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Preface

This volume is in honor of the lOOOOOlst (binary) birthday of Lloyd
Shapley.

Each of its twenty chapters concerns some aspect of the Shapley value.
The aim of the volume is to make accessible the large body of work that
has grown out of Shapley's seminal 1953 paper. Three of the chapters
are reprints of "ancestral" papers: Chapter 2 is Shapley's original 1953
paper defining the value, Chapter 3 is the 1954 paper by Shapley and
Shubik applying the value to voting models, and Chapter 19 is Shapley's
1969 paper defining a value for games without transferable utility. The
other seventeen chapters were contributed especially for this volume.
Each is written so as to be largely self-contained, and there is a little
diversity of terminology and notation among them, which reflects the
diversity in the literature at large. However, the first chapter introduces
the subject and each paper in the volume in a unified way. It also
contains a very brief account of a few of Shapley's other major contri-
butions to game theory.





CHAPTER 1

Introduction to the Shapley value

Alvin E. Roth

Among the obligations facing a community of scholars is to make accessi-
ble to a wider community the ideas it finds useful and important. A
related obligation is to recognize lasting contributions to ideas and to
honor their progenitors. In this volume we undertake to fill part of both
obligations.

The papers in this volume review and continue research that has grown
out of a remarkable 1953 paper by Lloyd Shapley. There he proposed that
it might be possible to evaluate, in a numerical way, the "value" of playing
a game. The particular function he derived for this purpose, which has
come to be called the Shapley value, has been the focus of sustained
interest among students of cooperative game theory ever since. In the
intervening years, the Shapley value has been interpreted and reinter-
preted. Its domain has been extended and made more specialized. The
same value function has been (re)derived from apparently quite different
assumptions. And whole families of related value functions have been
found to arise from relaxing various of the assumptions.

The reason the Shapley value has been the focus of so much interest is
that it represents a distinct approach to the problems of complex strategic
interaction that game theory seeks to illuminate. To explain this, we need
to recount some history of game theory. (Even when we are not speaking
of the Shapley value, the history of game theory is inextricably connected
with other aspects of Shapley's work. To avoid too many diversions, we
defer discussion of Shapley's other work until the concluding section of
this introduction.)

Although game-theoretic ideas can be traced earlier, much of the mod-
ern theory of games traces its origins to the monumental 1944 book by
John von Neumann and Oskar Morgenstern, Theory of games and eco-
nomic behavior. In seeking a way to analyze potentially very complex
patterns of strategic behavior, their approach was to, in their phrase,
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"divide the difficulties," by finding simple models of the strategic envi-
ronment itself.

Their first step was to find a way to summarize each alternative facing
an individual decision maker by a single number. Their solution to this
problem-expected utility theory-has left its own indelible mark on eco-
nomic theory, quite independently of the impact the theory of games has
had. Briefly, their contribution was to specify conditions on an individ-
ual's preferences over possibly risky alternatives sufficient so that his
choice behavior could be modeled as if, faced with a choice over any set of
alternatives, he chose the one that maximized the expected value of some
real-valued function, called his utility function. In this way, a complex
probability distribution over a diverse set of alternatives could be summa-
rized by a single number, equal to the expected utility of the lottery in
question.

Having reduced the alternatives facing each individual to a numerical
description, von Neumann and Morgenstern proceeded to consider
(among other things) a class of games in which the opportunities available
to each coalition of players could also be described by a single number.
They considered cooperative games in characteristic function form (now
sometimes also called "coalitional form") defined by a finite set N =
{1, . . . , « } of players, and a real-valued "characteristic function" v,
defined on all subsets of TV (with v((f)) = 0). The interpretation of v is that
for any subset S of N the number v(S) is the worth of the coalition, in
terms of how much "utility" the members of S can divide among them-
selves in any way that sums to no more than v(S) if they all agree. The only
restriction on v that von Neumann and Morgenstern proposed was that it
be superadditive; that is, if S and T are two disjoint subsets of N, then
v(S U 7 ) > v(S) + v(T). This means that the worth of the coalition SUT
is equal to at least the worth of its parts acting separately.

The characteristic function model assumes the following things about
the game being modeled. First, utility can be embodied in some medium
of exchange-"utility money"-that is fully transferable among players,
and such that an additional unit of transferable utility always adds a unit
to any player's utility function. (For example, if all players are risk neutral
in money-that is, if their utility functions are all linear in money-then
ordinary money can be the necessary medium of exchange in a game in
which all outcomes can be evaluated in monetary terms and in which
money is freely transferable.) Second, the possibilities available to a coali-
tion of players can be assessed without reference to the players not in-
cluded in the coalition. Third, a coalition can costlessly make binding
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agreements to distribute its worth in any way agreed to by all the mem-
bers, so it is not necessary to model explicitly the actions that players must
take to carry out these agreements. In recognition of the importance of the
assumption that utility is transferable, these games are sometimes called
transferable utility (TU) games.

Although these simplifying assumptions are obviously substantial, the
characteristic function model has proved to be surprisingly useful as a
simple model of strategic interaction. Consider, for example, the interac-
tion between a potential seller and two potential buyers of some object
that the seller (the current owner) values at ten dollars, the first buyer
values at twenty dollars, and the second buyer values at thirty dollars. If
the players can freely transfer money among themselves, and if they are
risk neutral (although for many purposes this latter assumption is not
really necessary), this situation can be modeled as the game T{ = (N,v)
with players N= {1,2,3} and v given by £>(l)=10, v(2) = v{3) =
i;(23) = 0, i;(12) = 20, i7(13) = 17(123) = 30. This reflects the fact that
only coalitions containing the seller, player 1, and at least one buyer can
engage in any transactions that change their collective wealth. A coalition
that contains player 1 is worth the maximum that the object in question is
worth to any member of the coalition.

The tools of cooperative game theory applied to this model reflect some
of the important features of such an interaction. For example, the core of
the game [which for TU games is equal to the set of payoff distributions
with the property that the sum of the payoffs to the members of each
coalition S is at least v(S)] corresponds to the set of outcomes at which the
seller sells to the buyer with the higher reservation price, at some price
between twenty and thirty dollars, and no other transfers are made. This
corresponds to what we would expect if the buyers compete with each
other in an auction, for example. Von Neumann and Morgenstern pro-
posed a more comprehensive kind of "solution" for such a game, which
today is called a stable set or a von Neumann-Morgenstern solution.
There are infinitely many von Neumann-Morgenstern solutions to this
game, each of which consists of the core plus a continuous curve corre-
sponding to a rule for sharing between the two buyers the wealth at each
price less than twenty dollars (should they be able to agree to avoid
bidding against one another, for example).

Von Neumann and Morgenstern's interpretation of this multiplicity of
solutions was that each represented a particular "standard of behavior"
that might be exhibited by rational players of the game. Which standard of
behavior we might expect to observe in a particular game would generally
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depend on features of the environment - for example, institutional, social,
or historical features-not modeled by the characteristic function. Thus
their view was that much of the complexity of strategic interactions that
was omitted from the characteristic function model reemerged through
the complexity of the set of solutions. This very complexity nevertheless
made it difficult to make a simple evaluation of a game in terms of its von
Neumann-Morgenstern solutions. Partly for this reason, much of the
subsequent analysis of such games has focused instead on the core. Al-
though the core is much simpler than the von Neumann-Morgenstern
solutions, it may be empty in some games and a large set of outcomes in
others. And various "noncompetitive" modes of behavior (such as the
formation of a bidders' cartel in our earlier example) might lead to out-
comes outside the core, so a great deal of complexity remains.

This complexity is to a large extent a reflection of the underlying
complexity of strategic interaction. Indeed, much current work in game
theory is in the direction of putting more institutional and other detail
into game-theoretic models in order to be able to more fully describe and
better understand these complexities. (To a certain extent the same can be
said of individual choice theory, in which there has been in recent years
some exploration of more complex models than utility maximization.)
However the underlying complexity of the phenomena only increases the
need for a simple way to make a preliminary evaluation of games.

1 The Shapley value

Shapley's 1953 paper (reprinted as Chapter 2 of this volume) proposed to
fill this need, essentially by carrying the reductionist program of von
Neumann and Morgenstern a step further. Because it had proved so
useful to represent each alternative facing a player by a single number
expressing its expected utility, and to summarize the opportunities facing
a coalition in a game by a single number expressing its worth in units of
transferable utility, Shapley proposed to summarize the complex possibil-
ities facing each player in a game in characteristic function form by a
single number representing the "value" of playing the game. Thus the
value of a game with a set N = {1, . . . ,ri) of players would be a vector of
n numbers representing the value of playing the game in each of its n
positions. The connection to what I have called the reductionist program
of von Neumann and Morgenstern is made clearly in the first paragraph
of Shapley's paper, which begins "At the foundation of the theory of
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games is the assumption that the players of a game can evaluate, in their
utility scales, every'prospect'that might arise as a result of a play. . . .
[O]ne would normally expect to be permitted to include, in the class of
'prospects,' the prospect of having to play a game."

Shapley's approach was to consider the space of all games that might be
played by some potentially very large set of players (denoted by the letter
U, to signify the universe of all possible players). In a particular game v, the
players actually involved are contained in any carrier, which is a subset TV
of U such that v(S) = v(S n TV) for any subset of players S C U. If a carrier
TV for a game v does not contain some player /, then / is a null player,
because i does not influence the worth v(S) of any coalition S. So any set
containing a carrier is itself a carrier of a game, and any player not
contained in every carrier is a null player.

Shapley defined a value for games to be a function that assigns to each
game v a number ^(v) for each i in U. He proposed that such a function
obey three axioms. The symmetry axiom requires that the names of the
players play no role in determining the value, which should be sensitive
only to how the characteristic function responds to the presence of a
player in a coalition. In particular, the symmetry axiom requires that
players who are treated identically by the characteristic function be
treated identically by the value.

The second axiom, usually called the carrier axiom, requires that the
sum of 4>t{v) over all players i in any carrier TV equal v(N). Because this
must hold for any carrier, it implies that (f>i(v) = 0 if / is a null player in v.
Sometimes this axiom is thought of as consisting of two parts: the effi-
ciency axiom (S^^c^i;) = v(N) for some carrier TV), and the null player
(or sometimes "dummy player"1) axiom.

The third axiom, now called the additivity axiom, requires that, for any
games v and w, 4>(v) + 0(w) = (f)(v + w) (i.e., 4>t(v) + </>;(w) = (f)t(v + w)
for all i in £/, where the game [v + w] is defined by [v + w](S) =
v(S) + w(S) for any coalition S). This axiom, which specifies how the
values of different games must be related to one another, is the driving
force behind Shapley's demonstration that there is a unique function 0
defined on the space of all games that satisfies these three axioms.

The easiest way to understand why this function exists and is unique is
to think of a characteristic function v as a vector with 2^—1 components,
one for each nonempty subset of U. (For simplicity, take the universe Uof
players to be finite.) Then the set G of all (not necessarily superadditive)
characteristic function games coincides with euclidean space of dimen-
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sion 2U —  1. The additivity axiom says that if we know a value function on
some set of games that constitute an additive basis for G, then we can
determine the value for any game.

A set of games that will permit us to accomplish this is the set consisting
of the games vR, defined for each subset R of U by

vR(S)=\
= 0 otherwise.

Any player not in R is a null player in this game, which is sometimes called
the pure bargaining or unanimity game among the players in R, because
they must all agree among themselves how to split the available wealth.
Because the players in R are all symmetric, the symmetry axiom requires
that (f)i(vR) = (f>j(vR) for all / and j in R. Because the null player axiom
requires that 4>k(vR) = 0 for all k not in R, the efficiency axiom allows us to
conclude that (/>, (vR) = 1 /r for all / in R, where r is the number of players in
R. (For any finite coalition S, we will denote by s the number of players in
S.) Thus the value is uniquely defined on all games of the form vR or, for
that matter, on games of the form cvR for any number c (where cvR(S) = c
if i? C S and 0 otherwise). (Note that cvR is superadditive when c is non-
negative.)

But the games vR form a basis for the set of all games, because there are
2^—1 of them, one for each nonempty subset R of  U, and because they
are linearly independent. Therefore any game v can be written as the sum
of games of the form cvR. (For example, the game F{ discussed earlier with
one seller and two buyers is given by T{ = 10z;{1} + 10f{12) + 20t>{13) —
10̂ 123} •)  A n d s o the additivity axiom implies that there is a unique value
obeying Shapley's axioms defined on the space of all games.

Shapley showed that this unique value (/> is

n-
- v(S-

where TV is any finite carrier off, with \N\ = n. This formula expresses the
Shapley value for player / in game v as a weighted sum of terms of the form
[v(S) —  v(S —  /)], which are player fs marginal contribution to coalitions
S. (In Chapter 17 Peyton Young shows how the Shapley value may be
axiomatized in terms of the marginal contributions.) In fact, <f>i(v) can be
interpreted as the expected marginal contribution of player /, where the
distribution of coalitions arises in a particular way.

Specifically, suppose the players enter a room in some order and that
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all n\ orderings of the players in TV are equally likely. Then (j>t{v) is the
expected marginal contribution made by player / as she enters the room.
To see this, consider any coalition S containing / and observe that the
probability that player / enters the room to find precisely the players in
S —  i already there is (s —  \)\{n —  s)\/n\. (Out of n\ permutations of TV
there are (s —  1)! different orders in which the first s—  1 players can
precede /, and (n —  s)\ different orders in which the remaining n —  s
players can follow, for a total of (s —  \)\(n —  s)\ permutations in which
precisely the players S —  i precede /.)

Although this is not meant to be a literal model of coalition formation
(a topic that will be addressed by two of the papers in this volume),
thinking of the value in this way is often a useful computational device. In
our example of one seller and two buyers, the three players can enter in six
possible orders. If they enter in order 1,2,3, their marginal contributions
are (0,20,10), and their Shapley values are the average of these marginal
contributions over all six orders: (f)(v) = (18.33,3.33,8.33).

For a more challenging example, consider a game loosely modeled on
the United Nations Security Council, which consists of fifteen members.
Five of these are permanent members and have a veto, and ten are rotat-
ing members. The voting rule is that a motion is passed if it receives nine
votes and no vetoes. We model this here by taking v(S) = 1 if S contains
all five permanent members and four or more other members, and
v(S) = 0 otherwise.

Because 15! is a number on the order of 1012, we obviously cannot
proceed to calculate the Shapley value by enumerating all possible order-
ings of the players. But we can use the random-order property, together
with symmetry and efficiency, to calculate the value. To do this, note that
by symmetry all rotating members have the same value <f)r{v), all perma-
nent members have the same value (f)p(v), and efficiency requires that
lO0r(i;) + 5<f>p(v) = 1. In order for a rotating member to make a positive
marginal contribution in a random order, all five permanent members
and exactly three of the other nine rotating members must precede him or
her. There are 9!/3! 6! such coalitions, corresponding to the different ways
to choose three out of the nine other rotating members. As we said, each
such coalition S(of size 5 = 9) occurs with probability (s —  l)\(n —  s)\/n\,
and the marginal contribution of the last rotating member is [v(S) —
v(S —  /)] = 1. So the Shapley value of a rotating member is 4>r(v) = (9!/
3!6!)(8!6!/15!) = .00186, and the Shapley value of a permanent member is
<fip(v) = (1 —  10(/>r(i;))/5 = .196, which is over 100 times greater.
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1.1 The Shapley-Shubik Index

The results of a similar calculation, using the then existing rules of the
Security Council, are described in the 1954 paper of Shapley and Martin
Shubik, which is reprinted as Chapter 3. That paper was the first to
propose applying the Shapley value to the class of simple games, which are
natural models of voting rules.

A simple game is a game represented by a characteristic function v that
takes on only the values 0 and 1. A coalition S is called winning if
v(S) = 1, and losing if v(S) = 0, and the usual assumption is that every
coalition containing a winning coalition is itself winning or, equivalently,
that every subset of a losing coalition is itself a losing coalition. (A simple
game is called proper if the complement of a winning coalition is always
losing.) If v is a simple game among some set TV of players, then an
equivalent representation is simply the list of winning coalitions of N, or
even the list of minimal winning coalitions (i.e., winning coalitions none
of whose subsets are winning). For some classes of games, even terser
representations may be natural: For example, a "weighted majority
game" with n voters, such as might arise among the stockholders of a
corporation, can be represented by the vector [q\ wx, . . . ,wj, where w;
denotes the number of votes cast by player /, and q denotes the number of
votes needed by a winning coalition. The winning coalitions are then
precisely those coalitions S with enough votes; that is, Sis winning if and
only if 2 / e s w, > q.

Because simple games are essentially no more than lists of winning
coalitions, they are often natural models of situations in which the full
weight of the usual assumptions about characteristic function games may
not be justified. Thus, for example, we may want to model a bicameral
legislature by noting that the winning coalitions are those containing a
majority of members in each house, and without assuming that the log-
rolling opportunities available to members are sufficient so that a winning
coalition can divide up the spoils in a transferable utility way. When we
are interpreting a simple game as something other than a transferable
utility characteristic function game, we may want to interpret the Shapley
value of each player differently than we otherwise would. In recognition of
this, the Shapley value applied to simple games is often called the
Shapley-Shubik index. The marginal values [v(S) —  v(S — /)]  in a simple
game are always equal to 0 or 1, so a player's Shapley-Shubik index
equals the proportion of random orders in which he or she is a "pivotal"
player, the proportion of orders in which the set of players S —  / who
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precede him or her form a losing coalition that is transformed into a
winning coalition S by the arrival of player i. (In each ordering of the
players, only one player is pivotal.)

Analyzing voting rules that are modeled as simple games abstracts
away from the particular personalities and political interests present in
particular voting environments, but this abstraction is what makes the
analysis focus on the rules themselves rather than on other aspects of the
political environment. This kind of analysis seems to be just what is
needed to analyze the voting rules in a new constitution, for example, long
before the specific issues to be voted on arise or the specific factions and
personalities that will be involved can be identified.

The task of assessing how much influence a voting system gives to each
voter has assumed legal importance in evaluating legislative reapportion-
ment schemes, following court rulings that valid schemes must give voters
equal representation (i.e., must be systems that give "one man, one
vote"). This has proved a difficult concept to define when voters are
represented by legislators elected by district, particularly in systems in
which districts of different sizes may be represented by different numbers
of legislators or by legislators with different numbers of votes. A measure
of voter influence related to the Shapley-Shubik index, called the Banz-
haf index after the lawyer who formulated it in this context (Banzhaf
1965, 1968; Coleman 1971; Shapley 1977), has gained a measure of legal
authority, particularly in New York State, in court decisions concerning
these issues (Lucas 1983). Instead of looking at random orders of players,
the Banzhaf index simply counts the number of coalitions in which a
player is a "swing" voter. That is, the Banzhaf index of a voter / is propor-
tional to the number of coalitions S such that S is winning but S —  i is
losing. (A comprehensive treatment of the mathematical properties of the
Banzhaf index is given by Dubey and Shapley 1979). Although the Banz-
haf and Shapley-Shubik indices have certain obvious similarities, in any
particular game they may not only give different numerical evaluations of
a player's position but they may rank players differently, so the voter with
more influence according to the Shapley-Shubik index may have less
influence according to the Banzhaf index.

2 The other papers in this volume

Chapters 2 and 3, by Shapley and by Shapley and Shubik, are the "ances-
tral" papers from which the rest of the papers in this volume follow.
Chapters 4 through 10 are concerned with reformulating these ideas in
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order to better understand them. As often as not, these reformulations
also lead to generalizations, so by coming to understand the Shapley value
or Shapley - Shubik index in new ways, we are also led to different ways to
assess the value of playing a game or of measuring the influence of a voter.

2.1 Reformulations and generalizations

Chapter 4, "The expected utility of playing a game," investigates the
implications of taking seriously the idea that the Shapley value can be
interpreted as a utility function. It turns out that there is a strong and
precise analogy between the Shapley value as a utility for positions in
games and the expected value as a utility for monetary gambles, because
both are risk-neutral utility functions. However, two kinds of risk neutral-
ity are involved in interpreting the Shapley value as a utility: The first
involves gambles ("ordinary risk") among games, and the second in-
volves games that need not involve any probabilistic uncertainty but only
the strategic risk associated with the unknown outcome of the interac-
tions among the players. Neutrality to ordinary risk turns out to be equiv-
alent to additivity of the utility function, and neutrality to strategic risk
turns out to be closely associated with the efficiency axiom. The class of
utility functions that represent preferences that are not neutral to strategic
risk (and that are therefore "inefficient" value functions) is also character-
ized, provided that the preferences remain neutral to ordinary risk over
games. (The characterization of utilities for preferences that are not neu-
tral to ordinary risk remains an open problem.) The chapter concludes by
considering the implications of this for understanding the comparisons
among positions in games that are implicit in the Shapley value.

Philip Straffin's chapter, "The Shapley-Shubik and Banzhaf power
indices as probabilities," is concerned with simple games, and shows that
both the Shapley-Shubik and Banzhaf indices can be interpreted as the
answer to the question: "What is the probability that a given voter's vote
will affect the outcome of the vote on a bill?" To pose this question, one
needs to specify a model of voter probabilities. Straffin observes that the
Shapley-Shubik index answers this question if we assume voters' opin-
ions are homogeneous in a certain sense, and the Banzhaf index gives the
answer if we assume voters' opinions are independent in a particular way.
His analysis not only casts new light on the similarities and differences
between these two indices, but also suggests how this method of modeling
voters might be adapted to particular situations to create new indices
when other assumptions about voters are appropriate.
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Ehud Kalai and Dov Samet, in "Weighted Shapley values," consider
the class of value functions that need not be symmetric but obey Shapley's
other axioms. In other words, they report on possible generalizations of
the Shapley theory that apply to nonanonymous players. This line of work
was begun by Shapley in his dissertation (Shapley 195 3b), who introduced
the nonanonymity by assigning different positive weights to the players.
In a pure bargaining game vR the players in R receive payoffs proportional
to their weights. Owen (1968) provided an interpretation of the weighted
Shapley values by considering random arrival times. A high weight corre-
sponds to a high probability of arriving later. Kalai and Samet consider
more general lexicographic weight systems. Using a novel consistency
axiom in place of symmetry, they show that all such values must be of this
generalized weighted type. Their "partnership consistency" axiom con-
cerns players who are only valuable to a coalition when they are in it
together. They also discuss a family of dual weighted values that have
natural interpretations in cost allocation problems (Shapley 1983). These
values are in turn characterized by an axiom system that contains a dual to
the partnership consistency axiom, and it is shown that when the two
axioms are imposed together they yield the (symmetric) Shapley value. As
a consequence of these characterizations, for consistent values, lack of
symmetries between players may be viewed as being due to asymmetries
in size. That is, different players may be viewed as representing "blocks"
of different sizes. (A recent result by Monderer, Samet, and Shapley shows
that the set of weighted Shapley values of a given game always contains the
core of the game. Coincidence of the two sets occurs if and only if the game
is convex.)

In "Probabilistic values for games," Robert Weber returns to the con-
sideration of symmetric values that need not be efficient, as well as effi-
cient values that need not be symmetric. He pays careful attention to the
effect of applying the axioms to different classes of games, including
superadditive and simple games, and observes that on sufficiently rich
classes of games the values obtained by discarding the efficiency axiom
can all be characterized as expected marginal contributions. He draws a
different connection than that developed in Chapter 4 between values
that do not assume efficiency and a kind of strategic risk aversion of the
player evaluating the game.

In Chapter 8, Uriel Rothblum considers three formulas for the Shapley
value that differ from its representation as the expected marginal contri-
bution when all orders are equally likely. It is important to recognize that
the random-order representation, although familiar and useful, has no
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special status. In particular, the significance of the Shapley value does not
rest on the stylized model of "coalition formation" embodied in the
standard formula. Rothblum presents three other, equivalent, formulas
for the Shapley value, each of which permits us to compute it as a kind of
average taken over coalitions of the same size. Just as the random-order
representation has proved useful in facilitating certain kinds of computa-
tions (as in the computation involving the Security Council example),
each of these other representations can be of similar use for games whose
special structure makes one of these other averages easy to compute.

In "The potential of the Shapley value," Sergiu Hart and Andreu
Mas-Colell carry a step further the reductionist program begun by von
Neumann and Morgenstern and continued by Shapley. Instead of sum-
marizing the opportunities available to each player in a game by a single
number, and thus summarizing the game by a vector, Hart and Mas-
Colell propose to summarize each game by a single number, P(N,v), to be
called its potential. (I have spoken of a reductionist program in terms of
models: utility, characteristic functions, values, and now potentials. Hart
and Mas-Colell speak of a parallel program in terms of solution concepts:
stable sets, core, value, and potential.) The marginal contribution of a
player in terms of the potential is the difference P(N,v) —  P(N —  / » , that
is, the difference between the potential of the game with its full set N of
players and the game without player /. Strictly speaking, Hart and Mas-
Colell define a function on games to be a potential only if the sum of these
marginal contributions over all the players equals v(N), and they show
that there is a unique such potential with respect to which each player's
marginal contribution equals his or her Shapley value. (And thus the use
of the term potential conforms to standard mathematical usage, because
the potential of a vector-valued function 0 is a real-valued function P
whose gradient is </>.) Representing the value by the potential proves to be
a useful technical tool (at least one with great potential), as is shown by the
results concerning the consistency of the value. As the authors remark,
this treatment provides a natural approach for viewing the Shapley value
as a tool for cost allocation (a subject to which we will return), although
their caution about avoiding inappropriate interpretations is well taken.

The final chapter in this section, "Multilinear extensions of games" by
Guillermo Owen, could well have been grouped with the chapters on large
games, because it concerns an extension of the characteristic function
model that permits a large-game interpretation, among others. For a game
played by n players, consider an n-dimensional unit cube. Its vertices,
which are vectors of O's and 1 's, can be interpreted as coalitions of players,
with player / being in the coalition associated with a given vertex if the zth
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component of the associated vector is a 1. Owen defines the multilinear
extension of a given characteristic function v as a function defined on the
whole cube, which agrees with v on the vertices and interpolates in a linear
way on other parts of the cube. Owen shows that this extension provides a
powerful computational and conceptual tool. Points in the cube other
than vertices can be interpreted in various ways. The large-game interpre-
tation arises, for example, if we view each of the n players of the game as
representing a continuum of players of a certain type. Then a point in the
cube can be interpreted as corresponding to a coalition of players, with the
zth coordinate indicating the percentage of players of type / in the coali-
tion. It turns out that the Shapley value is determined by the value of the
multilinear extension only on the "main diagonal" of the cube (i.e., on
the points of the cube in which all n components are equal). This "diago-
nal property," which plays a significant role in the study of the values of
large games (see, e.g., Neyman 1977), has a natural intuitive interpreta-
tion in that context related to the random-order property of the Shapley
value. In a game with finitely many types of players, consider a coalition
of some size arising from the random entry of players (think of the num-
ber of players of each type as very large but finite, in order to avoid for the
moment the difficulties with defining a random order of an infinite
game). Then by the law of large numbers, most of the coalitions of this size
will have the same proportion of each type of player as is found in the
game as a whole. The diagonal property says that only such coalitions
need be considered in computing the Shapley value.

2.2 Coalitions

The next two chapters deal with attempts to use the Shapley value and
related concepts to begin to develop the elements of a theory of how
players in a game might choose to organize themselves, which remains
one of the most difficult and important problems in game theory. The
traditional approach to this problem has been to consider coalition struc-
tures, which are partitions of players into disjoint coalitions. In order to
consider how players might organize themselves into coalitions, one first
must be able to assess how any given structure of coalitions will influence
each player's payoff. "Coalitional value," by Mordecai Kurz considers
some ways in which the Shapley value may be adapted to this task, and
goes on to consider some ways in which the answers to this question can
inform the discussion of which coalitions might be expected to form.

The chapter by Robert Aumann and Roger Myerson uses an extension
of the Shapley value proposed earlier by Myerson, to suggest a novel
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approach to the question of how cooperation among players might be
organized. Rather than looking only at disjoint coalitions, they examine
cooperation structures, which consist of bilateral links between players.
They then consider a linking game in which players may choose whether
and with whom to establish such links, using the extension of the Shapley
value to cooperation structures to evaluate the payoffs to the players from
each resulting set of links. They call a cooperation structure "natural" if it
can arise as the subgame perfect equilibrium of such a game. The chapter
contains examples that give insight into the problems involved in this area
of game theory. The chapter itself is a good example of how, even in the
absence of a fully worked out theory, much insight can often be obtained
by creatively applying game-theoretic tools.

2.3 Large games

Chapters 13 through 16 concern very large games, such as arise in eco-
nomic models of perfect competition, in which agents are negligibly small
relative to the size of the market. In the literature concerning the core
(Edgeworth 1881; Shubik 1959; Debreu and Scarf 1963), it has been ob-
served that, as the number of agents in an exchange economy increases,
the core shrinks in the limit to include just the competitive allocations.
Aumann (1964) modeled a perfectly competitive economy as consisting
of a nonatomic continuum of agents, and he showed that the core and the
competitive allocations coincide in such a model. The literature concern-
ing the Shapley value of large games began with a set of papers entitled
"The value of large games, I-VII" by Shapley and various coauthors
(Shapley and Shapiro 1960; Milnor and Shapley 1961; Shapley 1961a;
Mann and Shapley 1960; Shapley 1961b; Mann and Shapley 1962; Shap-
ley 1964a,b). (See also Shapley 1962a-c; Mann and Shapley 1964; Shap-
ley and Shubik 1969.) It continued with the seminal book by Aumann
and Shapley, Values of non-atomic games, which may have directly in-
spired more Ph.D. dissertations than any other book in game theory,
except von Neumann and Morgenstern's. They showed that in economies
with a nonatomic continuum of agents, value allocations coincide with
core allocations (and hence with competitive allocations), even though
value and core allocations may be quite unrelated in finite markets.

The opening chapter of this section, by Myrna Wooders and William
Zame, reports on their recent work concerning large finite games. In these
games, not necessarily markets, players are drawn from some metric
space of attributes. This makes it possible to speak of two players as being
close to one another in attributes, and of games that treat similar players
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similarly. A game can then be thought of as large if there are sufficiently
many near substitutes for every player in the game. The main result of the
paper is that, under fairly weak conditions, the Shapley value for a large
game is not far from the core-that is, is in the e-core-of the game.

The chapter "Payoffs in nonatomic economies: an axiomatic ap-
proach," by Pradeep Dubey and Abraham Neyman follows the presenta-
tion of their 1984 Econometrica paper of the same name and considers
what properties the value shares with other solution concepts that all
coincide on nonatomic economies. (The only widely studied solution
concept that does not coincide with the competitive allocations in stan-
dard continuum economies is the von Neumann-Morgenstern solution;
see Hart 1974.) One of their key axioms is a weakening of additivity. Their
results can be thought of as an axiomatization of the value on a class of
nonatomic economies.

In their chapter, "Values of smooth nonatomic games: the method of
multilinear approximation," Dov Monderer and Abraham Neyman pro-
vide new, short proofs of some of the classical results about the value of
nonatomic measure games. They do this by establishing that a general
class of nonatomic games can be approximated by nonatomic measure
games that are multilinear functions of a finite number of measures.
Thus, among other things, this chapter establishes an even closer connec-
tion between infinite games and the multilinear extensions of games
discussed by Owen in Chapter 10. They also prove a result related to the
results presented by Young in Chapter 17.

Since the publication of Aumann and Shapley's book, a great deal has
been learned about how to relax some of their assumptions and expand
the class of infinite games on which values can be defined and character-
ized. Among the hardest kinds of games to deal with, and the source of
difficult and perplexing counterexamples, have been infinite games
whose characteristic function need not be smooth. In the most technically
demanding chapter in this volume, Jean-Francois Mertens characterizes
the value on a class of market games without the usual differentiability
assumptions.

2.4 Cost allocation and fair division

The next two chapters concern the application of the Shapley value to
problems of allocating costs. This subject has been of interest both to
game theorists and accountants (Moriarity 1983). One of the first papers
to suggest this particular use was Shubik (1962). Two conceptual ap-
proaches have developed around this application. One is to view cost
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allocation problems as games and to interpret the allocation of costs
implied by the Shapley value in the same way that one interprets the
Shapley value generally. In this spirit, Billera, Heath, and Raanan (1978)
looked at allocation of costs for telephone calls at different times of day as
an application of Aumann and Shapley's work on nonatomic games (in
which instants of telephone time occupied the role of players in the game),
and Roth and Verrecchia (1979) proposed that Shapley cost allocations
by a central administration could be viewed (in the manner of Chapter 4)
as those which would give risk-neutral managers the same utility as allow-
ing them to negotiate with one another about how to share costs. The
second approach, which has focused on the case of a continuum of goods,
has been to axiomatize cost allocation rules directly, without necessarily
considering the problem as a game. This approach thus yields axioms that
directly concern how commodities enter a production function, for ex-
ample.

Peyton Young's chapter, "Individual contribution and just compensa-
tion," deals with both of these approaches. It is motivated by ideas of
distributive justice and by economic ideas about cost allocation as well.
The first part of his chapter concerns finite games in characteristic func-
tion form, interpreted as production functions that give the joint output
for any coalition of agents. He shows that the Shapley value is the unique
symmetric value function that fully distributes all gains and in which each
agent's share depends only on his or her own marginal contributions.
(Formally, this characterization of the Shapley value is in terms of the
requirement that if player / has the same vector of marginal contributions
in two games, then his or her values for those two games must be equal.)
The second part of the chapter concerns a firm whose production is a
function of a vector of inputs that can vary continuously, and considers
how to impute profits to each factor of production. He shows that a
requirement of monotonicity (if factor / has a higher marginal contribu-
tion at every level of input under one production function than under
another, then it is imputed a higher share of the profit under the first
production function), together with an appropriate version of symmetry
and of full distribution of profits among the factors of production is
sufficient to characterize the Aumann-Shapley pricing rule in this con-
text.

The next chapter, by Yair Tauman, gives a comprehensive survey of
the direct axiomatic approach to cost allocation that has grown out of the
work of Aumann and Shapley on nonatomic games, which grew out of the
direct axiomatizations given by Billera and Heath (1982) and by Mirman



Introduction to the Shapley value 17

and Tauman (1982). The chapter reviews the principal results that have
been obtained to date, and indicates the connections to related work in the
game-theoretic literature on the value. Consequently, this chapter is re-
lated to numerous other chapters in this volume.

2.5 NTU games

We have so far been concentrating on games with transferable utility.
Although the chapters in this book make abundantly clear why it is
frequently productive to model situations as if utility were transferable, it
is nevertheless also clear why it is often desirable to avoid such a strong
assumption. Indeed, there are situations in which the assumption that
utility is transferable would obscure some of the most important features
of the economic environment. For this reason, much of the game-theore-
tic literature has been concerned with NTU (nontransferable utility)
games, in which utility is not assumed to be transferable. In such a game,
the opportunities available to a coalition S may be represented by a set
V{S) of utility vectors rather than by a single number v(S). (A TU game
given by the characteristic function v can be thought of as the spe-
cial case of an NTU game in which, for each coalition S, V(S) =
{(jCj, . . . 9xn)\J,ieSXi^ v(S)}.) For example, in an exchange economy,
the set function V would be determined by the trades each coalition of
traders S can accomplish among themselves, together with their utilities
for the resulting commodity bundles. Modeling a market in this way
rather than as a TU game allows factors such as the indivisibility of certain
kinds of commodities to play a role and, even when money is present in
the economy, avoids the necessity of assuming that all commodities enter
the traders' utility functions as money.

John Nash (1950, 1953) considered the class of pure bargaining NTU
games. (A pure bargaining game among a set of r players is one in which
any agreement requires the unanimous consent of all the players.) Nash
represented such an NTU game by a pair (S,d), where S is a set of
r-dimensional utility vectors corresponding to the feasible agreements
that can be reached if all the players agree, and d is the vector of utility
payoffs that the players will get if bargaining ends in disagreement (i.e., in
the absence of a unanimous agreement on some other alternative). The
TU pure bargaining game vR is simply the game whose feasible set S
corresponds to all the ways the players can split a fixed sum-that is, it is
bounded by the hyperplane 2 / e J l JC,- = 1 - and in which disagreement gives
each player a utility of 0. Nash proposed that a solution of a pure bargain-
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ing NTU game should be a function that (like the Shapley value) selects a
unique feasible outcome for any pure bargaining game.

Nash characterized a particular solution, using an axiomatic frame-
work that has a close conceptual (but not mathematical) relationship to
the axiomatic characterization of the Shapley value. Nash's axioms, like
Shapley's, include symmetry and efficiency, which therefore fix the out-
come for the TU game vR to be the one that gives each player 1/r. Where
Shapley used additivity to generalize this result to arbitrary TU games,
Nash used two "independence" axioms to generalize this to arbitrary
NTU pure bargaining games. (The first axiom specifies that the agree-
ment corresponding to the utility payoff selected by the solution should
not depend on how the utilities of the bargainers are scaled. This is meant
to capture the idea that the payoffs are stated in terms of players' von
Neumann-Morgenstern utility functions, which have arbitrary origins
and units and do not permit interpersonal comparisons. The second
axiom, called "independence of irrelevant alternatives," specifies that if
two games have the same disagreement point and the feasible outcomes of
one are contained in those of the other, then the solution of the larger
game is also the solution of the smaller game whenever it is feasible.) As is
the case with the Shapley value, relaxing the assumptions of efficiency and
symmetry leads to a class of solutions that preserve the essential character
of the original solution (see, e.g., Roth 1979 for a review of this literature
and Roth 1987 for a discussion of experimental evidence concerning the
strengths and weaknesses of these solutions as descriptive tools).

Shapley's 1969 paper, reprinted as Chapter 19, establishes a way to
generalize the Shapley value from the class of TU games to NTU games.
(In fact, the paper proposes a method that can potentially be used for
generalizing any value function for TU games to NTU games, but most
subsequent work has looked at the generalization of the Shapley value.)
This generalization coincides with Nash's solution on the set of pure
bargaining games, so it can also be viewed as a generalization of Nash's
solution from the class of bargaining games to the class of all NTU games.
Another generalization of Nash's solution had been proposed by Har-
sanyi (1963), and Shapley writes that "The value definition developed
here was first contrived in an attempt to approximate Harsanyi's 1963
bargaining value by something that might prove analytically more tracta-
ble in dealing with economic models having large numbers of partici-
pants."

