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Abstract

One assumption in the Shapley–Shubik power index is that there is no interaction nor infl
among the voting members. This paper will apply the command structure of Shapley (19
model members’ interaction relations by simple games. An equilibrium authority distributi
then formulated by the power-in/power-out mechanism. It turns out to have much similarity
invariant measure of a Markov chain and therefore some similar interpretations are followed
new setting. In some sense, one’s authority distribution quantifies his general administrative p
the organization and his long-run influence on all members. We provide a few applications in c
resolution, college and journal ranking, and organizational choice.
 2003 Elsevier Inc. All rights reserved.
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1. Preliminaries

The paper treats an organization as an ensemble of simple games: one “comman
for each member in the organization. The general “authority distribution” would be b
on the internal structure in the long run, instead of some specific external tasks. In
ture, Simon (1951) defined a member’s authority as his right to select actions affecti
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whole or part of his organization. Aghion and Tirole (1997) analyzed the organiza
issue from another aspect.

1.1. Notations

The conventional notation for simple games was introduced by Von Neuman
Morgenstern (1947) and extended by Shapley (1962). As far as our present sub
concerned, we shall distinguish three levels of Boolean abstraction: lower-case italic
or numerals forindividuals, italic capitals forsets of individuals, and script capitals forsets
of sets of individuals; thusc ∈ C ∈ C. The empty set of individuals,∅, is different from the
empty set of sets,∅. ⊆ is used for set inclusion and⊂ for strict set inclusion, and se
subtraction will be indicated by\ (read “without”). In naming the elements of a set,
shall often employ the vinculum, thus “137” for “{1,3,7}.” The number of elements of
finite setX is denoted|X|.

N will conventionally denote the set of all individuals or members in an organiza
andN will denote its power set, i.e., the set of all subsets (coalitions) of N . If i is any
element ofN , thenNi will denoteN \ ī andNi will denote the power set ofNi . We denote
by S+ the set of allsupersets of elements ofS, by S∪ (or S∩) theunion (or intersection,
respectively) of all elements ofS, and bySm the smallestT ⊆ S such thatT + = S+,
or equivalently, the set of allR ∈ S that are minimal, i.e., such that noT ∈ S satisfies
T ⊂ R.

1.2. Simple games

While asimple game onN is often represented as the ordered pair(N,W), we denote
it by the symbolΓ (N,W) where

∅ ⊂ W = W+ ⊂ N . (1)

The first strict inclusion in this definition tells us that (givenW = W+) N is always inW
and the second tells us that∅ is never inW . Hence in a simple game,Wm �= ∅. In the
absence of any more specific interpretation, the coalitions inW will be calledwinning and
those inN \W will be calledlosing. By the equality in Eq. (1), every superset of a winn
coalition is winning while every subset of a losing coalition is losing. Thus in defini
specific simple game it suffices to list justWm, the set ofminimal winning coalitions.
A playeri is calledessential if i ∈ Wm∪; otherwise he is adummy. We call him adictator
if ī = Wm∪.

1.3. Shapley–Shubik power indices

For any orderingi1i2 · · · in of all members in the simple gameΓ (N,W), we consider
the increasing sequence of coalitions

∅, i1, i1i2, i1i2i3, . . . , i1i2 · · · in = N.

In this sequence, there exists a unique numbert such thati1i2 · · · it−1 is losing while
i1i2 · · · it−1it is winning; we say thatit pivots in the sequence. Now consider all possi



134 X. Hu, L.S. Shapley / Games and Economic Behavior 45 (2003) 132–152

ready
as his

nd sum
, have
ot

er

ult

tion
since
ill.

obabi-

y

o
e two
in the
the
,

relaxed

s are
ocratic
uence

e will

ame
tions
tion 4
at the

tions,
ways to orderN . There aren! of them. TheShapley–Shubik (S–S) power index of a player
in the simple game is defined as the fraction of orderings in which he pivots. As al
shown (Shapley, 1953; Shapley and Shubik, 1954), his power index may be defined
probability of pivoting when the members are uniformly randomly ordered.

It is easy to see that the S–S power indices of a simple game are nonnegative a
up to 1. Dictators, and only dictators, have power 1; dummies, and only dummies
power 0. Players who appear symmetrically inW have equal power indices, and it is n
hard to see that if “j outweighsi” in the sense that replacingi with j never hurts a winning
coalition, thenj ’s power index is necessarily not less thani ’s. If the game is the winning
rule for voting a bill and the players satisfy certain symmetry conditions, then playi ’s
S–S index is the chance of the two “critical” situations:

(1) the bill is passed unless he votes against it;
(2) the bill is blocked unless he votes for it.

In either of the critical situations, playeri ’s vote (either YES or NO) determines the res
of the bill. Two symmetry conditions (SC-I and SC-II) are stated in Hu (2001). LetS be the
coalition of the players who will vote for (YES) the bill. In general, it is a random coali
to the voting body before the bill is voted; otherwise the bill is not necessary to vote (
the result is known). ClearlyN \ S consists of the players who vote against (NO) the b
The symmetry conditions can be stated as:

• SC-I: ignorance of particular personalities and interdependence. That is, the pr
lity of S = T depends only on the size ofT .

• SC-II: the size ofS is uniformly distributed on{0,1, . . . , n}. Therefore, the probabilit
of |S| = k is 1/(n + 1) for anyk ∈ {0,1, . . . , n}.

In the absence of any more specific information aboutS, we shall assume the tw
symmetry conditions when a vote is concerned in the present paper. Actually th
conditions are not essential. As remarked in Section 7, we may relax them to obta
asymmetric authority distribution. As stated before, one assumption in the definition of
S–S index is that every ordering has the same probability 1/n!. As already shown (Owen
1971 ; Shapley, 1977; Owen and Shapley, 1989; Cheng, 1994), this assumption is
in a generalization, called thenon-symmetric Shapley–Owen power index, where the voters
are endowed with different ideologies. Another assumption is that the probabilitie
independent, i.e., no interaction exists among the voting members. In most real dem
societies, however, there is some degree of political organization, whereby voters infl
each other according to the distribution of authority throughout the organization; w
address this influence in the present paper.

A local organizational topology is set up for each member in the form of a simple g
in Section 2. In Section 3, an equilibrium authority distribution is derived for organiza
in which each member has some, either direct or indirect, impact on others. Sec
discusses the ultimate influence between players. In Section 5, we shall show th
authority distribution is a generalization to the S–S power index. A few related applica
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such as journal ranking and organizational choice, are addressed in Section 6. O
proofs can be found in the theory of Markov chains.

2. Local topology of authority

In an organization, some members may have a certain degree of discretionary
some may even be “free agents,” i.e., dictators in their own “command games,” accou
to no one else. Others may be merely “cogs in the machinery,” i.e., dummies in the
command games. Let us develop these ideas formally.

