1 if the bill is passed. Given the lack of the information about
other players’ preference, his sincere strategwould maximize his expected utility

pirg[%-ﬁ]E[uz(poz,l‘i‘(l pi)Ci0)].
whereu;(-) is i’s utility function. The personal preferengg can also be obtained by
maximizing his satisfaction, diversifying his risk, or reducing his loss, and so on.

Let S be the random coalition of players who will vote for the bill. gf = 0, player
i’s objective Bv(S)] = 0 is such that there is no chance to pass the bilp;l1&= 1, on
the other hand, his objectivd #{S)] = 1 is such that the bill will be passed for sure. For
a generic player with 0 < p; < 1, he is actually unsatisfactory with botiiS) = 0 and
v(S) = 1 with different degrees. His objective is thdwES)] = p;. If this happens, he can
represent the group on this issue. In many cases (e.g., multi-person bargaining process or
negotiating process),may propose a new and modified bill to substitute the original one.
For example, the bill “Smoking is NOT allowed in public” could be modified as “Smoking
is not allowed in a corporate building and its adjacent area within 50 meters; smoking can
be allowed in restricted area (smoking area) in restaurants.” For another bill, “If the city
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has an earthquake of 6.7 degrees, then the state will allocate the city 100 million dollars
of emergency relief” can have such modified bills as “If the city has an earthquake of
7.0 degrees, then the state will allocate the city 100 million dollars of emergency relief,”
or “If the city has an earthquake of 6.7 degrees, then the state will allocate the city 80
million dollars of emergency relief,” or “If the city has an earthquake of 6.7 degrees and
the earthquake causes 1 billion of loss, then the state will allocate the city 100 million
dollars of emergency relief,” etc. In general, for any given prefergned0, 1], one may
come up with many statements which repregent

For a voteri with p; =0, he is winning if and only if the bill is blocked. But if the bill
is passed, then he has to “obey” the stipulations of the bill regardless of his own choice of
vote. We associate the gamiéN, W) as his “command”’gamd; = I". If p; = 1,then he
is winning if and only if the bill is passed. Otherwise he is unsatisfactory with the result and
his interest will be affected. We associate the gdmiién, WW*) as his “command” game:
I; = I'*. Now for any voter with 0 < p; < 1, we take his “command” gamé by some
stochastic mechanism or linear interpolationfofind I'*, say,I; = piI'* + (1 — pi)I".
Thus we have set up an organizational structure for the voting body. Noté# that its
dual I'* have the same S-S power indices. By the linearity of the Shapley valug,sall
have the same S-S index as that/of Therefore the power transition matrix in the
structure has (i, j) = ¢;(v), j's S=Sindex in". Finally we conclude that the S-S index
{mi = @i (v)}!_, is the unique solution to the authority equilibrium equatios: 7 P and it
is the authority distribution for the organizational structure. And the solution is independent
of the choice ofp;.

6. Applications

In addition to its internal interactions and conflict resolutions, a well organized gvoup
can take external tasks or evaluate external issues as well as it can be controlled or affected
by its outsiders. All these aspects would be related to its authority structure or its authority
distribution.

6.1. Organizational choice

This subsection works as an application of authority distributions to a simple form of
conflict resolutions. Lepf’) € (—o0, o0) be membet’s (quantitative) opinion on some
issue attime wherer =0, 1, .. .. Inthe organization, his opinion is assumed to be linearly
adopted by all members according to his command powers. That s, his opinion a#time
is

itV =3"Pa jp). VieN.
JeN

If we let the column vectop® = (p{”, pi, ..., pi), thenp® = ppl~—D = ... =
P'p@,
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Proposition 6.1. In an aperiodic organization with the decomposition Eq. (4), the limit
p=1im; o p" exists. For any j € Ci, pj =Y ¢, =& p@ . The limit opinion for T is

givenby pr = (I — Pr) Y, 0ipc;.