Shapley's paper begins with a consideration of two-person pure bar-
gaining NTU games and the demonstration that no nontrivial single-
point solution exists that depends only on the independently scaled or-
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dinal utilities of the players. (This conclusion does not hold for the
^-person pure bargaining problem with n > 2; see Shapley and Shubik
1974; Shubik 1982, chap. 5.) It then goes on to consider cardinal solutions
and to interpret Nash's solution for pure bargaining games as making an
implicit comparison of the bargainers' utilities. This kind of comparison
is the basis of the proposed generalization to a value for general NTU
games. The basic idea is to use the TU value to find the NTU value. Note
that if we transform an NTU game into a TU game by allowing the
unrestricted transfer of utility among the players, then we are enlarging
the set of outcomes. The TU value of this game might not, therefore, be a
feasible outcome of the original NTU game. However, Shapley proves,
via a fixed-point argument, that one can always find a vector A of weights,
one for each player, such that when each player's utility is multiplied by
his or her weight, the resulting game will have the property that the TU
value <f> is feasible in the NTU game. Shapley called the resulting vector </>
the "A-transfer value" for the original NTU game, noting that "As a
companion to each value vector, </>, obtained under this definition, there
will be a vector, A, of intrinsic utility-comparison weights." (In the subse-
quent literature, the A-transfer value is sometimes called the NTU value.)
The connection with Nash's axiom of independence of irrelevant alterna-
tives is clear, because the A-transfer value takes the solution of the NTU
game to be the solution of the associated TU game (with a larger feasible
set) when this is feasible (Aumann 1975).

There has been some controversy about the interpretation of the
A-transfer value (and also of Harsanyi's 1963 value). Researchers have
questioned whether the value for NTU games can support, on the class of
NTU games for which it is defined, the various interpretations given to the
TU value and, if not, what other interpretations or what restricted class of
games might be called for. Particular targets of concern have been the
interpretation of the utility comparisons, the implications of "indepen-
dence of irrelevant alternatives" in games in which more than one coali-
tion may be important, and the extent to which the A-transfer value can
respond to features of NTU games that differ from TU games. These
concerns have made their way into the literature via the analysis of partic-
ular games, typically games with few players (Owen 1972; Roth 1980,
1986; Shafer 1980; Harsanyi 1980; Scafuri and Yannelis 1984). However,
no consensus has yet emerged on the significance of these concerns, which
have been addressed directly (Aumann 1985a, 1986, 1987) and indirectly
in numerous explorations of the A-transfer value as a tool for analyzing
games and markets, particularly large markets (see, e.g., the references in
Aumann 1985a). The A-transfer value remains by far the most easily
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computable of proposed alternative NTU values, and considerable pro-
gress in understanding its mathematical properties has been made in the
axiomatization presented by Aumann (1985b), which is strikingly similar
to Shapley's axiomatization of the TU value. A closely related axiomati-
zation of Harsanyi's NTU value has been presented by Hart (1985a); see
also Hart (1985b).

The final chapter of this volume, by Michael Maschler, Guillermo
Owen, and Bezalel Peleg, returns to the case of pure bargaining NTU
games. Games whose feasible sets need not be convex are considered, on
which the NTU value-Nash solution may not select a unique outcome.
Rather than characterizing the outcomes axiomatically, this paper ex-
plores a dynamic process of adjustment that leads to the indicated out-
comes. The paper can thus be viewed as providing a different way of
understanding the NTU value-Nash solution on the class of pure bar-
gaining games.

In closing, I should hasten to add that research on the Shapley value has
proceeded in so many directions that it has not proved possible to cover
them all in this volume. One recent area of investigation is the study of the
Shapley value using the tools of noncooperative game theory. For exam-
ple, Harsanyi (1981) proposes to study cooperative games by means of
noncooperative bargaining models, using the notions of risk dominance
he has developed in conjunction with Reinhard Selten to select a unique
equilibrium. He identifies an equilibrium that corresponds with the Shap-
ley value on one class of games, although not on all of the games that can
be modeled in this way. A similarly motivated paper by Gul (1986) ana-
lyzes the equilibria of certain market games modeled as sequential bar-
gaining games, and shows that the Shapley value corresponds to a sub-
game perfect equilibrium. A somewhat different strategic question is
asked by Thomson (in press), who considers the strategic game that results
if the Shapley value is employed as a rule to allocate resources among
players, based on parameters of the game announced by the players (each
of whom is the only one to know his or her own utility function). Thom-
son considers the strategic problem facing each player about what utility
function to state, and characterizes the ways in which this kind of resource
allocation mechanism can be manipulated.

3 Some remarks on the work of Lloyd Shapley

As the papers in this volume attest, Lloyd Shapley's contribution to game
theory would have been significant even if he had done no more than
introduce the value and some of its principal extensions and uses. But,
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especially because the particular occasion for this volume is to mark the
sixty-fifth birthday of a major scholar, it seems proper to at least briefly
mention the nature and scope of Shapley's other contributions to game
theory.

The first formal definitions of the core of a game as an independent
solution concept are generally attributed to Shapley (1953c) and Gillies
(1953a,b). Shapley's subsequent work on when the core of a game is
nonempty led to the notion of "balancedness," which in TU games is
related to the theory of linear programming (Shapley 1967a; Bondareva
1963). The same notion can be generalized to the case of NTU games (see
Scarf 1967; and Shapley 1973) with much the same effect, and this work
has had important applications, such as the computational work initiated
by Scarf (1973). Shapley and Shubik (1969a) showed that the TU games
that can be formulated as exchange economies (with continuous and
concave utility functions) are precisely those that are "totally balanced,"
that is, those for which the subgame for each subset of players is a balanced
game. Another important class of games with nonempty core, the class of
convex games, was introduced in Shapley (1971). Still another family of
games with nonempty cores was introduced by Gale and Shapley (1962),
who studied an NTU model (the "marriage" game), and by Shapley and
Shubik (1972), who studied a TU model (the "assignment" game). This
family of games has in recent years attracted a good deal of interest among
economists interested in labor markets and other kinds of two-sided
matching processes (see, e.g., Roth 1984; Roth and Sotomayor in press).

Although the core has become one of the most important game-theor-
etic ideas, particularly for the study of markets, the initial interest in the
core grew out of the research agenda established by von Neumann and
Morgenstern (1944), because the core is contained in every stable set of
outcomes of the kind that they proposed as solutions for games. Although
the theory of stable sets does not occupy the central place in contemporary
game theory that von Neumann and Morgenstern anticipated, a good
deal of what we know about both the strengths and weaknesses of stable
sets as a tool for analyzing games is due to Shapley. On the one hand,
Shapley explored the stable sets of various classes of games and showed
how understanding them could lead to a better understanding of the
strategic possibilities facing coalitions of players. His 1959 paper on sym-
metric market games falls into this category, as does his paper on solutions
of "quota" games (Shapley 1953d). In a series of papers on simple games,
motivated explicitly by models of political and committee decision mak-
ing, he showed the power of this kind of theory for a class of games with
empty cores (Shapley 1962a, 1963, 1964a, 1967b). Quite apart from the
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study of solutions of simple games, much of the way we think of simple
games derives from Shapley's (1962b) taxonomy. At the same time, Shap-
ley's work played an equally important role in clarifying the limitations of
stable sets as an analytical tool, not only because of the computational
intractability of stable sets but also because many games have solutions
that cannot support any interpretation in terms of the features of the
game. A good example of this part of his work is found in Shapley (1959b).
Shapley's work set the stage for the demonstration by Lucas (1968, 1969)
of a characteristic function game for which no solution exists, which
resolved in the negative a famous conjecture of von Neumann and Mor-
genstern.

In noncooperative game theory, quite a large literature has grown out
of Shapley's paper on stochastic games (Shapley 1953e), which intro-
duced a model in which the actions of the players jointly determine not
only their payoffs but also the transition probabilities to a subsequent
stage of the game. This was a natural extension of the study of (single-
agent) Markovian decision processes in the operations research literature,
and was also among the first important examples of a multistage game.
Shapley showed the existence of a value and of stationary optimal strate-
gies in the discounted game. Some subsequent milestones in the work that
followed were by Gillette (1957), who extended the results to the undis-
counted game under an ergodicity assumption, and by Blackwell and
Ferguson (1968), who solved a game proposed by Gillette. Further gener-
alizations were obtained by Kohlberg (1974) and Bewley and Kohlberg
(1976), in which an algebraic approach was used to prove the existence of
an asymptotic value for any stochastic game with finite sets of states and
moves. Mertens and Neyman (1981) proved the existence of a value for a
general class of infinitely repeated stochastic games. Algorithms for solv-
ing stochastic games have also received a good deal of attention; see, for
example, Raghavan (undated). In addition, stochastic games are closely
related to repeated games of incomplete information (cf. Kohlberg and
Zamir 1974).

This brief account of Shapley's work is by no means complete. How-
ever, even a more adequately detailed account, if it concentrated only on
Shapley's published work, or even on his voluminous unpublished and
sometimes unwritten work that forms much of the folklore of game
theory, would fail to convey the critical role he played in game theory's
development. Indeed, in the years following the work of von Neumann
and Morgenstern, Shapley became the very personification of game
theory, such was the role he played in shaping the agenda of game-theore-
tic research.
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I cannot speak from personal experience of the early years, but when I
received my Ph.D. in 1974 I made the customary pilgrimage to Santa
Monica to discuss my work with Shapley. I was moved by his passion for
and generosity with ideas and overwhelmed by his encyclopedic knowl-
edge. I have since found that this experience was shared by many game
theorists of my generation.

All game theorists owe Shapley a considerable intellectual debt, part of
which we seek to acknowledge with this volume.

NOTES

1 A dummy player in a game v is a player / such that for all coalitions S contain-
ing /, v(S) —  v(S —  i) = v(i). When v(i) = 0, a dummy player is a null player.
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CHAPTER 2

A value for /i-person games

Lloyd S. Shapley

1 Introduction

At the foundation of the theory of games is the assumption that the players
of a game can evaluate, in their utility scales, every "prospect" that might
arise as a result of a play. In attempting to apply the theory to any field, one
would normally expect to be permitted to include, in the class of "pros-
pects," the prospect of having to play a game. The possibility of evaluating
games is therefore of critical importance. So long as the theory is unable to
assign values to the games typically found in application, only relatively
simple situations-where games do not depend on other games-will be
susceptible to analysis and solution.

In the finite theory of von Neumann and Morgenstern1 difficulty in
evaluation persists for the "essential" games, and for only those. In this
note we deduce a value for the "essential" case and examine a number of
its elementary properties. We proceed from a set of three axioms, having
simple intuitive interpretations, which suffice to determine the value
uniquely.

Our present work, though mathematically self-contained, is founded
conceptually on the von Neumann-Morgenstern theory up to their in-
troduction of characteristic functions. We thereby inherit certain impor-
tant underlying assumptions: (a) that utility is objective and transferable;
(b) that games are cooperative affairs; (c) that games, granting (a) and (b),
are adequately represented by their characteristic functions. However, we
are not committed to the assumptions regarding rational behavior em-
bodied in the von Neumann-Morgenstern notion of "solution."

We shall think of a "game" as a set of rules with specified players in the

Reprinted from Contributions to the Theory of Games, vol. 2, eds. H. Kuhn and A. W.
Tucker (Princeton: Princeton University Press, 1953), pp. 307- 17. The preparation of this
paper was sponsored in part by the RAND Corporation.
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playing positions. The rules alone describe what we shall call an "abstract
game." Abstract games are played by roles -such as "dealer," or "visiting
team"-rather than by players external to the game. The theory of games
deals mainly with abstract games.2 The distinction will be useful in en-
abling us to state in a precise way that the value of a "game" depends only
on its abstract properties. (Axiom 1 below.)

2 Definitions

Let U denote the universe of players, and define a game to be any super-
additive set-function v from the subsets of U to the real numbers, thus:

0, (1)

v(S) s= v(S n T) + v(S - T) (all S, T c U). (2)

A carrier of v is any set N C U with

v{S) = v(N n S) (all S c U). (3)

Any superset of a carrier of v is again a carrier of v. The use of carriers
obviates the usual classification of games according to the number of
players. The players outside any carrier have no direct influence on the
play since they contribute nothing to any coalition. We shall restrict our
attention to games which possess finite carriers.

The sum ("superposition") of two games is again a game. Intuitively it
is the game obtained when two games, with independent rules but possi-
bly overlapping sets of players, are regarded as one. If the games happen to
possess disjunct carriers, then their sum is their "composition."3

Let U(U) denote the set of permutations of [/-that is, the one to one
mappings of Uonto itself. If n E Tl(U), then, writing 7rSforthe image of S
under n, we may define the function nv by

nv(nS) = v(S) (all S e t / ) . (4)

If v is a game, then the class of games nv, n G Il( U), may be regarded as the
"abstract game" corresponding to v. Unlike composition, the operation
of addition of games cannot be extended to abstract games.

By the value (f)[v\ of the game v we shall mean a function which
associates with each / in U a real number <f>i[v]9 and which satisfies the
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conditions of the following axioms. The value will thus provide an addi-
tive set-function (an inessential game) v:

v(S) = ^(f)i[v] (allSc U\ (5)
s

to take the place of the superadditive function v.

Axiom 1. For each n in U(U),

Axiom 2. For each carrier TV of v,

Axiom 3. For any two games v and w,

(f)[v + w] = (f)[v\ + <f>[w].

Comments: The first axiom ("symmetry") states that the value is essen-
tially a property of the abstract game. The second axiom ("efficiency")
states that the value represents a distribution of the full yield of the game.
This excludes, for example, the evaluation (/>,[£>] = v((i)\ in which each
player pessimistically assumes that the rest will all cooperate against him.
The third axiom ("law of aggregation") states that when two independent
games are combined, their values must be added player by player. This is a
prime requisite for any evaluation scheme designed to be applied eventu-
ally to systems of mterdependent games.

It is remarkable that no further conditions are required to determine
the value uniquely.4

3 Determination of the value function

Lemma 1. If TV is a finite carrier of v, then, for / ^ TV,

Proof: Take / ^ N. Both TV and NU(i) are carriers of v\ and v(N) =
v(NU (/)). Hence <f)t[v] = 0 by Axiom 2, as was to be shown.
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We first consider certain symmetric games. For any R C [/, R =£ 0
define vR:

f l

The function cvR is a game, for any non-negative c, and R isa carrier.
In what follows, we shall use r, s, n, . . . for the numbers of elements

in R, S, TV, . . . respectively.

Lemma 2. For c ̂  0, 0 < r < oo, we have

\c/r if / G R,

Proof: Take / andj in i^, and choose TT G Il( f/) so that nR = R and 7r/ = /
Then we have nvR = f̂ , and hence, by Axiom 1,

By Axiom 2,

c = c

for any / G i^. This, with Lemma 1, completes the proof.

Lemma 3.5 Any game with finite carrier is a linear combination of sym-
metric games vR:

v= 2 cR(v)vR, (7)
RCN

TV being any finite carrier oft;. The coefficients are independent of N, and
are given by

cR(v) = 2 ( - lY-'v(T) (0 < r < oo). (8)
TQR

Proof: We must verify that

v(S) = 2 ^(i;)^(5) (9)

holds for all ScU, and for any finite carrier N of v. If S C TV, then (9)
reduces, by (6) and (8), to
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2 S
RQS TQR

TQS Lr=t

The expression in brackets vanishes except for s = t, so we are left with the
identity v(S) = v(S). In general we have, by (3),

v(S) = v(NDS)= ^ cR(v)vR(NnS)= 2 cMv^LS).
RCN RQN

This completes the proof.

Remark: It is easily shown that cR(v) = 0 if R is not contained in every
carrier of v.

An immediate corollary to Axiom 3 is that (f)[v —  w] = 4>[v] — 4>[w]  if
v, w, and v —  w are all games. We can therefore apply Lemma 2 to the
representation of Lemma 3 and obtain the formula:

(all i e TV). (10)

Inserting (8) and simplifying the result gives us

U ' ^ ) (all/E TV). (11)
SQN H'

Introducing the quantities

yn(s) = (s-l)\(n-s)\/nl (12)

we now assert:

Theorem. A unique value function </> exists satisfying Axioms 1-3, for
games with finite carriers; it is given by the formula

0/M = 2 yn(^)MS) - v(S - (/))] (all i G [/), (13)
SQN

where Â  is any finite carrier of v.

Proof: (13) follows from (11), (12), and Lemma 1. We note that (13), like
(10), does not depend on the particular finite carrier N; the 0 of the
theorem is therefore well defined. By its derivation it is clearly the only
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value function which could satisfy the axioms. That it does in fact satisfy
the axioms is easily verified with the aid of Lemma 3.

4 Elementary properties of the value

Corollary 1. We have

(alii GU), (14)

with equality if and only if / is a dummy-i.e., if and only if

v(S) = v(S-(i)) + v((i)) (all SB i). (15)

Proof: For any / E U we may take TV 3 i and obtain, by (2),

UV] = X YnisMd)),
SQN

with equality if and only if (15), since none of the yn(s) vanishes. The proof
is completed by noting that

SQN s" 1
SBi

Only in this corollary have our results depended on the super-additive
nature of the functions v.

Corollary 2. If v is decomposable-i.e., if games w(1), w(2), . . . , w(p)

having pairwise disjunct carriers N(l), N(2\ . . . , N(p) exist such that
p

-then, for each k = I, 2, . . . , p,

0/M = </>/[w(/c)] (all / G N^).

Proof: By Axiom 3.

Corollary 3. If v and w are strategically equivalent-i.e., if

w = cv + a, (17)

where c is a positive constant and a an additive set-function on U with
finite carrier6-then

(all i G U).
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Proof: By Axiom 3, Corollary 1 applied to the inessential game a, and the
fact that (13) is linear and homogeneous in v.

Corollary 4. If v is constant-sum-Le., if

v(S) + v(U-S) = v(U) (all Sc U\ (18)

-then its value is given by the formula:

i-S(ZN
- 17(JNT) (all / E TV). ( 1 9 )

where TV is any finite carrier of v.

Proof: We have, for i E TV,

SQN TQN

2 - 2 yn(n - s
SQN SQN

But yn(n - s + 1) = y^) ; hence (18) follows with the aid of (16).

5 Examples

If N is a finite carrier oft;, let A denote the set of n- vectors (a,) satisfying

(all/E TV).

If v is inessential A is a single point; otherwise 4̂ is a regular simplex of
dimension n —  1. The value of v may be regarded as a point </> in A, by
Axiom 2 and Corollary 1. Denote the centroid of A by 6:

Example 1. For two-person games, three-person constant-sum games, and
inessential games, we have

(f> = 6. (20)

The same holds for arbitrary symmetric games-i.e., games which are
invariant under a transitive group of permutations of TV- and, most gener-
ally, games strategically equivalent to them. These results are demanded
by symmetry, and do not depend on Axiom 3.
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Example 2. For general three-person games the positions taken by 0 in A
cover a regular hexagon, touching the boundary at the midpoint of each
1-dimensional face (see figure). The latter cases are of course the decom-
posable games, with one player a dummy.

Example 3. The quota games1 are characterized by the existence of con-
stants CDj satisfying

cot + coj = v((ij)) (all ij e N, i

N

For n = 3, we have

0-0 = (21)

Since a; can assume any position in 4̂, the range of 0 is a triangle,
inscribed in the hexagon of the preceding example (see the figure).

Example 4. All four-person constant-sum games are quota games. For
them we have

0-0 = co-6
(22)

The quota co ranges over a certain cube,8 containing A. The value 0
meanwhile ranges over a parallel, inscribed cube, touching the boundary
of A at the midpoint of each 2-dimensional face. In higher quota games
the points 0 and co are not so directly related.
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Example 5. The weighted majority games9 are characterized by the exis-
tence of "weights" Wj such that never 25w, = J,N-Swh and such that

v(S) = n-s if 2 ^ > 2 w,,
S N-S

The game is then denoted by the symbol [vv^n^, . . . ,w j . It is easily
shown that

ð t < (f)j implies wt < Wj (all ij e N) (23)

in any weighted majority game [whw2, . . . ,w j . Hence "weight" and
"value" rank the players in the same order.

The exact values can be computed without difficulty for particular
cases. We have

for the game [1,1, . . . ,1,« - 2], 10 and

for the game [2,2,2,1,1,1],11 etc.

6 Derivation of the value from a bargaining model

The deductive approach of the earlier sections has failed to suggest a
bargaining procedure which would produce the value of the game as the
(expected) outcome. We conclude this paper with a description of such a
procedure. The form of our model, with its chance move, lends support to
the view that the value is best regarded as an a priori assessment of the
situation, based on either ignorance or disregard of the social organization
of the players.

The players constituting a finite carrier TV agree to play the game v in a
grand coalition, formed in the following way: (1) Starting with a single
member, the coalition adds one player at a time until everyone has been
admitted. (2) The order in which the players are to join is determined by
chance, with all arrangements equally probable. (3) Each player, on his
admission, demands and is promised the amount which his adherence
contributes to the value of the coalition (as determined by the function v).
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The grand coalition then plays the game "efficiently" so as to obtain the
amount v(N): exactly enough to meet all the promises.

The expectations under this scheme are easily worked out. Let T(/) be
the set of players preceding /. For any S 3 /, the payment to i if S —  (/) =
r( / ) is v(S) —  v(S —  (/)), and the probability of that contingency is yn(s).
The total expectation of / is therefore just his value, (13), as was to be
shown.

NOTES

1 Reference [3] at the end of this paper. Examples of infinite games without
values may be found in [2], pp. 58-9, and in [1], p. 110. See also Karlin [2],
pp. 152-3.

2 An exception is found in the matter of symmetrization (see for example [2],
pp. 81-83), in which the players must be distinguished from their roles.

3 See [3], Sections 26.7.2 and 41.3.
4 Three further properties of the value which might suggest themselves as

suitable axioms will be proved as Lemma 1 and Corollaries 1 and 3.
5 The use of this lemma was suggested by H. Rogers.
6 This is McKinsey's "S-equivalence" (see [2], p. 120), wider than the "strate-

gic equivalence" of von Neumann and Morgenstern ([3], Section 27.1).
7 Discussed in [4].
8 Illustrated in [4], Figure 1 (page 353).
9 See [3], Section 50.1.

10 Discussed at length in [3], Section 55.
11 Discussed in [3], Section 53.2.2.
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CHAPTER 3

A method for evaluating the distribution of
power in a committee system

Lloyd S. Shapley and Martin Shubik

In the following paper we offer a method for the a priori evaluation of the
division of power among the various bodies and members of a legislature
or committee system. The method is based on a technique of the mathe-
matical theory of games, applied to what are known there as "simple
games" and "weighted majority games." l We apply it here to a number of
illustrative cases, including the United States Congress, and discuss some
of its formal properties.

The designing of the size and type of a legislative body is a process that
may continue for many years, with frequent revisions and modifications
aimed at reflecting changes in the social structure of the country; we may
cite the role of the House of Lords in England as an example. The effect of
a revision usually cannot be gauged in advance except in the roughest
terms; it can easily happen that the mathematical structure of a voting
system conceals a bias in power distribution unsuspected and unintended
by the authors of the revision. How, for example, is one to predict the
degree of protection which a proposed system affords to minority inter-
ests? Can a consistent criterion for "fair representation" be found?2 It is
difficult even to describe the net effect of a double representation system
such as is found in the U.S. Congress (i.e., by states and by population),
without attempting to deduce it a priori. The method of measuring
"power" which we present in this paper is intended as a first step in the
attack on these problems.

Our definition of the power of an individual member depends on the
chance he has of being critical to the success of a winning coalition. It is
easy to see, for example, that the chairman of a board consisting of an even
number of members (including himself) has no power if he is allowed to

Reprinted from The American Political Science Review 48 (1954), pp. 787-92.
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vote only to break ties. Of course he may have prestige and moral influ-
ence and will even probably get to vote when someone is not present.
However, in the narrow and abstract model of the board he is without
power. If the board consists of an odd number of members, then he has
exactly as much power as any ordinary member because his vote is "pivo-
tal"-i.e., turns a possible defeat into a success-as often as the vote of any
other member. Admittedly he may not cast his vote as often as the others,
but much of the voting done by them is not necessary to ensure victory
(though perhaps useful for publicity or other purposes). If a coalition has a
majority, then extra votes do not change the outcome. For any vote, only
a minimal winning coalition is necessary.

Put in crude economic terms, the above implies that if votes of senators
were for sale, it might be worthwhile buying forty-nine of them, but the
market value of the fiftieth (to the same customer) would be zero. It is
possible to buy votes in most corporations by purchasing common stock.
If their policies are entirely controlled by simple majority votes, then there
is no more power to be gained after one share more than 50% has been
acquired.3

Let us consider the following scheme: There is a group of individuals all
willing to vote for some bill. They vote in order. As soon as a majority4 has
voted for it, it is declared passed, and the member who voted last is given
credit for having passed it. Let us choose the voting order of the members
randomly. Then we may compute the frequency with which an individual
belongs to the group whose votes are used and, of more importance, we
may compute how often he is pivotal This latter number serves to give us
our index. It measures the number of times that the action of the individ-
ual actually changes the state of affairs. A simple consequence of this
formal scheme is that where all voters have the same number of votes,
they will each be credited with l/«th  of the power, there being n partici-
pants. If they have different numbers of votes (as in the case of stock-
holders of a corporation), the result is more complicated; more votes
mean more power, as measured by our index, but not in direct proportion
(see below).

Of course, the actual balloting procedure used will in all probability be
quite different from the above. The "voting" of the formal scheme might
better be thought of as declarations of support for the bill, and the ran-
domly chosen order of voting as an indication of the relative degrees of
support by the different members, with the most enthusiastic members
"voting" first, etc. The pivot is then the last member whose support is
needed in order for passage of the bill to be assured.
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Analyzing a committee chairman's tie-breaking function in this light,
we see that in an odd committee he is pivotal as often as an ordinary
member, but in an even committee he is never pivotal. However, when the
number of members is large, it may sometimes be better to modify the
strict interpretation of the formal system, and say that the number of
members in attendance is about as likely to be even as odd. The chair-
man's index would then be just half that of an ordinary member. Thus, in
the U.S. Senate the power index of the presiding officer is-strictly-equal
to 1/97. Underthe modified scheme it is 1/193. (But it is zero under either
interpretation when we are considering decisions requiring a two-thirds
majority, since ties cannot occur on such votes.) Recent history shows
that the "strict" model may sometimes be the more realistic: in the
present Senate (1953-54) the tie-breaking power of the Vice President,
stemming from the fact that 96 is an even number, has been a very
significant factor. However, in the passage of ordinary legislation, where
perfect attendance is unlikely even for important issues, the modified
scheme is probably more appropriate.

For Congress as a whole we have to consider three separate bodies
which influence the fate of legislation. It takes majorities of Senate and
House, with the President, or two-thirds majorities of Senate and House
without the President, to enact a bill. We take all the members of the three
bodies and consider them voting5 for the bill in every possible order. In
each order we observe the relative positions of the straight-majority pivo-
tal men in the House and Senate, the President, and also the 2/3-majority
pivotal men in House and Senate. One of these five individuals will be the
pivot for the whole vote, depending on the order in which they appear. For
example, if the President comes after the two straight-majority pivots, but
before one or both of the 2/3-majority pivots, then he gets the credit for
the passage of the bill. The frequency of this case, if we consider all
possible orders (of the 533 individuals involved), turns out to be very
nearly 1/6. This is the President's power index. (The calculation of this
value and the following is quite complicated, and we shall not give it here.)
The values for the House as a whole and for the Senate as a whole are both
equal to 5/12, approximately. The individual members of each chamber
share these amounts equally, with the exception of the presiding officers.
Under our "modified" scheme they each get about 30% of the power of an
ordinary member; under the "strict" scheme, about 60%. In brief, then,
the power indices for the three bodies are in the proportion 5:5:2. The
indices for a single congressman, a single senator, and the President are in
the proportion 2:9:350.
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In a multicameral system such as we have just investigated, it is ob-
viously easier to defeat a measure than to pass it.6 A coalition of senators,
sufficiently numerous, can block passage of any bill. But they cannot push
through a bill of their own without help from the other chamber. This
suggests that our analysis so far has been incomplete-that we need an
index of "blocking power" to supplement the index already defined. To
this end, we could set up a formal scheme similar to the previous one,
namely: arrange the individuals in all possible orders and imagine them
casting negative votes. In each arrangement, determine the person whose
vote finally defeats the measure and give him credit for the block. Then
the "blocking power" index for each person would be the relative number
of times that he was the "blocker."

Now it is a remarkable fact that the new index is exactly equal to the
index of our original definition. We can even make a stronger assertion:
any scheme for imputing power among the members of a committee sys-
tem either yields the power index defined above or leads to a logical
inconsistency. A proof, or even a precise formulation, of this assertion
would involve us too deeply in mathematical symbolism for the purposes
of the present paper.7 But we can conclude that the scheme we have been
using (arranging the individuals in all possible orders, etc.) is just a conve-
nient conceptual device; the indices which emerge are not peculiar to that
device but represent a basic element of the committee system itself.

We now summarize some of the general properties of the power index.
In pure Wcameral systems using simple majority votes, each chamber gets
50% of the power (as it turns out), regardless of the relative sizes. With
more than two chambers, power varies inversely with size: the smallest
body is most powerful, etc. But no chamber is completely powerless, and
no chamber holds more than 50% of the power. To illustrate, take Con-
gress without the provision for overriding the President's veto by means of
two-thirds majorities. This is now a pure tricameral system with chamber
sizes of 1, 97, and 435. The values come out to be slightly under 50% for
the President, and approximately 25% each for the Senate and House,
with the House slightly less than the Senate. The exact calculation of this
case is quite difficult because of the large numbers involved. An easier
example is obtained by taking the chamber sizes as 1, 3, and 5. Then the
division of power is in the proportions 32:27:25. The calculation is
reproduced at the end of this paper.

The power division in a multicameral system also depends on the type
of majority required to pass a bill. Raising the majority in one chamber
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(say from one-half to two-thirds) increases the relative power of that
chamber.8 Raising the required majority in all chambers simultaneously
weakens the smaller house or houses at the expense of the larger. In the
extreme case, where unanimity is required in every house, each individual
in the whole legislature has what amounts to a veto, and is just as powerful
as any other individual. The power index of each chamber is therefore
directly proportional to its size.

We may examine this effect further by considering a system consisting
of a governor and a council. Both the governor and some specified frac-
tion of the council have to approve a bill before it can pass. Suppose first
that council approval has to be unanimous. Then (as we saw above) the
governor has no more power than the typical councilman. The bicameral
power division is in the ratio 1: N, if we take N to be the number of
councilmen. If a simple majority rule is adopted, then the ratio becomes
1:1 between governor and council. That is, the governor has N times the
power of a councilman. Now suppose that the approval of only one
member of the council is required. This means that an individual coun-
cilman has very little chance of being pivotal. In fact the power division
turns out to be TV: 1 in favor of the governor.9 If votes were for sale, we
might now expect the governor's price to be TV2 times as high as the
average councilman's.

Several other examples of power distribution may be given. The in-
dices reveal the decisive nature of the veto power in the United Nations
Security Council. The Council consists of eleven members, five of whom
have vetoes. For a substantive resolution to pass, there must be seven
affirmative votes and no vetoes. Our power evaluation gives 76/77 or
98.7% to the "Big Five" and 1/77 or 1.3% to the remaining six members.
Individually, the members of the "Big Five" enjoy a better than 90 to 1
advantage over the others.

It is well known that usually only a small fraction of the stock is
required to keep control of a corporation. The group in power is usually
able to muster enough proxies to maintain its position. Even if this were
not so, the power of stockholders is not directly proportional to their
holding, but is usually biased in favor of a large interest. Consider one man
holding 40% of a stock while the remaining 60% is scattered among 600
small shareholders, with 0.1 % each. The power index of the large holder is
66.6%, whereas for the small holders it is less than 0.06% apiece. The
400:1 ratio in holdings produces a power advantage of better than
1000:1.10
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The preceding was an example of a "weighted majority game." An-
other example is provided by a board with five members, one of whom
casts two extra votes. If a simple majority (four out of seven votes) carries
the day, then power is distributed 60% to the multivote member, 10% to
each of the others. To see this, observe that there are five possible positions
for the strong man, if we arrange the members in order at random. In three
of these positions he is pivotal. Hence his index is equal to 3/5. (Similarly,
in the preceding example, we may compute that the strong man is pivotal
400 times out of 601.)

The values in the examples given above do not take into account any of
the sociological or political superstructure that almost invariably exists in
a legislature or policy board. They were not intended to be a representa-
tion of present day "reality." It would be foolish to expect to be able to
catch all the subtle shades and nuances of custom and procedure that are
to be found in most real decision-making bodies. Nevertheless, the power
index computations may be useful in the setting up of norms or standards,
the departure from which will serve as a measure of, for example, political
solidarity, or regional or sociological factionalism, in an assembly. To do
this we need an empirical power index, to compare with the theoretical.
One possibility is as follows: The voting record of an individual is taken.
He is given no credit for being on the losing side of a vote. If he is on the
winning side, when n others voted with him, then he is awarded the
probability of his having been the pivot (or blocker, in the case of a
defeated motion), which is l/(n + 1). His probabilities are then averaged
over all votes. It can be shown that this measure gives more weight than
the norm does to uncommitted members who hold the "balance of
power" between extreme factions. For example, in a nine-man commit-
tee which contains two four-man factions which always oppose each
other, the lone uncommitted member will always be on the winning side,
and will have an observed index of 1/5, compared to the theoretical value
of 1/9.

A difficulty in the application of the above measure is the problem of
finding the correct weights to attach to the different issues. Obviously it
would not be proper to take a uniform average over all votes, since there is
bound to be a wide disparity in the importance of issues brought to a vote.
Again, in a multicameral legislature (or in any more complicated system),
many important issues may be decided without every member having had
an opportunity to go on record with his stand. There are many other
practical difficulties in the way of direct applications of the type men-
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tioned. Yet the power index appears to offer useful information concern-
ing the basic design of legislative assemblies and policy-making boards.

Appendix

The evaluation of the power distribution for a tricameral legislature with
houses of 1, 3, and 5 members is given below:

There are 504 arrangements of five X's, three O's, and one (/>, all
equally likely if the nine items are ordered at random. In the following
tabulation, the numbers indicate the number of permutations of prede-
cessors ( ) and successors [ ] of the final pivot, marked with an asterisk.
The dots indicate the pivots of the three separate houses.
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Power indices for the houses are 192/504, 162/504, and 150/504, and
hence are in the proportion 32:27:25, with the smallest house the strong-
est. Powers of the individual members are as 32:9:9:9:5:5:5:5:5.

NOTES

See J. von Neumann and O. Morgenstern, Theory of Games and Economic
Behavior (Princeton, 1944, 1947, 1953), pp. 420 ff.
See K. J. Arrow, Social Choice and Individual Values (New York, 1951), p.
7.
For a brief discussion of some of the factors in stock voting see H. G. Goth-
man and H. E. Dougall, Corporate Financial Policy (New York, 1948), pp.
56-61.
More generally, a minimal winning coalition.
In the formal sense described above.
This statement can be put into numerical form without difficulty, to give a
quantitative description of the "efficiency" of a legislature.
The mathematical formulation and proof are given in L. S. Shapley, "A
Value for N-Person Games," Annals of Mathematics Study No. 28 (Prince-
ton, 1953), pp. 307-17. Briefly stated, any alternative imputation scheme
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would conflict with either symmetry (equal power indices for members in
equal positions under the rules) or additivity (power distribution in a com-
mittee system composed of two strictly independent parts the same as the
power distributions obtained by evaluating the parts separately).

8 As a general rule, if one component of a committee system (in which ap-
proval of all components is required) is made less "efficient"-i.e., more
susceptible to blocking maneuvers-then its share of the total power will
increase.

9 In the general case the proportion is N —  M + 1: M, where M stands for the
number of councilmen required for passage.

10 If there are two or more large interests, the power distribution depends in a
fairly complicated way on the sizes of the large interests. Generally speaking,
however, the small holders are better off than in the previous case. If there are
two big interests, equal in size, then the small holders actually have an
advantage over the large holders, on a power per share basis. This suggests
that such a situation is highly unstable.



PART II

Reformulations and generalizations





CHAPTER 4

The expected utility of playing a game

Alvin E. Roth

1 Introduction

This chapter is concerned with how the Shapley value can be interpreted
as an expected utility function, the consequences of interpreting it in this
way, and with what other value functions arise as utility functions repre-
senting different preferences.

These questions brought themselves rather forcefully to my attention
when I first taught a graduate course in game theory. After introducing
utility theory as a way of numerically representing sufficiently regular
individual preferences, and explaining which comparisons involving util-
ity functions are meaningful and which are not, I found myself at a loss to
explain precisely what comparisons could meaningfully be made using
the Shapley value, if it was to be interpreted as a utility as suggested in the
first paragraph of Shapley's 1953 paper. In order to state the problem
clearly, it will be useful to remark briefly on some of the familiar proper-
ties of utility functions.

First, utility functions represent preferences, so individuals with differ-
ent preferences will have different utility functions. When preferences are
measured over risky as well as riskless prospects, individuals who have the
same preferences over riskless prospects may nevertheless have different
preferences over lotteries, and so may have different expected utility
functions.

Second, there are some arbitrary choices involved in specifying a utility
function, so the information contained in an individual's utility function
is really represented by an equivalence class of functions. When prefer-
ences are defined over riskless prospects without any information about
relative intensities of preference, then the class of utility functions equiva-
lent to a given utility function u consists of all monotone transformations
of u. When preferences are defined over risky prospects as well, then the
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class of expected utility functions equivalent to a given expected utility
function u consists of all positive linear transformations of u. That is, the
(only) arbitrary elements in an expected utility function are the choice of
the zero point and unit.