2.1. Boss and approval sets

Let i denote a generic member of the organizationN = 12· · ·n (with n > 1 finite). In
general, there will be certain other individuals or, more generally, sets of other individ
that i must obey, regardless of his own judgment or desires. We call themboss sets and
denote them collectively byBi . Thus, if there is an individualb who can “boss”i, this is
indicated byb̄ ∈ Bi , not byb ∈ Bi . Clearly, the empty coalition∅ could never be a boss s
(∅ /∈ Bi). Given any boss setS ∈ Bi , we shall assume that all its supersets inNi are also
boss sets. That is,

∅ ⊆ Bi = B+
i ∩ Ni ⊂ Ni , all i ∈ N, (2)

which may be contrasted with Eq. (1). Ifi is not bossable, thenBi = ∅, or Ni /∈ Bi .
We shall also associate with eachi ∈ N another collection of coalitions,Ai , called

approval sets, inNi . The consent of any one of these approval sets is sufficient to a
i to act, if he wishes. But it is not able to force him to act. So approval sets are no
sets, and henceAi ∩Bi = ∅. On the other hand, if∅ /∈ Ai , theni cannot act alone withou
an authorization from an approval set inAi or an order from a boss set inBi . Imitating
Eq. (2), if S is an approval set, then all its supersets inNi \ Bi are also assumed approv
sets.

The collection of approval setsAi is a guide to the amount ofpersonal discretion that
i enjoys, if any. At one extreme, ifAi = Ni then i is called afree agent. He needs no
approval (since∅ ∈ Ai ), and no one can boss him (sinceBi = ∅). We shall denote the se
of free agents byF . At the other extreme, ifAi = ∅, theni has no discretionary powe
and we shall call him acog. For an intermediate example of “partial discretion,” mer
consider a corporation president who is bossable by a 2/3 majority of the board of director
but is allowed to follow his own judgment as long as he has the support of a simple ma
from the board. In the US Legislature, the president’s proposal can be vetoed by 2/3 of the
senators and 2/3 of the representatives.

We letZi = Ai ∪ Bi be the set of all approval and boss sets ofi. However, ifZi = ∅,
theni is a cog, but not bossable. The cog takes no action always! We set the conv
Zi ⊃ ∅ for any i ∈ N such that the organization does not contain any non-bossable
Therefore if no coalition can bossi (i.e.,Bi = ∅), then eitheri is a free agent (i.e.,∅ ∈ Ai )
or he needs at least an authorization from some non-empty approval set. On the othe
Ni bossesi if he is a cog.
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Lemma 2.1. Zi = Z+
i ∩ Ni ⊆ Ni .

Proof. It suffices to show thatZi ⊇ Z+
i ∩Ni . If S ∈ Z+

i ∩Ni , then there exists a minima
coalitionT ∈ Ni such thatT ⊆ S andT ∈ Zi . Now we have three cases:

(i) if T ∈ Bi , thenS ∈ Bi by Eq. (2) and soS ∈ Zi ;
(ii) if T ∈ Ai andS /∈ Bi , i.e.,T is an approval set andS is a superset ofT in Ni \ Bi ,

thenS ∈ Ai andS ∈ Zi ;
(iii) if T ∈ Ai andS ∈ Bi , it is trivial thatS ∈ Zi .

ThereforeS ∈ Zi in all cases and we complete the proof.✷
2.2. Command games

For a coalitionS ⊆ N to “command”i ∈ N , eitherS \ ī can bossi or i can agree to
follow S \ ī ’s collective suggestion. Formally we definei ’s command sets as

Wi
def= Bi ∪ {S ∪ ī: S ∈ Zi}. (3)

It is easy to see that{S ∪ ī: S ∈ Zi} = Z+
i \ Zi andB+

i = Bi ∪ {S ∪ ī: S ∈ Bi} from
Lemma 2.1 and Eq. (2). Therefore we have the equivalence:Wi = Bi ∪ [Z+

i \ Zi ] =
B+

i ∪ {S ∪ ī: S ∈ Ai}.

Proposition 2.1. Z+
i ⊇ Wi ⊇ B+

i and Wi = W+
i .

Proof. First of all,Wi = Bi ∪ [Z+
i \ Zi] ⊆ Zi ∪ [Z+

i \ Zi ] = Z+
i . Secondly,Wi ⊇ B+

i

is from the above equivalent definition. To proveWi = W+
i , for ∀T ∈ W+

i , there exists a
minimal coalitionS ∈ Wi such thatS ⊆ T . If S ∈ Bi thenS ⊆ T \ ī ∈ Bi and henceT ∈ Wi .
Or if i ∈ S andS \ ī ∈ Zi , theni ∈ T and by Lemma 2.1 (together withS \ ī ⊆ T \ ī),
T \ ī ∈ Zi . ThereforeT ∈ Wi . ✷

It is not hard to see that the following statements are equivalent:

(i) i is a cog;
(ii) Z+

i = Wi = B+
i ;

(iii) Wi = B+
i ;

(iv) Z+
i = Wi .

We can also show thatWi \Zi = Wi \Bi = {ī∪T : T ∈ Zi}, and thatZi \Wi = Z+
i \Wi =

Zi \Bi = Ai , the personal discretion.

As Zi �= ∅ and ∅ /∈ Bi , Proposition 2.1 and Eq. (3) imply thatGi
def= Γ (N,Wi ) is

a well-defined simple game. We shall callGi the command game for i. The ensemble

of all command gamesG
def= {Gi : i ∈ N} completely specifies the authority structure

“constitution” of the organization. In particular, if memberi is a free agent, then h
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command game is justΓ (N, {i}+); if memberj is a cog, then his command game
Γ (N,B+

j ). However, this does not imply that a cog is not an essential player in
members’ command games, nor that a free agent is a dictator or is even essential
members’ command games.

The Confucian model of society has a simple organizational form. According t
Confucianism, there are many principles a society should follow, among them:

(P1) The man follows the king;
(P2) The son follows his father;
(P3) The wife follows her husband;
(P4) The king should respect his people.

This authority structure has circular commands with different degrees of discretio
most of the Chinese history, this orderly organization worked properly. Violations
punished. This also applies for (P4) because the people would exercise their com
by overthrowing the king if his evils are insufferable to the vast majority, say 90%, o
governed.

3. Authority distribution

If memberi has some power in memberj ’s command gameGj , andj has some powe
in i ’s command gameGi at the same time, then how can we define a fair distributio
“power” throughout the organization? We shall call it “authority distribution” to distingu
it from other uses of the word “power.” A Markov-chain structure is introduced.