For anyi,j e T, althoughp may mﬂuencep() for some finiter, the influence
vanishes as — oco. The limit p; for anyi € T is independent of the initial choice gafo)
for all j € T. However, Proposition 6.1 does not hold in periodic cases. For example, let
P =[92], then we have lim. o p@+ = p@®; but lim;_, o p@ = p©.

Proposition 6.1 provides a simple way to resolve the conflicts within an aperiodic
organization. For example, consider an irreducible and aperiodic organizatied234
with authority distributiont = (0.3, 0.1, 0.4, 0.2). On the issue of the relative utility of
one quantity of good to one quantity of good, they disagree with each other. Members
1, 2, 3, and 4 initially believe the relative utility is3, 1.4, 15, and 16, respectively. If the
linear adoption scheme applies, the limit opinion would I18%D.3+1.4%0.1+ 1.5x0.4+
1.6 0.2 = 1.45, which could act as the organizational opinion after long-time discussions
or evolutions. For another example, consider an irreducible and aperiodic organi¥ation
which wants to admit a few, say new employees from: (m > t) applicants. To decide
who to be admitted, we first put the initial evaluations insax m matrix B, where
B(i, j) is membet’s initial evaluation on applicant. So theith row is membet’s initial
evaluations on all applicants and tlith column is the initial evaluations on applicant
by all members in the organization. In some real situations, the initial evaluations may be
integers between 1 and 9, or on any other scale. If the linear adoption scheme works,

n m
lim P*B = (mil, w21, ..., m)B= (1> =BG, 1),....,1) mBG,m)),
Jim (m1l, 2 21 (zlo) gz(zm)>
wherel is the column vector with 1's for all entries. Therefore applicAsteventual or
final evaluation (after infinite iterations or discussionsﬂ§:1 ; B(i, j). Then we may
give the offers to those who have tofinal evaluations.

6.2. Ranking by bilateral impact

To apply the authority distribution to the situations without command games, we
analyze a few ranking problems when the data of directly bilateral impact are provided.

6.2.1. College ranking by applicants acceptance

Suppose that there are large numbers of college applicants to apply the colleges
C1,C2,...,C,. Each applicant files multiple applications. Each college then offers some
of its applicants admissions and rejects all others. Now some applicants may get no offer
from any college; the other then get one offer or multiple offers. An applicant with multiple
offers will decide which college to go to and reject all other colleges which make offers
to him. Of all applicants who apply to and receive offers frai we let P(i, j) be
the proportion of those applicants who decide to go to coli€geSuch applicants of
course apply to and receive offers frofi} as well. For example, iC; admits 10000,
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of which 8000 decide to register witi; and 1500 decide to register witfip, then
P(1,1) =8000/10000= 0.8 andP(1, 2) = 1500/10000= 0.15.

To rank the colleges by the acceptance rates of the applicants to whom offers were
made, we can apply the authority distribution associated with the m@thi¥e provide an
example with the colleges B, H, M, P, S, Y, and O (others). We name thetinroughC7,
in that order. Assume the acceptance rates have the following nfatrix

B H M P S Y ©)
04 01 01 01 01 01 01
0.05 09 001 001 001 001 001
01 02 06 00 005 00 005
005 01 005 05 005 005 02
01 02 005 005 045 005 01
005 01 005 005 005 06 O1
0.05 005 005 005 005 005 07

The so-called “authority distribution” can be regarded as the measure of relative
attractiveness of the colleges from the applicants’ point of view. The solutian-ofr P
is

O<Kun7UuZIw

7 =(0.08682890.5306940.0735860.05351710.05518950.06540970.134775.

Therefore we rank the colleges as: H(1), B(2), M(3), Y(4), S(5), and P(6). If we allow some
level, say 001, of trust, we may believe that M(0.073586) ties with Y(0.0654097) in the
rank 3, and S(0.0535171) ties with P(0.0551895) in the rank 5.