A meaningful statement about preferences, in terms of a utility func-
tion, must be true for every equivalent utility function. (In just this sense it
is not a meaningful statement about temperature to say that water boils at
between six and seven times the temperature at which it freezes: This is a
statement about the Fahrenheit temperature scale that does not hold in
the equivalent Celsius scale.) Similarly, because different individuals'
expected utility functions have arbitrary origins and units, they are not
comparable. For example, they cannot meaningfully be added. That is, no
information about preferences is conveyed by saying that a particular
outcome maximizes the sum of the utilities of the players in a game,
because this is not independent of the scale of each utility function: If an
individual's utility is multiplied by 100 (which yields an equivalent repre-
sentation of the individual's preferences), the outcome that maximizes
the sum of the utilities would not stay the same in general.1

The original derivation of the Shapley value does not resemble the
derivation of utility functions, in that all conditions are stated directly on
the value function, so there is no clear connection to underlying prefer-
ences. Hence, the following questions present themselves.

1. If the Shapley value is to be interpreted as a utility, why is it unique?
Won't different individuals with different preferences and risk postures
have different utility functions? If so, what can be said about those prefer-
ences for which the Shapley value is a utility function? What will other
utility functions for games look like?

2. What are the meaningful statements about preferences that can be
conveyed by the Shapley value? What are the arbitrary elements in the
Shapley value as a utility-what normalization has been chosen? Under
what circumstances can the Shapley value of a game be compared to the
utility of other kinds of alternatives?

3. What does the additivity axiom mean? What statement about pref-
erences is made by a utility function that relates the sum of the utilities of
games v and w to the utility of another game, v + w?

4. How can the efficiency axiom be interpreted in the context of a utility
function?\X specifies that the values for each position in a game v must sum
to v(N): Is there some assumption hidden here that interpersonal compar-
isons can be made, and that sums of utilities are meaningful? If not, what
is the significance of specifying the sum?2
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To answer these questions, we need to consider preferences over
games. The viewpoint I take is that the preferences in question are those of
a single individual, faced with choices over positions in a game, and in
different games. The resulting utility function can be thought of, like the
Shapley value, as a function defined on games that assigns a real number
to each position in a game. It turns out that whether such a utility function
conforms to the efficiency axiom depends on the attitude of the individual
in question to a certain kind of risk, and whether it conforms to the
additivity axiom depends on the individual's attitude toward another
kind of risk. When the individual is what I call "risk neutral" to both kinds
of risk, then his or her expected utility for playing a game is equal to the
Shapley value. Other attitudes toward risk yield other utility functions.

This chapter attempts to integrate the material originally presented in
Roth (1977a,b,c). Section 2 briefly reviews how an expected utility for an
abstract set of alternatives is derived. Sections 3 and 4 then consider how
to apply and extend this treatment to include positions in games as alter-
natives. Section 5 considers the special case of simple games, and may be
skipped by those interested only in the main ideas. Section 6 concludes by
considering the answers to the questions posed earlier.

2 Utility theory

We summarize here an elegant axiomatization of expected utility devel-
oped by Herstein and Milnor (1953). A set M of alternatives is a mixture
set if for any elements a, b GM and for any probability p E [0,1 ] we can
associate another element of M, denoted by [pa;(\ —  p)b] and called a
lottery between a and b. (Henceforth the letters p and q will be reserved for
elements of [0,1].) We assume that lotteries have the following properties
for all a,bGM:

[la;0b] = a,
[pa\(l-p)b] = [(l-p)b;pa]9

[Q[pa\(\ -P)b]il ~ q)b] = [pqa\{\ ~ pq)b\

A preference relation on Mis defined to be a binary relation >* such that
for any a, bG M either a ^* b or b ^* a must hold, and if a ^* b and
b^* c then a ^* c. We write a >* b if a ^* b and b^* a, and a ~ b if
# >* b and b ^* a. (So a>* b means that the individual whose prefer-
ences we are considering prefers a to b\ a ^* b means he likes a at least as
well as b\ and a ~ b means he is indifferent between the two alternatives.)
A real-valued function u defined on a mixture set Mis an expected utility
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function for the preference ^* if it is order preserving (i.e., if for all a and b
in M, u(a) > u(b) if and only if a >* b\ and if it evaluates the utility of
lotteries by their expected utility; that is, if for any lottery [/?#;( 1 —  p)b],

u([pa\(\ -p)b])=pu(a) + (1 -p)u(b).

If >* is a preference ordering on a mixture set M, then the following
conditions ensure that an expected utility function exists:

Continuity: For any a, b, cGM, the sets {p\[pa;(l — p)b]  >* c) and
{p\c >* [pa\{\ — p)b]}  are closed.

Substitutability: If a,a'^M and a ~ a\ then for any b e M, [ ^ 6 ] ~

The utility function is unique up to an affine transformation; that is, if
u is an expected utility function representing the preferences ^*, then so is
v if and only if v = c j u + c2, where c t and c2 are real numbers and c x > 0.
Another way to say this is that in specifying a utility function u represent-
ing the preferences ^*, we are free to choose arbitrarily any alternatives ax
and a0 in M, such that ax >* a0, and set u(ax) = 1 and w(tf0) = 0. When
these arbitrary elements are specified, the value of u(a) for any other
alternative a is then completely determined by the preferences.3 For ex-
ample, if the alternative a is such that a { ^* a ^* a0, then u(a) = p, where
p is the probability such that a~[pax\(\ —  p)a0]. (This follows since the
utility of the lottery is p, its expected utility.)

3 Comparing positions in games

In what follows, we will consider for simplicity the class G of superadditive
characteristic function games4 v defined on a universe of positions TV,
where TV is taken to be finite. To make comparison between positions in a
game and in different games, we shall consider a preference relation
defined on the set TV X G of positions in a game. So (i,v) >* (j,w) means
"it is preferable to play position / in game v than to play position^' in game
w." As before, ~ will denote indifference, and ^* will denote weak prefer-
ence.

We consider preference relations that are also defined on the mixture
set M generated by TVX G (i.e., the smallest mixture set containing
NX G). That is, preferences are also defined over lotteries whose out-
comes are positions in a game. Denote by [q(Uv)\{\ — q)(j,w)]  the lottery
that, with probability q, has a player take position / in game v and, with
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probability 1 —  q, take position^' in game w. We henceforth consider only
preference relations that have the standard properties of continuity and
substitutability on M and that ensure the existence of an expected utility
function unique up to the choice of origin and unit. Denote this function
by 0, and write 6t(v) = 6((i,v)) and e{v) = {e{{v\ . . . ,9n(v)). Because 6 is
an expected utility function, 6t(v) > 6j(w) if and only if the individual
whose preferences are being modeled prefers to play position / in game v
rather than position j in game w, and the utility of a lottery is its expected
utility: that is,

Recall that the games v we are considering are themselves defined in
terms of some transferable commodity that reflects the expected utility of
the players for some underlying outcomes (e.g., as in note 2). Some addi-
tional regularity conditions on preferences for positions in games will be
needed in order that the preferences, and the resulting utility function for
positions in games, be consistent with the underlying utility function in
terms of which the games are defined.

It will be convenient to define, for each position z, the game v{ by

vt(S)=l if/GS,
= 0 otherwise.

All positions other than / are null players in games of the form cvi9 so the
player in position / may be sure of getting a utility of c. (This observation
will provide the appropriate normalization for the utility 6.) Denote by v0
the game in which all players are null players (i.e., the game vo(S) = 0 for
all S), and let GL, be the class of games in which position i is null.

The first regularity condition we impose on the preferences is

Rl. If v E GL,, then ( / » ~  (i,v0). Also, (/>,-) >* (z>0).

This condition says that being a null player in a game is not preferable
to being a null player in any other game (in particular in the game v0), and
that the position (/>,) is preferable to playing a null position.

The second regularity condition is

R2. For all / E N, v E G, and for any permutation n, (/,£>) ~ (ni,nv).

This condition says simply that the names of the positions do not affect
their desirability. An immediate consequence is that the utility function
for games will obey the symmetry axiom.
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Lemma 1. 6ni(nv) = 6i(v).

By Rl we can choose (/>,) and (i,v0) to be the unit and origin of the
utility scale, so #,(*;,) = 1 and 6i(v0) = 0. These are the natural normaliza-
tions, reflecting the fact that a player in position / of game v0 is assured of
receiving a payoff of 0 (in terms of her underlying utility function for the
outcomes of the games), and a player in position / of vt is assured of
receiving 1.

The last regularity condition reflects that the games v are defined in
terms of an expected utility function.

R3. For any number c> 1 and for every ( z » in  TV X G,

Condition R3 reflects the fact that games v and cv are identical except
for the scale of the rewards. These rewards are expressed in terms of a
player's expected utility for the underlying consequences, so a player is
indifferent between receiving a utility of 1 or of having the lottery that
gives him or her a utility of c with probability 1/c, and 0 with probability
1 — 1/c. Condition R3 says that, whatever a player's expectation from
playing position / in game v, it is related by the same sort of lottery to his or
her expectation for playing position i in game cv.

Lemma 2. For any c ̂  0 and any (i,v) GNXG, O^cv) = c6t(v).

Proof: Without loss of generality we can take c ^ 1 (because if c = 0, the
result follows from condition Rl and the normalization that 6t{v0) = 0,
and if 0 < c < 1 we can simply consider c' = 1/c). By R3

so

These regularity conditions, together with the normalization that
dtiPi) = 1 and 0,-(i>o) = 0, place some constraints on the utility function 6
that allow us to interpret it as an extension of the underlying utility
function defining the games. (We can regard the alternative (i,cvt) as
"embedding" in the mixture space Mof positions in games the underlying
payoffs of the games themselves, because the opportunity to play position
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/ in the game cvt is essentially the same as being given a prize with utility c,
and di(cVi) = c.) We will call a utility function on M normalized in this
way and satisfying Rl -R3 an extended utility function, because it ex-
tends to the space of positions in games the utility function used to define
the games. However, infinitely many extended utility functions still could
arise, because the preferences that an agent could have over games still
have many degrees of freedom. In particular, we turn now to consider an
individual's attitude toward different kinds of risk.

4 Risk posture

We distinguish between two kinds of risk. Ordinary risk involves the
uncertainty that arises from lotteries, whereas strategic risk involves the
uncertainty that arises from the strategic interaction of the players in a
game.

4.1 Ordinary risk

Recall that when we consider preferences defined over money, we say that
an individual is "risk neutral" if his utility for any lottery is equal to its
expected monetary value. Analogously, we say that an individual is "risk
neutral to ordinary risk over games" if her preferences obey the following
condition.

Neutrality to ordinary risk over games:

(/, (qw + (1 - q)v)) ~ [<?(/»;(  1 - </)(/»].

The condition says that the individual is indifferent between the alterna-
tive on the right, which is a lottery that will result in playing position / in
either game w or game v9 and the alternative on the left, which is to play
position / in the game whose characteristic function is equal to the ex-
pected value of the characteristic function of the lottery. That is, consider
some coalition ScN. Its expected worth in the lottery on the right is
qw(S) + (1 —  q)v(S), which is precisely its worth in the game on the left.
So a player is risk neutral with respect to ordinary risk over games if he or
she is indifferent between playing position / in the "expected game"
qw + (1 — q)v  or to having the appropriate lottery between the games w
and v.

Note that v = (\/c)cv + (1 —  (l/c)v0), so neutrality to ordinary risk
over games implies regularity condition R3. In fact, it is a much stronger
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condition, and in Section 6 we briefly consider why an individual might
not be neutral to ordinary risk over games, even if he or she was risk
neutral in terms of the transferable commodity used to define them.
However, the next result shows that this kind of risk neutrality is just what
is involved in assuming that the utility function 6 is additive.

Theorem 1 (Additivity). 0(v + w) = 6(v) + 0(w) for all v, w e G if and
only if preferences are neutral to ordinary risk over games.

Proof: For each / e N,

6t(v + w) = 0t(2Qv + ±w)) = 20&V + iw)

by Lemma 2. But by ordinary risk neutrality over games,

because 6 is an expected utility function. So 6t(v 4- w) = 6t(v) + 0;(w).
The other direction is equally straightforward, after the initial task of
proving that additivity of an extended utility function (together with
continuity) implies the conclusions of Lemma 2.

There is uncertainty in playing a game even if no lotteries are involved.
In Roth (1977a,b) this was called strategic risk. Given that an individual is
neutral to ordinary risk over games, we will now show that the individual's
posture toward strategic risk uniquely determines his or her utility for a
position in a game.

4.2 Strategic risk

Any game with more than one strategic (i.e., nondummy) position in-
volves some potential uncertainty as to the outcome, arising from the
interaction of the strategic players. To describe a given player's prefer-
ences for situations involving strategic risk, it will be convenient for us to
consider it on the games vR defined for each subset R of TV by

vR(S)=\ if RCS,
= 0 otherwise.

A "pure bargaining game" of the form vR is essentially the simplest game
that can be played among r strategic players. (The cardinality of sets R, S9
T, . . . is denoted by r, s, t, . . . .)
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Define the certain equivalent of a strategic position in a game vR to be
the number f(r) such that the prospect of receiving f(r) for certain is
exactly as desirable as the prospect of playing the strategic position.5 That
is, f{r) is the number such that, for / G R, (i,vR) ~ (i,f(r)Vj). Note that
/(1) = 1, and that/(r) is a measure of a player's opinion of his or her own
bargaining ability in pure bargaining games of size r.

Using the terminology of Roth (1977a), we say that the preference is
neutral to strategic risk if/(r) = \/r for r = 1, . . . , n. The preference is
strategic risk averse iff{r) ^ 1/r, and strategic risk preferring iff(r) > 1/r.
(Note that preferences may be none of these; e.g., if/(2) > 1/2 but/(3) <
1/3.) The utility of playing a position in a game v^ is given by the following
lemma.

Lemma 3.

Oi(vR)=f(r) if/eU,
= 0 otherwise.

Proof: If/ 3 R, then vR G GL, and O^VR) = 0t(vQ) = 0, by R1. If/ G R, then
0i(vR) = OJLMvt) =/(r)0,to) = / ( 4 by Lemma 2.

If preferences are neutral to ordinary risk over games, then Theorem 1
implies that the utility function is completely determined by the numbers
/(r) , because the games vR are an additive basis. We have the following
result.

Shapley value theorem. The Shapley value is the utility function of an
individual who is both neutral to ordinary risk over games and neutral to
strategic risk. That is, when preferences are neutral to both kinds of risk,

Ofc) = Uv) = 2 {S~m"~S)' [v(S) - v(S - i)].
S<ZN n'

Proof: Neutrality to ordinary risk over games implies that 0 is additive,
and strategic risk neutrality implies that 6 agrees with the Shapley value 0
on all games of the form vR. Because the games vR constitute a basis of the
space of games, it follows that 6 agrees with 0 on all games.

As the Shapley value theorem and its proof make clear, neutrality to
ordinary risk together with different strategic risk preferences (as ex-
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pressed by the numbers/(r), r = 2, . . . , « ) will determine utility func-
tions that differ from the Shapley value. These other utility functions for
games are given by the next result.

Representation theorem. When preferences are neutral to ordinary risk
over games, the utility function 6 has the form

= 2 k(t)[v(T)-v(T-i)l (1)
TCN

where

Proof: Every game v is a sum of games of the form vR. In fact (see Shapley
1953 and Chapter 2 of this volume), v = *2RGNcRvR, where cR =
^TCR(~ \)r~lv(T). By Lemma 2 and Theorem 1,

6i(v)= 2 cRe^vR)= 2 c«f^=  2 2
RCN RCN RCN T(ZR

i(ER i^R

Reversing the order of summation, we obtain

°iW= 2 f 2 (-ir'/
RD{TUi)

If we denote the term in braces by gt(T)9 then we note that gt(T) =
- & ( r - z ) when ze T. So

TCN

But there are (?r/) coalitions of size r that contain T, so

Because [v(T) —  v(T— /)]  = 0 unless i G T, we are done.

An immediate consequence of this representation theorem is that
when preferences are neutral to ordinary risk (i.e., when the utility func-
tion is additive), then the utility of playing a null position is 0, because the
utility is the weighted sum of marginal contributions. The effect of strate-
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gic risk neutrality, and the special feature of the Shapley value, is that the
sum over positions equals v(N). In a purely axiomatic framework (Roth
1977d), the theorem can be restated to say that any symmetric and addi-
tive value 6 that gives null players 0 (or, equivalently, with the property
that 2l-e7-0/(i;) = ^i^s^i(v) f°r anY carriers T, S of a game v) is a weighted
sum of marginal contributions as given in the theorem. Such values,
which need not sum to v(N\ have subsequently been called semivalues
(Dubey, Neyman, and Weber 1981; Einy 1987; Weber Chapter 7 this
volume).

The semivalue that has received perhaps the most attention in the
literature (cf. Banzhaf 1965; Coleman 1971; Owen 1975; Dubey 1975a;
Roth 1977b,c; Dubey and Shapley 1979; Straffin Chapter 5 this volume)
is the Banzhaf index fi' = (/?;, . . . ,/3'n) given by

SCN Z

Banzhaf (1965) originally proposed a version of this index in the context
of simple games (see Chapters 1 and 5), but the extension to general games
is straightforward, the major difference being that the marginal contribu-
tions v(S) —  v(S —  i) may take on values other than 0 and 1. The factor
1/2""1 is a convenient normalization, but others could be chosen. The
important point for the following result is that the normalization does not
depend on the game v. (In some treatments of the Banzhaf index for
simple games, the index is normalized so that fit = PU^J^NP^ for P' as
defined here, so 2/?,- = 1. But this involves a different divisor for each
game, so the resulting index is not additive-i.e., not neutral to ordinary
risk.)

The Banzhaf index /?' as normalized here is an extended utility func-
tion reflecting preferences averse to strategic risk and neutral to ordinary
risk. We state without proof the following corollary of the representation
theorem, from Roth (1977d).

Corollary. If/(r) = l/2r~1, then the extended utility function equals the
Banzhaf index; that is, 6(v) = P'{v).

Thus the Banzhaf index is a utility function in which a player's utility
for a strategic position in a game vR is inversely proportional to the num-
ber of ways the r — 1  other strategic players can form coalitions.
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5 Simple games

As discussed in Chapter 1, the Banzhaf index, like the Shapley-Shubik
(1954) index, was proposed in connection with voting processes modeled
by simple games. However, the characterization of the Shapley value and
Banzhaf index for general games given here, like Shapley's axiomatic
characterization of the Shapley value, makes crucial use of nonsimple
games. If the universe of games we are interested in consists only of simple
games, then symmetry, efficiency, and additivity do not uniquely charac-
terize the Shapley value. In particular, the Banzhaf index /?, normalized so
as to sum to 1, also obeys these three axioms when they are applied only to
simple games. The reason is that additivity (equivalently, neutrality to
ordinary risk) loses all its force when applied only to simple games, be-
cause the class of simple games is not closed under addition. So ifv and w
are nontrivial simple games, v(N) = w(N) = 1 and the game v + w is not
simple, because v(N) + w(N) — 2. In this section we follow Roth (1977c)
in considering how the Shapley-Shubik index can be (uniquely) charac-
terized as a risk-neutral utility function defined on the class of simple
games.

Dubey (1975a,b) axiomatically characterized the Shapley-Shubik
index on the class of simple games by replacing additivity with the follow-
ing axiom (which Weber, in Chapter 5, has called the transfer axiom).

Transfer axiom. For any simple games v, w,

(f)(v V w) + (f){v Aw) = cf)(v) + cf)(w\

where the games v V w and v Aw are defined by

(i; V w)(S) = 1 if v(S) = 1 or w(S) = 1,
= 0 otherwise,

and

(v A w)(S) = 1 ifv(S) = 1 and w(S) = 1,
= 0 otherwise.

Perhaps the easiest way to understand the transfer axiom is to recast it
in terms of preferences over games and lotteries over games, as a form of
neutrality to ordinary risk over simple games. Viewed in that way, it takes
the following form.
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Ordinary risk neutrality for simple games: For all simple games v, w

V w),i)Mv A w),i)].

This condition specifies indifference between two lotteries. One lottery
results in either the game v or the game w, and the other results in either
the game v V w or the game v Aw. What makes this a condition of risk
neutrality is that any given coalition S has the same probability of being a
winning coalition in either lottery. It follows immediately from the fact
that 6 is an expected utility function that if it is neutral to ordinary risk it
obeys the transfer axiom.

In order to state all conditions on preferences in terms of simple games
only, we also need to rewrite neutrality to strategic risk, because the game
f(r)Vi is not a simple game. The following condition involves only simple
games.

Strategic risk neutrality for simple games: For all R C N and i e R,

It is easy to see that, when the utility function is normalized as in the
previous sections so that dt{v^ = 1 and O^VQ) = 0, strategic risk neutrality
for simple games continues to imply that 6 coincides with 0 on the class of
pure bargaining games.

Dubey proved the following result.

Proposition. The Shapley- Shubik index is the unique function 0 defined
on simple games that obeys Shapley's symmetry and carrier axioms as
well as the transfer axiom.

In terms of utilities, we can now recast this result as follows.

Shapley-Shubik index theorem. The Shapley-Shubik index is the
unique utility #, normalized so that O^v,) = 1 and 6j(v0) —  0, correspond-
ing to preferences that obey conditions Rl and R2 and that are neutral to
both strategic and ordinary risk defined over simple games.

Proof: We have already observed that 6 is symmetric (Lemma 1) and
obeys the transfer axiom, and that for every RC N, 6(vR) = <f)(vR); that is,
6 coincides with the Shapley- Shubik index on the pure bargaining games
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vR. To complete the proof of the theorem, we show that 6 coincides with </>
on every simple game v.

Let Ri9 R2, . . • , Rk^N be all the distinct minimal winning
coalitions6 of v. Then we say the game v is in class k, and note that v =
%i V ^ V • • -V y^ . If v is in class A: = 0, then v = v0 and 0(v) =
(f)(v) = 0. If v is in class k = 1, then v = vR1 is a pure bargaining game, and
0(v) = 0(i;).

Suppose that for games v in classes A: = 1,2, . . . , m it has been shown
that 6 is well defined and coincides with the Shapley-Shubik index.
Consider a game v in class m + 1. Then

i? = vR1 V ite V • • -y vRmV vR=w\/ vR,

where w is a game in class m. Hence, by neutrality to ordinary risk over
simple games (which implies that the utility 6 obeys the transfer axiom),

et(v) = 8,(w v vR) = et(w) + et(vR) - et{w A vRy
But we show that the game w A vR cannot be in a class higher than w, so by
the inductive hypothesis the terms on the right side of the preceding
expression are uniquely determined and equal to the Shapley-Shubik
index. Consequently, we will have shown that 6(v) = <p(v) for all simple
games v.

To see that the game w' = (w A vR) cannot be in a class higher than the
game w, consider a minimal winning coalition S' of the game w'. By the
definition of W we know that S'D R and w(S') = 1. If S' = R, then
w' = vR and we are done (because except for the game v0, every game has
at least one minimal winning coalition). Otherwise, S' = S U R, where S
is a minimal winning coalition in the game w. (Of course, S and R need
not be disjoint.)

Consider now a coalition T that is minimal winning in w''. Then
T'=TUR, where Tis minimal winning in w. If T ¥=  S', then T* S.
Consequently, every minimal winning coalition in w' can be identified
with a distinct minimal winning coalition in w, so w' cannot be in a class
higher than w. This completes the proof.

6 Discussion

To see what has been accomplished by considering the Shapley value as a
utility function, let us consider what kind of answers have been obtained
to the questions raised in the introduction to this chapter.

1. The "uniqueness" of the Shapley value as a utility function for
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games is associated with its risk neutrality. Perhaps a good way to think of
this is by analogy with utility functions for money: The risk-neutral utility
function is the one that evaluates lotteries at their expected value. Al-
though few of us consider only the expected value when choosing among
risky investments, for example, the expected value is nevertheless enor-
mously important to know and can give us at least a rough indication of
what our preferences are likely to be upon closer investigation. In the
same way, the Shapley value gives an indication of what our preferences
over positions in games are likely to be, even if we are not neutral to both
strategic and ordinary risk over games. And for preferences that are neu-
tral to ordinary risk over games, we have been able to characterize the
utility functions that reflect different attitudes toward strategic risk. How-
ever, the systematic behavior of utility functions that reflect different
attitudes toward ordinary risk over games remains an open question.

2. We have seen that the Shapley value "inherits" the normalization of
the utility function used to define the games being considered. That is,
underlying any game is a concrete set of outcomes that are represented by
utility payoffs in terms of utility functions with arbitrary origin and unit.
An individual's Shapley value is an extension of this utility function, with
the same normalization. Thus the meaningful utility comparisons that
can be made with the Shapley value are precisely those that can be made
with expected utility functions. For example, in Chapter 1 the Shapley
value was calculated for a simple model of the U.N. Security Council,
yielding a Shapley value of .00186 for a rotating member and a Shapley
value of. 196 for a permanent member. Viewing the Shapley value as an
expected utility function, we can now determine which statements about
these numbers are meaningful comparisons reflecting the underlying
preferences, and which are not. For example, an individual who is neutral
to both ordinary and strategic risk would be indifferent between playing
the game in the position of a permanent member or to having a lottery
that gave a. 196 probability of being a dictator in the game, and otherwise
made him a null player (or for that matter having a lottery that gave a. 196
probability of receiving any prospect with a utility of 1, and otherwise
receiving a utility of 0). Similarly, such an individual would be indifferent
between playing the position of a rotating member or having a lottery that
gave her a probability of p = .00186/. 196 = .0095 of playing the position
of a permanent member and otherwise being a null player. To put it
another way, this individual would prefer a 1 in 100 chance of being a
permanent member (and a 99 in 100 chance of being a null player) to the
prospect of being a rotating member. But it would not be a meaningful
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comparison to say that the prospect of playing a position in a game is over
100 times as desirable as another prospect (which could be either a posi-
tion in a game or a lottery over prizes), because this depends on the
(arbitrary) normalization chosen for the underlying utility function.

3. We have seen that the additivity axiom on the value function is
equivalent to assuming that the preferences that the value represents as a
utility function are neutral with respect to ordinary risk over games.
Perhaps the best way to understand what this entails at this point is to
consider why an individual might not be neutral to this kind of risk. For
example, let v be the three-person majority game given by v(l) = v(2) =
v(3) = 0 and v( 12) = v( 13) = y(23) = v( 123) = 1, and let w = v{l2) be the
two-person pure bargaining game (with player 3 a null player). Then the
game z = v+w is given by z(l) = z(2) = z(3) = 0, z(13) = z(23) = 1,
z(12) = z(123) = 2. Although v and w are both symmetric among the
nonnull players, z is not. In particular, the symmetry of v makes it not
unreasonable to suppose that each of the two-person coalitions is as likely
to form as any other, and that if the three-person coalition forms it will
divide equally. So the fact that <f)(v) = (j, j , j) seems reasonable, as does the
fact that 0(w) = (i,i,0). So our evaluation of the two games separately is
that each two-person coalition is equally likely to form in v, but in w the
coalition {12} will form.

Therefore the coalition {12} should be especially easy to form in the
game z because players 1 and 2 are essential for the game to be worth 2,
and player 3 can make no further marginal contribution. (This is clearly
reflected in the core of z, which is the single payoff vector (1,1,0).) But the
Shapley value is (f)(z) = (|,|,i). That is, an individual whose utility is the
Shapley value is indifferent between playing position 3 in the game z or in
the game v. Although this preference may be consistent with plausible
models of how the game might be played (because game z gives 3 a less
advantageous position but has higher stakes than game v), I think that for
most purposes I would personally prefer to play position 3 of game v
rather than of game z. So, although neutrality to ordinary risk is an easy to
understand and plausible condition on preferences that gives rise to trac-
table (i.e., additive) utility functions, it is by no means an inescapable
requirement for plausible preferences, either for all individuals or for a
given individual over all games.

4. Finally, we have seen that, when preferences are neutral to ordinary
risk so that the utility function is additive, the vector 6 of utility for each
position in a game is "efficient" if and only if the preferences are neutral to
strategic risk. The quotation marks reflect the fact that under the inter-
pretation presented here the vector 6 is not a distribution of utility among
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different players but simply a vector of utilities for the different positions.
Indeed, whether the vector (O^v), . . . ,0n(v)) is even & feasible outcome
of the game, let alone an efficient one, appears to arise in this context
essentially by accident.7 The risk-neutral utility-the Shapley value-
always happens to coincide with an outcome of the game, but utility
vectors that do not reflect neutrality to strategic risk do not share this
property.8 In any event no interpersonal comparisons are implied, be-
cause all comparisons are those of a single agent evaluating alternative
positions.

As to whether we should expect individuals to be neutral to strategic
risk, just as many individuals do not judge monetary lotteries only by their
expected value, I imagine that many are not indifferent between bargain-
ing among r individuals or receiving 1 /r of the proceeds for sure. Certainly
some aversion to strategic risk would appear to be justified by the experi-
mental evidence, which reveals a nonnegligible frequency of disagree-
ment (see Roth 1987), and by the growing theoretical understanding
about how differences in information, ability to make commitments, or
long-term concerns may lead to disagreements (see, e.g., the papers in
Roth 1985 or Binmore and Dasgupta 1987). So, like additivity, efficiency
arises from assumptions about preferences that are plausible but by no
means inescapable.

In conclusion, the analogy between the Shapley value, which is the
risk-neutral utility for playing a game, and the expected value, which is the
risk-neutral utility for monetary gambles, seems to be a strong one. (Note
that this is not because of the interpretation of the Shapley value as an
expected marginal contribution. The Banzhaf index and other non-risk-
neutral utilities can also be interpreted as expected marginal contribu-
tions; see, e.g., Weber Chapter 7 this volume.) When we consider a spe-
cific individual or a specific choice among games, we may be able to find a
more precise indicator. But when we are considering a first approxima-
tion, both the expected value of monetary gambles and the Shapley value
of transferable utility games seem to work in similar ways. And even if we
conclude that most individuals are not risk neutral, the assumptions of
risk neutrality implicit in the Shapley value, like the expected value, may
be a more natural proxy for the utility of some unspecified individual than
would any assumption of a particular risk posture.

NOTES
1 In the same way, the arithmetic mean of players' utilities is not meaningful.

But the geometric mean of expected utilities is: This forms the basis for Nash's
celebrated model of bargaining (see Nash 1950; Roth 1979).
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2 Of course, a similar question arises concerning transferable utility games, in
which the "transferable utility" payoffs to the players are assumed to sum to
(at most) v(N). No assumption that utilities are interpersonally comparable
needs to be made to consider such a game. For example, if the payoffs are all in
money and the players are all risk neutral, then the characteristic function
form representation of the game simply involves a common (but still arbi-
trary) normalization of the players' utility functions. To see that no funda-
mental comparisons are involved, observe that we could construct a charac-
teristic function form game among players, all of whom receive quite different
commodities and among whom no actual physical transfers can take place.
Consider three players, one of whom will ultimately be paid in French francs,
one in baskets of fruit, and one in wine. For each player, a utility function is
constructed for possible payoffs. The arbitrary elements in each utility repre-
sentation are chosen without reference to the others. A given characteristic
function game v denned on N = {1,2,3} can now be created by allowing the
members of each coalition S C N (who can communicate by telephone and
sign contracts as needed) to divide an amount v(S) of a fictitious commodity-
"utility money" -in any way they choose. At the conclusion of the game, each
player may exchange whatever utility money he has earned for the amount of
the commodity in which he is to be paid that gives him that amount of utility,
according to the arbitrarily scaled utility function established for him before
the game.

3 In general, for any element xGM, the utility of x is

u(x) = (pM) ~ PabMViPMi) ~ PMo))
where a, b, al9 and a0 are elements of M such that a>*x>*b and
a >* #! >* #0 >* b, and for any yE.M such that a ^* y ^* b, pab(y) is defined
by y ~ \p<aky)a\i\ -pab{y))b].

It can be shown that the numbers pab{ •) are well defined, and the function
u( •) is independent of the choice of a and b. Note that u(ax) = 1 and
u(a0) = 0.

4 The class of superadditive games is sufficiently large, but we could consider a
larger class of games without changing the results presented here.

5 We take the point of view that a player does not know who will occupy the
other positions in a game. Consequently, her certain equivalent for a game vR
depends only on r.

6 A coalition RcNis minimal winning in v if v(R) = 1 and if S C R, S =£ R,
implies v(S) = 0.

7 Note that, by analogy, expected values of money gambles aren't necessarily
feasible outcomes: for example, the 50-50 gamble for plus or minus one dollar
has an expected value of 0, although that isn't a feasible outcome. For transfer-
able utility games feasibility comes along with risk neutrality, but this does not
appear to be the case for NTU games. It seems to me that this may be part of
the trouble in interpreting the value for NTU games along the lines of the
Shapley value for TU games (see the references in this connection in Chap-
ter 1).

8 This is so for utilities that are strategic risk averse as well as strategic risk
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preferring. It is clear that a vector of utilities that are strategically risk prefer-
ring will not always coincide with a feasible outcome: Because/(r) > 1/r, such
a utility vector isn't a feasible outcome in a pure bargaining game vR, because
rf(r) > vR(N) = 1. For a risk-averse utility, consider the Banzhaf index /?', with
f(r) = 1/2'-1. For the three-person majority game, p\v) = ( i i i ) , so 2 # >
v(N) = 1. To see what is going on here, note that v = v{l2) + v{l3) + z;{23} —
2i>{123}, and so fi't(v) = fl(i;{12)) + # 0 W + # ( « W " W W -  B u t w h e n

r = 2, 1/2 1 = ,̂ so the Banzhaf index agrees with the Shapley value on the
two-person pure bargaining games. But when r = 3, the strategic risk aversion
of the Banzhaf agent comes into play, with ̂ (^123}) = i f°r e a c n l' = ! > 2, 3 (in
contrast to the Shapley value <f>\(v{X2y^ = T)- Because z;{123} enters the expres-
sion for the three-person majority game v with a negative coefficient, this
means that the relatively greater strategic risk aversion of the Banzhaf agent,
which causes him to evaluate the three-person pure bargaining game less
favorably than does the Shapley agent, nevertheless causes him to evaluate the
three-person majority game more favorably. Thus, in the presence of neutral-
ity to ordinary risk (i.e., additivity) differences in strategic risk aversion can
have effects that are difficult to anticipate.

There are (at least) two ways to think about these effects of strategic risk
aversion. On the one hand, they appear to parallel similar effects of ordinary
risk aversion found in game-theoretic models of bargaining (Roth and Roth-
blum 1982; Harrington 1987). On the other hand, they are also intimately
related to the assumption of neutrality to ordinary risk and the resulting
additivity of the utility function, and so these effects may also provide some
further cause to be cautious about the assumption of additivity.
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CHAPTER 5

The Shapley-Shubik and Banzhaf power
indices as probabilities

Philip D. Straffin, Jr.

1 The Shapley - Shubik and Banzhaf indices

In 1954 Lloyd Shapley and Martin Shubik published a short paper [ 12] in
the American Political Science Review, proposing that the specialization
of the Shapley value to simple games could serve as an index of voting
power. That paper has been one of the most frequently cited articles in
social science literature of the past thirty years, and its "Shapley-Shubik
power index" has become widely known. Shapley and Shubik explained
the index as follows:

There is a group of individuals all willing to vote for some bill. They
vote in order. As soon as a majority has voted for it, it is declared passed,
and the member who voted last is given credit for having passed it. Let us
choose the voting order of the members randomly. Then we may com-
pute the frequency with which an individual . . . is pivotal This latter
number serves to give us our index. It measures the number of times that
the action of the individual actually changes the state of affairs. . . .

Of course, the actual balloting procedure used will in all probability
be quite different from the above. The "voting" of the formal scheme
might better be thought of as declarations of support for the bill and the
randomly chosen order of voting as an indication of the relative degrees
of support by the different members, with the most enthusiastic mem-
bers "voting" first, etc. The pivot is then the last member whose support
is needed in order for passage of the bill to be assured.

Thus to calculate the Shapley-Shubik indices in the weighted voting
game

[3;2,1,1],
ABC (1)
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we write down the 3! orders in which A, B, C might declare their support
for a bill, and in each order we circle the pivot voter:

AQ)C A©B BQC BCQ) CQ)B CBQ).

The Shapley-Shubik power indices are <f>A = f, $* = h anc* </>c = I-
In 1965 John Banzhaf [ 1 ] explicitly rejected the Shapley-Shubik index

and proposed a new index of voting power for use in court cases involving
issues of equal representation. The Banzhaf index was endorsed by the
New York Court of Appeals in two 1966 cases and has been used in cases
since then [5]. Banzhaf argued that the order in which voters join a
coalition in favor of a bill should not be the crucial factor: "It seems
unreasonable to credit a legislator with different amounts of voting power
depending on when and for what reasons he joins a particular voting
coalition. His joining is a use of his voting power-not a measure of it."
Instead [1],

Since the determination of legislative outcomes is the only legitimate use
and purpose of legislative power and since usually an individual legisla-
tor can only determine outcomes when the others are closely divided,
the appropriate measure of a legislator's power is simply the number of
different situations in which he is able to determine the outcome. More
explicitly, in a case where there are N legislators, each acting indepen-
dently and each capable of influencing the outcome only by means of his
votes, the ratio of the power of legislator X to the power of legislator Y is
the same as the ratio of the number of possible voting combinations of
the entire legislature in which X can alter the outcome by changing his
vote to the number of combinations in which Y can alter the outcome by
changing his vote.

Thus to calculate Banzhaf indices in the weighted voting game (1), we
would write down the winning coalitions and in each one circle the swing
voters, those who by changing their vote could change the coalition from
winning to losing:

The Banzhaf indices for A, B, Care in the ratio 3:1:1. One might norma-
lize the Banzhaf index by dividing by the total number of swings, getting
PA ==Z\>PB = h a n d Pc = i- On the other hand, Banzhaf saw clearly that it
is the ratio of power that is most meaningful, and for our purposes it is
more natural to divide by the maximal number of swings that any voter
could possibly have-2""1 when there are n voters. If we do this, we get a
nonnormalized Banzhaf index fi'A = i9fi'B = i, and f$'c = ±.
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For a general simple game with n players, the definitions of the
Shapley-Shubik and Banzhaf power indices for voter / are

0/ = - \ 2 (s-\)\{n-s)\ (s = \S\\

/swings in S

/swings in 5"

The phrase "/ swings in 5"' means that the sum is taken over all coalitions
5 such that i is in S, Sis winning, but S —  {/} is losing. The Banzhaf index
simply counts these coalitions. The Shapley-Shubik index weights each
such coalition by the number of orders in which / could exercise his or her
swing: (s —  1)! is the number of orders in which the other members of S
could vote, followed by i as pivot, followed by the voters not in S in
(n —  s)\ possible orders. For more details and examples, see [6] and [16].