3.1. Authority equilibrium

An authority distribution π :N → [0,1] over an organization(N,G) satisfiesπi � 0
for any i ∈ N and

∑
i∈N πi = 1. For convenience, we letπ be a 1× n row vector. Denote

by P(i, j) memberj ’s S–S power index in memberi ’s command gameGi . And we call
the n × n matrix P = [P(i, j)]ni,j=1 the power transition matrix of the organization. If
P(i, j) > 0, then some of memberi ’s “power,” if he has, transfers to memberj . P(i, i)

measuresi ’s personal discretionAi . Clearly the power transition matrixP is astochastic
matrix, with nonnegative entries and each row sums to 1.

The Shapley value was first derived from three fairness axioms for superadditive g
As far as simple games are concerned, Dubey (1975) modifies one of the axioms and
the existence and uniqueness of the S–S power index without reference to genera
simple) games. To state these axioms, we letC(N) denote the set of all simple games onN ,
and we use the functionv : 2N → {0,1} to indicate an elementv ∈ C(N). That is,v(S) = 1
if and only if S is winning. Moreover for simple gamesv,w ∈ C(N), the operations∨ and
∧ are defined by

(v ∨ w)(S)
def= max

(
v(S),w(S)

)
, (v ∧ w)(S)

def= min
(
v(S),w(S)

)
.

As already shown (Dubey, 1975), there exists a unique functionϕ :C(N) → [0,1]n such
thatϕ satisfies the following axioms:
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(A1) for anyv ∈ C(N),
∑

j∈N ϕj (v) = 1 andϕj (v) = 0 if j is a dummy inv;
(A2) if membersi andj have symmetric roles inv ∈ C(N), thenϕi(v) = ϕj (v);
(A3) ϕ(v ∨ w) + ϕ(v ∧ w) = ϕ(v) + ϕ(w) for anyv,w ∈ C(N);

andϕi(v) is i ’s S–S power index in the simple gamev ∈ C(N). In an organization, we
assume that memberi ’s authority is derived from his “command powers” in all membe
command games, which assume the Axioms (A1)–(A3). Soi ’s command power inWj is
just P(j, i). We also note, in reality, that one’s command power over those with h
authority makes more contribution to his authority than his command power over
with lower authority, other things equal. For example, the computers in our society
no authority even though they work well; however, a manager has more authority
programmer, not because the manager knows the computers better, but because he
command powers over the programmer than that the programmer has over the m
Formally, we propose that an authority distributionπ should follow Axiom (A4).

(A4) πi = ∑
j∈N πjP (j, i) for ∀i ∈ N , or in matrix,π = πP.

We callπ = πP theauthority equilibrium equation. The existence ofπ is well known
from the Markovian theory. In a naive sense of “counterbalance equilibrium,”πjP (j, i)

is the authority flowing fromj to i. So πi is the sum of those flowing intoi: πi =∑
j∈N πjP (j, i). However, in generalπiP (i, j) �= πjP (j, i). For example, letN = 123

whereW1 = {12,13,23}+,W2 = {21,23}+, andW3 = {23}+. Then

P =



1
3

1
3

1
3

1
6

2
3

1
6

0 1
2

1
2


 and π =

(
1

7
,

4

7
,

2

7

)
;

butπ1P(1,2) �= π2P(2,1).
We should remark that our present interpretation of the “command games” do

envisage “commands” as being instructions that must be absolutely obeyed, as in a m
or legal setting. Rather, perhaps, we might here call them “recommendation,” “influe
or “advising” games, although we have up to this point excluded the so-called “impr
simple games, in which two disjoint coalitions can both be winning.

However, if there is no clear command-game setting in the organization, it is no
to formulate the power transition matrixP to designate how much the members “influen
each other directly,” either by prestige, moral, or else on personal decision makin
example, a 10-year-old child’s direct decision may be determined by his parents’ gu
with probability 0.3, by peer children with probability 0.4, and his own interest wit
probability 0.3, although there may be no specific command game on the child. The
person-to-person impactP(i, j) can also be estimated by linear regressions given lo
historical data. The restriction is thatP should be a stochastic matrix.

A concrete organization also holds financial and physical assets, besides its
resource. To include these bossable members into an organization, we introdu
concept ofyesman. A memberi is called ayesman if i is a dummy in all command
games. Equivalently, theith column inP is a zero vector. A yesman, such as a sla
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shows no sign of personal opinion until his bosses have given him some instructi
hints of the direction. A typical yesman is a computer, which follows all instructions f
its users. A secretary sometimes is a yesman, when he is only responsible to his b
and takes no positions in all command games. By (A4), the existence of yesman
an organization does not affect the authority distribution; and hence we may remove
when calculating the authority distribution. However, yesmen may have some capa
and cost as well, in some tasks with the same capability–cost structure as that o
members; so we can treat the organization’s capability–cost in a uniform way. C
a yesman is a cog, but a cog is not necessarily a yesman. On the other hand, apooh-bah,
who holds many public or private posts should be in a high rank of authority or of
influence, as indicated in (A4).

3.2. Administrative power

In some sense,πi is playeri ’s probability of being critical in organizational decisio
in the long run. This is our second interpretation for the authority distribution. Say, th
a bill to vote in the organization and we assume that each member has to vote eithe
or NO. Then the winning rule for the bill can be formulated as a simple gameΓ (N,V)

on N . As we see in many organizations, different bills may have different voting r
even within the same organization.

Let q be a probability distribution to pick a player from the organization whereq(i)

equals to playeri ’s S–S index in the voting gameΓ (N,V). One could propose a “proces
interpretation for the transition probabilitiesP . In this interpretation, the r.v.Xt denotes
the player who is “influential” to the bill in periodt . At time t = 0, a player is chose
to be the initial influential player according to the probability distributionq . If X0 = i0,
then playeri0 is influential in the sense that the organizational decision is made in p
t = 0 according to the voting gameΓ (N,V). Given X0 = i0, the influential player in
period t = 1 will be chosen according toi0’s command game. That is, conditional
X0 = i0, the influential player in periodt = 1 will be playerj with probabilityP(i0, j).
Hence,P(i0, j) = Prob(X1 = j | X0 = i0) can be interpreted as the “one-step” influen
of playerj on playeri0. More generally,Pm(i, j) is interpreted as them-step influence o
playerj on playeri. Given the initial distributionq , it follows that

∑
i∈N Pm(i, j)q(i)

is interpreted simply as playerj ’s m-step influence on the bill. In the irreducible a
aperiodic case (see Section 3.3), it is well known that limm→∞

∑
i∈N Pm(i, j)q(i) = πj

for all initial distributionq . In other words, playerj ’s long-run influence on the bill exist
and equals toπj . This long-run influence does not depend on the specific bill to
or its winning ruleΓ (N,V). Furthermore, if we takeq(i) = 1 for any fixedi ∈ N , then
πj = limm→∞ Pm(i, j). This justifies the interpretation forπj as the long-run influence o
playerj on other players. We shall address this point in Section 4.