6.2.2. Journal rankings by citations

Let J1, Jo, ..., Ju—1 ben — 1 journals in a scientific field, and, be the collection of
all other journals. We technically tred{ as a single journal. For any journal, each issue
contains many papers, and each paper has its list of references or citations. A pgper in
can be cited in another paper jh as a reference. Of all papers cited By(repetition
counted), we leP (i, j) be the proportion of those papers which are published,ofo P
measures the direct impact between any two journalsRid) is the self-citation rate
for J;. The authority distribution forr = = P would quantify the long-term influence of
each journal in the group of journals and can be used to rank these journals.

6.2.3. Planning of a freeway system

A few small towns believe that building a freeway system would be to their common
benefit. Say, they plan to build freewalys, Fo, ..., F,—1. We let F,, be the existing traffic
channels of car, truck and bus. We assume that all the potential freeways have the same
length. Otherwise we can make up the assumption by dividing long freeways into smaller
segments and rename them all. The freeways with higher traffic intensity should be built
with more driving lanes and so receive more investments. Of all the traffic flof ome
let P(i, j) be the (estimated) proportion of the traffic flowing irfip. Then the authority
distributions satisfyingm = 7 P will measure the relative traffic intensity on eaghand
can be used in the investment allocation.

A similar issue can be found in designing an Internet or Intranet system.
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7. Conclusions

In the classical approach to the power distribution for a specific voting problem or a
specific voting rule, some set-theoretical methods (simple games) assume only two results,
either “winning” or “losing.” The S-S index quantifies each member’s probability to
pivot in an ordering of members. However, an organization is not simply a voting body
confronted with a specific voting problem. Our internal structure of “boss” and “approval”
is introduced to avoid specific voting problems.

The command games help in providing a conceptual framework for members’ specific
positions within the organization. Next, the quantitative authority distribution can be
used to explain members’ general administrative power. It is derived from a political
counterbalance equilibrium. A member’s authority is from others while his authority is
redistributed in his command game. To imitate the decision makings and interactions from
the time when a bill is first proposed to the time when it is formally voted, we construct a
time-reversed stochastic process of critical players. Given that the critical player in period
is known, the conditional probability of picking the critical player in pericel obeys the
Markovian property. Hence the authority distribution is the frequency of being critical in
the long-run decision-making process. In addition, it does not depend on the specific issue
to vote when certain conditions, such as irreducibility and aperiodicity, are satisfied. From
an imaginative viewpoint, the S—S power index itself is a special authority distribution
when the potential negative voting outcomes are concerned. Finally, the distribution can
also measure the ultimate influence between members, more precisely between a member
and his irreducible organization or sub-organization. In two applications, we use the
distribution to resolve internal conflicts and rank journals and colleges.

From a theoretical point of views, there are several related issues worth mentioning.
First, to keep the Markovian analysis tractable, we have focused on its interpretation by a
decision-making process and its asymptotic behavior. Notice, however, that the set-up is
not restrictive for the issues at hand since the theory of Markov chains has rich features
of periodicity, convergence, non-homogeneity, generalizations, etc. One could incorporate
such features in our model and investigate their rich contexts and interpretations. Secondly,
in our analysis, the power transition matrix will always be a stochastic matrix. Hence, any
outsider can not interfere with the internal affairs. Hu (2000) has studied some simple forms
of campaign strategies to affect an organization’s voting by outsiders, based on the same
authority structure. Thirdly, commands could also be implemented indirectly. In the related
work of Hu and Shapley (2003), a coalition admits its commanded members to command
more members. This defines a generalization, called “control game,” of command games
by iterations of commands. This issue is related to property right, organizational designs,
efficiency, and other problems in the theory of organization. Finally, we have constantly
mentioned the symmetry conditions (SC-I and SC-II) for the S-S index to quantify a
player’s chance of being critical. If we replace the S-S indiceB @fith their respective
asymmetric S-S indices, then we would formulatealgmmetric authority distribution.

In this case, personal preferences on the issue to vote, or other specific factors, are generally
taken into account.
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