2 Comparison of the indices

In the three-person game (1) the Shapley-Shubik and Banzhaf indices
give fairly similar results. This is not always true, even for games of
moderate size. For example, in their 1954 paper Shapley and Shubik
considered a legislative system consisting of a president P, three senators
SSS, and five house members HHHHH. Legislation must be approved by
the president and a majority of both the Senate and the House. The
Shapley-Shubik power indices are 0 P = .381, <f)s = .107, and </>H = .059.
The ratios of power of P, S, and H are 6.4:1.8:1. In contrast, the Banzhaf
indices for this system are fi'F = .250, fi's = .125, and 0'H = .094, with
ratios 2.7:1.3:1. In the eight-person game

[2;1,1,1,1]®[3;2,1,1,1],
AAAA BCCC

where the ® notation from [ 10] means that a bill must be approved in both
of the two weighted voting bodies, the Shapley-Shubik and Banzhaf
indices even rank the power of the voters differently:

(^ = .093 (f)B =.314 0C=.1O5

^ = .188 £ i =

The Shapley-Shubik index says a Cis more powerful than an A, and the
Banzhaf index says the reverse.



74 Philip D. Straffin, Jr.

In large games the differences between the power indices can be ex-
treme. For example, in the United States legislative scheme with president
P, 101 senators S (including the vice-president), and 435 House members
H, the Shapley-Shubik power ratios of P to S to H are 870:4.3:1,
whereas the Banzhaf ratios are 27:2.1:1. In the other direction, consider
a corporation with one stockholder who holds 10 percent of the stock and
a large "ocean" of small stockholders who hold the remaining 90 percent.
The Shapley-Shubik index gives 11 percent of the power to the large
stockholder [9]; the Banzhaf index gives close to 100 percent of the power
to the large stockholder [4].

If the power indices can give such different results, it is important in
applications to have criteria to decide which index is more applicable to a
given situation. Most early discussions of the difference between the in-
dices concentrated on the fact that Shapley and Shubik's "story" for their
index involved the idea of winning coalitions forming in some order,
whereas Banzhaf's justification focused only on the final winning coali-
tion. Banzhaf himself characterized the difference as one of permutations
versus combinations ([1], p. 331). Hence it seemed that the Shapley-
Shubik index might be more applicable to legislative situations in which
there is considerable communication among voters and coalition build-
ing is actively pursued. The Banzhaf index might be more applicable if
coalition building was absent and only final votes were observable.

I argued in [13], and plan to argue here, that the permutation-
combination distinction between the indices is illusory, because both
indices can be derived from a simple probability model of voting in which
order plays no part. The probability model will suggest that the important
distinction between the indices has to do with the degree of statistical
independence among the voters.

3 A probability model for the power indices

When an individual in a voting body considers his or her voting power,
the most natural question to ask is, "What difference will my vote make?"
Notice from the quotations in Section 1 that this question is the basis for
both the Shapley-Shubik and Banzhaf power indices. Hence we will
begin by defining voter /'s power in a voting system to be the answer to his
or her

Question of individual effect: What is the probability that my vote will
affect the outcome of the vote on a bill? In other words, what is the
probability that a bill will pass if I vote for it, but fail if I vote against it?
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To answer this question, we need to specify a probability model for
bills. Because we are concerned with how voters vote, we will characterize
a bill by its acceptability vector (p{, . . . ,/?„), where n is the number of
voters and 0 ^ pk ^ 1 is the probability that voter k will vote for a bill. Our
problem is then to define a joint probability distribution for them's. There
are many ways in which this could be done, but at the level of abstraction
suitable for power indices two possible assumptions have a claim to natu-
ralness.

Independence assumption: Each pk is chosen independently from the
uniform distribution on [0,1].

Homogeneity assumption: A number p is chosen from the uniform distri-
bution on [0,1 ], and pk = p for all k.

The Independence Assumption just says that voters behave indepen-
dently of each other. In contrast, the Homogeneity Assumption says that
voter decisions are correlated in a specific way. We could think of voters as
judging bills by some uniform standard, and the number p as the bill's
acceptability level by that standard. If there seemed to be reason to do so,
the uniform distribution could be replaced by some other distribution in
these definitions (see [14]). However, with the uniform distribution, we
have

Theorem 1. The answer to voter f s Question of Individual Effect under
the Homogeneity Assumption is given by voter z's Shapley-Shubik
power index </),.

Theorem 2. The answer to voter z's Question of Individual Effect under
the Independence Assumption is given by voter f s nonnormalized Banz-
haf power index /?•.

In other words, the Shapley-Shubik and Banzhaf power indices ap-
pear as answers to a natural probabilistic question about voter influence,
under two different assumptions about the correlation of voters' votes for
bills. In particular, the Shapley-Shubik power index is defined in a natu-
ral context in which there is no mention of the order in which voters
declare support for a bill.

Proof of the theorems. Voter f s vote will affect the outcome on a bill
exactly when / is a swing voter in some coalition S, all the other members
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of S vote for the bill, and all voters not in S vote against the bill. The
probability that this will happen is

gi(Pi, • • • J> n)= D I I Pj E[ l~Pk>
/swingsin S

where TV is the set of all voters. Notice that this polynomial in pl9 . . . , / ? „
does not involve pt. The probability that voter /'s vote will affect the
outcome is independent of what that vote is.

Under the Independence Assumption, voter /'s power is

• • ' gt(Pu • • • ,Pn)dPi' '  mdpnJo Jo Jo

= 2 n [pjdPj n
/swingsinS JE.S-{/} JO keN-S

Under the Homogeneity Assumption, voter /'s power is

| ' ft(p, . . . j>)dp= 2 f' ps~l(l -p)n~s dp
Jo /swingsinS Jo

/swings in S

The crucial equality in this second derivation is the beta function identity

xfc , a\b\
o

For calculation purposes, it is convenient to define^(p) = gj(p, . . . ,/?).
I have called^/?) voter /'s power polynomial [13,15,16]. Then notice that

0/= \fi(p)dp and &
Jo

(cf. Owen Chapter 10 this volume).

4 Examples and calculations

In the weighted voting game

ABC
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the power polynomials are simple to compute. For example, B's vote will
matter only if A votes yes (otherwise the bill would fail regardless of how B
votes) and C votes no (otherwise, given A's yes vote, the bill would pass
regardless of how B votes). Hence

MP)= P O - P ) =P-P2-
A yes; C no

Of course, Cs power polynomial is the same as 2?'s. A's vote will matter
unless both B and C vote no, so

Integrating between 0 and 1 gives (f)A = \, <f)B = 4>c = i- Evaluating at

As voting games get larger, the power polynomials become more diffi-
cult to compute, but they remain reasonable to do by hand for medium-
size games. For example, for Shapley and Shubik's nine-person legislative
government the power polynomials are

fp(p) = [3p2(l -P)+/?3][1O/?3(1 -/?)2 + 5/?4(l -p)+p5l
2 or 3 S's yes; 3, 4, or 5 H's yes

fs(p)=P[2p(l ~p)][lOp\\ -/7)2 + 5/74(l -p) + p5l
P yes; other S's split; 3, 4, or 5 H's yes

UP) = P[3p2(l - P) + P3][6p2(l -p)2].
P yes; 2 or 3 S's yes; other H's split

You can check that integrating from 0 to 1 gives the Shapley-Shubik
indices, and evaluating at \ gives the Banzhaf indices.

5 Implications for using the power indices

Many early applications of power indices were to questions of fairness at
the constitutional level. Does a certain voting rule give each representa-
tive close to the amount of power to which that representative is entitled
by some independent criterion? For example, power indices were used to
analyze the fairness of voting methods in New York county boards [5], the
U.S. electoral college (see [6]), and a proposed Canadian constitutional
amendment scheme [7,13].

At this constitutional level, data about voting correlations may not be
available, and it is arguable that it should not be used even if it is available.
The fairness of the structure we design should not depend on the particu-
lar voters who will fill positions in that structure. As John Rawls might put
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it, formal justice should be designed behind a veil of ignorance. Neverthe-
less, even at the constitutional level there may be philosophical indica-
tions as to whether society is conceived of as a collection of individuals
acting independently or as a group judging social welfare by common
standards. To the extent there are such indications, the Banzhaf or
Shapley-Shubik indices, respectively, would be more appropriate.

If we use power indices to analyze an existing voting body, we will have
historical information available about patterns of voting in the body.
Because members and preferences change over time, it would be inappro-
priate to extrapolate historical information at too fine a level, but it may
be possible to draw conclusions at the level of generality of the Indepen-
dence versus Homogeneity Assumptions. For example, I argued in [13]
that the Homogeneity Assumption, and hence the Shapley-Shubik
index, is more appropriate for the United States legislative scheme and for
voting in most corporations. On the other hand, the Independence As-
sumption seems better to measure the spirit of voting among Canadian
provinces. My point is that the level of generality of the Independence and
Homogeneity Assumptions may match rather well the qualitative nature
of political analyses of existing voting bodies.

There is another interesting possibility. At this level of generality, we
might conclude that some groups of voters behave homogeneously
among themselves but independently of other groups. This observation
could be modeled in the framework of our probabilistic model by an
appropriate partial homogeneity assumption, thus leading to a specifi-
cally tailored power index combining features of both the Shapley-
Shubik and Banzhaf indices.

6 Partial homogeneity assumptions: a political example

Suppose in Shapley and Shubik's PSSSHHHHH legislative system that
there are two parties, Republican (R) and Democratic (D). As an approx-
imation, let us suppose that the members of each party are homogeneous
among themselves (in the sense of the Homogeneity Assumption) but
vote independently of members of the other party. We can then calculate
the power of voters in this system by answering the Question of Individual
Effect with this partial homogeneity assumption. I will consider two cases.

In the first case, we suppose that the president is a Republican, but
there are Democratic majorities in both legislative houses: Republicans
PSHH; Democrats SSHHH. How much power does each type of voter
have? The calculations involve double integrals of polynomials in p (the
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Table 1. (Nonnormalized) power indices for the Shapley-Shubik
legislative example under different partial homogeneity assumptions.

Type of Rep. pres. Rep. pres. Homogeneous Independent
voter Dem. major. Rep. major. (</>) (ft')

.381 .250

.107 .125

.059 .094

probability that a Republican will vote yes) and q (the probability that a
Democrat will vote yes). For example, the power of a House Republican is

p
Republican S
Democratic S
Republican H
Democratic H

.350

.100

.132

.067

.078

.350

.162

.100

.108

.073

p[2pq(\ —  q) + (1 —  p)q2 + pq ](3pq(\ —  q)

+ 3(1 -p)q\\-q)] dp dq,
P yes; 2 or 3 S's yes; 2 H's yes, 2H's no

which works out to be 48/720 or .067. The complete results are given in
the second column of Table 1.

In the second case, we suppose the president is still a Republican, but
now the Republicans have a majority in both houses: Republicans
PSSHHH; Democrats SHH. The partial homogeneity calculations are
similar, and the results are given in column 3 of Table 1. For comparison,
columns 4 and 5 give the Shapley-Shubik and nonnormalized Banzhaf
indices. All figures in Table 1 can be interpreted directly as the probability
that a voter of the given type will affect the outcome of voting on a bill,
given the appropriate homogeneity-independence assumption.

One interesting observation from Table 1 is that, in accordance with
intuition, congressmen in the majority party have more voting power
than those in the minority party. This is true regardless of which party
holds the presidency, but the gap is about twice as large if the president is a
member of the majority party in congress. A congressman definitely gains
power if his party captures the presidency.

On the other hand, notice that the president's voting power is not
affected by which party has a majority in Congress. A president does not
gain power if his party captures Congress. If this seems contrary to politi-
cal intuition, it is nevertheless a direct consequence of our definition of
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power. The chance that the president's vote will matter is exactly the
chance that a bill will pass both houses of Congress, and if we make only
party-free assumptions about the distribution of bills to be voted on, this
chance will be independent of which party has a majority.

One way to recover the element of ideological satisfaction-of liking
the outcome of voting-is to ask, instead of the Question of Individual
Effect, the

Question of group-individual agreement: What is the probability that the
group decision on a bill will agree with my individual vote? In other
words, what is the probability that I vote for a bill that passes, or vote
against a bill that fails?

Answers to this question give indices that have been called satisfaction
indices. They are related to power indices in interesting ways [2,14,17].

The next logical step in this kind of ideologizing of the classical power
indices might be to introduce ideological opposition as well as, or in
addition to, independence. In other words, have the Republicans be ho-
mogeneous among themselves and the Democrats homogeneous among
themselves, but when Republicans vote for a bill with probability /?,
Democrats vote for it with probability 1 —  p. This kind of approach is
analyzed in [17]. Alternative approaches are proposed in [8] and [11].

7 Other approaches to comparing the power indices

The Shapley-Shubik power index is a specialization to simple games of
the Shapley value, which is characterized by Shapley's axioms. These
axioms are attractive for general games in characteristic function form,
and Shapley and Shubik [12] claimed that "any scheme for imputing
power among the members of a committee system either yields the power
index defined above [the Shapley-Shubik power index] or leads to a
logical inconsistency." However, the key axiom for the Shapley value is
the linearity axiom, and the sum of simple games is not always simple.
Hence this axiomatic approach goes outside the class of simple games to
justify an index that could well be considered only on that class, and the
justification is correspondingly weakened.

In the 1970s Dubey clarified the situation by giving comparable
axioms for the Shapley-Shubik and Banzhaf indices, entirely within the
context of simple games [3,4,16]. Dubey's axiomatic approach is very
elegant, but I believe that it is less effective than the probability approach
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in giving clear heuristic advice about which power index is applicable to
which voting situations.
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CHAPTER 6

Weighted Shapley values

Ehud Kalai and Dov Samet

1 Background and summary

One of the main axioms that characterises the Shapley value is the axiom
of symmetry. However, in many applications the assumption that, except
for the parameters of the games the players are completely symmetric,
seems unrealistic. Thus, the use of nonsymmetric generalizations of the
Shapley value was proposed in such cases.

Weighted Shapley values were discussed in the original Shapley
(1953a) Ph.D. dissertation. Owen (1968, 1972) studied weighted Shapley
values through probabilistic approaches. Axiomatizations of nonsym-
metric values were done by Weber (Chapter 7 this volume), Shapley
(1981), Kalai and Samet (1987), and Hart and Mas-Colell (1987).

Consider, for example, a situation involving two players. If the two
players cooperate in a joint project, they can generate a unit profit that is
to be divided between them. On their own they can generate no profit.
The Shapley value views this situation as being symmetric and would
allocate the profit from cooperation equally between the two players.
However, in some applications lack of symmetry may be present. It may
be, for example, that for the project to succeed, a greater effort is needed
on the part of player 1 than on the part of player 2. Another example arises
in situations where player 1 represents a large constituency with many
individuals and player 2's constituency is small (see, for example, Kalai
1977 and Thomson 1986). Other examples where lack of symmetry is
present can easily be constructed for problems of cost allocations (see, for
example, Shapley 1981). Also, lack of symmetry may arise when players
have different bargaining abilities (see, for example, Roth 1977).

The family of weighted Shapley values was introduced by Shapley
(1953a). Each weighted Shapley value associates a positive weight with
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each player. These weights are the proportions in which the players share
in unanimity games. The symmetric Shapley value is the special case
where all the weights are the same. The notion of "weights" was extended
to "weight systems" by Kalai and Samet (1987), enabling a weight of zero
for some players. In Section 2 the notion of the weighted Shapley value
with a given weight system is defined and related to a procedure of divi-
dend allocation that was proposed by Harsanyi (1959) (see also Owen
1982) for games without sidepayments. In Section 3 we give an equivalent
definition of the weighted Shapley value by random orders, which gener-
alizes the random-order approach to the symmetric Shapley value. In
Section 4, following Kalai and Samet (1987), we give an axiomatic charac-
terization of the family of weighted Shapley values-that is, we provide a
list of properties of a solution that is satisfied only by weighted Shapley
values.

Shapley (1981) also proposed a family of weighted cost allocation
schemes and axiomatically characterized, for exogenously given weights,
the schemes associated with these weights. This family of solutions is
related to the weighted Shapley values by duality. In Section 5, following
Kalai and Samet (1987), we illustrate the relationship between these two
families, provide an axiomatization of the latter family (which does not
use the weights explicitly in the axioms as Shapley's axioms do), and get as
a result an axiomatization of the symmetric Shapley value that does not
use the symmetry axiom.

Owen (1968, 1972, and Chapter 10 this volume) showed that weighted
Shapley values can be computed by a "diagonal formula," providing
another interpretation of the weights associated with the players. In Sec-
tion 6 we present an extension due to Kalai and Samet (1987) of the
diagonal formula for weight systems and cost allocation schemes.

Finally, we note that if one accepts the axioms in Section 4, one is
obliged to use a weighted Shapley value, but no recommendation of the
weights is implied by the axioms. The weights should be determined by
considering such factors as bargaining ability, patience rates, or past expe-
rience. In Section 7, following Kalai and Samet (1987), we illustrate cases
in which the "sizes" of the players (where the players themselves are
groups of individuals) are appropriate weights for the players. It follows
that any nonsymmetric solution (one satisfying the axioms in this chapter
and leaving out the symmetry axiom) can always be mathematically
viewed as being due to nonsymmetries in the size of the constituencies the
players represent.
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2 Weighted Shapley values

Let TVbe a finite set ofn players. Subsets of TV are called coalitions, and TV is
called the grand coalition. For each coalition S we denote by Es the
|5| -dimensional Euclidian space indexed by the players of S. A game v is a
function that assigns to each coalition a real number and, in particular,
v(0) = 0. The set of all games on TV is denoted by F. Addition of two
games v and w in F is defined by (v + w)(S) = v(S) + w(S) for each S;
multiplication of the game v by a scalar a is defined by (av)(S) = av(S)
for each coalition S. Thus F is a vector space. For each coalition S the
unanimity game of the coalition S, us, is defined by us(T) = 1 if TD S
and us(T) = 0 otherwise. It is well known that the family of games {us}SQN
is a basis for P.

The Shapley value (f) is the linear function $: F —•  EN, which for each
unanimity game us is defined by </>,(%) = 1/151 if / E S and </>,(%) = 0
otherwise. Intuitively, in the game us any coalition that contains S can
split one unit between its members, and therefore players outside S do not
contribute anything to the coalition they join. Hence, </>,(%) = 0 for i 3 S.
The members of S, on the other hand, split equally the one unit between
themselves. Since {us)SQNis a basis for F and </> is linear, $ is defined for all
games. A weighted Shapley value generalizes the Shapley value by allow-
ing different ways to split one unit between the members of 5* in us. We
prescribe a vector of positive weights X = (A,-)^ ,̂ and in each us players
split proportionally to their weights. We want to allow some players to
have weight zero. This means that if they split one unit with players who
have positive weights, they get zero. But then we have to specify how these
zero-weight players split a unit when no positive-weight players are
present. This brings us to the following lexicographic definition of a
weight system.

A weight system co is a pair (A,S), where A E E++ (the strictly positive
quadrant of EN) and 2 = (Sx, . . . ,Sm) is an ordered partition of TV. A
weight system co = (A,2) is called simple if 2 = (TV). The weighted Shap-
ley value with weight system co is the linear map </>w: F —»  EN, which is
defined for each unanimity game us as follows.

Let k = max{j\Sjn S¥= 0} and denote S =  SnSk. Then

= A / / 2 ^ for / e 5,

= 0 otherwise.
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In other words, the weights of players in St are 0 with respect to players
in Sj with j > i. The positive weights of players in St are used only for
games us such that no player from Sj with j > i is in S. Observe that <f)w is
the (symmetric) Shapley value if and only if co = (A,(N)) and X is propor-
tional to the vector (1,1, . . . ,1).

Another computation procedure of 0«y(z;) is  along the lines proposed by
Harsanyi (1959). In this procedure each coalition S allocates dividends to
its members after all the proper subcoalitions of S have done it. The
dividend allocation proceeds as follows. We first allocate to each player /
his or her worth v({i}). Suppose that all the coalitions of size k or less have
already allocated dividends, and let S be a coalition of size k + 1. Denote
by z{S) the sum of the dividends that members of S were paid by proper
subcoalitions of S. Then v(S) —  z(S) (which is possibly zero or negative) is
the amount that S will allocate to its members. To determine how the
amount is divided, we define the coalition S (which is a subset of S) as
before. The members of S will divide v(S) —  z(S) in proportion to their
weights, and the rest of the players in S get nothing. The total amount that
each player accumulated at the end of the procedure (i.e., after TV allocated
its dividends) is exactly (<fiw)i(v). To see this, one can easily prove by
induction that if v = ^scNasus then for each coalition S, v(S) —
z(S) = as, and the dividend allocation is therefore the allocation of the
coefficients as in accordance with the definition of (f)^.

A generalization of this procedure for the computation of the Shapley
value was proposed by Maschler (1982). The same generalization applies
also for (j)^. We start by choosing any coalition S with v(S) # 0 and
allocating v(S) according to co. In later steps of the computation, we
choose for dividend allocation any S for which v{S) —  z(S) =£ 0, where
z(S) is the sum of the dividends paid for the players in S by subcoalitions
of S that already allocated dividends (notice that a coalition may be
chosen several times in this procedure). The procedure ends when
v(S) —  z(S) = 0 for all the coalitions. The proof that such a procedure
always terminates and gives 0^ is the same as in Maschler (1982).

Harsanyi (1959) also defined a procedure of weighted dividend alloca-
tion for games without sidepayments. A family of solutions, called egali-
tarian, obtained by these procedures was axiomatized by Kalai and Samet
(1985). It is shown there that the restriction of each egalitarian solution to
games with sidepayments is a weighted Shapley value.

In the next section we provide a probabilistic approach to the weighted
Shapley values, one that generalizes the probabilistic formula of the (sym-
metric) Shapley value.
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3 Probabilistic definition of weighted Shapley values

Let R(S) denote the set of all orders R of players in the coalition S. For an
order R in R(N) we denote by BRi the set of players preceding / in R. For
an ordered partition 2 = (Sx, . . . ,5m) of N, R2 is the set of orders of N
in which all the players of St precede those of Si+1 for i = 1, . . . , m —  1.
Each R in R2 can be described asR = {RU . . . ,Rm\ where RtG R(St),
i = 1, . . . , m.

Let \S\ = s and let X E E++. We associate with X a probability distribu-
tion Px over R(S). For R = (iu . . . ,/5) in R(S\ we define

7 = 1 / A:-=l

One way to obtain this probability distribution is by arranging the players
of S in an order, starting from the end, such that the probability of adding a
player to the beginning of a partially created line is the ratio between the
player's weight and the total weight of the players of S that are not yet in
the line.

With each weight system co = (A,S), where 2 = (5j, . . . ,Sm), we
associate a probability distribution Pw over R(iV) as follows. The distribu-
tion Pw vanishes outside R2, and for R = (Rx, . . . ,Rm) in R2,
PcoiR) = UJLiP^jiRi), where XSi is the projection of A on ESi.

For a given game v and order R in R(A )̂ the contribution of player / is
Ci(v,R) = v(BR^ U {/}) - V(B*J). We now prove

Theorem 1. For each player / E TV, weight system co, and game v,

where the right side is the expected contribution of player / with respect to
the probability distribution Pw.

Proof: We say that / is last for S in the order R if / G S and S c 5^'' U {/}.
For a given order i? and player / the coalition N\(BR>' U {/}) is called the
tail ofi in R. A coalition Tis said to be a tail for R if for some /, Tis a tail of/
ini*.

Let co = (XXS{, . . . ,Sm)) be a weight system, and let S be a coalition.
Now let k = max{7'|5r n 5, # 0} and S = S n S*. We show that for each
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/ G S\S, Pw (/ is last for S) = 0; for each / G S, Pa(i is last for S) > 0; and
for each j , i G S

P J / is last for S) = A,
P J ; is last for 5) A/

Indeed, if / G 5 \ 5 , then in order to be last for S, i must be preceded by
players from Sk, which occurs with probability 0. Now suppose ij G S.
Let A = (U,^St)\S. Then

Pm(i is last for 5) = ^ ^ ( ^ is a tail of /)
TQA

= 2 PJT'v&di tail of /| Tis a \ri\)PJJis a tail)

= Af-/i, where A is positive.

Similarly, Pa(j is last for 5) = Ay/z, and (*) follows.
Now consider the game us. The contribution of / 3 Sis 0 in each order,

and thus EPm(Ci(uS9 • )) = 0 =  (<f)w)(us). The contribution of/ G Sin the
order i? is 1 if / is last for S in R, and is 0 otherwise. If / G S\S, then

Epj&ius, • )) = />„(/ is last for S) = 0 = (</>

If/, 7 G S , then

^ ( Q ( ^ , - )) _ PJj is last for S) _ A,-
EPJLCj(us, • )) />„(./ is last for S) A7'

But
2 EPm(Ct(us, - )) = EPu ( 2 Q ^ , • ) I =

On the other hand, as we have shown,

and therefore for each iE S,

EpJCi(us,-)) = Xi^Xj = (4

Clearly EPa(Ci(v, • )) is a linear map from Y to E and so is ((^X (£>)*>
therefore, because they coincide on the basis consisting of the unanimity
games, they coincide on Y. Q.E.D.
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4 An axiomatic characterization of the family of weighted
Shapley values

A solution for F is a function 0 from F to EN. For a coalition S we denote
by (f)(v)(S) the sum S^^^t ; ) . A coalition S is said to be a partnership in
the game v if for each T c S and each R c AT\5, i;(i? U T) = i>(l?).

Consider now the following axioms imposed on 0. For all games
v, w E F:

1. Efficiency. 0(̂ )(AO = v(N).
2. Additivity. 0(y +w) = (f)(v) + 0(w).

3. Positivity. If v is monotonic (i.e., v(T) ^ ^(5) for
each T and 5 such that TDS), then
0(i>) ^ 0.

4. Dummy Player. If / is a dummy player in the game v
(i.e., for each S, v(S U {/}) = v(S)), then
0,(i;) = 0.

5. Partnership Consistency. If S is a partnership in v, then </>,(i;) =
<t>i(<KvKS)us)9 for each / E S.

Axioms 1 -4 are standard in various axiomatizations of the Shapley
value. Axiom 5 expresses a consistency of 0 in the following sense. Let S
be a partnership in v. If we use 0 to allocation v(N), then the members of S
receive together (f)(v)(S). Suppose we want to reallocate (f)(v)(S) among
the members of S. Remembering that each proper subcoalition of S is
powerless, we find it natural to allocate (f)(v)(S) by applying 0 to the game
(f)(v)(S)us. Axiom 5 says that each player in S receives after the realloca-
tion exactly what he or she received before. More recently, Hart and
Mas-Colell (1987) strengthened Axiom 5 by requiring consistency of 0
with respect to any coalition that is not necessarily a partnership. In their
axiom, (f>(v)(S) is reallocated by applying 0 to a reduced game defined by
v and S. We note that for a partnership this reduced game is just the
unanimity game cfr(v)(S)us used here in Axiom 5.

Theorem 2. A solution 0 satisfies Axioms 1 - 5 if and only if there exists a
weight system co such that 0 is the weighted Shapley value 0^.
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Proof: We first show that for co = (A,(Si, . . . ,Sm)), 0W satisfies Axioms
1-5. To prove efficiency, we observe that for each v and R,
^iexCjiViR) = v(N), and therefore

ie.N
= Er. ( 2 Ci("' • >)

The additivity of $„ follows from the additivity of EPu and Q. The
positivity and the dummy player axioms also follow immediately. To
check the partnership consistency axiom, assume that Sis a partnership in
a game v. Observe first that because S is a partnership, a player / in S makes
a nonzero contribution in an order R only if / is last for S in R. Now let
k = mdx{j\Sj r\S¥=0}, and let S = S n S fc. For / G S\S the orders in
which / is last for S have probability 0, so (0w),-(r) = 0. For / G S,

pSCi(v> ' ) l r i s a t a i l o f OPoiTis a tail of /).

But EpJ^Cjivj, - )| Tis a tail of/) is the same for every / E S because Sis a
partnership. Moreover, as shown in the proof of Theorem 1, Pm(T is a tail
of/) is of the form kth{T\ where h(T) is the same for each / G S.

Thus, there exists a constant AT such that for every / G S, (4>a>)Av) = ^ / ^
which shows that 0W satisfies the partnership consistency property.

Now let 0 be a solution that satisfies Axioms 1-5, and we will show
that for some weight system co, <f) = 0^ . We first define a weight system
co = (A,(S!, . . . ,Sm)) as follows. The coalition S{ contains all players /
for which (/>,(*%) # 0 (Sx # 0 because of the efficiency axiom). We define
A7 = 0/(WAT) for each iG Sj. Assuming that the coalitions Sl9 . . . ,Sk
are already defined, then denote T = N\(SX U • • • U Sk)9 let Sk+ x contain
all the players / for which <f>i(uT) ¥=  0, and define Xt = (f>i(uT) for all / G
Sk+i- (Sjc+i is n o t empty because of the efficiency and dummy player
axioms.) By the positivity axiom, X > 0. Now for / = 1, . . . , m we
define 5,-= 5 m _ / + 1 and cy = (A,(5!,52, . . . ,SJ).

Next we show that 0 is homogeneous; that is, cf)(tv) = t(f)(v) for each
game v and scalar t. Because every game is the difference of two mono-
tonic games, it is enough, by the additivity axiom, to consider only mono-
tonic games. Again by additivity, homogeneity follows for rational sca-
lars. Let v be a monotonic game. Choose sequences of rationals {rk} and
{sk} that converge to / from above and below, correspondingly. By the
additivity and positivity axioms, (f)(rkv) —  <f>{tv) = 4>{(rk —  t)v) ^ 0, and
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similarly <f>(tv) — 4>(s kv) ^ 0. But cf)(rkv) — <f)(s kv) = (rk —  sk)(f)(v) —>  0 as
k —*  oo, and therefore 0(^1;) —* 4>(tv)  and $(^1;) = ^ ( i ; ) —>  /</>(i;), which
proves the homogeneity of 0. Because both 0 and c/)w are linear maps on
T, it suffices to show, as we do next, that $ and (/>w coincide on each
unanimity game.

For a unanimity game us define k = max{j\S n 57 ¥=  0), and let 5 =
Sn Sk. Let r = U^i Sj. The coalition 5 is a partnership in wr (as each
subset of T is), and by the partnership axiom for each i E S

0/(«r)  = <f>i((f>(uT)(S)us) = (KUTXSW/US).

By the definition of Tthe only members of Twho have nonzero payoffs in
uT are those of Sk', thus 4>(uT)(S) = 2jG^Ay > 0 and

It follows that for / e S,

and for / < 5, (/),(%) = 0; that is, (f>(us) = (0 J(us). Q.E.D.

The family of all weighted Shapley values </><y for simple weight systems
co can also be characterized by slightly changing the positivity axiom. We
now replace Axiom 3 by the following one.

3'. Positivity. If v is monotonic and has no dummy players, then (f)(v) > 0.

Theorem 3. A solution (f) satisfies Axioms 1, 2, 3', 4, and 5 if and only if
there exists a simple weight system co = (A,(7V)) such that (/> = 0^.

Proof: If co is a simple weight system, then for each order R in R(Af),
P^iR) > 0. If v satisfies the condition of Axiom 3', then for each player /,
Cj(v, - ) > 0 and for some R, Ct(v,R) > 0, which shows that <f>Jv) > 0.

The proof of the other direction is similar to the proof of Theorem 2.
The only difference is that, because of Axiom 3', 4>(uN) > 0, so the parti-
tion built in the proof of Theorem 2 contains only TV. Q.E.D.

In the next theorem we show that weighted Shapley values can be
approximated by simple weighted Shapley values.
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Theorem 4. For each weight system co = (A,(̂ i > • • ,Sm)) there exists a
sequence of simple weight systems co1 = (A'XTV)) such that for each game v,
4>aAv) " » 4>JP) as ^ -^ oo.

Proof: Let 0 < e < 1 and define for each t, 1 < / < w, and / G Sh k\ =
et(m-i+i)^i a n d ^t = (^(TV)). it is easy to see that for each S, <f)w(us) ->
</>(%), and, because (p^ and c^, are linear, cfr^v) —• 0̂ (1̂ ) for each z;.

5 Duality

The dual of a game v, denoted by v*, is defined by

v*(S) = v(N) - v(N\S) for each S C N.

The transformation i; —> y* is a one-to-one linear map from F onto itself.
In particular, the set {u$}SQN is a basis for F. Observe that u%(T) = 0 for
each Twith T n 5 = 0 , and wj(r) = 1 if T n S ¥= 0 . We call the game u%
the representation game for the coalition S. The game — u% has a natural
interpretation as a cost game, where u%(T) is the cost incurred by T. The
presence of any number of members of S in Tincurs a unit cost (compare
Shapley 1981). For a weight system co = (A,(Sl9 . . . ,Sm)) we define a
linear map (faiT -* RNby defining </>* on the basis {u%}SQNas follows. For
a given S let k = max{ j\Sj n 5 # 0} and let 5 = S n 5fc. Then

= 0 i f i $S .

An equivalent random-order approach is defined for $*. For an order
i? we denote by R* the reverse order. For a given probability distribution P
over R(7V) we define Z>* by P*CR) = P(R*). We now have the following
equivalence.

Theorem 1*. For each player /, weight system co, and game v,

The proof is analogous to the proof of Theorem 1, where the notion "/
is last for S in R" is replaced by "/ is first for S in R" which means
S n BRi = 0 . The solutions 0W and 0* can be related in a simple way.
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Theorem 5. For each game v and weight system co,

Proof: Consider the game v = u*. Then v* = (u*)* = us, and by the defi-
nition of 0 ^ and <f)*9 </>*(v) = <f>Jv*\ Now let v = ZSQN asu%. Then

S = X as<!>Jus)
SQN SQN

= <M 2 asus)=cf>(O(v*). Q.E.D.
\SQN /

An axiomatic characterization of the set {</>*,} is obtained by changing
Axiom 5. We say that a coalition S is a family in the game v if for each
RD S and Tc S, v(R\T) = v(R). Here again, as in the case of a partner-
ship, a family can be considered as one individual represented by several
agents. But in the "family" case any nonempty subcoalition of agents has
the same effect as the coalition of all agents, whereas in the "partnership"
case all the proper subcoalitions of agents are powerless. Common to both
families and partnerships is the fact that the inner coalitional structure of
such coalitions is trivial. Axiom 5* is analogous to Axiom 5; it requires
that if S is a family in the game v, then the profit shared by each member is
the same as the member's profit would be when the family reallocates its
total payoff, 0*(z;)(5r), among itself. Clearly by the nature of the family this
bargaining is represented by the game

Axiom 5* (Family consistency). If £ is a family in v9 then <f>i{v) =
<j>i(<Kv)(S)W$) for each / G S.

Theorem 2*. A solution 0 satisfies Axioms 1 -4 and 5* if and only if there
exists a weight system co such that $ = 0*.

Theorem 3*. A solution (/> satisfies Axioms 1, 2, 3', 4, and 5* if and only if
there exists a simple weight system co = (A,(iV)) such that 0 = 0*.

The proofs are analogous to those of Theorems 2 and 3.
One might expect that </>* can be obtained from 0W by an appropriate

transformation of the weight system. To see that this is not the case, we
first examine simple weight systems.
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Theorem 6. Let |7V| > 3. If co = (ju,(N)) and co' = (A,(N)) are two simple
weight systems and 4>%(v) = (^^(v) for each game v, then both X and ju are
multiples of the vector (1,1, . . . ,1), so 0* and 0 ^ are the Shapley
values.

Proof: Assume 0 ^ = 0* . Then for any coalition {i,j)cN,
(4>co>)i(U(ij)) = (0S),-(«{i,y>). But

and

Therefore, for each / and 7 in TV,

from which we conclude that A,-//,- = A,-/̂ - for each /, 7 e TV. It follows that
there exists a positive number C for which Xt = C///z for each / G N.
Consider now a coalition {ij,k}. We find that

(1)

Using the probabilistic definition of 0*, we can compute

Equating expressions (1) and (2), dividing by fijfik, and multiplying by
jUi + jUj + /ik9v/c find that

1
 +

 1 _ itt + itj + iik
^ + jUj jut + nk jUjfiik + toft + JUiJuk'

We can obtain an equation similar to (3) for (c/v), and (0* )y applied to the
game u{ifjtk). By symmetry the right side of this equation will be the same as
in (3), so by equating the left sides we get

1
 + L L + '

+ JUJ
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From that we conclude //, = jUj and therefore kt = Xj. Because this is true
for any /, j G N, the proof is completed. Q.E.D.

In different words, Theorem 6 states that for |JV|^3, {</>J&> is
simple} fl {<f>Z\co is simple) = (the Shapley value). From this theorem we
can derive

Corollary 1. For \N\ ^ 3, the only distribution common to the family of
distributions {P^} and the family {P*}, where co ranges over all simple
weight systems, is P^, where co0 = ((1, . . . ,1),(N)).

By Theorems 3, 3*, and 6, we characterize the (symmetric) Shapley
value without using the symmetry axiom.

Theorem 7. For 1N\> 3 a solution (/> satisfies Axioms 1,2,3', 4,5, and 5* if
and only if it is the Shapley value.

For |iV| = 2 we have {</>Jo> is simple} = {4>%\(JO is simple}; moreover,
there exists a transformation co —>  co* of simple weight systems such that
0* = </>w*. Indeed, it is easy to see that if for co = (A,(7V)) we set co* =
(A*,(7V))> where A* = O^,^), then 0* = cf>w+. We now state the extension
of Theorem 6 to general weight systems and omit the proof.