If we reverse the above process, we could obtain another interactive process.
bill be proposed in periodt = 0 and let the proposed bill be formally voted in periodt = δ

(δ � 0). If the players are not well organized and they vote independently (i.e., all pl
are free agents), then playeri ’s probability of being critical in the voting gameΓ (N,V)

equals to his S–S index in the game (given the conditions SC-I and SC-II are satisfi
general, before the periodt = δ, every member can exercise his power in others’ comm
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games to alter or re-confirm their preference of choices, if he can. And these “exerc
power” make a stochastic point process during the time periods{0,1,2, . . . , δ}. We want to
find out how frequently each member is critical in the interactive decision-making pro
In the absence of any specific pattern of randomness except the two symmetry con
we can figure out an embedded and truncated Markov chain{Y0, Y1, Y2, . . . , Yδ} where the
r.v. Yt is the critical player in periodδ − t .

Without loss of generality, we assume thatY0 is chosen fromN with a probability
distributionq ′. Therefore, the result of the bill will be determined byY0’s critical vote in
periodδ: the bill is passed ifY0 votes YES or the bill is blocked ifY0 votes NO. If the
organization knows thati0 will be the critical player in voting the bill, then all players w
exercise their powers ini0’s command game in periodδ−1. More formally, in periodδ−1,
givenY0 = i0, there would be a vote to determinei0’s choice (YES or NO) of periodδ. The
vote has the winning ruleWi0. Of course,i0 has to obey the decision by his command ga
and in periodδ he will take the choice, which is determined by his command game in p
δ −1. Mathematically, givenY0 = i0, i0’s choice in periodδ is determined by his comman
game of periodδ − 1. If the command game decides the choice YES (or NO) fori0, theni0
must vote YES (or NO) in periodδ. Now in i0’s command game, memberi1 is critical with
probabilityP(i0, i1). We takeY1 to be the critical member in the vote of periodδ −1. Then
Y1 has the conditional probability distribution: Prob(Y1 = i1 | Y0 = i0) = P(i0, i1). So if
Y1 votes YES (or NO) in periodδ − 1, thenY0 has to vote YES (or NO) in periodδ and
therefore the bill is passed (or blocked). That is,Y1 is the real critical member in the last tw
periodsδ andδ−1. Once again, given thati1 is critical in periodδ−1, i1’s critical decision
is subject toY2’s critical vote in the command gameΓ (N,Wi1) of periodδ − 2, andY2
has the conditional probability distribution Prob(Y2 = i2 | Y1 = i1) = P(i1, i2). Therefore
Y2 is the real critical member in the last three periodsδ − 2, δ − 1, andδ. We continue this
process and letδ → ∞; then we obtain a homogeneous Markov chain{Y0, Y1, . . .} (see
Fig. 1) with probability transition matrixP .

If the process is irreducible and aperiodic,πi is the frequency of playeri ’s presence in
the chain. On the other hand, the distributionπ is independent of the specific bill to vo
and its respective voting rule; it is also independent of the initial probability distributioq ′
by whichY0 is chosen.

In the above senses, we say thatπi is playeri ’s “general administrative power” in th
organization.

3.3. Asymptotic properties

The Markov-chain setting of authority distribution shall lead to some similar imp
tions. For any nonnegative integerk, we denotePk thekth power ofP with the convention
P 0 = I , then × n identity matrix. We letPk(j, i) be the entry at thej th row and theith

�

time

Yi· · · · · ·

· · · · · ·

Y4

δ − 4

Y3

δ − 3

Y2

δ − 2

Y1

δ − 1

Y0

δ

Fig. 1. Interpretation of authority by Markov chains.
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column of the matrixPk , and calli influences j (or influences j directly) if Pk(j, i) > 0
(or P(j, i) > 0) for some integerk � 0. We denote this asj −→ i or i ←− j . Otherwise,
j /−→ i or i /←− j . Although−→ or ←− is reflexive and transitive, it is not symmetr
in general. Two membersi andj are said tocommunicate if they influence each othe
denotedi ←→ j . Communication←→ is symmetric. Communication defines an equi
lence relationship over the members: two members that communicate with each ot
said to be in the same equivalence class. Therefore, any two classes are either dis
identical. We say that an organization (or a coalition) isirreducible if any two members
in the organization (or coalition) communicate with each other. Otherwise, it’sreducible.
In a naive sense, one influences all members and vice versa, in an irreducible organ
or coalition. Moreover, ifi −→ j andj ←→ k, theni −→ k; if i ←→ j andj −→ k,
then i −→ k. That is, influence is a class property as well. This implies that there
free agent in an irreducible organization since no one else influences a free agent
himself.

The organization withN = 123, W1 = {12,13,23}+, W2 = {21,23}+, and W3 =
{23}+ is irreducible. The organization withN = 123456,W1 = {12,13,15}+, W2 =
{12,24}+, W3 = {34}+,W4 = {3,4}+, W5 = {6}+, andW6 = {5}+ is reducible. Here
{3,4} is an irreducible class while{5,6} is another irreducible class. However, neith
member 1 nor member 2 belongs to any irreducible class. We also note that
exists no influence between the two irreducible classes. In general, the member
organizationN can be classified, in a unique manner, into non-overlapping coali
T ,C1,C2, . . . ,Ck such that eachCi is an irreducible class and

T = {
i ∈ N | i −→ j but i /←− j for somej ∈ N

}
.

We call the members ofT authority-transient. EachCi has no impact on other irreducib
classes, and vice versa. SoCi is actually“independent" of all other irreducible classes
For our further convenience, we shall assume that the organization has the
decomposition and thereforeP has the form (after some possible re-arrangements) of

P =




PT Q1 · · · Qk

PC1

. . .

PCk


 , (4)

wherePS is the restriction ofP to S ⊆ N . We letm = |T |. It is easy to see that limt→∞ P t
T

is a zero matrix. This implies that:

(i) I − PT is invertible;
(ii) members inT have no authority, i.e.,πi = 0 for all i ∈ T ; and
(iii) for any organizationN , there exists at least one irreducible class.