Theorem 8. If co = (ju,(Sl, . . . ,SJ) and G/ = (A,(r,, . . . ,Tk)) are
weight systems for which 0* = cf)^, then

(1) m = k.
(2) St = Tm+l_t for / = 1, . . . , m.
(3) If l^l > 3, then/iy. and kTm+i_. are proportional to (1,1, . . . ,1).
(4) If |5,-| = 2, then jus. is proportional to kfm+l_r

6 Other formulas for 0^ and $*

Owen (1972 and Chapter 10 this volume) has shown that cfrjv) for co =
(A,(TV)) can be computed as an integral of the gradient of the multilinear
extension over some path. We now present a generalization of this result
(Kalai and Samet 1987) for general weight systems and develop an inte-
gration formula for </>*(iO. The multilinear extension for a game v is the
function Fv defined on the unit cube [0,1]" as follows:

Fv(xl9 . . . ,*„)= 2 n^IlO -
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The coordinate xt can be interpreted as the probability that player / will
join the game to form a coalition, and Fv(x{, . . . ,xn) is the expected
payoff made. For a given at = (A,^, . . . ,Sm)) define for / E Sk9

= o if t :
k- 1

m
..k-\,f11

m
k

f <r
I —=  ,

m

m
Intuitively, £,•(£) is the probability that player / will join the game until
time t. One can prove that

•dt
r) dt

just by checking the equality for v = us, because the right side is linear in v
(observe that FUs(x) = UiGSx,). It is easy to see that if the players' arrival
time is distributed according to the &s, then the probability that they
arrive in a certain order R is P^R).

Now define F* by

F*(xl9 . . . 9xn) = v(N)-Fv(l-xl9 . . . A~xn).

It is easy to check that /V(JC) = F*(x). Therefore

= (<t>a),(v*) Jo to,
dt.

Set riiii) = 1 - £,(0 and observe that

dF*
dxt (U) dxt

and ^ = - ^ .dt dt

It follows that

C°dF dm(t)
dt dt.

ti;(t) can be interpreted as the probability that player / arrives after time t.

7 Reduction of partnerships and families

Part of the reasoning of the partnership consistency axiom is that a coali-
tion of partners can be treated in a certain sense as one individual. In this
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section, following Kalai and Samet (1987), we show how a partnership
can be practically defined as one player, thereby reducing the size of the
game. Let us fix a coalition So with more than one player. Consider the set
TV that consists of all the players of TV except that all the players in So are
replaced by a single player denoted by s; that is, N = (N\S0) U {s}. For any
game v on TV we define a game i^on TV by v(S) = v(S) if s 3 S and v(S) =
v((S\{s}) U So) if s E S. Let co = (USl, . . . 9Sm)) be a weight system for
TV, and let k be the highest index for which Sk n So ¥=  0 . The weight
system co = ( I , ^ > • • • ,S m)) for TV is defined as follows. For each/=^ s,
J.i = Ai and A5 = S^^A,. For each j ¥=  k, Sj = Sj\S0 and 5^ =
(Sk\S0) U {5*}. We can now state

Theorem 9. If So is a partnership in v, then for each / =£ 5,

(</>s),(̂ ) = (0J/(«)  and (ife^iO = 2 (0J,(»).

Similarly, if 5 0 is a family, then for each /

?) = (<t>Z)i(v) and

To prove this theorem we use the following lemmas.

Lemma 1. If / is a dummy player in v and v = ^SQNasus^ then a^ = 0 for
each S that contains /.

Proof: By induction on the size of S. For S = {i},0 = v({i}) = a{/}. Sup-
pose we proved the lemma for all coalitions of size k that contain /, and let
S be a coalition of size k + 1 such that / E S. Then

<*T=

But for / G r J 5, aT = 0, so a5 = 0. Q.E.D.

Lemma 2. Let So be a partnership in v, and let z; = ^SQN&SUS • Then a 5 = 0
for each S that satisfies SDSo¥=0 and 5 n ^o  ¥=  So.

Proof: For a coalition Tand a game v denote by i; rthe restriction of the
game v to the coalition T. Because v —*  z;ris a linear map from the space of
games on TV to the space of games on Tand because us(T) = 0 if S $ T9 it
follows that



98 Ehud Kalai and Dov Samet

Now if T satisfies Tn So ¥=  0 and Tn So ¥=  So, then all the players of
TnS0 are dummies in the game vT. In particular, we conclude by Lemma
1 and (*) that aT = 0. Q.E.D.

Proof of Theorem 9: It can be easily shown by Lemma 2 that if v =
then

s^S s*S

When So is a partnership, then by Lemma 2

Therefore for / ¥=  51,

= 2
For / = s,

Now if Ŝ  is a family in v, then 5*0 is a partnership in v*. To prove the
second half of the theorem, we only observe that (v)*= v* and use the
equality of Theorem 5. Q.E.D.

The next corollary follows from Theorem 9. It is important for appli-
cations in which the players themselves are, or are representing, groups of
individuals. Such is the case, for example, when the players are parties,
cities, or management boards. The use of the symmetric Shapley value
seems to be unjustified in certain cases of this type because the players
represent constituencies of different sizes. A natural candidate for a solu-
tion is the weighted Shapley value, where the players are weighted by the
size of the constituencies they stand for. The following corollary shows
that such a procedure is justified whenever players represent constituen-
cies as represented in games vx or v2 as follows.
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Corollary 2. Let v be a game on N( \N\ = n) in which each player / is a set of
individuals Mt with m, members. Consider^ the set of individuals N =
UiGNMt and the games vx and v2 defined on TV as follows. For each S C N,

vl(S) = v({i\MiQS}),

Let co be the simple weight system ((m,, . . . ,mj , (TV)). Then for each/,
(<!>„),&) = MviWd and {<f>t\(v) = (KviXMgl

where </> is the symmetric Shapley value.
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CHAPTER 7

Probabilistic values for games

Robert James Weber

1 Introduction

The study of methods for measuring the "value" of playing a particular
role in an ^-person game is motivated by several considerations. One is to
determine an equitable distribution of the wealth available to the players
through their participation in the game. Another is to help an individual
assess his prospects from participation in the game.

When a method of valuation is used to determine equitable distribu-
tions, a natural defining property is "efficiency": The sum of the individ-
ual values should equal the total payoff achieved through the cooperation
of all the players. However, when the players of a game individually assess
their positions in the game, there is no reason to suppose that these
assessments (which may depend on subjective or private information)
will be jointly efficient.

This chapter presents an axiomatic development of values for games
involving a fixed finite set of players. We primarily seek methods for
evaluating the prospects of individual players, and our results center
around the class of "probabilistic" values (defined in the next section). In
the process of obtaining our results, we examine the role played by each of
the Shapley axioms in restricting the set of value functions under consid-
eration, and we trace in detail (with occasional excursions) the logical path
leading to the Shapley value.

The research reported in this paper was supported by grant NOOO14-77-C-0518 from the
Office of Naval Research and by grant SOC77-27401 from the National Science Founda-
tion.
The beneficial influence of conversations (and friendships) with Pradeep Dubey and with
Lloyd Shapley is gratefully acknowledged.
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2 Definitions and notation

For our purposes, we fix a particular set TV = (1,2, . . . ,n) of players. The
collection of coalitions (subsets) in TV is denoted by 2N. A game on TV is a
real-valued function v: 2N —>  R that assigns a "worth" to each coalition
and satisfies v(0) = 0. Let ̂  be the collection of all games on TV (note that
^ is a (2n —  1 )-dimensional vector space), and let v be any game in CS. The
game v is monotonic if v(S) ^ v(T) for all 5D T; V is superadditive if
t?(5 U T) ^ y(5) + v( T) whenever SnT=0. The class of all monotonic
games is denoted by M, and the class of all superadditive games by Sf. For
future reference, note thaXM and Sf are cones in ^; that is, each is closed
under addition, and under multiplication by nonnegative real numbers.
Also note that neither class contains the other.

(The zero-normalization of a game v is the game v(z), defined for all
Td NbyV(Z)(T) = v(T) —  2/eri;(/). The game v is zero-monotonic if v(z) is
monotonic. The class of all zero-monotonic games is denoted by 2t. Every
superadditive game is zero-monotonic; however, neither M nor 2£ con-
tains the other. In this chapter we obtain results for the class Sf of super-
additive games. All of these results can also be obtained for the class St.)

If the game v takes only the values 0 and 1, then v is simple. lfv(S) = 1,
then S is a winning coalition; otherwise S is a losing coalition. <S*,M*, and
Sf * denote, respectively, the classes of all simple games on TV, those which
are monotonic, and those which are superadditive. For simple games,
superadditivity implies monotonicity; hence, J*D5^*. (Some authors
prefer to restrict the term simple game to elements of M*; the more
general games ^* are then called 0-1 games.)

Two special types of games play an important role in our work. For any
nonempty coalition T, let vT be defined by Vj{S) = 1 if S D T, and 0
otherwise. Also, let vTbe defined by vT(S) = 1 if S ^ T, and 0 otherwise.
Let« = {v T: 0 ¥=  Tc N) and « = {v T: 0¥=TcN). Every game in « or
% is monotonic, superadditive, and simple. We shall occasionally refer to
the game v0 defined by v&(S) = 1 for all nonempty coalitions S. This
game is monotonic and simple but not superadditive.

For any collection & C ^ of games and for any player / e TV, a value for
/ on 5" is a function (/>,: 2T —•  R. As we have previously indicated, the value
4>i(v) of a particular game v represents an assessment by / of his or her
prospects from playing the game. This definition stands somewhat in
contrast to the more traditional definition of a group value 0 =
(0i>02> • • • >0J> which associates an  n-vector with each game. The
construction of group values from our individual values will be treated
later in the chapter.
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Fix a player /, and let {/?'r: T C N\i) be a probability distribution over
the collection of coalitions not containing i. (We shall often omit the
braces when writing one-player coalitions such as {/}.) A value (/>, for / on
& is a probabilistic value if, for every vEZT,

0/00= 2 P*Av(T\Ji)-v(T)].
TCZN\i

Let / view his participation in a game as consisting merely of joining some
coalition S, and then receiving as a reward his marginal contribution
v(S U /) —  v(S) to the coalition. If, for each T C N\i, p'Tis the (subjective)
probability that he joins coalition T, then <f>j(v) is simply his expected
payoff from the game.

Both the Shapley and Banzhaf values are instances of probabilistic
values. The Banzhaf value (for an individual player /) arises from the
subjective belief that the player is equally likely to join any coalition; that
is, p'T = 1/2""1 for all T C N\i. The Shapley value arises from the belief
that the coalition he joins is equally likely to be of any size t (0 ^ / ^
/? —  1) and that all coalitions of size t are equally likely; that is,

n-\Yl t\(n-t-\)\ .
{ t ) = n\ fora

where t = \T\.
In the following sections, we investigate several reasonable conditions

that a value might be expected to satisfy. We will find that the only values
that satisfy these conditions are closely related to probabilistic values.

3 The linearity and dummy axioms

Given a game v and any constant c > 0, consider the game cv defined by
(cv)(S) = c - v(S) for all S c N. It seems reasonable to assume that such a
rescaling of the original game would simply rescale a player's assessment
of his prospects from playing the game. Similarly, let v and w be games and
consider the game v+ w defined by (v + w)(S) = v(S) + w(S) for all
S C N. A rational player, facing the latter game, might well consider his
prospective gain to be the sum of his prospective gains from the two
original games.

Consider a cone 3" of games in ^. A linear function on J" is a function
/ : 0--+R satisfying f(v + w) =f(v) +f(w) and f(cv) = c - f(v) for all
v, w E 3~ and c > 0. Let (/>, be a value for / on 3. The preceding comments
are reflected in the following criterion.
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Linearity axiom. (/>, is a linear function on 2T.

Because ̂ , M, and 5̂  are all cones in <£, the following theorem applies to
a value on any of these domains.

Theorem 1. Let 0, be a value for / on a cone & of games. Assume that 0,
satisfies the linearity axiom. Then there is a collection of constants {aT:
TcN) such that for all vGF,

<f>i(v) = 2 aTv(T).
T(ZN

Proof: 4>i has a unique linear extension to the linear subspace !£ C ^
spanned by 2T. We can, in turn, extend this extension to a linear function
0fxt on all of ̂ , by defining $fxt arbitrarily on a basis of the orthogonal
complement of $£. For any nonempty T C N, define the game wT by
wT(S) = 1 if S = T, and 0 otherwise. Then {wT: 0 =£ T C TV) is a basis for
^, and 0fxt is uniquely determined by its values on this basis. Any vE.<3
can be written as v = y20¥zTcNv(T)wT; because 0/xt is linear,

However, 0Z is simply the restriction of 0fxt to &. Therefore, upon taking
aT= </>/xt(Hv) for all nonempty Tc N, and defining a0 arbitrarily, we
obtain the desired result. •

A player / is a dummy in the game v ifv(S U /) = v(S) + v(i) for every
S C N\i. This terminology derives from the observation that such a
player has no meaningful strategic role in the game; no matter what the
situation, he contributes precisely v(i). Therefore, the following criterion
seems reasonable. Let 0Z be a value for / on a collection 0~ of games.

Dummy axiom. If / is a dummy invEZT, then <f)j(v) = v(i).

This axiom actually has two aspects. While specifying the prospective
gain of a dummy in a game v, it implicitly states that <f>t and v are measured
in common units, under a common normalization. These aspects are
exploited separately in the proof of the following result. Recall that %
denotes the collection (VT).

Theorem 2. Let (f>t be a value for / on a collection 3~ of games, defined by
(f>i(v) = ^TGNarv(T) for every VE.ZT. Assume that (/>, satisfies the dummy
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axiom and that 5" contains C6. Then there is a collection of constants {pT:
T C N\i} satisfying ^TCN\IPT = 1 s u c h that for every vE.&,

<t>i(v)= 2 PT[v(TUi)-v(T)].
TdN/i

Proof: First, note that for any nonempty T C N\i, player / is a dummy in
f r E ^ . Therefore, <f>i(vT) = vT(i) = 0. It follows that <f>i(vN\i) = aN +
aN\i= 0. For inductive purposes, assume it has been shown that a-pj; +
aT = 0 for every T C N\i with | T\ ^ k ̂  2. (The case A: = w - 1 has just
been established.) Take any fixed S C N\i with |5| = k —  1. Then

= asui + as = 0;

the next-to-last equality follows from the induction hypothesis, and the
last follows from the dummy axiom.

Therefore, a^ + aT= 0 for all Td N\i with 0 < \T\ ^ « - 1. For
every such T, define pT= aTui = —a T. Also, define p0 = at. Then for
every vGZT,

2, 2 pT[v(TUi)-v(T)].
T<ZN TcN\i

Consider vt E <G. Player / is a dummy in this game; indeed, every player
is a dummy in vt. Therefore, faty) = i;,-(/) = 1. But, since vt(T\J i) —
vt{T) = 1 for every T<zN\i, the expression in the preceding paragraph
yields 0/(^) =

When this theorem is taken in conjunction with the preceding one, we
obtain the following result.

Theorem 3. Let (/>, be a value for / on ^, M, or Sf. Assume that </>,- satisfies
the linearity and dummy axioms. Then there is a collection of constants
{pT\ T C N\i) satisfying ^T(ZN\IPT = 1 s u ch that for every game v in the
domain of <f)i9

<t>i(v)= 2 PAv(TUi)-v(T)].
T<ZN\i

4 The monotonicity axiom

Let v be any monotonic game. A player / facing the prospect of playing this
game may be uncertain concerning his eventual payoff. However, for
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every T C N\U v(T U i) - v(T) ^ 0; therefore player / knows at least that
his presence will never "hurt" a coalition. This motivates the following
criterion. Let </>, be a value for / on a collection ?T of games.

Monotonicity axiom. If v E 3~ is monotonic, then <f>i(v) ^ 0.

The following proposition will be of value.

Proposition. Let (f)t be a value for / on a collection 2T of games. Assume that
there is a collection of constants {pT: TcN\i) such that for all VE.ZT,

<f>i(v)= 2 pT[v(TUi)-v(T)].
TCN\i

Further assume that 2T contains the game vT for some T C N\i (note that
T may be empty), and assume that </>, satisfies the monotonicity axiom.

Proof: The game vT is monotonic. Therefore, (f>i(vT) = PT=0.U

The collections of games ̂  andM contain both <£ and v0. On the other
hand, 5̂  contains ^ but not v0. Therefore, we have the following
theorems.

Theorem 4. Let <f>t be a value for i on ̂  or M. Assume that (/>, satisfies the
linearity, dummy, and monotonicity axioms. Then 0f is a probabilistic
value. Furthermore, every probabilistic value on ^ or M satisfies these
three axioms.

Theorem 5. Let (/>, be a value for / on Sf. Assume that </>, satisfies the
linearity, dummy, and monotonicity axioms. Then there is a collection of
constants {pT: T C JV\/} satisfying ^TGN\iPr = 1 a n d pT = 0 for all non-
empty T C iV\/, such that for every game v E Sf,

<t>i(v)= 2 pT[v(TUi)-v(T)].
T<zN\i

Furthermore, every such value on 5̂  satisfies these three axioms.

For values on ̂  o r ^ we thus have a natural axiomatic characterization
of the probabilistic values. However, for values on Sf we are unable to rule
out the possibility that /?0 < 0. This phenomenon is investigated in the
next section.
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5 Values for superadditive games

It is natural to seek an explanation of the preceding results. A value for a
class of games yields a relative evaluation of one's prospects from playing
the various games. If the class of games is sufficiently rich, the only
evaluation functions satisfying certain reasonable criteria are the probabi-
listic values. Why, if one's consideration is restricted solely to superaddi-
tive games, does the class of reasonable evaluation functions broaden in
the indicated manner? We shall attempt to provide a rationale.

Consider any particular game v. A player / faced with the prospect of
playing this game may seek to determine the amount of gain that he is
"guaranteed," in the sense that he contributes at least this amount to any
coalition that he joins. When v is superadditive, this "floor" to his expec-
tation is precisely v(i), because v(TU i) —  v(T)^ v(i) for all Tc N\i
(and because when T=0, his marginal contribution is exactly v(i)).
Taking this amount as ensured, the player will then strive to achieve as
great a reward as he can in the new game v(i) defined by

\v(S)-v(i) otherwise.

(This is the game that he perceives himself to be playing after having
mentally "withdrawn" the amount v(i) from the original game.) How-
ever, any gain from this new game is uncertain and depends upon factors
such as the bargaining ability of the player. Hence, the two amounts under
consideration, v(i) and his gain from playing v(i\ are measured respec-
tively in "certain" and "uncertain" units.

Assume that the player's attitude toward risk is such that 1 unit of
uncertain gain is worth y units of certain gain to him. (Hence, y < 1
corresponds to risk aversion, and y = 1 to risk neutrality.) Further assume
that he evaluates his prospects from any game v with v(i) = 0 in terms of a
probabilistic value 0,-(i>). Then his evaluation of any superadditive game
v9 expressed in units of certain gain, will be

One would expect an aversion to risk to limit a player's options. That
such is the case is the impact of the next theorem. Let P be the set of
probabilistic values on S?, and for any y ^ 0 let V(y) = {£,.: £, is a value on
Sf, and for some </>, G P, ^(v) = y(f>Ml)) + v(z') for all v G Sf). This is the
set of all evaluation functions on Sf arising from the considerations dis-
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cussed previously, when y represents player /'s attitude toward uncertain
gain.

Theorem 6. A value £t on & satisfies the linearity, dummy, and monoton-
icity axioms if and only if £,E V=U7±0V(y). If 0 ^ y' < y, then
V(y') J V(y). Furthermore, V{\) = P.

Proof: Let £t satisfy the indicated axioms on Sf. Then £; is associated with a
collection {pl

T\ TcN\i) of constants, as in Theorem 5. Let y= 1 —
pla ^ 0. If y > 0, define the probability distribution [fa: TCN\i) by
QT = PT/7 tfT=£0, and #0 = 0; if y = 0, take any probability distribution
•far). Then if fa is the probabilistic value associated with {<7'r}, ^(v) =
yfa(v^) + v{i) for all v<E&. Hence, £ E K(y) c K

Conversely, it is easily verified that any ^ E V satisfies the axioms on
Sf. (It is essential to this verification that, for every monotonic y £ ^ , v(i) is
a monotonic game; hence ^(v) = y4>i(v(i)) + v(i) ^ v(i) ^ 0.)

If 0 ^y' <y, then any <!;,• G V(y') corresponds to some fa G P, which is
in turn associated with a probability distribution {pT: T C A^\/}. But then
let <f>t E P be associated with the probability distribution {#r: T c N\i}9
where (7r = (y'/y)pT for all nonempty r C iV\/ and q0 = 1 —  X r # 0 ^ r . It
follows that f ,.(i;) = 70/(^(/)) + K/) for all v E 5̂ , so & E K(y). Hence,
V(y') C F(y).

Consider any probability distribution {pT: T C N\i) such that/70 = 0.
Then if 0, is the associated probabilistic value on Sf9 ^t{v) = y<f>i(v{i)) +
v(i) defines a value ^ E V(y) that is not in V(yf) for any yr < y. Hence the
indicated containment is strict.

Finally, observe that when y = 1, every value ^ in K(y) = V( 1) is of the
form

pT[v(TUi)-v(i)-v(T)]]
J

pT[v(TUi)-v(T)]2
T<zN\i

= fa(v)\
so

This theorem can be viewed in several ways. One might ask whether the
addition of some other natural axiom will lead to the conclusion that
/?0 ^ 0. For example, it has been suggested by Milnor (1952) that it is
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unreasonable for any player / E TV to hope to attain more than bt(v) =
maxscN\i[v(S U /) - v(S)]. If we require that ^(v) ^ bt(v) for all v<=&,
then

</>/(%}) = S PT = * ~ Pe> = bt{v{i)) = 1.

Hence, p0 ^ 0.
Another point of view is that, if a player wishes to evaluate his prospects

from superadditive games, he can satisfy our criteria of rationality while
still basing his evaluation in part on his posture toward risk. However,
these same criteria, when applied to the evaluation of broader classes of
games, force the player into a posture of risk neutrality.

6 Values for simple games

Simple games, particularly those which are monotonic, are often used to
represent political situations. A value for a player may then indicate the
player's perceived political power in any situation. Under this interpreta-
tion, the dummy and monotonicity axioms remain reasonable. However,
the linearity axiom does not seem to apply; indeed, the sum of simple
games is generally not simple.

An alternative axiom has been suggested by Dubey (1975) (see
Roth Chapter 4 this volume). For any games v and w, define
v V w by (v V w)(S) = max(v(S)MS)) and vAw by (v A w)(S) =
min(v(S),w(S)) for all S C N. If v and w are simple, then v\/ w and v Aw
are also simple. A coalition is winning in v V w if it wins in either v or w; it
is winning in v A w if it wins in both. Therefore, each coalition wins as
often in v and w together as it does in v V w and v Aw together. Let $,- be
a value for / on a collection 5" of games.

Transfer axiom. If v, w, v\/ w, and v Aw are all in 3~, then (f)j(v) +
4>i(w) = (friiv V w) + (f>i(v A w).

The name of this axiom is motivated by the following observation. The
game v Aw arises from v when all of the coalitions that win only in v are
made losing; v V w arises from w when these same coalitions are made
winning. Hence, v Aw and v V w arise from v and w when winning
coalitions are "transferred" from one game to the other.

We require several definitions. Let v be a simple game. A minimal
winning coalition in v is a winning coalition with no proper subsets that
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are also winning; a hole in v is a losing coalition with a winning subset.
Note that the monotonic simple games are precisely those without holes.

Let ST be a collection of simple games, and let v be any game in 3~. We
define two types of operations that can be performed on v. Let T be a
minimal winning coalition in v. Define the game v~T by v~T(S) = v(S)
for all S¥= T, with v~ T(T) = 0; v~T arises from v by the deletion of a
minimal winning coalition. On the other hand, let Tbe a hole in v, and
define the game v+Tbyv+T(S) = v(S) for all S* T,withv+T(T)= \;v+T

arises from v by the insertion of a (new) winning coalition. The collection
ST is closed under deletion and insertion if these operations, applied to any
game in 3~, give rise only to other games in &. In particular, y*,M*, and
S?* are all closed under deletion and insertion.

The following result is an analogue of Theorem 1.

Theorem 7. Let ZT be a collection of simple games that contains <# and is
closed under deletion and insertion. Let <f>t be a value for i on &9 and
assume that <f>i(vN) = 0. Finally, assume that (/>, satisfies the transfer
axiom. Then there is a collection of constants {aT: TcN) such that, for
all games v G 5",

re #

Proof: We claim that </>, is determined on all of 2T by its values on c€. To
verify this claim, first consider the collection 0~M of monotonic games in
ST. This subcollection of 3~ is also closed under deletion and insertion and
contains <€. Because vN G <€, the claim is trivially true for this game.
Assume that the claim has been verified for all games in S~M that have at
most k winning coalitions (the only game in 2FM with just one winning
coalition is vN), and let v G 3~Mbe any game with k + 1 winning coalitions.
Let Tbe any minimal winning coalition in v and consider the games vT,
v~T, and vTAv~T. The first is in <€, and the latter two are in ZfM and have
no more than k winning coalitions. Because vT V v~T = v, we have from
the transfer axiom that <f>t{v) = (f>i(vT) + faiv7) —  (f>i(vT A v~T). It fol-
lows from the induction hypothesis that $,•(*;) depends only on the values
of fa on <€. This verifies the claim throughout &M. (Note that the game vN
requires special treatment; because it has no winning coalitions, it is not
covered by the induction.)

Next, assume that the claim holds for all games in ?F that have at most k
holes (the case k = 0 has just been treated), and let v G 9~ be a game with
k 4- 1 holes. Let Tbe any hole of maximum cardinality and consider the
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games vT, v A vT = vT, and i; V vT= v+T. The first of these is in <£, the
second is in 3~M, and the third is in 2T and has only k holes. Because
(f>i{v) = faty V vT) + (f>i{v A i;r) —  (f>i(vT), it follows (by induction) that
<f>i(v) depends only on the values of $z on <g. This completes the verifica-
tion of the claim.

We have just seen that 4>t is determined by its values on c€. Because <# is
a basis for ^, there is a unique linear function <f>fn on ̂  that coincides with
</>, on <€. This linear function must satisfy the transfer axiom because
(v V w) 4- (v A w) = i> 4- w for all i; and w in ^. Therefore, (f)fn and 0,
must coincide on 2F. Because <pfn can be expressed in terms of its values on
the basis {ny: 0 ¥=  TC N) of^ (see the proof of Theorem 1), it follows
that (/>, has the desired form. •

We can now invoke Theorem 2 and the proposition concerning mono-
tonicity to obtain analogues of Theorems 4 and 5.

Theorem 8. Let </>, be a value for ion(£*orM *. Assume that </>/ satisfies the
transfer, dummy, and monotonicity axioms. Then 0, is a probabilistic
value. Furthermore, every probabilistic value on ^* orM* satisfies these
three axioms.

Theorem 9. Let </>, be a value for / on 5^*. Assume that 0, satisfies the
transfer, dummy, and monotonicity axioms. Then there is a collection of
constants {pT: T C N\i} satisfying ^T^NXIPT = 1 an<3 PT=® f°r a^ non~
empty Tc N\i9 such that for every game v E 5^*.

4>t(v) =
Furthermore, every such value on SF * satisfies these three axioms.

The discussion of the previous section, interpreting the class of values
on 5?, applies with equal validity to Sf*.

7 Symmetric values

A value assesses the relative desirability of being a particular player in
various games. At times, one might also want to compare the desirability
of playing various roles within a particular game. Such comparisons can
be facilitated by the use of a collection 0 = ($i, . . . ,0«) of values, with
4>i(v) representing the value of being player / in game v. Such a collection is
a group value.
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Let n = (7r(l), . . . ,n{n)) be any permutation of TV. For any S C TV,
define nS = {n(i): i G S). The game nv is defined by (nv)(nS) = v(S) for
all S C TV. (nv arises upon the relabeling of players 1 , . . . , «  with the
labels 7r(l), . . . , n{n).) Let #" be a collection of games with the property
that, if v G 3~, then every 7ri; G #"; such a collection is symmetric.

Let </> = (</>!, . . . ,</>„) be a group value on &. For the comparison of
roles in a game to be meaningful, the evaluation of a particular position
should depend on the structure of the game but not on the labels of the
players.

Symmetry axiom. For every vE.&~, every permutation n of TV, and every
i G TV, $&) = <f>m(nv).

Observe that each of the classes ̂ , M, Sf, % *, M *, and & * contains both
% and <&\ furthermore, each class is symmetric. Therefore, Theorem 10
applies to values on any of these classes.

Theorem 10. Let ST be a symmetric collection of games containing ^ and
<€. Let (f) = (0!, . . . ,(/>„) be a group value on SF such that for each / G TV
and vGZT,

2
TGN\i

Assume that (f) satisfies the symmetry axiom. Then there are constants
A)?-o s u c h t h a t for a11 / G TV and T C N\i, pl

T = p^TV

Proof: For any / G TV, let Tx and T2 be any two coalitions in N\i satisfying
0 < | Tx | = | T2\ < n —  1. Consider a permutation n of TV that takes Tx into
T2 while leaving / fixed. Then pl

Tx = (f>i(vT) = 0/(^r2) = PT2, where the
central equality is a consequence of the symmetry axiom.

Next, let i and j be distinct players in TV, and let T be a nonempty
coalition in N\{iJ). Consider the permutation n that interchanges / and^
while leaving the remaining players fixed. Then nvT=vT and pi

T =
4>i(VT) = <t>j(vT) = pj

T, where the central equality is again a consequence
of the symmetry axiom. Combining this with the previous result, we find
that for every 0 < t < n — 1  there is a pt such that pl

T = pt for every / G TV
and TcTVy wi th | r | = /.

Again, for distinct players / andy', let n interchange / andj while leaving
the remaining players fixed. Then pi

N\i = <f>t(vN) = <f>j(vN) = pj
N\j. Let

/?„_! be this common value. Then for all / G TV, p^ = pn_x.
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Finally, for each i G TV,

TcN\i

By symmetry, $/(v,) = <f>j(Vj). Therefore, p 0 = pJ
0 for all ij G N. Letting

p0 be this common value completes the proof of the theorem. •

8 Efficiency without symmetry: Random-order values

Consider a collection 0 = (0!, . . . ,$„) of values all on the domain 3~,
one for each player in N. Depending on the game v under consideration,
the players' assessments, as a group, of their individual prospects may be
either optimistic or pessimistic; that is, 2^^,(1;) may be either greater
than or less than v(N). However, if the group assessment is neither opti-
mistic nor pessimistic, the payoff vector <f)(v) = (4>i(v), . . . ,0w(y))may
be taken as an equitable distribution of the resources available to the
grand coalition N. Therefore, it is of interest to study those collections of
values (f) = ((f)l, . . . ,</>„) that meet the following criterion.

Efficiency axiom. For every vE.3~, ^i<EN4>Av) = v(N).

A group value satisfying this axiom is said to be efficient, and provides a
fair distribution scheme for the games in 2T. The next theorem character-
izes all such group values.

Theorem 11. Let 0 = (0 x, . . . ,</>„) be a group value on 2T, defined for all
/ G TV and all v G ZT by

<l>i(v)= 2 p'rMTUO-viT)].
T<zN\i

Assume that & contains ^ and <£. Then 0 satisfies the efficiency axiom if
and only if ^i&NPN\t= 1 and ^i(=TPT\i = ^J*TPJT f°r every nonempty
TQN.

Proof: For any vE3~, let (f)N(v) = ?<i<=N<l>i(v)- Then

ieN TcN\i

TON
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It is immediately clear that any 0 that satisfies the conditions of the
theorem is efficient; that is, <f)N(v) = v(N).

For any nonempty Tc N, consider the games vT and vT. Because
vT(S) = vT(S) for all S^T, and vT(T) = 1 while vT(T) = 0, it follows
from the preceding equation that

(f>N(vT) - <f>N(vT) = ^ Pr\i ~ 2 PJT-

However, vT(N) —  vT(N) is 1 if T = N9 and is 0 otherwise. Therefore, if </)
satisfies the efficiency axiom, then the indicated conditions must also
hold. •

It is conceivable that the efficiency of a group value is an artifact,
existing in spite of the fact that the players have grossly different views of
the world. However, we can define a family of efficient group values, each
of which arises from a viewpoint common to all of the players. Let {rn:
n e I!) be a probability distribution over the set n of n\ orderings of N.
For any ordering n = (il9 . . . ,/„), let nik = {ix, . . . 4k-\) be the set of
predecessors of ik in n. A random-order value £ = (^, . . . ,£„) on 9" is
defined by

Zi(v)= 2

for all /1
To interpret this definition, assume that the players have as their goal

the eventual formation of the grand coalition N. Further assume that they
see coalition formation as a sequential process: Given any ordering n of
the players, each player / joins with his predecessors in n, making the
marginal contribution v(n' U /) — vin 1) in the game v. Then if the players
share a common perception {rn\ n e 11} of the likelihood of the various
orderings, the expected marginal contribution of a player is precisely his
component of the random-order value.

Theorem 12. Let ^ = (^, . . . ,£„) be a random-order value on ST. Then
each component of ^ is a probabilistic value on 3~, and £ satisfies the
efficiency axiom.

Proof: Let {rn: n E II} be any probability distribution defining £. For any
j'G TV and vEZT,
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= 2 1 2 rn)[v(TUi)-v(T)].
T<ZN\i \{7ieTl:ni=T) /

Hence, £, is a probabilistic value.
Furthermore, for any vGZT,

2 6(")=2 2 rMx'
i^N iGN Tren

= 2 r^

2 •

Theorem 13. Let <f> = (<f>x, . . . ,</>„) be a collection of probabilistic
values on ST. Assume that 2F contains <£ and <# and that (/> satisfies the
efficiency axiom. Then 0 is a random-order value.

Proof: Let <f> be defined for all / G N and all z; G 2T by

2
TcN\i

For any / G N and Tc N\i, define Ad(T) = 2^ r /7^ and ^(/ ; T) =pl
Tl

Ad{T). (If ^ ( r ) = 0 set A(i',T) = 0.) Consider any ordering n =
(i{, . . . ,/„) G n, and define

;{il9i2})- ' -A{in\{iu . . . ,in-x}).

It is easily verified, by repeated summation, that

2 ' - - 2 2 2 ••• 2 * «" l?>"1'
where the final equality follows from induction on the relations in the
conclusion of Theorem 11. (More generally, for every 0 < ^ < « — 1 those
relations imply that 2 m = , ^^TPT = 1; we use here the case t = 0.) Hence,
{rn: n G n} is a probability distribution on n .

Let £ be the random-order value associated with {rn: n G n) . Because

( 0
it will suffice to show that for all / G Â  and T C 7V\z,

P'T= 2 r«-
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Observe that

? ' . -2 2 •••  2 2 I
{n:ni=T) /,€ET it_xe.T\{it) h^T\{it, . . . ,i2) it+2$TU{i} it+34TU{i,it+2)

in4TU{i,it+2, . . . ,!„_,

PT Y
A\T)

in*T U {i,it+2, • • • ,'n-i)

This summation can be carried out explicitly. From right to left, the first
n —  {t+ 1) sums each, in turn, have value 1. Continuing leftward, we find
that each term of the form S/jke Tkp lrk\ik is preceded by a factor with denom-
inator Ad{ Tk) = 2^ TkPjrk - Each two such sums are equal; this follows from
the hypotheses of the theorem and from Theorem 11. Therefore, the
entire expression simplifies to p'T. •

Combining Theorems 12 and 13, we see that a collection of individual
probabilistic values is efficient for all games in its domain precisely when
the players' probabilistic views of the world are consistent; that is, only
when the various {pl

T: TcN\i) arise from a single distribution {rn:
Tren) .

The family of random-order values associates a set of imputations
(efficient group allocations) with each game. This set clearly contains the
Shapley value of the game; we next show that it also contains the core of
the game.

For any game v on the player set N, and any ordering n E n, the
marginal worth vector an(v) is the imputation satisfying afiv) = v(nl U
/) - v(n*) for all / G N. Let W(v) be the convex hull of the set [a*(v):
n E I!}; W(v) is the set of all imputations associated with v by some
random-order value. The core of a game v with player set TV is the set

C(v) = {x E RN: x(N) = v(N),x(S) ^ v(S) for all S C N),

where for any S C N we define x(S) = 2/e5xz.
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Theorem 14. Let v be any game on N. Then W(v) D C(v).

Proof: We proceed by induction on n, the number of players in N. The
theorem holds trivially for the case n = 1. Assume that the theorem is true
for all games with fewer than n players.

Because the core of a game is convex, it will suffice to show that all
points in the boundary of C(v) are members of W(v). Let x be a boundary
point of C(v). Then for some nonempty S<^N, x(S) = v(S). Define the
game u on S by u(T) = v(T) for all TC S\ define w on N\Sby w(T) =
v(TUS)- v(S) for TcN\S. Let xs be the projection of x onto i?5.
Clearly xs E C(M). Furthermore, for any r C

= x(TUS) - x(S) ^ v(TU S) - v(S) = w(T)\

hence, x^s <E C(w).
Express Xs = 2 ocaaa(u) as a convex combination of marginal worth

vectors in {aa{u)\ a G n s } , where n 5 is the set of orderings of S. (This is
possible by the induction hypothesis.) Similarly express xN^s = 2 fixaT{w)
as a convex combination of vectors in {ar(w): x G n ^ } . For any CJ E Hs
and r E n ^ ^ , let (a,r) be the ordering in n obtained by appending r to o.
Then JC = 2 (ajx)a^x\v\ and hence JC E ^(z;), as claimed. •

This theorem bears upon several other results. If a game v is convex
(that is, if v(SU T) + v(Sn T) ^ y(5) + r ( r ) for all S,TCN), then
FF(t;) = C(y). (This result is due to Shapley [1971]; the converse has been
noted by Ichiishi.) Monderer, Samet, and Shapley (1987) have recently
strengthened Theorem 14 by showing that the set of weighted values (see
Chapter 6 of this volume) of v is a subset of W(v) and a superset ofC(v).

9 The Shapley value

The classical characterization of the Shapley value is as the only (group)
value that satisfies the linearity, dummy, symmetry, and efficiency
axioms (Shapley 1953). From our previous results, we can quickly prove
the uniqueness of the Shapley value, and simultaneously obtain a simple
derivation of an explicit formula for the Shapley value. Traditional proofs
center around a consideration of the games in <€. It appears that our
consideration, as well, of the games in ^ simplifies matters.

Theorem 15. Let (/> = (<f)l9 . . . ,</>„) be a group value on ^, M, or £f.
Assume that each </>7 satisfies the linearity and dummy axioms, and that (/>
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satisfies the symmetry and efficiency axioms. Then for every v in the
domain of 4> and every / e N9

T(ZN\i

where t genetically denotes the cardinality of T.

Proof: From Theorems 3 and 10, it follows that there is a sequence {pt)"~o
such that each 0,(t;) = ^T<zNXipt[v(Tl) i) —  v(T)]. Specializing Theorem
11 to the symmetric case, we must have ^XENPN^I = nPn-\ = 1 a n ( i
S/erPrv=== 'A-i = ^j*TPJT=(n ~ t)Pt f°r aU nonempty TQN. Conse-
quently,

fn-\\ 1

and

for all 1 ^ / ^ n —  1. It follows that, for each /,
fn-\\ 1 t\(n-t-\)\

If we replace the linearity axiom with the transfer axiom, we obtain an
analogous result characterizing the Shapley value on ̂ *, M*, and 5^*.

Remarks: Throughout this paper, we have studied values of games on a
fixed finite set of players. Along similar lines, Dubey, Neyman, and
Weber (1981) study values defined for all finite-player games in an infinite
universe of players and values of infinite-player (nonatomic) games.

Other related work is found in Blair (1976), Roth (1977a,b), Weber
(1979), Dubey and Shapley (1979), and Roth (Chapter 4 this volume).
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CHAPTER 8

Combinatorial representations of the
Shapley value based on average relative
payoffs

Uriel G. Rothblum

Abstract

Shapley's combinatorial representation of the Shapley value is embodied
in a formula that gives each player his expected marginal contribution to
the set of players that precede him, where the expectation is taken with
respect to the uniform distribution over the set of all orders of the players.
We obtain alternative combinatorial representations that are based on
allocating to each player the average relative payoff of coalitions that
contain him, where one averages first over the sets of fixed cardinality that
contain the player and then averages over the different cardinalities. Dif-
ferent base levels in comparison to which relative payoffs are evaluated
yield different combinatorial formulas.

1 Introduction

The familiar representation of the Shapley value gives each player his
"average marginal contribution to the players that precede him," where
averages are taken with respect to all potential orders of the players; see
Shapley (1953). This chapter looks at three alternative representations of
the Shapley value, each expressing the idea that a player gets the "average
relative payoff to coalitions that contain him." The common feature of
the three representations we obtain is the way averages are taken, whereas
the distinctive feature is the base level in comparison to which relative
payoffs are evaluated. Specifically, in each of our three representations we
first average over coalitions having a given cardinality and at a second
stage average over the different cardinalities. On the other hand, the base

The research leading to this paper was supported by the Fund for the Promotion of Research
at the Technion.
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payoffs from which excesses are evaluated are different for the three
representations. In the first representation it is the payoff to the given
coalition when the particular player in question is excluded, so the relative
payoffs coincide with marginal payoffs used by Shapley; in the second
representation the base payoff is the payoff to the complement of the
given coalition as in Harsanyi (1963, p. 203, equation 4.1); and in the
third representation the base payoff is the average payoff to coalitions
having the same cardinality as the given one but not including the particu-
lar player as in Rothblum (1985, equation 3).

Kleinberg and Weiss (1985) obtained a representation for the Shapley
value as a weighted sum of quantities they call relative worth that can be
viewed as relative payoffs with respect to a base different from those we
consider. However, Kleinberg and Weiss do not give an interpretation of
their weights and their formula does not express average relative payoff
with respect to any intuitive distribution. Thus, one can view their for-
mula as a qualitative, but not quantitative, expression of the idea of
average relative payoffs.

Let TV ={1, . . . ,«} be the grand coalition consisting of all players,
and let v(N) be the payoff to N. The base payoff for computing the relative
payoff to the grand coalition is zero under each of the three representa-
tions we obtain, and we get a term v(N)/n in each of our formulas. This
term can be viewed as the "fair division," whereas the remaining terms
can be viewed as adjustments of the fair division "to reflect the relative
worth of coalitions that he (the player) belongs to. If a player, for example,
belongs consistently to coalitions of above average worth, then he will
receive a value which exceeds his fair share." (Kleinberg and Weiss 1985)

Our main result is presented in Section 2, and some extensions are
discussed in Section 3.

2 The main result

A game in characteristic function form on N= {1, . . . ,«}  is a real-val-
ued function v on the subsets of N, where v(0) = 0. As usual, elements of
TV are called players, subsets of TV are called coalitions and for each coali-
tion S, v(S) represents the payoff that the members of S can guarantee
themselves without cooperation with the other players. Let G^be the set
of games in characteristic function form on N = {1, . . . ,«}.  The Sha-
pley value (Shapley 195 3) is the function 0 mapping G^into Rn having the
explicit representation
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)l. ies (l)y
SQN U'

where \S\ denotes the cardinality of the set S.
For 0 ¥=  S c Nand / G 5, let

*,(£/) - i;(5) - v(S\{i)\ (2)

*2(S,/) - v(S) - v(N\S), (3)

and

~cw)' (4)

where the last term in (4) when S = TV is defined to be zero. Each of the
expressions (2)-(4) can be viewed as a relative payoff to coalition S in
comparison to base payoff v(S\{i}\ v(N\S\ and (n\s\l)~l[2i*R;iR\-\s\v(R)\>
respectively. In particular, (nis\l)~l[^^R;\R\=\s\V(R)] is the average payoff to
coalitions of size \S\ not including i. Also, ex(Sj) is the marginal contribu-
tion of player i to coalition S, and e2(SJ) is a measure used by Harsanyi
(1963).

Theorem 1. For t = 1, 2, 3, v G GN, and i G N,

I. (5)
\S\-k

Remark: Because the number of coalitions of size k that include / is (£1}),
the expression (k-\)~l[2<i<ES',\s\=ket(SJ)] is the average relative payoff to
such coalitions for the corresponding base payoffs, and the three variants
of (5) for / = 1, / = 2, and t = 3 take the average of these averages over the
index k. So, the right side of (5) gives three representations of the Shapley
value of player / with respect to game v as the average relative payoff to
coalitions containing the given player where the different bases for evalu-
ating relative payoffs are used.

Proof of Theorem 1: Consider the functions y/\,y/2^ and y/3 mapping GN

into Rn, where for each v G GN and / G N,
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and

Our task is to show that for i; E GN and / E iV,

(9)

By ordering the nonempty subsets of TV, we have that G^can be identi-
fied with R2n~l. Under this identification, (/>, i//l9 y/2, and y/3 are clearly
linear functions. Thus, it suffices to establish (9) for elements v in any basis
of GN. The basis corresponding to the set of unit vectors in R2n~l is the set
{WT:0¥= TCN), where

and we will establish (9) for each v in this basis.
Let 0 ¥=  T C TVbe given. We distinguish the cases / E Tand / ^ T1. First

assume that / E T. In this case ^ ( S ) = 0 for each subset S C TV contain-
ing / that is different from T, WT(S\{i}) = WT(N\S) = 0 for all subsets
S C TV containing /. Also, WT(R) = 0 for all subsets R C TV not containing
/. It therefore follows from (1), (6), (7), and (8) that

y WAT) _
and

(in -

Then (9) follows for v=WT and / £ T.
Next assume that / ^ T. For each subset ScNcontaining / we have

WT(S) = 0, WT(S\{i}) = 0 unlessS = T U {/}, and ^r(Ar\5) = 0 unless
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S = N\ T. Also, WT(R) = 0 for each subset R C NnoX containing /, except
for R = T. It therefore follows from (1), (6), (7), and (8) that

. Wr[(Tl){i)W]]

n\

n\

and

A:=i \ ^ V its L \ K / MR
|S|-Jfc |i?|=A:

-i / n 1 \ 7 n - 1 \ /« -  1 Yx (n - A"1

and (9) follows for v = WT and / ^ T, thereby completing our proof of
Theorem 1. •

3 Extensions

Theorem 1 gives three formulas for expressing the Shapley value as the
average relative payoff, where averages are first evaluated over subsets of
fixed cardinality that contain a given player, and then, at a second stage,
averages are taken over the different cardinalities. In particular, the for-
mulas use equal weight on all possible cardinalities. Possible extensions of
those formulas result from putting different weights on the different cardi-
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nalities. Specifically, for q G Rn, one can consider functions y//, t = 1,2,3,
mapping G^ into Rn, defined by

= S& . ye,(S,i), iEN, (10)

where the functions ex( •, •), e 2(" >'X a n ^ ^( *, *) are defined by (2)-(4),
respectively. Equation (10) defines parametric measures for the power of
players participating in a game determined by v. Other parametric mea-
sures were considered by Dubey (1976), Dubey and Weber (1977), Roth
(1977a,b,c), and Dubey, Neyman, and Weber (1981). Specifically, they
use expressions of the form

iGN, (11)
SCN

where p is a real-valued function on pairs (i,S) with / E S and S CN.
Dubey, Neyman, and Weber call the corresponding functions £p semi-
values.
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CHAPTER 9

The potential of the Shapley value

Sergiu Hart and Andreu Mas-Colell

1 Introduction

We study multiperson games in characteristic function form with trans-
ferable utility. The problem is to solve such a game (i.e., to associate to it
payoffs to all the players).

Three main solution concepts are as follows. The first was introduced
by von Neumann and Morgenstern: A "stable set" of a given game is a set
of payoff vectors; such a set, if it exists, need not be unique. Next came the
"core," due to Shapley and Gillies, which is a unique set of payoff vectors.
Finally, the Shapley "value" consists of just one payoff vector. There is
thus an apparent historical trend from "complexity" to "simplicity" in
the structure of the solution.1'2

We propose now an even simpler construction: Associate to each game
just one number! How would the payoffs to all players then be deter-
mined? by using the "marginal contribution" principle, an approach with
a long tradition (especially in economics). Thus, we assign to each player
his or her marginal contribution according to the numbers defined earlier.
The surprising fact is that only one requirement, that the resulting payoff
vector be "efficient" (i.e., that the payoffs add up to the worth of the grand
coalition), determines this procedure uniquely.

Clearly it is not possible in general to assign to each player his or her
direct marginal contribution to the grand coalition (according to the given
characteristic function of the game). This is true simply because these
marginal contributions need not add up to the worth of the grand coali-
tion; namely, they will either be not feasible or, if feasible, not Pareto

Dedicated with great admiration to Lloyd S. Shapley on his 65th birthday. This chapter is
based on the paper "Potential, Value and Consistency" (1987) and its previous versions
(1985,1986). Financial support by the National Science Foundation and the U.S.-Israel
Binational Science Foundation is gratefully acknowledged.
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optimal (as usual, we refer to this "adding up" requirement as "effi-
ciency"). The way these two principles-marginal contribution and
efficiency-are reconciled is by introducing the function that associates to
each game a real number, called the potential of the game, and computing
marginal contributions according to it. The main result can now be stated.

Theorem A. There exists a unique3 real function on games, called the
potential function, with respect to which the marginal contributions of all
players are always efficient. Moreover, these marginal contributions are
precisely the Shapley (1953) value.

Thus the Shapley value, viewed as a vector-valued function on games,
is just the (discrete) gradient of the potential function (this explains our
choice of name for it). The Shapley value has therefore been singled out as
the unique efficient solution concept that admits a potential. More de-
tailed discussions, together with additional results and interpretations, are
the subject of Section 2.

The potential, although by its definition just an analytical tool, has
nonetheless turned out to be most suggestive and productive. See Hart
and Mas-Colell (1987) for details. In Section 3, we present one result
obtained by the potential approach: a new way to characterize the Shapley
value by an internal "consistency" property.

2 The potential

In this section we formalize the previous discussion and study various
properties of the potential.

A cooperative game with sidepayments (or with transferable utility)-
in short, a game- consists of a pair (N,v), where TV is a finite set of players
and4 v: 2N —•  R is the characteristic function, satisfying v(0) = 0. A sub-
set5 S C N is called a coalition, and v(S) is the worth of the coalition S.
Given a game (7V» and a coalition 5  C TV, we write (S,v) for the subgame
obtained by restricting v to (the subsets of) S; that is, the domain of the
function v is restricted to 2s.

Let F denote the set of all games. Given a function P: F —>  R that
associates a real number6 P(N,v) to every game (N,v), the marginal contri-
bution of a player / in a game (N,v) is defined to be

,v) = P(N,v) - P(N\{i),v),

where i G TV; recall that the game (N\{i},v) is just the restriction of(N,v) to
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A function P: F —•  R with7 P(0,v) = 0 is called a potential function if
it satisfies the following condition:

i<=N

for all games (TV,i;). Thus, a potential function is such that its marginals are
always efficient; that is, they add up to the worth of the grand coalition.
The main result is the next theorem.

Theorem A. There exists a unique potential function P. For every game
(N,v) the resulting payoff vector (D'P(N,v))ieN of marginal contributions
coincides with the Shapley value of the game. Moreover, the potential of a
game (N,v) is uniquely determined by (1) applied only to the game and its
subgames (i.e., to (S,v) for all S C TV).

Proof: Rewrite (1) as8

P(N,v) = -1 \v(N) + £ *W{O,i>) 1 • (2)
\N\ L (klr J

Starting with P(09v) = 0, (2) determines P(N,v) recursively. This proves
the existence and uniqueness of the potential function P and that P(N,v) is
uniquely determined by (1) (or (2)) applied just to (S,v) for all S C TV.

It remains to show that DlP(N,v) = Sh%N9v) for all games (N,v) and all
players / G TV, where P is the (unique) potential function and Sh'(TV,i>)
denotes the Shapley value of player / in the game (N,v). We prove that all
the axioms that uniquely determine the Shapley value are satisfied by9

D'P. Efficiency is just (1); the other three axioms-dummy (null) player,
symmetry, and additivity-are proved inductively using (2). Indeed, let /
be a null player in the game (TV,*;) (i.e., v(S) = v(S\{i}) for all S). We claim
that this implies P(N,v) = P(N\{i),v); hence DlP{N,v) = 0. Assume the
assertion holds for all games with less than |TV| players; in particular,
P(N\{j),v) = P(N\{j,i},v) for ally ¥=  i. Now subtract (2) for N\{i) from
(2) for TV, to obtain

\N\[P(N,v) - P(N\{i),v)] = [v(N) - w

= 0.

Next, assume players / andy are substitutes in the game (N,v). This implies
that P(N\{i),v) = P(N\{j),v) (use (2), noting that /and; are substitutes in
(N\{k},v) for all k ¥=  ij); thus D*P(N,v) = DJP(N,v). Finally, another in-
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ductive argument on (2) shows that P(N,v + w) = P(N,v) + P(N,w), im-
plying additivity. •

Remark 1: The potential approach may be viewed as a new axiomatic
characterization for the Shapley value. Its significance is twofold: First,
only one axiom, (1), is needed (though one may view it as the combination
of two postulates: "efficiency" and "marginal contributions"; note, how-
ever, that no additivity, symmetry, and so on, are assumed). Second, one
needs to consider the given game only; the potential and a fortiori the
Shapley values are uniquely determined by (1) applied just to the game
and its subgames (thus, only one characteristic function is taken into
account). This is particularly important in applications, where typically
just one specific problem is considered. In contrast, all the standard axi-
omatizations of the Shapley value require, in order to uniquely determine
it for any single game, the application of the various axioms (additivity,
symmetry, etc.) to a large domain (e.g., all games or all simple games).10

Remark 2: Formula (2) yields a simple and straightforward recursive
procedure for the computation of the potential and of the Shapley values
of the game as well as all its subgames. This seems to be a most efficient
algorithm for computing Shapley values (note that (2) has to be applied
just once for each one of the 2m — 1  nonempty coalitions).

We now present another way of viewing the potential. Given a game
(N,v), the allocation of marginal contributions (i.e., v(N) —  v(N\{i}) to
player /) is, in general, not efficient. One way to resolve this difficulty is to
add a new player, say player 0, and extend the game to No = NU {0} in
such a way that the allocation of marginal contributions in the extended
game becomes efficient. Formally, let (N0,v0) be an extension of (N,v) (i.e.,

= v(S) for all S C N). Then the requirement is

= X [vo(No) - vo(No\{i))]

= [vo(No) - v(N)] + 2 [̂ (AW " vo(No\{i))]. (3)
i(=N

This reduces to

v(N) = 2 [vo(No) - vo(No\{i))l (4)

which, when compared to (1), yields the following restatement of the
result of Theorem A.
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Corollary 1. There exists a unique extension v0 of v whose marginal
contributions to the grand coalition are always efficient (more precisely,
(3) is satisfied for the game and all its subgames); it is given by vo(S U
{0}) = P(S,v) for all S C N, where P is the potential function.

Note that the payoffs to the original players (in N) add up correctly to
v(N) (see (4); these are the Shapley values). Player 0, whose payoff is the
residual P(N,v) —  v(N), may be regarded as a "hidden player," similarly
to the "hidden factor" introduced by McKenzie11 in the study of produc-
tion functions in order to explain the residual profit (or loss).12

In (1) and (2) the potential is only given implicitly. We now present two
explicit formulas. The T-unanimity game uT (where T is a nonempty
finite set) is defined by uT(S) = 1 if S D T, and uT(S) —  0 otherwise. It is
well known that these games form a linear basis for T: Each game (7V»  has
a unique representation (e.g., see Shapley 1953)

2
TdN

where, for all TcN,
aT s aT(N,v) = 2 (" V™ slv(S). (5)

SdT

Proposition 1. The potential function P satisfies

T<ZN I A I

for all games (N9v)9 where aT is given by (5).

Proof: Let Q(N,v) denote the right-hand side in the preceding formula.
Then Q(09v) = 0 and Q(N9v) - Q(N\{i)9v) = ^TBi^T/\Tl which when
summed up over / shows that Q satisfies (1). Therefore, by Theorem A, Q
coincides with the unique potential function P. •

The number ST = aT/\ T\ is called the dividend of each member of the
coalition Tand Sh'(N9v) = ?LTBiST (cf. Harsanyi 1963).

Proposition 2. The potential function P satisfies

SC N

where n = \N\ and s = \S\.
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Proof: The marginal contributions of the function on the right side are
easily seen to yield the Shapley value. •

To interpret this last formula, consider the following probabilistic
model of choosing a random nonempty coalition S C N: First, choose a
size 5 = 1 , 2 , . . . , n = \N\ uniformly (i.e., with probability \/n each).
Second, choose a subset S of size s, again uniformly (i.e., each of the (f)
subsets has the same probability). Equivalently, choose a random order of
the n elements of N(with probability \/n\ each), choose a cutting point s
(1 < s ^ n), and let S be the first s elements in that order. The probability
of choosing of a set S with |5| = s is

_s\(n-s)l _s (s- l)\(n-s)\
s n - n\ n n\

Therefore the formula of Proposition 2 may be rewritten as

P(N,v) =%ns- v(S) = E\1-^ v(S)\,
SON S L l ^ l J

\ ^ \ ( 6 )
SON S L l ^ l J

where E denotes expectation over S with respect to the foregoing probabil-
ity model. The interpretation of (6) is that the potential is the expected
normalized worth, or, equivalently, the per capita potential P(N,v)/\N\
equals the average per capita worth v(S)/\S\. This shows that the potential
may be viewed as an appropriate "summary" of the characteristic func-
tion into one number (from which marginal contributions are then com-
puted).13

To study some further properties of the potential function, we regard it
as an operator on games. Fix N and let F^ be the set of all games with
player set N. Let P be the operator from F^ into itself that associates to
each game v another game Pi? given by (Pi;)(5f) = P(S,v) for all S C N.

Proposition 3. The operator P: F^ —>  F^ has the following properties (for
all v, w E VN and all scalars a, /?):

(i) P is linear: P(av + pw) = aPv + 0Pw.
(ii) P is symmetric: P(6v) = 6(Pv) for every one-to-one mapping 9 of

TV into itself (i.e., a permutation of the players; for a game w the
"permuted" game 6w is defined by (6w)(S) = w(6S) for all
SCN).

(iii) P is positive: v>0 implies Pu > 0 (where w > 0 means w(S) ^ 0
for all S C N).

(iv) P is one-to-one and onto.
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(v) The fixed points of P are the inessential games (or additive
games-games v such that v(S) = 2/eiSi;({/}) for all S c N).

Proof: Preposition 1 implies that if we decompose vasv = ?,aTuT, then
Pi; = J,(aT/\T\)uT (both sums are over TdN and aT is given by (5)).
From this (i), (ii), (iv), and (v) follow easily, and (iii) is implied by Proposi-
tion 2. •

From these basic properties additional ones may be derived. For
example:

Corollary 2. If the core of (N,v) is not empty (i.e., (N,v) is balanced), then
P(N,v) ^ v(N). If (N,v) is a market game (i.e., totally balanced), then
Pv< v.

Proof: Let x = (x')ieNbe a payoff vector in the core of (N,v) and consider
the inessential game (N,w) given by w(S) = 2/€E5JC' for all S C N. Then
f < w, implying Pv ^ Pw = w (apply (i), (iii), and (iv) of Proposition 3);
hence P(N,v) = (Pv)(N) < w(N) = v(N). In a market game this argument
applies to all subgames as well. •

3 Consistency

This section presents one of the results obtained by the potential ap-
proach. It shows that the Shapley value enjoys an internal consistency
property, similarly to most solution concepts (see Hart and Mas-Colell
1987, sec. 4 for references).

The "consistency" requirement may be described informally as fol-
lows: Let </> be a "solution function" that associates a payoff to every
player in every game. For any group of players in a game, one defines a
"reduced game" among them by considering the amounts remaining
after the rest of the players are given the payoffs prescribed by </>. Then (/> is
said to be consistent if, when it is applied to any reduced game, it always
yields the same payoffs as in the original game.

Formally, a solution function 0 is a function defined on F, the set of all
games, that associates to every (N,v) E F a payoff vector 4>(N,v) =
(0'(A^i;))/eJV E R^. Given a solution function </>, a game (N,v), and a coali-
tion T C N, the reduced game (T,vf) is defined by

= v(S U Tc) - ^ MS U Tc,v) (7)
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for all ScT, where Tc = N\T. The solution function </> is consistent if

(8)

for every game (N9v), every coalition Tc N, and ally E T.
These definitions may be interpreted as follows. Fix </>, (N,v), and

TCN. The members of T-more precisely, every (sub)coalition ScT-
need to consider the total payoff remaining after the players in Tcare paid
according to </>. To compute the worth of S (in this reduced game), one
assumes that the complementary coalition T\S is not present. Therefore,
the game to be considered is (S U Tc,v), in which the payoffs are distrib-
uted according to 0. The amount that remains for S is then precisely that
given by (7). Finally, note that, if 0 is efficient, then

vf(S)=^(f>i(SuTc,v). (9)
ieS

There are alternative definitions of consistency (used for various solu-
tion concepts). They differ only in the definition of the reduced game. The
appropriateness of definition (7) here depends on the specific situation
being modeled, particularly on the concrete assumptions underlying the
determination of the characteristic function.

One example where (7) appears to be the natural definition is the
problem of allocating joint costs among various projects (or departments,
tasks, etc.); these projects are now the "players." The cost imputations are
not to be interpreted as some kind of "efficiency prices" that are used to
make optimal decisions on which projects to undertake, but as an equita-
ble way to distribute exactly the total costs once the set of projects is fixed.

Such an instance arises in multistate corporations that for tax purposes
have to allocate the joint costs (and benefits) among the projects in the
various states in which they operate. As an example of such a corporation
and, say, its Tennessee division, let Tbe the set of projects in Tennessee.
For every subset S C T of Tennessee's projects, the "local accountant"
has to determine its cost, assuming that it was the only subset of projects to
be undertaken in Tennessee. In addition, there is the set Tc of all the
projects outside Tennessee (which are not in the domain of this local
"gedanken experiment"). Therefore, the cost of Sis the amount imputed
to it by the "accounting procedure" (= solution function) under consider-
ation when the set of projects to be implemented is S U Tc. This is exactly
given by formula (9). Consistency requires that for T the imputation
obtained by the local accountant be no different than that of the general
(national) accountant.
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It turns out that this consistency requirement is the one satisfied by the
Shapley value. Moreover, together with the appropriate initial conditions
for two-person games, consistency uniquely characterizes the Shapley
value.

A solution function (f> is standard for two-person games if

for all v and all / ¥=j]  thus, in a two-person game each player first gets his
own guaranteed payoff and then the remaining "surplus" is divided
equally. Most solutions satisfy this condition. The main result can now be
stated.

Theorem B. Let (/> be a solution function. Then $ is (i) consistent and (ii)
standard for two-person games, if and only if 0 is the Shapley value.

Proof: First, we show that the Shapley value is a consistent solution
function. Let (N,v) be a game and Tc N a nonempty coalition. The
reduced game vT = vf (where <f> is the Shapley value) is given by (see (9)
and Theorem A)

vT(S) = 2 [p(S u ? » " P(S  U Tc\{i},v)] (10)

for every Sc T. By Theorem A, the potential of the game (T,vT) is
uniquely determined by formula (1) applied to the game and all its sub-
games. Comparing this with (10) implies that

for all S C T, where c is an appropriate constant (so as to make
P(0,vT) = 0). Therefore

Sh'(7>r) = P(T,vT) - P(T\{i),vT)
= P(N,v) - P(N\{i},v) = ShKN,v)

for every / E T9 proving that the Shapley values of the players in the
reduced game and in the original game coincide.

For the converse, one may show that if <f> satisfies (i) and (ii), then </>
must admit a potential function (see the proof of Theorem B in Hart and
Mas-Colell 1987).14 We provide here an alternative direct proof (see
Lemma 6.8 in Hart and Mas-Colell 1987).

First, we show that (i) and (ii) imply that 0 is efficient; that is,

2 WN,v) = v(N)
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for all games (N,v). This holds for \N\ = 2, by (ii), and for |JV| = 1 (add a
dummy player and apply (ii) and (i) to the resulting two-person game).
Now consider a game (N,v) with \N\ > 3. Let Tc N be a two-person
coalition; by consistency

2 <f>J(N,v) = 2 4>J(T,v+) + 2 WN,v).
j^N j^T i^Tc

Because \T\ = 29 the first sum equals vf(T); the definition (7) of the
reduced game now implies that the right side is v(N).

Second, assume (f) and y/ are two solution functions satisfying (i) and
(ii), and assume by induction that they coincide for all games with less
than n players (this is true for n = 3). Let (N9v) be an ^-person game, and
let /, y'GTV, i¥=j. Consider the two reduced games ({/j},i?$ 7}) and
({ij)9vuj))> which we denote by v* and rf9 respectively. They coincide for
singletons (by induction, because only n — 1  players matter); therefore,
by (ii), 0''(i;*) i <f>\v*) if and only if <l>J(v+) % $\vv) (if and only if
v*({ij)) S vw({iJ})).Nov/<f> = i// for two-person games, and both </> and y/
are consistent; therefore

if and only if, similarly,

This applies, however, to any two players / andj; because both </> and y/ are
efficient, we must therefore have <f)l{N,v) = y/'(N,v) for all /. •

See Hart and Mas-Colell (1987) for additional results regarding con-
sistency and the Shapley value (and its extensions, the weighted Shapley
values and the nontransferable utility case).

NOTES

1 Other solution concepts (e.g., bargaining set, kernel, nucleolus, etc.) may also
fit this description.

2 A simpler solution may be easier to study and apply, which increases its
usefulness. However, it is important to look at different solution concepts,
based on different postulates, because they illuminate the problem from
different angles.

3 Up to an additive constant (which does not change the marginal contribu-
tions).

4 R denotes the set of real numbers, 0 is the empty set, and the symbol \ is used
for set subtraction.
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5 All subset inclusions should be understood in the weak sense (i.e., equality is
possible).

6 We write P(N,v) rather than P((N,v)).
7 There is only one "empty game" (0,v), because v{0) = 0 always.
8 \A\ denotes the number of elements of the finite set A.
9 For another proof see Hart and Mas-Colell (1987).

10 Note that the explicit formula for the Shapley value (= average marginal
contribution) also applies to just one game. However, this seems too complex
to be viewed as a "basic postulate" (in particular, one has to justify the
specific probabilistic model).

11 McKenzie, L. (1959), "On the Existence of General Equilibrium for a Com-
petitive Market," Econometrica 27, 54-71.

12 A similar construction is embodied in this story: A sheik died, leaving a will
directing his three sons to divide the property as follows: one-half goes to the
oldest son, one-third to the middle son, and one-ninth to the youngest. The
property consisted of seventeen camels. The problem was solved by the "wise
man" who rode into town on his camel. He added his own camel to the
seventeen, and then the three brothers took their shares out of the eighteen
camels: nine, six, and two, respectively. One camel was left, on which the
wise man rode out of town.

13 Formula (6) should hardly be surprising. The Shapley value is the expected
marginal contribution; we obtain it here as the marginal contribution to the
appropriate expectation-the potential.

14 Another proof has been independently obtained by Michael Maschler.
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CHAPTER 10

Multilinear extensions of games

Guillermo Owen

1 Definition

Let v be a game with player set N = (1,2, . . . ,«};  that is, v is a real-valued
function with domain 2N. We define the multilinear extension (MLJi> of v
as the function of n real variables

r) = 2 I I 9j U (I - QjMS). (1)
j*S

In general, (1) is defined for all real values of q}. In practice, however, we
consider only values of/on the unit cube

G*= [0,1]" = «<7i, • . . , ^ ) | 0 < ^ < l f o r a l l 7 } .

The cube Qn has 2" vertices (extreme points), namely points where all
components are either 0 or 1. There is a natural correspondence between
these vertices and the 2" subsets of TV, namely 0s <-> S, where

0 ifj4S.
We call this correspondence the natural embedding of 2N in Qn. In this
sense, 2N is a subset of Qn.

Now, for any T C N,

f(otT) = ^ JJ of fj (1 —  af)v(S),
SdNjeS j4S

and it is not too difficult to see that this reduces to

f(aT) = v(T).
In this sense, then,/coincides with v on the domain ofv (the vertices of

Qn\ and we are justified in saying that/is an extension off. Because, in
addition,/is linear in each of the variables qj9 it is a multilinear function.

139
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It can be shown, finally (see Owen 1972), t h a t / i s the only multi-
linear function on Qn that coincides with v on the vertices. Thus / i s
the multilinear extension of v.

An alternative, equivalent, expression is

where A(S) is the dividend of S in game v, given by

(3)
res

s and t being the cardinalities of S and T, respectively.

2 Interpretation

The importance of the MLE is better seen from its applications. Neverthe-
less, an interpretation is always desirable. We consider two. The first
interpretation of the MLE is as an interpolation formula. In fact, a func-
tion/is given (by v) on the corners of the cube Qn. To obtain a value for/
at other points of the cube, we might use an interpolation technique.
Linear interpolation (with respect to each of the n variables) will give us
(1).

This is easiest to see when n = 2. In this case, a function/(x,y) is defined
at the four points (0,0), (0,1), (1,0), and (1,1). To approximate/at an
arbitrary point (x,y), we first interpolate linearly to obtain f(0,y) and

/(0,y) = (1 - y)/(0,0) + j/(0,1), (4)

f(l,y) = (1 —  y)f(1,0) + }/(l,l). (5)

Having obtained these, we proceed to interpolate for f(x,y):

f(x,y) = (1 - x)f(0,y) + xf( 1 ,y). (6)

Substituting (4)-(5) in (6), gives

f(x,y) = (1 - x)(l - y)f{0,0) + x(l
+ (l-x)yf(0,l) + xyf(l,l). (7)

It is easy to check that (7) is the same as (1) with n = 2,x = q1,y = q2.
An alternative, and more interesting, interpretation of the MLE is as an

expected value. In fact, let B be a random coalition-that is, a random
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subset of N. We specify the randomization scheme by assuming that, for
each j E N, the event Ay.j E 6 has probability qj9 and that these events ̂ 4,
are independent. Under these assumptions, it is easy to see that, for a
given S* C TV,

Prob{B = S) = J ] QjII 1 " Qj. (8)
j^S j*S

It follows that

where E[ • ] denotes the expected value. For this interpretation, see Ben-
Dov and Shilony (1985).

3 Relation to the power index

Let/be the MLE of game v. For any j EiVwe have the partial derivative

j^S i*j j*S

This can be rewritten as

fj(Qi , . . . , « » ) =  J ^ I J ft ]TJ (1 " ft)[^ u U)) - v(S)] (10)
j*s i+j

(the subscript on/denotes differentiation).
Next suppose that (ql, . . . ,qn) lies on the main diagonal of the cube

(i.e., all the qt have a common value r). Then

fj(r, . . . ,r) = 2 r'(l - ry-*-l[v(S U {j}) - v(S)]. (11)
SCN

Integrating this with respect to r, we have

\lfj(r, . . . ,r)dr= 2 frtl-rrHrfr[i;(SU{j})-i;(S)].
Jo 5CiV Jo

The integral in this last expression is a well-known definite integral (the
beta function). Thus

(lfj(r, . . . ,r)dr= ' ^ ~J ~ °!

Jo
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and this is the Shapley value or power index. Thus the value 0 is given by

0,-M= (lfj(r, . . . ,r)dr. (12)
Jo

In other words, the value can be obtained by integrating the gradient of the
MLE along the main diagonal of the cube.

Certain modifications come to mind almost immediately:

(a) Integrate along the main diagonal with respect to some measure
other than Lebesgue measure.

(b) Integrate along some other curve from (0, . . . ,0) to
(1, . . . ,1).

(c) Evaluate the gradient at some fixed point, say (i, . . . ,\).
(d) Integrate inside some higher-dimensional subset of Qn - perhaps

some neighborhood of the main diagonal.

We point out that (c)-evaluation of the gradient at the center of the
cube - gives the Banzhaf- Coleman index (see Owen 1975b for this.) Inte-
gration inside the entire cube with regard to ^-dimensional Lebesgue
measure also gives the Banzhaf-Coleman index. For (a) see Dubey, Ney-
man, and Weber (1981), where semivalues are discussed. Idea (b) might
be useful when dealing with compound games; see Section 4 and Grof-
man and Owen (1984).

Example. Let v be the four-person apex game-that is, the simple game in
which the winning coalitions are (1,2), {1,3}, (1,4), plus all three-person
and four-person coalitions. If we set q = (w,x,y,z), the MLE is

f(w,x,y,z) = wx{\ - y){\ -z) + wy(l - x)(l - z) + wz(l - x)(l - y)
+ wxy(l —  z) + wxz(\ —  y) + wyz(\ —  x) 4- xyz{\ —  w)
+ wxyz.

Some algebra reduces this to

f(x,y,z,w) = wx + wy + wz —  wxy —  wxz —  wyz + xyz,

so the partial fx (orfw) is

/i = x + y + z —  xy —  xz —  yz.

On the diagonal, this gives

fi(r,r,r,r) = 3r - 3r2,
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so, by (12),

Jo
Similarly,

f2 = w —  wy —  wz + yz,

or

/2(r,r,r,r) = r - r 2 ,

and

02= (r-r2)dr = l
Jo

By the game's symmetry, the Shapley value is then (i,i,i,i), as is well
known.

We can also evaluate the Banzhaf-Coleman index by evaluating the
partials at the midpoint. In fact,/^,^,^) = | , a n d ^ i ^ ^ i ) = i, giving us
the index (|,|,{,i), also a well-known result.

4 Applications to measure games

A measure on Nis an additive, nonnegative set function ju defined on 2N.
Because N is finite, we can define ju in terms of a weight vector
(wuw2, . . . ,wn) with nonnegative components: wt = ju({i}). We con-
sider here games of the form v = h ° ju, where // is a measure and h is a
well-behaved (read monotone) function. (More generally, ju could be a
vector-valued measure. The number of components of fi should, how-
ever, be considerably smaller than the number of players in the game.)

Consider, once again, equation (10). Using the probabilistic interpre-
tation, we may restate it as

fj(qx, . . . An) = E[v(& U {j}) - v(B)]> (13)

where 8 is a random subset of TV —  {j}, defined, as before, by the probabili-
ties qt (that player / belongs to 6) and the independence of these probabili-
ties.

Now, v = h ° ju, so this reduces to

fj = E[h(Zj+Wj)-h(Zj)]9 (14)

where Z, is the random variable /x(B),
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In turn, we note that we can express Z7 in the form

where Yt equals w( if / e B, and 0 otherwise. It is easy to see that

E[Y^ = qiwi and a2(Yt) = <7,0 ~ Q>1

so (by independence of the Y,)

= ^qiwi9 (15)

o\Zj) = ^qi{\-q^l (16)

For points on the main diagonal, all qt = r, so (15)—(16) reduce to

r^wh (17)

r(l-r)^>?. (18)

In general, of course, the actual distribution of the random variable Z,
can be quite complicated. In practice, two cases seem of interest:

(a) If all Wj are equal (and in that case they may be assumed to equal
1) then Zj is a binomial variable with parameters n — 1  and r.

(b) If n is large and none of the vv, is much larger than the others, then
the central limit theorem will apply and Zj may be assumed to be
(approximately) normal.

Case (a) may be of interest in certain cases. It is the normal approxima-
tion (b) that is most useful. For example, consider the electoral college.
Treated as a fifty-one-player game, the electoral college is defined by the
weight vector w = (9,3,7, . . . ,6,11,3) corresponding to the states and
District of Columbia (in alphabetical order). The game function v is then
v = h ° ju, where ju is the measure determined by vector w, and

fl if t> 269.5,
W lO lit s 269.5.

Equation (14) now takes the form

fj = Prob{269.5 - w, < Z, < 269.5). (19)

It is easily seen that

2 w, = 538, ^wj = 9606.
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Thus, by (17) and (18), Z7 will have mean (538 — wj)r and variance
(9606 — wj)r(\ — r). If we can assume that Z, is normal, Jj is merely the
probability that a normal variable, with such a mean and variance, lies
between 269.5 — Wj and 269.5. The mean and the variance both depend
on r, and it will now be necessary to integrate (numerically) as r goes from
0 to 1. This integration will give the desired value <f>j[v],

Owen (1975a) compares these results with the exact values (for the
1970 apportionment); the errors are quite small. More recently, Kemper-
man (1982) carried out the integration (12), using a more sophisticated
error analysis to determine (19). His results are extremely close to the
exact values.