Influences can also be illustrated by directed graphs. Let the set of verticesV = N and
the set of (directed) edgesE = {(i, j) ∈ N ×N | P(i, j) > 0}. A path fromu to v is a linked
list of verticesu = u0, u1, u2, . . . , ut = v such that(ui , ui+1) ∈ E. In the terminology of
graph,i −→ j if and only if there is a path fromi to j . Therefore, an organization
irreducible if and only if there exists a path fromi to j for ∀i, j ∈ N .
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Member i is said to haveperiod d if P t (i, i) = 0 whenevert > 0 is not divisible
by d and d is the greatest integer with this property. A member with period 1 is
to be aperiodic. Let d(i) denote the period ofi. Periodicity is also a class property:
i ←→ j , thend(i) = d(j). For an example, letWi = {i + 1, i − 1}+ for i = 2, . . . , n − 1,
W1 = {n,2}+, andWn = {n − 1,1}+. Then each member has period 2 ifn is even or 1 ifn
is odd. From the theory of Markov chains, for an irreducible organization with period ,
we can decomposeN as a union of disjoint nonempty coalitions:N = D1 ∪ D2 ∪ · · · ∪ Dd

such thatDi influencesDi+1 directly (we use the modular notationd + 1 = 1). That is,
P(j, k) > 0 for somej ∈ Di andk ∈ Di+1. Therefore, in an irreducible organization wi
periodd , we let

Si
def= {

j ∈ N | P td(i, j) > 0 for somet > 0
}

for ∀i ∈ N . Thenj ∈ Si if and only if i ∈ Sj . We list a few asymptotic behaviors here.

Proposition 3.1.

(i) If i has period d(i) and P s(j, i) > 0, then P s+td(i)(j, i) > 0 for all t sufficiently
large.

(ii) In an irreducible organization with period d , limt→∞ P td(i, j) exists for ∀i ∈ Sj ;
furthermore, there is a unique method to assign an authority distribution π to
the authority equilibrium equation π = πP , that is, πj = 1

d
limt→∞ P td(i, j) for

∀i ∈ Sj ; and given any initial distribution π(0) and define π(t+1) = π(t)P , then πj =
1
d

limt→∞(π(td))j , the j -th component of the vector π(td). Moreover,
∑

j∈Si
πj = 1

d
for ∀i ∈ N . The convergence is linear.

(iii) In an irreducible organization, πi > 0 for ∀i ∈ N .

Proposition 3.1 (i) says that ifi influencedj sometime in the past, theni will influencej
periodically in some future. Proposition 3.1 (ii) can be used to approximate the aut
distribution by the numerical iterations. However, when there are two or more irredu
classes in the organization, the solution to the authority equilibrium equationπ = πP is
not unique. More generally, for the organization with the decomposition as in Eq
{π ∈ [0,1]n | π = πP ,

∑
i∈N πi = 1} is a k − 1 dimensional convex hull in[0,1]n. One

remedy is to assign a specificauthority quota to each class. Actually, if we assign classCi

with authority quotaqi such that 0� qi � 1 and
∑

k

i=1 qi = 1, then there exists a uniqu
authority distribution to solve the authority equilibrium equationπ = πP and the quota
restriction

∑
j∈Ci

πj = qi for all 1 � i � k. Another remedy is to consider theinternal
authority distribution within each class only.

3.4. Authority within a class

Let C be an irreducible class andPC be the restriction ofP to C. Formally, we can
define theinternal authority distribution for members within the classC, denotedπC , by

πC = πCPC,
∑
i∈C

πC
i = 1, πC

i � 0, ∀i ∈ C. (5)
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Proposition 3.2. (i) πC exists uniquely; (ii) if C has period d and j ∈ C, then
limt→∞ P td(i, j) = dπC

j for ∀i ∈ Sj .

Each member in an organization is directly concerned with only a fraction of a
official orders, requisitions, etc. that flow through the organization, so the power tran
matrixP will likely be quite sparse—i.e., have lots of zeros. By (A4), the existenceT
does not affect the authority distribution. So we may removeT fromN before we calculate
the authority distribution. This reduction is useful when a large organization has a
portion of authority-transient members. For example, given

P =




1
4

1
2 0 1

4

0 1
3

1
3

1
3

0 0 1
3

2
3

0 0 1
2

1
2


 ,

after we remove the authority-transient membersT = 12, we have

PN\T =
(

1
3

2
3

1
2

1
2

)
.

So(π3,π4) = (π3,π4)PN\T , together withπ1 = π2 = 0, gives thatπ3 = 3/7,π4 = 4/7.
As a remark, given a command gameGi , we can compute its S–S power indic

uniquely. But the inverse is not true. For example, inN = 12345, both sets of minima
winning coalitionsWm

1 = {123,145} andWm
1 = {124,135} have the same S–S pow

index vector(7/15,2/15,2/15,2/15,2/15). Moreover, if
∑

j∈S P (i, j) = 1 for some
individual i and coalitionS, thenS necessarily commandsi. However, the inverse is fals
In the above example,1234 commands 1; but

∑
j=1,2,3,4P(1, j) = 13/15< 1.

4. Ultimate influence by authority

The S–S power indexP(i, j) measuresj ’s direct influence oni. For the “ultimate
influence” or “ultimate power,” accordingly, is related to limt→∞ P t (i, j), if it exists. By
Proposition 3.1,πi = limt→∞ P t (j, i) if the organization is irreducible and aperiodic; a
the limit is independent of the choice ofj . This is our third interpretation ofπi as i ’s
“uniform ultimate influence” to any other members in the organization. Proposition
provides the ultimate influence among members within the same irreducible class.

In other situations, we notice the less practical importance when both membe
authority-transient or when both members belong to different irreducible classes. In
two cases, the ultimate influences between the two members are zeros. In this sec
will go to details for the case of non-transient over transient members.

4.1. Limit influence of a class

For anyi ∈ T , there may be somej ∈ T such thatj influencesi. But sincej has no
authority in the organization, his influences oni should come from the members inN \ T .
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Division I ←− Division II −→ Division III

Fig. 2. An example of authority-transient sub-organizations.

In some sense,j acts as “messenger” only, passing the influences fromN \ T to i. This
argument can also be generalized to the case of influence between sub-organiza
Fig. 2, both Divisions I and III have influence on Division II; however the later has
impact on Division I or III. One question is their relative importance on Division II and
how much.

Given an irreducible classC and anyi ∈ T , we propose an authority accumulati
sequence{µC

i (t)}∞
t=0 defined by

µC
i (t + 1) =

∑
j∈T

P (i, j)µC
j (t) +

∑
j∈C

P(i, j)

with the initial conditionµC
j (0) = 0 for ∀j ∈ T . Intuitively µC

i (t + 1) is the authority
absorption inC from i at or before thet + 1st step:

∑
j∈C P(i, j) is the “authority”

absorbed directly byC from i, while
∑

j∈T P (i, j)µC
j (t) is the “authority” absorbed

indirectly byC from i before thet + 1st step. Therefore the ultimate authority absorp
limt→∞ µC

i (t), if it exists, measures the ultimate influence byC on memberi.