5 Composite games

Let v be a game with player set TV = {1,2, . . . ,«}. For eacly G N, let w, be
a game with player set Mj9 satisfying

0 < Wj(S) sss WJ(MJ) = 1 (20)

for all S C Mj9 and assume the sets Mj are pairwise disjoint, with union

We can now define a game u - the composite game- on player set M*.
We write u = v[wl9w29 . . . 9wn], which is defined by setting, for each

= s n
where Tj= TDMj. The similarity of (21) to (1) is obvious. Note, more-
over, that if each of the games vv, is simple, with Wj(S) = 0 or 1, then (21)
reduces to

= v(U\wj(Tj)=l}). (22)
Thus in this case we obtain the standard composition of simple games,
treated in Owen (1964) and Shapley (1964). We call u the composite or
compound game, v is the quotient game, and the vv, are the subgames. We
will use (ij) to denote the /th player in subgame/

Subgame Wj has the MLE gj9 which is a function of the ra, variables xtj
(fixed j). We have gy. Q ^ —> [0,1], and the «-tuple of functions
(^i > • • • >fti) c a n be thought of as a vector-valued function g: X/2Mj -^
[0, l ]n or, equivalently, g: QM* -> Qn. Now let /be the MLE of v. Clearly,
/ : Qn —> R, and so the composite function/0 g: QM* —> i^.
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Because the sets Mj are disjoint, it is not difficult to see that /* = / ° g is
also multilinear. Hence h is the MLE of some game with player set M*. It
is then quite straightforward to show that h is the MLE of the composite
game u. Thus, composition of games corresponds to composition of the
MLEs.

We now have

h(xll9 . . . ,xmn)=f(ql9q29 . . . ,qn), (23)

where

Qj = gM\j> • • • >Xmj), (24)

and so

dxtj dqjdx, K }

Using the notation htj = dh/dxy, gtj = dgj/dxy and setting all xtj = r, we
get

hv(r,r, . . . ,r)=fj(yl9 . . . , y j ^ ( r , . . . ,r), (26)

where

yk = gAr9 . . . ,r). (27)

Now, (12) becomes

(,[^]= ^ (y i , . . . ,yn)gv(r, . . . A dr.
Jo

(28)

In many cases, especially when the games Wj are symmetric, we are
interested mainly in the sum of the values for the players in one of the
subgames. We then have

2 ^ M = fj(yi, • • •  9yA^g(f(r9 . . . A dr. (29)
Mj JO VMJ J

Note, however, that by (27),

and so

dr It
Mj

Mj
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We see that (31) corresponds to integrating the gradient of the MLEf,
not along the main diagonal q} = r but along the more complicated path

4j = yj(r) = gj(r,r9 . . . ,r). (32)

However, because vv/(0) = O and vv,(M7)=l, then y,(0) = 0 and
yj(l)= 1, so path (32) goes from the origin to the unit point (1,1, . . . ,1).

With regard to this, see Owen (1982, pp. 209 - 11) for an evaluation of
the game corresponding to the Victoria Amendment Procedure, which
was once proposed (but rejected) for the Canadian Constitution.

In an important special case, all the w, are symmetric majority games in
which any coalition with a, (out of my) players wins. In that case,

yj=\-B(mpaj-Url (33)

where B( • , • , • ) represents the cumulative binomial distribution -that
is, the probability of not more than a} —  1 successes in ra, trials of a simple
experiment with success probability r. For large values of m, this can be
approximated by the normal distribution, so in this case (32) could be
replaced by

r4r-A
v r ( l —  r ) j

where O represents the (cumulative) normal distribution function.
Owen (1975a) uses this technique to approximate the value of the

presidential election game. It is difficult to estimate the error in this
procedure, but it should be of the same order of magnitude as in the
electoral college (fifty-one-player) game.

6 Generalizations

As a technique for evaluating the value, the MLE approach is logically
analogous to the diagonal technique for nonatomic games (see Aumann
and Shapley 1974). Applications are found in Billera, Heath, and Ranaan
(1978) and Diaz and Owen (1979).

Attempts to adapt the MLE method to games without sidepayments
have not been so successful. See, however, Owen (1972a, 1981).

7 Example: The bilateral oligopoly

Let us consider a game of the form

(35)
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where juk (k = 1,2) are two measures on the finite set N. We assume they
are determined by the two weight vectors (xl9 . . . ,xn) and
(yx, . . . ,yn\ respectively.

Heuristically, player / has xt right shoes and yt left shoes; each pair of
shoes is worth one dollar, but unpaired shoes are worthless. Thus, v(S) is
equal to the number of pairs that S can form.

There is no loss of generality in assuming that N = M U L, MC\
L = 0, with xt = 0 for all i G L and yt = 0 for all i G M. In fact, if any
player i had xt and yt positive, he could form min(jcl-,)>J-) pairs and obtain
this utility directly. He would then enter the coalition process with only
the remaining shoes, which would then be all of one type. Thus, our
assumption is equivalent to a normalization of the characteristic func-
tion. Therefore, members of M have only right shoes; members of L have
only left shoes.

Let us set

5>
M

b = ^yh (37)
L

c = 2*l (38)
M

d=2yl (39)
L

The exact analysis of this game can be quite complicated. As an approxi-
mation, however, we proceed as follows.

If we assume a ^ b (there are at least as many right shoes as left), then
V(N) = b, so there is one unit of utility available for each left shoe. The
moot question concerns the share of this utility, sL, that the left shoes (or
their owners) will get.

From (35) we note that

[0

Now the MLE is

/(<7i J • • •  >Qn) = E[max{fii(R)9 ju2(&)}], (40)
where 6 was discussed earlier. It should follow that the left shoes' share of
the increase in/should be approximately equal to
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or, equivalently,

where Z* = ̂ (6) (A: = 1,2).
Now for a point on the diagonal with all qt = r, we see that

E[Zt) = ra, E[Z2] = rb,

o\Zx) = r(l-r)c, <72(Z2) = r( 1 - r)d,

so the difference Y=Z2 —  Zx has mean and variance

E[Y] = r(b-a), (41)

o2(Y) = r(l-r)(c + d). (42)

If, indeed, Y is approximately normal, then

or

Prob(7 < 0) = of a -yJj^-Y (43)

where

= of a -yJj^-Y

a = a (44)

and O is the normal distribution function.
Thus, by (12) we obtain

or

sL = - j L I I ' e~x2/2 dx dr. (45)
V27T Jo J-»

Some rather lengthy analysis shows that, for a > 0, (45) reduces to

(46)

where ¥  is the normal density function.
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For large values of a (corresponding to nearly perfect competition) we
can further use the asymptotic expansion

(47)

so (46) further reduces to

or

< 4 9 )

Thus, for large a the short side of the market will get the lion's share of the
utility. Even for small a, however, the short side has a decided advantage:
For a = .3562, equation (46) gives sL = .6717.

It seems difficult to check on the validity of approximation (46) in
general. Suppose, however, that xt = 1 for all M, and yt = 1 for all L.
Thus, each player has exactly one shoe. For this special case, Shapley
(1967) has given us the exact value

_1 a-b » a\b\
SL~2 2b £{a2b £x

For a = 101, b = 96, (50) gives sL = .66346.
On the other hand, we will then have c = a = 101, d= b = 96, so

a = 5/V197 = .3562 and (46), as mentioned, gives sL = .6717. There is an
error of 1 percent, which we feel is quite reasonable. Thus (46) seems to be,
in general, a useful result.
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PART III

Coalitions





CHAPTER 11

Coalitional value

Mordecai Kurz

1 Solutions of games with coalition structures

The study of coalition structures has been seriously explored only re-
cently. Coalition structures are already implicit in the von Neumann-
Morgenstern (1944) solutions; because of their internal and external sta-
bility the solutions isolate those stable coalition structures that generate
the final payoffs. This is to be contrasted with the extensive subsequent
literature on the core in which "blocking" is merely a criterion for accept-
ing or rejecting a proposed allocation; no specific coalition structure is
implicit in any core allocation. Analysis of games in partition function
form (see, for example, Thrall and Lucas 1963) is a more explicit way of
studying restrictions on coalition structures. Perhaps the best-studied
class of games whose core of a coalition structure was investigated is the
"central assignment games" (see, for example, Shapley and Shubik 1972;
Kaneko 1982; and Quinzii 1984). This class includes the particular case of
the "marriage games" (Gale and Shapley 1962) and is closely related to
the various variants of the "job matching games" (see, for example,
Crawford and Knoer 1981; Kelso and Crawford 1982; Roth 1984a,b).
The nonemptiness of the core of the coalition structure of these games is
an important result, to which we return in Section 3.

The study of coalition structures was enhanced by the approach taken
in the literature on the various bargaining sets. In this literature an explicit
definition of coalition structures was given and solution concepts were
developed relative to such structures rather than relative to the grand
coalition (see, for example, Aumann and Maschler 1964 or Davis and

This work was supported by National Science Foundation Grant IST-85-21838 at the
Institute for Mathematical Studies in the Social Sciences, Stanford University, Stanford,
California. It is a pleasure to dedicate this chapter to a volume in honor of Lloyd Shapley's
65th birthday. He has been a source of profound inspiration.
The author thanks John Hillas for his comments on an earlier version of this chapter.
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Maschler 1967). These developments established the agenda of subse-
quent research on coalition structures. To lay out this agenda, let N —
{1,2, . . . ,n) be the set of players and let (N,v) be a game in characteristic
function form. A coalition structured = {BX,B2, . . . ,Bm) is defined to
be a finite partition either of the player set TV or of the universe of v.1 The
agenda is thus normally composed of three elements:

(i) One first defines an extension of (N,v) to a game with coalitional
structure 3#. This requires the specification of the restrictions on
payoff vectors and on the set of coalitions that are allowed to
form. We loosely use the notation (N,v,9&) to identify such games.

(ii) Having defined the extension of (N,v), one then extends the solu-
tion concepts of cooperative game theory to the game (N,v,@i).

(iii) Finally one studies the stability of the coalition structure. To this,
one needs to specify a coalition formation game Fv and then
define the stable structures to be the solutions of Fp.

The important paper of Aumann and Dreze (1974) carried out items (i)
and (ii) of the agenda with respect to the six common solution concepts:
the von Neumann -Morgenstern solutions, the core, the bargaining set,
the nucleolus, the kernel, and the Shapley value. Following Aumann and
Dreze (1974), most of the research on coalition structures concentrated
on the study of the core and the Shapley value of games with coalition
structures, which we denote by (N,v,3i). Most of the subsequent research
on the core of a coalition structure concentrated on the application to
goods and taxation (see Dreze and Greenberg 1980; Greenberg 1979a,b,
1980, 1983; Greenberg and Weber 1982, 1985, 1986; Guesnerie and
Oddou 1979, 1981; Ichiishi 1981; Pauly 1967, 1970; Wooders 1978,
1980). On the other hand, Shenoy (1978,1979) attempted to advance the
Dreze-Aumann agenda one step further by proposing two stability cri-
teria for coalitional structure. More specifically, let 6 denote a solution
concept for a game (N,v,2ft) and denote by xe = x0(N,v,ffl) the vector of
payoffs to the players under £% and 6. Now let (xe,0&1) and (ye,&2) be two
such pairs. Shenoy (1979) then defines a domination relation by the
statement

(xe,ffll) dominates (y6,®2) if there exists a coalition S G £ftl

such that x0 > y0, i G S.

Relative to this domination relation Shenoy (1979) defines the core and
the "dynamic solution" as two stability criteria of a pair (xe,$8) among
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alternative coalition structures and payoffs. The important aspect of this
construction is that the solution concept 6 adopted for the game (N,v,@t)
for fixed 3# may be different from the core or the dynamic solution
concepts adopted for the game of coalition formation where ^ is allowed
to vary.

The contributions by Owen (1977) and Hart and Kurz (1983, 1984)
represent the main effort at the development of the value of coalition
structure (CS value) beyond the Aumann - Dreze (1974) value. The expo-
sition of these two value concepts is the main task of the next section.

2 The value of a coalition structure

In attempting to give a complete exposition of the two value concepts
discussed earlier, we first proceed formally. We then follow with a discus-
sion.

Let U be an infinite set, the universe of players (we follow Shapley's
1953 approach). A game v is a real function defined on all subsets of t /and
satisfying v(0) = 0. A set TV C U is a carrier ofv if, for all S C U, v(S) =
v(S fl TV); we consider only games with finite carriers. We call v(S) the
worth ofS. The set of all games on TV is denoted by GN.

A coalition structure 2ft is a finite partition ffl = {Bx ,B2, . . . ,Bm}oW
(i.e., U%-iBk = U and Bk DBj = 0 for k¥=j). For a subset of players  TV
(usually taken to be a carrier of some game), we denote by 3 ^ the restric-
tion of ^ to N; namely, fflN= {BkD N\ k= 1,2, . . . ,m), which is a
partition of TV (empty sets Bk n TV will be discarded). We sometimes abuse
notation and do not distinguish between £$ and 2&N.

2.1 The A umann - Dreze value

Given TV and 3#, Aumann and Dreze (1974) define what they call a
"38 value" to be a function 0 a on the set of all games with a finite carrier
TV that satisfies the following axioms.

Axiom 1 (Relative efficiency). For all k,

j BkE®. (1)

Axiom 2 (Symmetry). For all permutations n of AT under which ^ is
invariant,

(2)



158 Mordecai Kurz

Axiom 3 (Additivity).

<t><x(v + w) = <f>mv + <f>mw. (3 )

Axiom 4 (Null player condition). If / is a null player, then

o. (4)
It is clear that when £$ = {N}, then 0# = </>, where (<f)v) = Sh i?, which is

our designation of the Shapley value as developed by Shapley (1953).
For each ScN, denote by v\S the game on S defined for all T C S by

(v\S)(T) =

Theorem 1. Fix TV and ® = (5l5 . . . ,Bm). Then there is a unique
Aumann-Dreze value (or ^ value), given for all k= 1, . . . ,m and all

(5)

Remark: Equation (5) asserts that the restriction to Bk of the value (f)# for
the game (N,v) is the value Sh for the game (Bk,v\Bk). In other words, the
value of a game with coalition structure £# has the "restriction property":
The restriction of the value is the value of the restriction of the game. An
important implication of this property is that (/># can be computed by
computing Sh(v\Bk) separately for each k.

Proof: The operator defined by (5) satisfies (1) - (4), so there is at least one
^ value. We must prove that there is only one. For each nonempty T C N,
define the T-unanimity game vT by

-
1 if SDT,
0 otherwise.

Using standard procedures, we show that the games inform a basis for
GN\ therefore every game on Ms a linear combination of the games vT. By
the additivity axiom, it then follows that if the ^ value is unique on all
games of the form avT, where a is a constant, then it is unique.

Consider therefore a game of the form avT. By (4) (^(avT))(i) = 0
whenever / 3 T. From (2) it follows that if/ andy' are in Tand in the same
member Bk of 3# then
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Hence from (1) it follows that if / G Bk, then

\OL/\T\ ifTcBk,
l 0 otherwise.

This determines <f)&(cxvT), and so completes the proof.

Clearly the Aumann-Dreze value <f)& is easy to compute. Under this
value concept the payoff to any player does not depend upon his contri-
bution to any coalition outside the coalition to which he belongs. That is,
for any / EBk, (<t>&v)(i) does not depend on v(S)9 S (£ Bk, or upon the
contribution of / to any S such that S <{. Bk. It is obvious that the main
reason for this conclusion is Axiom 1. This result, which is true for the
Aumann-Dreze value but not for the other solution concepts, stands in
sharp contrast to the Aumann-Dreze interpretation of how the coali-
tional bargaining would operate under Axiom 1. On pp. 231-2 they
explain that

Whereas the implications of a coalition structure are quite clear, the idea
of a coalition structure needs some clarification. On the one hand, the
players are constrained to "form the coalitions Bx, . . . ,Bm that make
up the structure $&. On the other hand, considerations of other coali-
tions, including those that "cut across" the Bk, is by no means excluded.
Such coalitions are used to dominate as in the definition of core and VON
NEUMANN-MORGENSTERN solution, and to object as in the bargaining
set and its relatives; the excesses of these coalitions enter into the defini-
tion of nucleolus and kernel. This raises the question: what, precisely,
does the "constraint" to the structure £8 mean?

The scenario usually associated with the coalition structure idea is as
follows: the players consider forming the coalitions Bx, . . . ,Bm; one
may think of them as going to business lunches in m different groups,
each Bk forming a group. At these lunches they negotiate the division of
the payoff, on the assumption that the coalitions Bx, . . . ,Bm will be
formed. In such negotiations, it is perfectly reasonable for each coalition
Bk to base the division of the payoff on the opportunities that its mem-
bers have outside of Bk. The negotiations at the lunch may of course
break down, and at no time is it asserted that they will or even should
succeed. What is being asserted is only that //the structure £8 forms, then
the Bk should divide the payoff in whatever way the particular solution
concept under consideration dictates.

One is inclined to conclude that the Aumann-Dreze interpretation
may not apply universally, and if real coalition bargaining is to be an
important element in a value of a coalition structure, then Axiom 1 is not
likely to be satisfied in many situations. This is the essential view of the CS
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value due to Owen (1977) and refined and simplified by Hart and Kurz
(1983, 1984). This value is more complex than the Aumann-Dreze
(1974) value; we follow here the Hart-Kurz (1983) exposition.

2.2 The CS value

A coalition structure value (CS value) is an operator </) that assigns to every
game v with a finite carrier, every coalition structure £#, and every player
/ G U a real number ftivffl. Equivalently, one may think of <f)(v,31) as a
(finitely) additive measure on U defined by

cf)(v,m)(S) = 2 0f'(i>,«) for S  C U.

We will consider the following axioms on (f> (assumed to hold for all
games v and v' and all coalition structures ^ and £#')•

Axiom 1 (Carrier). Let TV be a carrier of v. Then

(i) (Kv&XN) - J,ieIrfKv99t) = v(N).
(ii) If mN = 9&'N, then #(i>,98) = #(i>,SB').

Axiom 2 (Symmetry). Let n be a permutation of the players. Then

Axiom 3 (Additivity).

Given a game v and a coalition structure £8 = {BUB2, . . . ,i?m}, we
say that the game among coalitions is inessential if

for all subsets ̂ Tof{ 1,2, . . . ,m); that is, ̂ restricted to the field generated
by ^ is additive.

Axiom 4 (Inessential games). Let v and ^ = {BX,B2, . . . ,i?m} be such
that the game among coalitions is inessential. Then

(f)(v,®)(Bk) = v{Bk) for all A: = 1, 2, . . . , m.

We discuss now the four axioms. The carrier axiom actually contains
three parts. If / is a null player in a game v (i.e., U\{i) is a carrier of v or,
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equivalents, v(S U {/}) = v(S) for all S C U\ then his value is 0 in all
coalition structures. Moreover, if such / "moves" from one i^to another,
it does not affect anyone's values. And last, for all coalition structures the
value is efficient.

The efficiency of the CS value is an essential feature. It differs from the
Aumann and Dreze (1974) approach, where each coalition BkG& gets
only its worth (i.e., v(Bk)). The idea is that coalitions form not in order to
get their worth, but to be in a better position when bargaining with the
others on how to divide the maximal amount available [i.e., the worth of
the grand coalition, which for superadditive games is no less than
SJJl^CB*)]. It is assumed that the amount v(N) will be distributed among
the players and thus that all collusions and group formations are done
with this in mind. A coalition B forms when all its members commit
themselves to bargain with the others as one unit.2

This further clarifies Axiom 4: When the game between the coalitions
is inessential, each coalition gets only its worth and there is no surplus to
be bargained over. The other two axioms are straightforward.

Although Theorem 2 indicates that these axioms characterize Owen's
value, the significant difference between these axioms and Owen's is to be
found in Axiom 4. Owen's corresponding Axiom A3 assumed that for all
games v and all coalition structures flB, the total value of each coalition Bk
in ^ depends only on the restriction of v to (the field generated by) 38. In
contrast, Hart and Kurz (1983, 1984) assume this to hold for inessential
games only, in which case it is easier to justify. The problem of bargaining
among coalitions arises when there is a surplus that is available when such
coalitions combine. Because there is no such surplus in inessential games
(among coalitions), there is nothing to divide; thus each one gets its worth.
What is surprising is that this natural condition, in conjunction with
Axioms 1-3, implies Owen's Axiom A3.

Theorem 2. The unique CS value (/> satisfying Axioms 1 -4 is Owen's
(1977) value.

Let TV be a finite set of players, and ^ = {Bl ,B2, . . . ,Bm) a coalition
structure. A complete (linear) order on TV is consistent with ^ if, for all
k = 1, 2, . . . , m and all ij G Bk9 all elements of TV between i and; also
belong to Bk. A random order on TV consistent with £ft (or, given £#) is a
random variable whose values are the orders on TV that are consistent with
SB, all equally probable (i.e., each with probability (m\,bx\b2\ . . . bn\)~~l,
where bk is the number of elements in Bk n TV). The interpretation is as
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follows: The players arrive randomly but such that all members of the
same coalition do so successively. This is the same as randomly ordering
first the coalitions and then the members within each coalition.

Proposition 3. The unique CS value 0 satisfying Axioms 1 -4 is

U {/}) - v(&% (6)

where the expectation E is over all random orders on a carrier TV of v that
are consistent with 38, and 3P' denotes the (random) set of predecessors of/.

Theorem 2 and Proposition 3 will be proved together. Although the
main ideas are standard, the use of the weaker Axiom 4 necessitates some
additional work.

Proofs of Theorem 2 and Proposition 3: It can easily be checked that the
operator given by (6) indeed satisfies Axioms 1 - 3; as for Axiom 4, let ik be
the first member of Bk in a random order; the fact that all the other players
of Bk follow ik implies that

^ U {;}) - v(&)] = i>(0>'* U Bk) - v
J^Bk

which, for an inessential game among coalitions, equals v(Bk) (because &ik

is a union of i?'s). Thus all four axioms are indeed satisfied.
In order to complete the proof, we have to show uniqueness, namely

that Axioms 1 -4 determine 0. Axiom 3 (additivity) implies that it suf-
fices to check basic games only-that is, games v of the form

otherwise,

where c is a fixed constant and R C U is a fixed finite and nonempty set.
Let Rk = Rn Bk and assume, without loss of generality, that Rk is not

empty for/:= 1,2, . . . , /(where 1 ^ / ^ m). Let/? = max^i^l,3 and let
R'k,fork= 1,2, . . . ,/, be disjoint sets of players such that \Rk\ = p and
Rk D Rk (here we use the fact that U is an infinite set). Let R' = \Jj^xRk,
W — (A 1,/<2, . . . ,K

0 otherwise.

Consider (f)(v\£ft'). All players outside R' get 0, and all players in R' are
identical (because Rk are of the same size p for all 1 ^ A: ^ /). Axioms 1
and 2 imply that, for all / G R\
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Hence, for all 1 =i k ^ /,

Next, consider (f>{v —  v'ffi). It is an inessential game among coalitions,
because (v —  v')(L)kfEKR'k) is either c —  c = 0 or 0 —  0 = 0, according to
whether or not KD (1,2, . . . ,/}. Therefore, by Axiom 4,

for all 1 ^ k ^ /. Axiom 3 now implies

But i? is a carrier of i;, and 38̂  = 38^; therefore (Axiom 1)

/

for all 1 ^ k ^ /. Finally, symmetry among the members of the same
gives

0 otherwise,

which implies the uniqueness of 0. Q.E.D.

Remark: It is clear from the use of Axiom 4 in the proof that it may be
replaced by the following, slightly weaker, Axiom 4'.

Axiom A' (Null game). If ^ ^ = 0 for all K C{ 1,2, . . . ,m}, then
<f)(v,®)(Bk) = 0 for all k = 1, 2, . . . , m.

Axioms 5 and 5' may also be used in place of Axiom 4.

Axiom 5 (Dummy coalition). If Bt is such that

j ) j
\kEK I \keK

for all K C {1,2, . . . ,m), then <A(i>,



164 Mordecai Kurz

Axiom 5' (Null coalition). If Bt is such that

(
\kYfC I \kEJC

for all K C {1,2, . . . ,m), then fav&XB,) = 0.

It is clear that Axiom 5 (5') implies Axiom 4 (4'); however, together
with Axioms 1-3, they all become equivalent.

For a game (N,v) with finite carrier TV, we earlier defined Sh v to be its
Shapley value; that is, SWv is the value of player /, and (Sh v)(S) =

U.

Corollary 4. For all Bk G 98,

where (v& ,3#) is the game v restricted to the field generated by £# (i.e., each
Bk G m is a "player").

Proof: The proof is immediate from (6). Q.E.D.

Thus, the total CS value of each coalition in £$ is precisely the Shapley
value of the game played by the (representatives of the) coalitions in <$.
Note that if one wants the CS value to satisfy the null player axiom (i.e.,
adding null players does not change the value), one is necessarily led to
regard each coalition in the coalition structure as one "representative,"
independent of the number of original players it is composed of! Note that
Axiom 1 (ii) implies that only the partition of a carrier TV of v needs to be
specified.

Another notation will be useful: If for any set S= {iiJ2, • . •  ,/$},
ffls = {{Mjfe}* • • •  >{(s)) [i-e-> ^ e partition of-Sis into singletons (one
player sets)], then we will write £fts = (S); in contrast, $s = {S} means
that all members of S are "together" in one coalition.

Corollary 5. Let TV be a carrier of v. Then

Proof: Again, it follows from (6). Q.E.D.

How is the CS value related to the two bargaining processes among the
coalitions (i.e., the elements of 3#) and within each coalition? By Corollary
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4, the former is obtained by replacing each BkGffl with a single player and
taking the Shapley value of the resulting game, "the game among coali-
tions."

Consider now one coalition Bk E 3#. How should its members divide
the total amount (f)(v,^)(Bk) that they receive? Their "relative power"
must be taken into account, and one way to measure it is by comparing
their "prospects" should Bk break apart. For example, suppose N =
{1,2,3} and ®N = {{1,2},{3}}. The coalition {1,2} gets </>(i^)({ 1,2}); if they
do not agree on the division of this amount and "split," they will get
cf)(v,(N))({i}) for / = 1 and / = 2. This may serve as a "disagreement
point" in the two-person bargaining problem where the set of possible
"agreements" corresponds to all the various ways of dividing </>(%)({ 1,2}).
According to the Nash (1950) solution, each i = 1,2 will receive

}) - cf>(v,(N))({U2))l

It turns out that for / = 1,2 this quantity is precisely (f)(v,£
What happens ifBk contains more than two players? One may choose

the ^-person generalization of the Nash solution (see Harsanyi 1977), but
this is not completely satisfactory, for two reasons. First, all possible
subcoalitions of Bk, not only the singletons, should be taken into account.
Second, it would be preferable to use the same solution concept for the
bargaining within Bk as the one used for the bargaining among the coali-
tions. It is precisely this consistency that one should seek.

To formalize this discussion, let v,9& = {B{ ,B2, . . . ,Bm] and BkG£8
be given. Define a new game wk on Bk by

wk(S) = (f>(v,®\S)(S) (7)

for all 5 C Bk9 where SB|S is the coalition structure obtained from 2ft by
replacing Bk with S and Bk\S, that is,

Note that wk(0) = 0; hence wk is indeed a game and, moreover, has a
finite carrier whenever v does.

Theorem 6 (Consistency). Given a game v and a coalition structure £8 =
{BUB2, . . . ,5m}, the following equality holds:

where / G Bk E ^ and wk is given by (7) and (8).
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This result shows that the CS value enjoys the following consistency
property: The bargaining procedure within coalitions may be derived
from the one among coalitions. Indeed, because S E 38|iSand {/} E (Bk),
both wk(S) and <f)(wk,(Bk))({i}) are CS values to coalitions in the corre-
sponding coalition structures; they do not depend in any way on the
division of payoffs within coalitions.

In (8) we defined 3815, for S C Bk, by replacing Bk with Sand Bk\S. By
doing so we assumed that the members of the complement of S "stay
together." An alternative possibility is that, when S "leaves," the rest of Bk
will break apart into individuals (singletons). In this case, we would define

. . • ,U)A+i , • • • A J , (9)
where Bk\S= {j\ Jl9 . . . Jt). This induces by (7) a new game wk on Bk.
However, we have the following result.

Theorem 7 (Consistency). Theorem 6 is true with ^|5given by (9) instead
of (8).

This means that the CS value enjoys the consistency property indepen-
dently of the way wk is defined; although (8) and (9) define two different
games wk, Theorem 7 states that their values coincide. This additional
feature is important particularly in view of the well-known ambiguity of
the "complement's behavior": When a coalition acts together, does its
complement react as a coalition or as individuals? In the case of the CS
value, it does not matter!

Proof of Theorems 6 and 7: The proof amounts to checking that
given by (f>l{v^) = (f)(wk,(Bk))({i)) for all BkE$ and / E Bk, satisfies
Axioms 1 -4 . Such a check is standard.

3 Stability of coalition structures

The question of stability of coalition structures is nearly equivalent to the
question of why coalition structures form to begin with. Some of the
reasons have already surfaced earlier in the discussion of the Aumann-
Dreze value and the CS value. These two, however, provide two sharply
different reasons why a coalition structure would form. Aumann and
Dreze regard the coalition structure ^ to be such that each coalition
Bk E £$ actually forms, "operates," and generates its coalitional payoff
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v(Bk). In this sense the Aumann-Dreze coalition is a real entity that is
formed to realize its potential v(Bk). Given this, members of Bk bargain
only among themselves to divide v(Bk). The view of Owen, Hart, and Kurz
is that the real entity that forms at the end is the coalition of the whole, N,
and the coalition structure 38 is formed only as a bargaining tool aiming to
increase the payoff of individual members. This entails a subtle bargain-
ing among individual players within each coalition Bk and among all the
coalitions {BUB2, . . . ,Bm}.

These observations provide a broad hint for the role played by super-
additivity. Aumann and Dreze (1974, pp. 232-4) suggest that nonsuper-
additivity of(N, v) is the most compelling explanation/or the formation of a
coalition structure 2ft. Other groups of "causes" are proposed in the litera-
ture for the formation of coalition structures satisfying Axiom 1 of Au-
mann and Dreze (1974), including such causes as the existence of legal
limitations, geographic and spatial limitations, and communication
problems. In all such cases a proper formulation of the game quickly
reveals that the coalition of the whole does not (or is not allowed to) do as
well as some coalition structure $8 that can satisfy Aumann and Dreze's
(1974) Axiom 1. This formal appearance of nonsuperadditivity is often
perplexing in economic contexts. An example will clarify the issue.

In the Guesnerie and Oddou (1979, 1981) public goods game it is
postulated, as a constitutional limitation, that whenever a coalition is
formed as a taxing constituency it cannot discriminate among members
and must impose a uniform tax rate on all members. It is then obvious
that in a society with heterogeneous demands for public goods (due to
heterogeneous preferences, geographic differences, and other causes) the
set of utility payoffs attainable from the taxing ability of society as a whole
does not contain the set of allocations attainable from the combined
taxing abilities of the different constituencies that consist of a coalition
structure ^ in which each member establishes a different tax rate. Clearly,
this is a nonsuperadditive game. However, a drastically opposing argu-
ment in favor of superadditivity may be provided. It goes as follows.
Given that the constitution is determined by the coalition of the whole,
one must conclude that "nondiscriminatory taxation" as an ethical and
political principle had significant utility benefits for the players. Hence,
when one considers the broader game in which both the constitution, the
tax rates, and the composition of output of public goods are determined
together, this game is superadditive. In fact, the coalition of the whole can
be viewed as choosing the coalition structure £ft and endowing each mem-
ber with the "local" power to tax and produce local public goods.
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In our opinion the real issue is one of selecting an effective modeling
strategy. One cannot take seriously the preceding argument regarding the
constitution. It is obvious that society has so many conflicting needs that
it is far from clear that a constitution would emerge simultaneously with a
solution of all our social problems. In addition, this is not a manageable
research agenda. There are well-known compelling arguments why a
constitution must be based on general principles only and be established
so that it will be difficult to change. With a constitution in place the
natural way to model the Guesnerie and Oddou problem of taxation and
public goods is the way they did-as a nonsuperadditive game.

In all those circumstances in which a good description of reality would
lead to the formation of a structure {Bx ,B2, . . . ,Bn] satisfying Axiom 1
of Aumann and Dreze, the CS value would not provide a good solution.
However, whenever the game is superadditive, the weight of the argument
shifts away from an Aumann-Dreze value and in favor of the CS value.

This brings us back to stability. To understand the issue of stability,
note that, having defined value concepts such as <£># or 0(i;,38), we can
introduce a game F of coalition formation whose solution would identify
the stable coalition structures. Shenoy (1979) studied the core and the
dynamic solution of such a game in relation to (/>#, and Hart and Kurz
(1983, 1984) studied the core and the strong equilibria of such a game in
relation to (f)(v,£ft). Although this research uncovered interesting stability
properties of many classes of games, no universal stability theorem is
available. Relative to every stability concept that has been proposed,
non-stable counterexamples were found. We shall briefly review some of
the available results.

3.1 Stability relative to 0 a

As we indicated in Section 1, Shenoy (1979) defined a domination rela-
tion among coalition structures, and in relation to the value the reader
may identify xe with (f)m. Now, given this relation, Shenoy introduces the
notion of stability.

Definition (Core). ffl is said to be core stable if it is undominated by any
other coalition structure.

The following is a sample of Shenoy's results.

1. Every three-person game has a core-stable coalition structure
relative to </>#.
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2. Every straight majority game has a core-stable coalition structure
relative to (/)#.

On the other hand, Shenoy (1979, p. 150) gives a very simple example
of a four-person weighted majority game [3; 2,1,1,1 ] (the first player has a
weight of 2; the weight of each of the others is 1) that has no core-stable
structure. The table of 4>® for all ^ is

((1234)} (i, i, i, i)
{(123),4) (i I i, 0)
«124),3} (i i, 0, i)
«134),2} (I 0, i i)
{(12),(34)}or{(12),3,4) (i, ±,0,0)
{(13),(24)}or{(13),2,4) (±, 0, i, 0)
{(14),(23)}or{(14),2,3) (±, 0,0, ±)
(1,(234)} (0, ±, i, ±)
All others (0, 0, 0, 0)

The minimal winning coalitions are (12), (13), (14), (234), but all
coalition structures containing minimal winning coalitions are domi-
nated.

Almost all researchers who studied the core of the coalition structure
implicitly assumed that nonemptiness of that core represents a stability
result, so they saw no need to conduct a core-stability analysis in the sense
of Shenoy (1979). The justification is rather straightforward. The core of
the coalition structure was defined by Aumann and Dreze (1974) to be the
core of (N,v^). This consists of all payoff vectors xc that are undominated
subject to xc(Bk) = v(Bk), all Bk E 3#. But every coalition S that deviates
from ^ induces a new structure $', so it is clear that if S can block xc then
2ft' will dominate ^ via S. Hence the core of the coalition structure-when
nonempty-is equivalent to the core in the sense of Shenoy (1979).

3.2 Stability relative to <f>(v,&)

Hart and Kurz (1983, 1984) attempted to formulate explicit coalition
formation games to identify stable coalition structures. To understand
this formulation, recall that the CS value ^(v,^) is interpreted as the
utility of player / of participating in the game v when the players are
organized according to 38. Based on this, each player is able to compare
the various coalition structures. Stability will thus occur whenever no
group of players can reorganize itself in such a way that, in the new
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coalition structure, they are all better off (according to the CS value).
Depending on the reaction of the other players, two notions of stability are
obtained. In the y-model it is assumed that coalitions left by even one
member break apart into singletons; in the <5-model the remaining players
instead form one smaller coalition.

The games F = T(N,v) and A = A(7V» are given in normal form as
follows:

Model y: The game F consists of the following rules:

The set of players isN. (10)

For each / G N, the set 21' of strategies of / consists of all
coalitions S that contain /, namely S = (5c iV | /E5} . (11)

For each n-tuple of strategies a = (S\S2, . . . ,Sn) G 21 X
22 X • • • X 2" and each / G N, the payoff to / is ftiv,®™),  where

(12)

S* i f S ^ S ' f o r ally*
{/'} otherwise,

Model S: The game A consists of (10), (11), and

For each fl-tuple of strategies a = (S\S2, . . . ,Sn) G S1 X
22 X • • • X 2n and each / G N, the payoff to i is <t>%v,9$>),
where »«> = {TcN\i,jE. T if and only if  5" = #} .

For a coalition structure ^ and a player / G TV, let 5^ be that element of
^ to which / belongs: iGS^G^ (this defines S^ uniquely); put o& =
(̂ «)/Giv- If the players choose a a, then in both F and A the coalition
structure that results is clearly 3£.

Definition (Stability). The coalition structure ^ is y-stable (resp., J-stable)
in the game (N,v) if am is a strong equilibrium in T(N,v) [resp., A(N,v)], that
is, if there exists no nonempty T C TV and no ol G 21' for all / G Tsuch that
ftiv,®) > ftiv,®) for all / E T , where <k corresponds to ((<7i)/€=r,
( ^ U ^ T ) by (12) (resp., (13)).

Hart and Kurz (1984) provide an analysis of the stability properties of a
few classes of games. A sample of their results can be summarized as
follows:
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1. Every three-person game has coalition structures that are both
y- and ^-stable.

2. Every symmetric four-person game has coalition structures that
are both y- and ^-stable.

3. Every Apex game4 with n ^ 5 has a unique y-stable coalition
structure but no ^-stable coalition structure.

However, Hart and Kurz (1984) also provide an example of a monotone
and superadditive game with no stable coalition structure in any of the
senses defined. The example found is of a ten-person symmetric majority
game in which it takes eight votes to "win." Thus the example is complex
and will not be reproduced here (see Hart and Kurz 1984, p. 257).

The merit of studying the stability properties of coalition structures is
that when a game has such a structure, the theory provides an important
prediction of the ultimate social organization that is likely to prevail.
Games without a stable coalition structure may describe intrinsically
unstable situations and thus do not permit us such a prediction. This
represents an open problem.

NOTES

1 This is a minor distinction. If the universe of players is t/and N C U, then, for
all S C U, v(S) = v(S n N) and one can define Bk c U with &N = {Bk n
7V|/c=l,2, . . . ,m) as the induced coalition structure on N.

2 The question of when this commitment is credible will be answered in the next
section; for a stable coalition, it is self-enforcing.

3 The number of elements of a finite set A is denoted by \A |.
4 Apex games are simple games with one major player and n — 1 minor players.