Proposition 4.1. The limit µC
i = limt→∞ µC

i (t) exists and it is the minimal nonnegative
solution of the system of inhomogeneous equations

µC
i =

∑
j∈T

P (i, j)µC
j +

∑
j∈C

P(i, j). (6)

Proof. For anyi ∈ T , µC
i (t) is non-decreasing int (by induction), but it remains bounde

by 1. So limt→∞ µC
i (t) exists. The limit obviously satisfies Eq. (6). Conversely

{µC
i } is any nonnegative solution of Eq. (6), we haveµC

i �
∑

j∈C P(i, j) = µC
i (1). By

induction,µC
i � µC

i (t) for all t � 1, and so the limits limt→∞{µC
i (t)} represents a minima

nonnegative solution. ✷
Corollary 4.1. Given T ,C1,C2, . . . ,Ck in N as of Eq. (4), for any i ∈ T and any
irreducible class C,

(i) µC
i (t) = ∑

j∈C P t (i, j);
(ii)

∑k
j=1µ

Cj

i = 1, the irreducible classes have total ultimate influence over T ;
(iii) if T = 12· · ·m, then


µC

1
...

µC
m


 = (I − PT )−1




∑
t∈C P(1, t)

...∑
t∈C P(m, t)


 .
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Proof. Clearly part (i) holds true fort = 1. Now if we assume that it is true for somet � 1,
then ∑

j∈C

P t+1(i, j) =
∑
j∈C

[∑
s∈T

P (i, s)P t (s, j) +
∑
s∈C

P(i, s)P t (s, j)

]

=
∑
s∈T

P (i, s)
∑
j∈C

P t (s, j) +
∑
s∈C

P(i, s)
∑
j∈C

P t (s, j)

=
∑
s∈T

P (i, s)µC
s (t) +

∑
s∈C

P(i, s)1 = µC
i (t + 1).

By the principle of induction, the statement (i) is true for allt � 1. Part (ii) is from (i) and
that limt→∞ P t (i, j) = 0 for ∀i, j ∈ T . Part (iii) is from Eq. (6). ✷
4.2. Redistribution of ultimate influence

The next proposition illustrates how to re-distribute the irreducible classC ’s total
ultimate influenceµC

i on i ∈ T among the members ofC.

Proposition 4.2. For any i ∈ T and any aperiodic irreducible class C, limt→∞ P t (i, j) =
πC
j µC

i for ∀j ∈ C.

Proof. As stated before, limt→∞ P t (i, s) = 0 for anyi, s ∈ T . Now,

lim
t→∞P t+1(i, j) = lim

t→∞
∑
s∈T

P t (i, s)P (s, j) + lim
t→∞

∑
s∈C

P t (i, s)P (s, j)

=
∑
s∈T

lim
t→∞P t (i, s)P (s, j) +

∑
s∈C

lim
t→∞P t (i, s)P (s, j)

=
∑
s∈T

0P(s, j) +
∑
s∈C

lim
t→∞P t (i, s)P (s, j)

=
∑
s∈C

(
lim
t→∞P t (i, s)

)
P(s, j).

We solve the system of equations, contrasted with Eq. (5),


lim
t→∞P t (i, j) =

∑
s∈C

(
lim
t→∞P t (i, s)

)
P(s, j), ∀j ∈ C,

∑
j∈C

lim
t→∞P t (i, j) = µC

i ,

to get limt→∞ P t (i, j) = πC
j µC

i . ✷
Corollary 4.2. In an aperiodic organization, limt→∞ P t exists.

In contrast to authority-transient coalitions or sub-organizations, a closed coalitS

keeps all authority inside, although it may influence the outsideN \ S. In Fig. 3, the
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56 −→ 89 ←− 123

Fig. 3. A closed coalition,89, keeps all authority inside.

coalition89 influences123 and56. But none of the coalitions123,56, orabcde influences
89.

We say a coalitionS is authority-closed if no authority flows out ofS, i.e.,P(i, j) = 0
for all i ∈ S andj ∈ N \ S. However, authority may flow fromN \ S into S. Examples of
closed coalitions includeN , F , ∅, etc. Clearly, irreducible classes are closed. Furtherm
if S1 andS2 are closed, thenS1 ∪ S2 andS1 ∩ S2 are also closed. WhenS is closed, then
any authority flowing intoS will be preserved insideS forever:P t (i, j) = 0, for ∀i ∈ S,
j /∈ S andt � 0. To see the authority-garnering mechanism, we have that

∑
j∈S P t (i, j) is

increasing int for any closed coalitionS. As a consequence, the “total authority” absorb
by a closedS from i, limt→∞

∑
j∈S P t (i, j) exists.

5. Voting with diverse preference

When we talk about a voting result, we have a scenario of diverse responses. Th
result may mean winning for some players to certain degrees; it also means los
others. Notice, moreover, that the degree to which the result means winning is n
same for the players within the same winning side. For many, the result may ev
indifferent. Actually the players have different levels of support for the bill before vo
In this section, we shall show that the S–S power index itself is also an authority distrib
associated with the diverse preference of the voters.

Let us return to the simple gameΓ (N,W) whereN = 12· · ·n being the set of voter
andW being the set of winning coalitions. The voting ruleΓ (N,W) is set up from the
point of “passing the bill.” From the viewpoint of the blockers who are against the
we can also define “winning” by that “the bill is not passed” or “the bill is blocked” a
re-define its “winning” ruleΓ ∗. A coalitionT in Γ ∗ then has the players who vote agai
the bill. A “winning” T in Γ ∗ then makes “passing the bill” impossible, orblocks forming
any winning coalition inΓ . Therefore it is “winning” inΓ ∗ if and only if it has nonempty
intersection with any winning coalition inΓ . It is not hard to see thatΓ ∗ is also a simple
game, denotedΓ ∗(N,W∗), where

W∗ def= {Z | Z ∩ T �= ∅, ∀T ∈ W} = {N \ T | T /∈ W}.
The gameΓ ∗(N,W∗) is called thedual of Γ (N,W). Given the characteristic functio

v(·) for Γ , the characteristic function ofΓ ∗ is v∗(T )
def= 1 − v(N \ T ). It is 1 if T ∈ W∗

and 0 otherwise.
For the bill to vote, playeri has certain level of preference to vote either YES(1

NO(0), or certain level of intensity to support the bill. It is natural to consider a w
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spectrum of preference or intensity from “Absolutely vote NO,” “Strongly Preferred N
“Slightly Preferred NO,” “Indifference between YES or NO,” “Slightly Preferred YE
“Strongly Preferred YES,” to “Absolutely Vote YES,” among other levels. A normal w
to quantify the whole spectrum is to map, by one-to-one, the preference levels onto[0,1].
We denotei ’s preference to voting YES or the intensity to support the bill bypi . So api of
1, 0.5, or 0 indicates the preference level of “Absolutely vote YES,” “Indifference betw
YES and NO,” or “Absolutely vote NO,” respectively.

Let us first explain this by the stochastic preference in whichpi denotes playeri ’s
probability to vote for the bill. Denote the vote YES (or NO) by the numerical 1 (o
respectively). Say, his vote or vote functionUi : [0,1] → {0,1} is then determined by hi
preferencepi in a stochastic way,

Ui =
{

1 with probabilitypi,

0 with probability 1− pi ,

i.e., Ui is a Bernoulli random variable with parameterpi . Note that there exists n
continuous vote function from the continuum of the preference space[0,1] onto the
discrete space{0,1}. Therefore, “playeri has more preference to vote YES than pla
j has” is indicated bypi > pj , or by Prob(Ui = 1) > Prob(Uj = 1), or by “i is more
likely to vote YES thanj ,” but not by Ui � Uj . This, however, does not exclude t
case that “i votes NO andj votes YES.” This case has the probability(1 − pi)pj �
min{(1− pi)pi, (1 − pj )pj } � 0.25. The more likely cases are thatUi � Uj .

More generally, one could explain the stochastic preference by a process. As ea
generally takes some period to be proposed and to be discussed in public befo
formally voted, a player learns the potential advantages and disadvantages to him
the bill is passed or blocked. He may also be misled by others. In the interactive pr
pi could be playeri ’s preference at the time when the bill is proposed. Finally, the pl
has to decide aUi for himself. We can imagine that largerpi generally leads to largerUi ,
but not always.

To determine api , one could assume thati expects a (random) payoffci,0 if the bill
is blocked and (random)ci,1 if the bill is passed. Given the lack of the information ab
other players’ preference, his sincere strategypi would maximize his expected utility

max
pi∈[0,1]

E
[
ui

(
pici,1 + (1− pi)ci,0

)]
,

whereui(·) is i ’s utility function. The personal preferencepi can also be obtained b
maximizing his satisfaction, diversifying his risk, or reducing his loss, and so on.

Let S be the random coalition of players who will vote for the bill. Ifpi = 0, player
i ’s objective E[v(S)] = 0 is such that there is no chance to pass the bill. Ifpi = 1, on
the other hand, his objective E[v(S)] = 1 is such that the bill will be passed for sure. F
a generic playeri with 0 < pi < 1, he is actually unsatisfactory with bothv(S) = 0 and
v(S) = 1 with different degrees. His objective is that E[v(S)] = pi . If this happens, he ca
represent the group on this issue. In many cases (e.g., multi-person bargaining pro
negotiating process),i may propose a new and modified bill to substitute the original
For example, the bill “Smoking is NOT allowed in public” could be modified as “Smok
is not allowed in a corporate building and its adjacent area within 50 meters; smokin
be allowed in restricted area (smoking area) in restaurants.” For another bill, “If th
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has an earthquake of 6.7 degrees, then the state will allocate the city 100 million d
of emergency relief” can have such modified bills as “If the city has an earthqua
7.0 degrees, then the state will allocate the city 100 million dollars of emergency re
or “If the city has an earthquake of 6.7 degrees, then the state will allocate the c
million dollars of emergency relief,” or “If the city has an earthquake of 6.7 degrees
the earthquake causes 1 billion of loss, then the state will allocate the city 100 m
dollars of emergency relief,” etc. In general, for any given preferencep ∈ [0,1], one may
come up with many statements which representp.

For a voteri with pi = 0, he is winning if and only if the bill is blocked. But if the bi
is passed, then he has to “obey” the stipulations of the bill regardless of his own cho
vote. We associate the gameΓ (N,W ) as his “command” game:Γi = Γ . If pi = 1, then he
is winning if and only if the bill is passed. Otherwise he is unsatisfactory with the resu
his interest will be affected. We associate the gameΓ ∗(N,W∗) as his “command” game
Γi = Γ ∗. Now for any voteri with 0< pi < 1, we take his “command” gameΓi by some
stochastic mechanism or linear interpolation ofΓ andΓ ∗, say,Γi = piΓ

∗ + (1 − pi)Γ .
Thus we have set up an organizational structure for the voting body. Note thatΓ and its
dualΓ ∗ have the same S–S power indices. By the linearity of the Shapley value, aΓi ’s
have the same S–S index as that ofΓ . Therefore the power transition matrixP in the
structure hasP(i, j) = ϕj (v), j ’s S–S index inΓ . Finally we conclude that the S–S ind
{πi = ϕi(v)}ni=1 is the unique solution to the authority equilibrium equationπ = πP and it
is the authority distribution for the organizational structure. And the solution is indepe
of the choice ofpi .

6. Applications

In addition to its internal interactions and conflict resolutions, a well organized groN

can take external tasks or evaluate external issues as well as it can be controlled or
by its outsiders. All these aspects would be related to its authority structure or its au
distribution.

6.1. Organizational choice

This subsection works as an application of authority distributions to a simple for
conflict resolutions. Letp(t)

i ∈ (−∞,∞) be memberi ’s (quantitative) opinion on som
issue at timet wheret = 0,1, . . . . In the organization, his opinion is assumed to be line
adopted by all members according to his command powers. That is, his opinion at timt +1
is

p
(t+1)
i =

∑
j∈N

P(i, j)p
(t)
j , ∀i ∈ N.

If we let the column vectorp(t) = (p
(t)
1 ,p

(t)
2 , . . . , p

(t)
n ), then p(t) = Pp(t−1) = · · · =

P tp(0).
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Proposition 6.1. In an aperiodic organization with the decomposition Eq. (4), the limit
p = limt→∞ p(t) exists. For any j ∈ Ci , pj = ∑

s∈Ci
π

Ci
s p

(0)
s . The limit opinion for T is

given by pT = (I − PT )
−1 ∑

k

i=1QipCi .

For any i, j ∈ T , althoughp
(0)
j may influencep(t)

i for some finitet , the influence
vanishes ast → ∞. The limit pi for anyi ∈ T is independent of the initial choice ofp(0)

j ,
for all j ∈ T . However, Proposition 6.1 does not hold in periodic cases. For examp
P = [0 1

1 0

]
, then we have limt→∞ p(2t+1) = p(1); but limt→∞ p(2t ) = p(0).

Proposition 6.1 provides a simple way to resolve the conflicts within an aper
organization. For example, consider an irreducible and aperiodic organizationN = 1234
with authority distributionπ = (0.3,0.1,0.4,0.2). On the issue of the relative utility o
one quantity of goodx to one quantity of goody, they disagree with each other. Membe
1, 2, 3, and 4 initially believe the relative utility is 1.3, 1.4, 1.5, and 1.6, respectively. If the
linear adoption scheme applies, the limit opinion would be 1.3∗0.3+1.4∗0.1+1.5∗0.4+
1.6∗ 0.2 = 1.45, which could act as the organizational opinion after long-time discus
or evolutions. For another example, consider an irreducible and aperiodic organizaN

which wants to admit a few, sayt , new employees fromm (m � t) applicants. To decid
who to be admitted, we first put the initial evaluations in ann × m matrix B, where
B(i, j) is memberi ’s initial evaluation on applicantj . So theith row is memberi ’s initial
evaluations on all applicants and thej th column is the initial evaluations on applicantj

by all members in the organization. In some real situations, the initial evaluations m
integers between 1 and 9, or on any other scale. If the linear adoption scheme work

lim
k→∞PkB = (π11,π21, . . . , πn1)B =

(
1

n∑
i=1

πiB(i,1), . . . ,1
m∑

i=1

πiB(i,m)

)
,

where1 is the column vector with 1’s for all entries. Therefore applicantj ’s eventual or
final evaluation (after infinite iterations or discussions) is

∑n

i=1πiB(i, j). Then we may
give the offers to those who have topt final evaluations.

6.2. Ranking by bilateral impact

To apply the authority distribution to the situations without command games
analyze a few ranking problems when the data of directly bilateral impact are provid

6.2.1. College ranking by applicants’ acceptance
Suppose that there are large numbers of college applicants to apply the co

C1,C2, . . . ,Cn. Each applicant files multiple applications. Each college then offers s
of its applicants admissions and rejects all others. Now some applicants may get n
from any college; the other then get one offer or multiple offers. An applicant with mu
offers will decide which college to go to and reject all other colleges which make o
to him. Of all applicants who apply to and receive offers fromCi , we let P(i, j) be
the proportion of those applicants who decide to go to collegeCj . Such applicants o
course apply to and receive offers fromCj as well. For example, ifC1 admits 10000
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of which 8000 decide to register withC1 and 1500 decide to register withC2, then
P(1,1) = 8000/10000= 0.8 andP(1,2) = 1500/10000= 0.15.

To rank the colleges by the acceptance rates of the applicants to whom offers
made, we can apply the authority distribution associated with the matrixP . We provide an
example with the colleges B, H, M, P, S, Y, and O (others). We name themC1 throughC7,
in that order. Assume the acceptance rates have the following matrixP :

B H M P S Y O
B 0.4 0.1 0.1 0.1 0.1 0.1 0.1
H 0.05 0.9 0.01 0.01 0.01 0.01 0.01
M 0.1 0.2 0.6 0.0 0.05 0.0 0.05
P 0.05 0.1 0.05 0.5 0.05 0.05 0.2
S 0.1 0.2 0.05 0.05 0.45 0.05 0.1
Y 0.05 0.1 0.05 0.05 0.05 0.6 0.1
O 0.05 0.05 0.05 0.05 0.05 0.05 0.7

The so-called “authority distribution” can be regarded as the measure of re
attractiveness of the colleges from the applicants’ point of view. The solution ofπ = πP

is

π = (0.0868289,0.530694,0.073586,0.0535171,0.0551895,0.0654097,0.134775).

Therefore we rank the colleges as: H(1), B(2), M(3), Y(4), S(5), and P(6). If we allow s
level, say 0.01, of trust, we may believe that M(0.073586) ties with Y(0.0654097) in
rank 3, and S(0.0535171) ties with P(0.0551895) in the rank 5.

6.2.2. Journal rankings by citations
Let J1, J2, . . . , Jn−1 ben − 1 journals in a scientific field, andJn be the collection of

all other journals. We technically treatJn as a single journal. For any journalJi , each issue
contains many papers, and each paper has its list of references or citations. A papJj

can be cited in another paper inJi as a reference. Of all papers cited byJi (repetition
counted), we letP(i, j) be the proportion of those papers which are published onJj . SoP

measures the direct impact between any two journals andP(i, i) is the self-citation rate
for Ji . The authority distribution forπ = πP would quantify the long-term influence o
each journal in the group of journals and can be used to rank these journals.

6.2.3. Planning of a freeway system
A few small towns believe that building a freeway system would be to their com

benefit. Say, they plan to build freewaysF1,F2, . . . ,Fn−1. We letFn be the existing traffic
channels of car, truck and bus. We assume that all the potential freeways have th
length. Otherwise we can make up the assumption by dividing long freeways into s
segments and rename them all. The freeways with higher traffic intensity should b
with more driving lanes and so receive more investments. Of all the traffic flow onFi , we
let P(i, j) be the (estimated) proportion of the traffic flowing intoFj . Then the authority
distributionπ satisfyingπ = πP will measure the relative traffic intensity on eachFi and
can be used in the investment allocation.

A similar issue can be found in designing an Internet or Intranet system.
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7. Conclusions

In the classical approach to the power distribution for a specific voting problem
specific voting rule, some set-theoretical methods (simple games) assume only two
either “winning” or “losing.” The S–S index quantifies each member’s probabilit
pivot in an ordering of members. However, an organization is not simply a voting
confronted with a specific voting problem. Our internal structure of “boss” and “appro
is introduced to avoid specific voting problems.

The command games help in providing a conceptual framework for members’ sp
positions within the organization. Next, the quantitative authority distribution ca
used to explain members’ general administrative power. It is derived from a po
counterbalance equilibrium. A member’s authority is from others while his author
redistributed in his command game. To imitate the decision makings and interaction
the time when a bill is first proposed to the time when it is formally voted, we constr
time-reversed stochastic process of critical players. Given that the critical player in pet

is known, the conditional probability of picking the critical player in periodt − 1 obeys the
Markovian property. Hence the authority distribution is the frequency of being critic
the long-run decision-making process. In addition, it does not depend on the specifi
to vote when certain conditions, such as irreducibility and aperiodicity, are satisfied.
an imaginative viewpoint, the S–S power index itself is a special authority distrib
when the potential negative voting outcomes are concerned. Finally, the distributio
also measure the ultimate influence between members, more precisely between a
and his irreducible organization or sub-organization. In two applications, we us
distribution to resolve internal conflicts and rank journals and colleges.

From a theoretical point of views, there are several related issues worth menti
First, to keep the Markovian analysis tractable, we have focused on its interpretatio
decision-making process and its asymptotic behavior. Notice, however, that the se
not restrictive for the issues at hand since the theory of Markov chains has rich fe
of periodicity, convergence, non-homogeneity, generalizations, etc. One could incor
such features in our model and investigate their rich contexts and interpretations. Se
in our analysis, the power transition matrix will always be a stochastic matrix. Hence
outsider can not interfere with the internal affairs. Hu (2000) has studied some simple
of campaign strategies to affect an organization’s voting by outsiders, based on th
authority structure. Thirdly, commands could also be implemented indirectly. In the re
work of Hu and Shapley (2003), a coalition admits its commanded members to com
more members. This defines a generalization, called “control game,” of command
by iterations of commands. This issue is related to property right, organizational de
efficiency, and other problems in the theory of organization. Finally, we have cons
mentioned the symmetry conditions (SC-I and SC-II) for the S–S index to quan
player’s chance of being critical. If we replace the S–S indices ofP with their respective
asymmetric S–S indices, then we would formulate theasymmetric authority distribution.
In this case, personal preferences on the issue to vote, or other specific factors, are g
taken into account.
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