All minimal winning coalitions consist of the major player together with one
minor player or all the minor players together.
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CHAPTER 12

Endogenous formation of links between
players and of coalitions: an application of
the Shapley value

Robert J. Aumann and Roger B. Myerson

1 Introduction

Consider the coalitional game v on the player set {1,2,3} defined by

i f |Sl=l ,
if|5| = 2, (1)

where 15*1 denotes the number of players in S. Most cooperative solution
concepts "predict" (or assume) that the all-player coalition {1,2,3} will
form and divide the payoff 72 in some appropriate way. Now suppose
that Px (player 1) and P2 happen to meet each other in the absence of P3.
There is little doubt that they would quickly seize the opportunity to form
the coalition {1,2} and collect a payoff of 30 each. This would happen in
spite of its inefficiency. The reason is that if Pi and P2 were to invite P3 to
join the negotiations, then the three players would find themselves in
effectively symmetric roles, and the expected outcome would be
(24,24,24). Px and P2 would not want to risk offering, say, 4 to P3 (and
dividing the remaining 68 among themselves), because they would realize
that once P3 is invited to participate in the negotiations, the situation turns
"wide open"-anything can happen.

All this holds if P{ and P2 "happen" to meet. But even if they do not
meet by chance, it seems fairly clear that the players in this game would
seek to form pairs for the purpose of negotiation, and not negotiate in the
all-player framework.
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under Grant Number 1ST 85-21838.
Research by Roger B. Myerson supported by the National Science Foundation under grant
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The preceding example is due to Michael Maschler (see Aumann and
Dreze 1974, p. 235, from which much of this discussion is cited).
Maschler's example is particularly transparent because of its symmetry.
Even in unsymmetric cases, though, it is clear that the framework of
negotiations plays an important role in the outcome, so individual players
and groups of players will seek frameworks that are advantageous to them.
The phenomenon of seeking an advantageous framework for negotiating
is also well known in the real world at many levels - from decision making
within an organization, such as a corporation or university, to interna-
tional negotiations. It is not for nothing that governments think hard-
and often long-about "recognizing" or not recognizing other govern-
ments; that the question of whether, when, and under what conditions to
negotiate with terrorists is one of the utmost substantive importance; and
th'at at this writing the government of Israel is tottering over the question
not of whether to negotiate with its neighbors, but ofthe framework for
such negotiations (broad-base international conference or direct negotia-
tions).

Maschler's example has a natural economic interpretation in terms of
S-shaped production functions. The first player alone can do nothing
because of setup costs. Two players can produce 60 units of finished
product. With the third player, decreasing returns set in, and all three
together can produce only 72. The foregoing analysis indicates that the
form of industrial organization in this kind of situation may be expected
to be inefficient.

The simplest model for the concept "framework of negotiations" is
that of a coalition structure, defined as a partition of the player set into
disjoint coalitions. Once the coalition structure has been determined,
negotiations take place only within each of the coalitions that constitute
the structure; each such coalition B divides among its members the total
amount v(B) that it can obtain for itself. Exogenously given coalition
structures were perhaps first studied in the context of the bargaining set
(Aumann and Maschler 1964), and subsequently in many contexts; a
general treatment may be found in Aumann and Dreze (1974). Endoge-
nous coalition formation is implicit already in the von Neumann -
Morgenstern (1944) theory of stable sets; much of the interpretive discus-
sion in their book and in subsequent treatments of stable sets centers
around which coalitions will "form." However, coalition structures do
not have a formal, explicit role in the von Neumann-Morgenstern
theory. Recent treatments that consider endogenous coalition structures
explicitly within the context of a formal theory include Hart and Kurz
(1983), Kurz (Chapter 11 this volume), and others.
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Coalition structures, however, are not rich enough adequately to cap-
ture the subtleties of negotiation frameworks. For example, diplomatic
relations between countries or governments need not be transitive and,
therefore, cannot be adequately represented by a partition; thus both
Syria and Israel have diplomatic relations with the United States but not
with each other. For another example, in salary negotiations within an
academic department, the chairman plays a special role; members of the
department cannot usually negotiate directly with each other, though
certainly their salaries are not unrelated.

To model this richer kind of framework, Myerson (1977) introduced
the notion of a cooperation structure (or cooperation graph) in a coali-
tional game. This graph is simply defined as one whose vertices are the
players. Various interpretations are possible; the one we use here is that a
link between two players (an edge of the graph) exists if it is possible for
these two players to carry on meaningful direct negotiations with each
other. In particular, ordinary coalition structures {Bx ,B2, . . . ,Bk) (with
disjoint Bj) may be modeled within this framework by defining two
players to be linked if and only if they belong to the same Bj. (For
generalizations of this cooperation structure concept, see Myerson 1980.)

Shapley's 1953 definition of the value of a coalitional game v may be
interpreted as evaluating the players' prospects when there is full and free
communication among all of them-when the cooperation structure is
"full," when any two players are linked. When this is not so, the prospects
of the players may change dramatically. For an extreme example, a player
/ who is totally isolated-is linked to no other player-can expect to get
nothing beyond his own worth £>({/}); in general, the more links a player
has with other players, the better one may expect his prospects to be. To
capture this intuition, Myerson (1977) defined an extension of the Shap-
ley value of a coalitional game v to the case of an arbitrary cooperation
structure g. In particular, ifgis the complete graph on the all-player set TV
(any two players are directly linked), then Myerson's value coincides with
Shapley's. Moreover, if the cooperation graph g corresponds to the coali-
tion structure (Bl,B2, . . . ,Bk) in the sense indicated here, then the
Myerson value of a member / of Bj is the Shapley value of/ as a player of
the game v\Bj (v restricted to Bj).

This chapter suggests a model for the endogenous formation of cooper-
ation structures. Given a coalitional game v, what links may be expected
to form between the players? Our approach differs from that of previous
writers on endogenous coalition formation in two respects: First, we work
with cooperation graphs rather than coalition structures, using the Myer-
son value to evaluate the pros and cons of a given cooperation structure
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for any particular player. Second, we do not use the usual myopic, here-
and-now kind of equilibrium condition. When a player considers forming
a link with another one, he does not simply ask himself whether he may
expect to be better off with this link than without it, given the previously
existing structure. Rather, he looks ahead and asks himself, "Suppose we
form this new link, will other players be motivated to form further new
links that were not worthwhile for them before? Where will it all lead? Is
the end result good or bad for me?"

In Section 2 we review the Myerson value and illustrate the "look-
ahead" reasoning by returning to the three-person game that opened the
chapter. The formal definitions are set forth in Section 3, and the follow-
ing sections are devoted to examples and counterexamples. The final
section contains a general discussion of various aspects of this model,
particularly of its range of application.

No new theorems are proved. Our purpose is to study the conceptual
implications of the Shapley value and Myerson's extension of it to cooper-
ation structures in examples that are chosen to reflect various applied
contexts.

2 Looking ahead with the Myerson value

We start by reviewing the Myerson value. Let v be a coalitional game with
N as player set, and g a graph whose vertices are the players. For each
player / the value 0f = <M(v) is determined by the following axioms.

Axiom 1. If a graph g is obtained from another graph h by adding a single
link, namely the one between players i and 7, then / and j gain (or lose)
equally by the change; that is,

Axiom 2. If S is a connected component of g, then the sum of the values of
the players in S is the worth of S; that is,

£ <#(!>) = v(S)
i(=S

(Recall that a connected component of a graph is a maximal set of
vertices of which any two may be joined by a chain of linked vertices.)

That this axiom system indeed determines a unique value was demon-
strated by Myerson (1977). Moreover, he showed that iff is superadditive,
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then two players who form a new link never lose by it: The two sides of the
equation in Axiom 1 are nonnegative. He also established1 the following
practical method for calculating the value: Given v and g, define a coali-
tional game vg by

v*(S) ~ ^ v(SJ), (2)

where the sum ranges over the connected components SJ of the graph g\S
(g restricted to S). Then

0f(i>) = <f>t(v*)9 (3)

where 0, denotes the ordinary Shapley value for player /.
We illustrate with the game v defined by (1). If Px and P2 happen to

meet in the absence of P3, then the graph g may be represented by

(4)
1

with only Pl and P2 connected. Then (f)g(v) = (30,30,0); we have already
seen that in this situation it is not worthwhile for Px and P2 to bring P3 into
the negotiations, because that would make things entirely symmetric, so
Px and P2 would get only 24 each, rather than 30. But P2, say, might
consider offering to form a link with P3. The immediate result would be
the graph

(5)

This graph is not at all symmetric; the central position of P2 - all commu-
nication must pass through him-gives him a decided advantage. This
advantage is reflected nicely in the corresponding value, (14,44,14). Thus
P2 stands to gain from forming this link, so it would seem that he should go
ahead and do so. But now in this new situation, it would be advantageous
for P{ and P3 to form a link; this would result in the complete graph

(6)

which is again symmetric and so corresponds to a payoff of (24,24,24).
Therefore, whereas it originally seemed worthwhile for P2 to forge a new
link, on closer examination it turns out to lead to a net loss of 6 (he goes
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from 30 to 24). Thus the original graph, with only Px and P2 linked, would
appear to be in some sense "stable" after all.

Can this reasoning be formalized and put into a more general context?
It is true that if P2 offers to link up with P3, then Px also will, but wouldn't
Px do this anyway? To make sense of the argument, must one assume that
Px and P2 explicitly agree not to bring P3 in? If so, under what conditions
would such an agreement come about?

It turns out that no such agreement is necessary to justify the argument.
As we shall see in the next section, the argument makes good sense in a
framework that is totally noncooperative (as far as link formation is
concerned; once the links are formed, enforceable agreements may be
negotiated).

3 The formal model

Given a coalitional game v with n players, construct an auxiliary linking
game as follows: At the beginning of play there are no links between any
players. The game consists of pairs of players being offered to form links,
the offers being made one after the other according to some definite rule;
the rule is common knowledge and will be called the rule of order. To form
a link, both potential partners must agree; once formed, a link cannot be
destroyed, and, at any time, the entire history of offers, acceptances, and
rejections is known to all players (the game is of perfect information). The
only other requirements for the rule of order are that it lead to a finite
game, and that after the last link has been formed, each of the n(n — 1  )/2
pairs must be given a final opportunity to form an additional link (as in
the bidding stage of bridge). At this point some cooperation graph g has
been determined; the payoff to each player / is then defined as (f)*(v).

Most of the analysis in the sequel would not be affected by permitting
the rule of order to have random elements as long as perfect information is
maintained. It does, however, complicate the analysis, and we prefer to
exclude chance moves at this stage.

Note that it does not matter in which order the two players in a pair
decide whether to agree to a link; in equilibrium, either order (with perfect
information) leads to the same outcome as simultaneous choice.

In practice, the initiative for an offer may come from one of the players
rather than from some outside agency. Thus the rule of order might give
the initiative to some particular player and have it pass from one player to
another in some specified way.

Because the game is of perfect information, it has subgame perfect
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equilibria (Selten 1965) in pure strategies.2 Each such equilibrium is asso-
ciated with a unique cooperation graph g, namely the graph reached at the
end of play. Any such g (for any choice of the order on pairs) is called a
natural structure for v (or a natural outcome of the linking game).

Rather than starting from an initial position with no links, one may
start from an exogenously given graph g. If all subgame perfect equilibria
of the resulting game (for any choice of order) dictate that no additional
links form, then g is called stable.

4 An illustration

We illustrate with the game defined by (1). To find the subgame perfect
equilibria, we use "backwards induction." Suppose we are already at a
stage in which there are two links. Then, as we saw in Section 2, it is
worthwhile for the two players who have not yet linked up to do so;
therefore we may assume that they will. Thus one may assume that an
inevitable consequence of going to two links is a graph with three links.
Suppose now there is only one link in the graph, say that between Px and
P2 [as in (4)]. P2 might consider offering to link up with P3 [as in (5)], but
we have just seen that this necessarily leads to the full graph [as in (6)].
Because P2 gets less in (6) than in (4), he will not do so.

Suppose, finally, that we are in the initial position, with no links at all.
At this point the way in which the pairs are ordered becomes important;3

suppose it is 12, 23, 13. Continuing with our backwards induction, sup-
pose the first two pairs have refused. If the pair 13 also refuses, the result
will be 0 for all; if, on the other hand, they accept, it will be (30,0,30).
Therefore they will certainly accept. Going back one step further, suppose
that the pair 12-the first pair in the order-has refused, and the pair 23
now has an opportunity to form a link. P2 will certainly wish to do so, as
otherwise he will be left in the cold. For P3, though, there is no difference,
because in either case he will get 30; therefore there is a subgame perfect
equilibrium at which P3 turns down this offer. Finally, going back to the
first stage, similar considerations lead to the conclusion that the linking
game has three natural outcomes, each consisting of a single link between
two of the three players.

This argument, especially its first part, is very much in the spirit of the
informal story in Section 2. The point is that the formal definition clarifies
what lies behind the informal story and shows how this kind of argument
may be used in a general situation.



182 Robert J. Aumann and Roger B. Myerson

5 Some weighted majority games

Weighted majority games are somewhat more involved than the one
considered in the previous section, and we will go into less detail. We start
with a fairly typical example. Let v be the five-person weighted majority
game [4; 3,1,1,1,1 ] (4 votes are needed to win; one player has three votes,
the other four have one vote each). Let us say that the coalition S has
formed if g is the complete graph on the members of S (two players are
linked if both are members of S). We start by tabulating the values for the
complete graphs on various kinds of coalitions, using an obvious nota-
tion.

{1,1,1,1} [0 ,UU]
{3,1} [hhOfifi]
{3,1,1} [ii,i,0,0]
{3,1,1,1} [ii^r^O]
{3,1,1,1,1} [iiU),iU)]

Intuitively, one may think of a parliament with one large party and four
small ones. To form a government, the large party needs only one of the
small ones. But it would be foolish actually to strive for such a narrow
government, because then it (the large party) would be relatively weak
within the government, the small party could topple the government at
will; it would have veto power within the government. The more small
parties join the government, the less the large party depends on each
particular one, and so the greater the power of the large party. This
continues up to the point where there are so many small parties in the
government that the large party itself loses its veto power; at that point the
large party's value goes down. Thus with only one small party, the large
party's value is ̂ ; it goes up to \ with two small parties and to \ with three,
but then drops to \ with four small parties, because at that point the large
party itself loses its veto power within the government. Note, too, that up
to a point, the fewer small parties there are in the government, the better
for those that are, because there are fewer partners to share in the booty.

We proceed now to an analysis by the method of Section 3. It may be
verified that any natural outcome of this game is necessarily the complete
graph on some set of players; if a player is linked to another one indirectly,
through a "chain" of other linked players, then he must also be linked to
him directly. In the analysis, therefore, we may restrict attention to "com-
plete coalitions"-coalitions within which all links have formed.

As before, we use backwards induction. Suppose a coalition of type
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{3,1,1,1} has formed. If any of the "small" players in the coalition links up
with the single small player who is not yet in, then, as noted earlier, the
all-player coalition will form. This is worthwhile both for the small player
who was previously "out" and for the one who was previously "in" (the
latter's payoff goes up from ^ to ^ ) . Therefore such a link will indeed
form, and we conclude that a coalition of type (3,1,1,1} is unstable, in that
it leads to {3,1,1,1,1}.

Next, suppose that a coalition of type {3,1,1} has formed. If any player
in the coalition forms a link with one of the small players outside it, then
this will lead to a coalition of the form {3,1,1,1}, and, as we have just seen,
this in turn will lead to the full coalition. This means that the large player
will end up with j (rather than the \ he gets in the framework of {3,1,1})
and the small players with ̂  (rather than the \ they get in the framework of
{3,1,1}). Therefore none of the players in the coalition will agree to form
any link with any player outside it, and we conclude that a coalition of
type {3,1,1} is stable.

Suppose next that a coalition of type {3,1} has formed. Then the large
player does have an incentive to form a link with a small player outside it.
For this will lead to a coalition of type {3,1,1}, which, as we have seen, is
stable. Thus the large player can raise his payoff from the \ he gets in the
framework of {3,1} to the \ he gets in the framework of {3,1,1}. This is
certainly worthwhile for him, and therefore {3,1} is unstable.

Finally, suppose no links at all have as yet been formed. If the small
players all turn down all offers of linking up with the large player but do
link up with each other, then the result is the coalition {1,1,1,1}, and each
one will end up with \. If, on the other hand, one of them links up with the
large player, then the immediate consequence is a coalition of type {3,1};
this in turn leads to a coalition of type {3,1,1}, which is stable. Thus for a
small player to link up with the large player inevitably leads to a payoff of \
for him, which is less than the \ he could get in the framework of {1,1,1,1}.
Therefore considerations of subgame perfect equilibrium lead to the con-
clusion that starting from the initial position (no links), all small players
reject all overtures from the large player, and the final result is that the
coalition {1,1,1,1} forms.

This conclusion is typical for weighted majority games with one
"large" player and several "small" players of equal weight. Indeed, we
have the following general result.

Theorem A. In a superadditive weighted majority game of the form \q\
w,l, . . . ,1] with q> w> 1 and without veto players, a cooperation
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structure is natural if and only if it is the complete graph on a minimal
winning coalition consisting of "small" players only.

The proof, which will not be given here, consists of a tedious examina-
tion of cases. There may be a more direct proof, but we have not found it.

The situation is different if there are two large players and many small
ones, as in [4; 2,2,1,1,1,] or [6; 3,3,1,1,1,1,1]. In these cases, either the two
large players get together or one large player forms a coalition with all the
small ones (not minimal winning!). We do not have a general result that
covers all games of this type.

Our final example is the game [5; 3,2,2,1,1]. It appears that there are
two types of natural coalition structure: one associated with coalitions of
type {2,2,1,1}, and one with coalitions of type {3,2,1,1}. Note that neither
one is minimal winning.

In all these games some coalition forms; that is, the natural graphs all
are "internally complete." As we will see in the next section, that is not the
case in general. For simple games, however, and in particular for weighted
majority games, we do not know of any counterexample.

6 A natural structure that is not internally complete

Define v as the following sum of three voting games:

v := [2; 1,1,1,0] + [3; 1,1,1,0] + [5; 3,1,1,2].

That is, v is the sum of a three-person majority game in which P4 is a
dummy, a three-person unanimity game in which P4 is again a dummy,
and a four-person voting game in which the minimal winning coalitions
are {1,2,3} and {1,4}. The sum of these games is defined as any sum of
functions, so the worth v(S) of a coalition S is the number of component
games in which S wins. For example, z;({2,3}) = 1 and v({ 1,2,4}) = 2.

The unique natural structure for this game is

That is, Px links up with P2 and P3, but P2 and P3 do not link up with each
other, and no player links up with P4. The Myerson value of this game for
this cooperation structure is (|,|,|,0).

The Shapley value of this game, which is also the Myerson value for the
complete graph on all the players, is (|,|,|,i). Notice that PX,P2, and P3 all
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do strictly worse with the Shapley value than with the Myerson value for
the natural structure described earlier. It can be verified that for any other
graph either the value equals the Shapley value or there is at least one pair
of players who are not linked and would do strictly better with the Shapley
value. This implies inductively that if any pair of players forms a link that
is not in the natural structure, then additional links will continue to form
until every player is left with his Shapley value. To avoid this outcome, Px,
P2, and P3 will refuse to form any links beyond the two already shown.

For example, consider what happens if P2 and P3 add a link so that the
graph becomes

The value for this graph is (1,1,1,0), which is better than the Shapley value
for P2 and P3, but worse than the Shapley value for Px. To rebuild his
claim to a higher payoff than P2 and P3, Px then has an incentive to form a
link with P4.

Intuitively, Px needs both P2 and P3 in order to collect the payoff from
the unanimity game [3; 1,1,1,0]. They, in turn, would like to keep P4 out
because he is comparatively strong in the weighted voting game [5;
3,1,1,2], whose Shapley value is (-&,-&,-&,-&). With P4 out, all three remain-
ing players are on the same footing, because all three are then needed to
form a winning coalition. Therefore Px and P2 may each expect to get \
from this game, which is i more than the ̂  they were getting with P4 in.
On the other hand, excluding PA lowers Px 's value by i, from ^ to ̂ , and Px
will therefore want P4 in.

This is where the three-person majority game [2; 1,1,1,0] enters the
picture. If P2 and P3 refrain from linking up with each other, then Px 's
centrality makes him much stronger in this game, and his Myerson value
in it is then \ (rather than j , the Shapley value). This gain of \ more than
makes up for the loss of \ suffered by Px in the game [5,3,1,1,2], so he is
willing to keep P4 out. On the other hand, P2 and P3 also gain thereby,
because the {- each gains in [5; 3,1,1,2] more than makes up for the £ each
loses in the three-person majority game. Thus P2 and P3 are motivated to
refrain from forming a link with each other, and all are motivated to
refrain from forming links with P4.

In brief, P2 and P3 gain by keeping P4 isolated; but they must give Px the
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central position in the {1,2,3} coalition so as to provide an incentive for
him to go along with the isolation of P4, and a credible threat if he doesn't.

7 Natural structures that depend on the rule of order

The natural outcome of the link-forming game may well depend on the
rule of order. For example, let u be the majority game [3; 1,1,1,1], let
w := [2; 1,1,0,0], and let w' := [2; 0,0,1,1]. Let v := 24u + w + w'. If the
first offer is made to {1,2}, then either {1,2,3} or {1,2,4} will form; if it is
made to {3,4}, then either {1,3,4} or {2,3,4} will form.

The underlying idea here is much like in the game defined by (1). The
first two players to link up are willing to admit one more player in order to
enjoy the proceeds of the four-person majority game u\ but the resulting
coalition is not willing to admit the fourth player, who would take a large
share of those proceeds and himself contribute comparatively little. The
difference between this game and (1) is that here each player in the first
pair to get an opportunity to link up is positively motivated to seize that
opportunity, which was not the case in (1).

The nonuniqueness in this example is robust to small changes in the
game. That is, there is an open neighborhood of four-person games
around v such that, for all games in this neighborhood, if Px and P2 get the
first opportunity to form a link then the natural structures are graphs in
which Px, P2, and P3 are connected to each other but not to P4; but if P3
and P4 get the first opportunity to form a link, then the natural structures
are graphs in which P2,P3, and P4 are connected to each other but not to
Px. (Here we use the topology that comes from identifying the set of
^-person coalitional games with euclidean space of dimension 2n —  1.)

Each example in this chapter is also robust in the phenomenon that it is
designed to illustrate. That is, for all games in a small open neighborhood
of the example in Section 4, the natural outcomes will fail to be Pareto
optimal; and for all games in a small open neighborhood of the example in
Section 6, the natural outcomes will not be complete graphs on any
coalition.

8 Discussion

The theory presented here makes no pretense to being applicable in all
circumstances. The situations covered are those in which there is a prelim-
inary period that is devoted to link formation only, during which, for one
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reason or another, one cannot enter into binding agreements of any kind
(such as those relating to subsequent division of the payoff, or even condi-
tional link-forming, or nonforming, deals of the kind "I won't link up
with Adams if you don't link up with Brown"). After this preliminary
period one carries out negotiations, but then new links can no longer be
added.

An example is the formation of a coalition government in a parliamen-
tary democracy in which no single party has a majority (Italy, Germany,
Israel, France during the Fifth Republic, even England at times). The
point is that a government, once formed, can only be altered at the cost of
a considerable upheaval, such as new elections. On the other hand, one
cannot really negotiate in a meaningful way on substantive issues before
the formation of the government, because one does not know what issues
will come up in the future. Perhaps one does know something about some
of the issues, but even then one cannot make binding deals about them.
Such deals, when attempted, are indeed often eventually circumvented or
even broken outright; they are to a large extent window dressing, meant to
mollify the voter.

An important assumption is that of perfect information. There is noth-
ing to stop us from changing the definition by removing this assumption -
something we might well wish to try-but the analysis of the examples
would be quite different. Consider, for example, the game [4; 3,1,1,1,1]
treated at the beginning of Section 5. Suppose that the rule of order
initially gives the initiative to the large player. That is, he may offer links to
each of the small players in any order he wants; links are made public once
they are forged, but rejected offers do not become known. This is a fairly
reasonable description of what may happen in the negotiations for forma-
tion of governments in parliamentary democracies of the kind described
here. In this situation the small players lose the advantage that was con-
ferred on them by perfect information; formation of a coalition of type
{3,1,1} becomes a natural outcome. Intuitively, a small player will refuse
an offer from the large player only if he feels reasonably sure that all the
small players will refuse. Such a feeling is justified if it is common knowl-
edge that all the others have already refused, and from there one may work
one's way backward by induction. But the induction is broken if refused
offers do not become known; and then the small players may become
suspicious of each other-quite likely rightfully, as under imperfect infor-
mation, mutual suspicion becomes an equilibrium outcome. We hasten
to add that mutual trust-all small players refusing offers from the large



188 Robert J. Aumann and Roger B. Myerson

one-remains in equilibrium; but unlike in the case of perfect informa-
tion, where everything is open and aboveboard, it is no longer the only
equilibrium. In short, secrecy breeds mistrust-justifiable mistrust.

Which model is the "right" one (i.e., perfect or imperfect information)
is moot. Needless to say, the perfect information model is not being
suggested as a universal model for all negotiations. But one may feel that
the secrecy in the imperfect information model is a kind of irrelevant
noise that muddies the waters and detracts from our ability properly to
analyze power relationships. On the other hand, one may feel that the
backwards induction in the perfect information model is an artificiality
that overshadows and dominates the analysis, much as in the finitely
repeated Prisoner's Dilemma, and again obscures the "true" power rela-
tionships. Moreover, the outcome predicted by the perfect information
model in the game [4; 3,1,1,1,1] (formation of the coalition of all small
players) is somewhat strange and anti-intuitive. On the contrary, one
would have thought that the large player has a better chance than each
individual small player to get into the ruling coalition; one might expect
him to "form the government," so to speak.

In brief, there is no single "right" model. Each model has something
going for it and something going against it. You pay your money, and you
take your choice.

We end with an anecdote. This chapter is based on a correspondence
that took place between the authors during the first half of 1977. That
spring, there were elections in Israel, and they brought the right to power
for the first time since the foundation of the state almost thirty years
earlier. After the election, one of us used the perfect information model
proposed here to try to predict which government would form. He was
disappointed when the government that actually did form after about a
month of negotiations did not conform to the prediction of the model, in
that it failed to contain Professor Yigael Yadin's new "Democratic Party
for Change." Imagine his delight when Yadin did after all join the govern-
ment about four months later!

Appendix

We state and prove here the main result of Myerson (1977).
For any graph g, any set of players S, and any two players; and k in S,

we say that; and k are connected in S by g if and only if there is a path in g
that goes from j to k and stays within S. That is, j and k are connected in S
by g if there exists some sequence of players ix, i2, . . . , iM such that
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h = h *M = K {i\ Ji, • • •  JM) Q S, and every pair (/„ ,in+ x) corresponds to
a link in g. Let S/g denote the partition of S into the sets of players that are
connected in S by g. That is,

S/g = {{k\j and k are connected in S by g)\j G S).

With this notation, the definition of vg from (2) becomes

v*(S)= 2 i;(r) (Al)
T<ES/g

for any coalition S. Then the main result of Myerson (1977) is as follows.

Theorem. Given a coalitional game v9 Axioms 1 and 2 (as stated in Section
2) are satisfied for all graphs if and only if, for every graph g and every
player /,

0f(i;) = <£,(!;*), (A2)

where </>, denotes the ordinary Shapley value for player /. Furthermore, if v
is superadditive and if g is a graph obtained from another graph h by
adding a single link between players / and j , then (f>;(vg) — 4>i{v h) > 0, so
the differences in Axiom 1 are nonnegative.

Proof: For any given graph g, Axiom 1 gives us as many equations as there
are links in g, and Axiom 2 gives us as many equations as there are
connected components of g. When g contains cycles, some of these equa-
tions may be redundant, but it is not hard to show that these two axioms
give us at least as many independent linear equations in the values 0f as
there are players in the game. Thus, arguing by induction on the number
of links in the graph (starting with the graph that has no links), one can
show that there can be at most one value satisfying Axioms 1 and 2 for all
graphs.

The usual formula for the Shapley (1953) value implies that

2 f j ? - v*(S U
SQN\{iJ) \iy/\ l)

Notice that a coalition's worth in v* depends only on the links in g that are
between two players both of whom are in the coalition. Thus, when S does
not contain / or j , the worths vg(SL) {/}) and v*(SU {j}) would not be
changed if we added or deleted a link in g between players / and/ There-
fore, 4>i(vg) — <f)j(v g) would be unchanged if we added or deleted a link in g
between players / and/ Thus, (A2) implies Axiom 1.
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Given any coalition S and graph g, let the games us and ws be defined
by us{T) = vg(TC\S) and ws(T) = v*(T\S) for any TCN. Notice that S
is a carrier of us, and all players in S are dummies in w5. Furthermore, if S
is a connected component of g, then i;* = w5" + ws. Thus, if S is a con-
nected component of g, then

and so (A2) implies Axiom 2.
Now suppose that the graph g is obtained from the graph h by adding a

single link between players / and j . If v is superadditive and / G 5, then
^(S) > i; A(S), because S/g is either the same as S/h or a coarser partition
than S/h. On the other hand, if / ^ S, then vg(S) = vh(S). Thus, by the
montonicity of the Shapley value, (f>i(vg) ^ <f>i{vh) if P is superadditive.

Q.E.D.

NOTES

1 These statements are proved in the appendix, and they imply the assertions
about the Myerson value that we made in the introduction.

2 Readers unfamiliar with German and the definition of subgame perfection
will find the latter repeated, in English, in Selten (1975), though this reference
is devoted mainly to the somewhat different concept of "trembling hand"
perfection (even in games of perfect information, trembling hand perfect
equilibria single out only some of the subgame perfect equilibria).

3 For the analysis, not the conclusion.
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Large games





CHAPTER 13

Values of large finite games

Myrna Holtz Wooders and William R. Zame

1 Introduction

The competitive equilibrium, core, and value are solution notions widely
used in economics and are based on disparate ideas. The competitive
equilibrium is a notion of noncooperative equilibrium based on individ-
ual optimization. The core is a notion of cooperative equilibrium based
on what groups of individuals can extract from society. The value can be
interpreted as a notion of fair division based on what individuals contrib-
ute to society. It is a remarkable fact that, under appropriate assumptions,
these solution notions (nearly) coincide in large economies. The (near)
coincidence of the competitive equilibrium and the core for large ex-
change economies was first suggested by Edgeworth (1881) and rigorously
established by Debreu and Scarf (1963) in the context of replica econo-
mies and by Aumann (1964) in the context of continuum economies.
This pioneering work has since been extended to much wider contexts; see
Hildenbrand (1974) and Anderson (1986) for surveys. The (near) coinci-
dence of the value and the competitive equilibrium (and hence the core)
for large exchange economies was first suggested by Shubik1 and rigor-
ously established by Shapley (1964) in the context of replica economies
with money. This pioneering work, too, has since been extended to much
wider contexts; see, for example, Shapley and Shubik (1969), Aumann
and Shapley (1974), Aumann (1975), Champsaur (1975), Hart (1977),
Mas-Colell (1977), and Cheng (1981).

These remarkable and important results deal with (private goods) ex-
change economies2 (with divisible goods). Other economic environ-
ments, such as ones with indivisibilities, with coalition production possi-
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bilities, with hedonic coalitions, with (local or pure) public goods are
excluded. In some of these other environments, limiting core-equilibrium
equivalence results have been obtained (cf. Bohm 1973,1974 and Oddou
1976,1982 on coalition production economies and Wooders 1980,1985
on economies with local public goods). However, no value convergence
results have been established in these contexts.3 (One of the few results in a
nonexchange setting is due to Aumann, Gardner, and Rosenthal 1977,
who show that the Lindahl equilibrium does not coincide with the value in
continuum economies with pure public goods.)

This survey reports on two papers (Wooders and Zame 1987a,b),
which establish that the value does indeed lie in an approximate core for
large economic environments that may include all the aspects listed, with
the exception of pure public goods. The framework we use to describe
such environments is that of cooperative games. Although we obtain
results for both the transferable utility (TU) and nontransferable utility
(NTU) settings (corresponding to environments with and without linear
money), we describe here only the work in the TU setting. This is the
setting in which the results are sharper and easier to describe and in which
the economic intuition is most clearly visible.

To model large games, we introduce the notion of a technology.4 This
construction allows us to describe the payoff achievable by any collection
of agents in a way that depends continuously on the attributes of the
agents (and not on their names). Given such a technology, we describe a
game by specifying a set of players and their attributes (in much the same
way that an exchange economy is described by specifying a set of con-
sumers and their endowments and utility functions). Players in such a
game are near substitutes if they have similar attributes (just as consumers
are near substitutes if they have similar endowments and utility func-
tions). A game is large if each player has many near-substitutes.

The e-core of a game (for e > 0) is the set of attainable utility vectors
that cannot be improved upon by any group by more than e for each
member. If we view the core as a set of stable outcomes (i.e., as the set of
cooperative equilibria), it is natural to view the e-core as a set of approxi-
mately stable outcomes. Our principal result is that, for large games, the
value belongs to the e-core (and is thus an approximately stable outcome).
(Moreover, e tends to 0 as the game becomes larger.)

This result rests on two economic ideas. The first of these is that if gains
to group size are nearly exhausted by relatively small groups,5 then small
groups are effective. The expression of this idea is that small coalitions
have almost as much power of improvement as large coalitions. More
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precisely, any feasible payoff that can be improved upon by any coalition
can be improved upon by a small coalition. This observation is by now
fairly familiar in the context of exchange economies (cf. Grodal 1972;
Schmeidler 1972; Vind 1972; Mas-Colell 1979; Hammond, Kaneko, and
Wooders 1985). The idea plays a role in the equivalence results of Bohm
(1973, 1974) and Wooders (1980, 1985). The power of the idea emerges
perhaps most clearly in large cooperative games (Shubik and Wooders
1983a,b; Wooders 1983; Wooders and Zame 1984, 1988; Kaneko and
Wooders 1985, 1986).

The second of these ideas is that small cartels have little monopoly
power. The expression of this idea is that in a large game the value confers
little benefit (or penalty) on a small syndicate (a group that chooses to act
together). More precisely, the sum of the payoffs that the value assigns to
the members of a small syndicate is nearly the same as the payoff the value
would assign to the syndicate if it were treated as an indivisible unit.

2 Games

By a game (in characteristic function form with sidepayments) we mean a
pair (N,v)9 where TV is a finite set (the set ofplayers) and v is a function (the
characteristic function) from the set 2N of subsets of TV to the set R+ of
nonnegative real numbers, with the property that v(0) = 0. We usually
refer to subsets S of TV as coalitions; the number v(S) is the worth ofS. If the
player set TV is understood, we frequently refer to v itself as the game. We
say that v is superadditive if for all disjoint subsets S, S' of TV we have

v(S U 5") > v(S) + v(S')

By a payoff for (N,v) we mean a vector x in R^; it is convenient to use
functional notation, so for i G TV, JC(/) is the /th component of x. We say
that x is feasible ifx(N) < v(N) (where x(S) = J,ieSx(i) for each S C TV).

For e ^ O a feasible payoff x is in the e-core of (TV,i>) if

(a) x(N) = v(N) (Pareto optimality).
(b) x(S) > v(S) - e |5| for all subsets S of TV.

(We use \S\ to denote the number of elements of the set S.) We say x is in
the individually rational e-core if it is in the e-core and

(c) x(i) ^ v({i}) for all / E TV (individually rationality).

When e = 0, the €-core (which coincides with the individually rational
e-core) is simply the core.
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Less formally, a feasible Pareto-optimal payoff x belongs to the e-core
of (N,v) if no group of players can guarantee for themselves a payoff that
each of them finds better than x by more than e. As Shapley and Shubik
1966 point out, such a payoff can be interpreted as stable if players are
nearly optimizing, or satisfying, or if there is an organizational or com-
municational cost to formation of coalitions (proportional to the size of
the coalitions).

The Shapley value Sh(u) of the game (N,v) is the payoff whose /th
component is given by

1 |Ar|-1 (\N\— \\~ l

(iy) = 7^2 ' ' 2
ScN\{i)

\S\-J
In other words, Sh(ty') is player f s average marginal contribution to
coalitions in N. The Shapley value is a feasible, Pareto-optimal, and
individually rational payoff. It is frequently interpreted as representing a
"fair" payoff because it yields to each player his expected contribution. It
can also be given various other interpretations (as a von Neumann-
Morgenstern utility function for example; see Roth 1977 and Chapter 4
this volume).

3 Technologies

We now describe the framework of a large game for which the worth of a
coalition depends in a continuous fashion on the attributes of its mem-
bers.

Let Q be a compact metric space. By a profile on ft we mean a function
/from Q to the set Z+ of nonnegative integers for which the support of/

support(/) = {coG Q.:f(co) # 0},
is finite. We denote the set of profiles on Q by P(£l). Note that the sum of
profiles (defined pointwise) is a profile, and that the product of a profile
with a nonnegative integer is a profile. We write 0 for the profile that is
identically zero. We write/^ g iff(co) ^ g(co) for each wGQ. For co0 a
point of Q, we write Xco0 f°r the profile given by

= 1 if co = co0.
By the norm of a profile/we mean

11/11=2
CtXEft

(Notice that this is a finite sum, because/has finite support.)
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In essence, a profile is simply an (unordered) list of elements of £1, with
each element co appearing as many times as its multiplicity f(co).

By a technology we mean a pair (£2,A), where Q is a compact metric
space (the space of attributes) and A: P(Q) —>  R+ is a function with the
following properties:

(i) A(0) = 0.
(ii) A( /+ g) > A(/) + A(g) (superadditivity).

(iii) There is a constant M such that A( /+ Xa>) —  Mf) + M for each
w G Q, /E P(£2) (we say Mis an individual marginal bound).

(iv) For every e > 0 there is a S>0 such that |A(/+;fo,1) —
A( /+ x<y2)| < e whenever / e P(Q) and a^, co2 ̂  ^ with
dist(a>! ,a>2) < ^ (continuity).

The interpretation we have in mind is that a technology encompasses
all the economic possibilities for every conceivable group of players. A
point of Q represents a complete description of the relevant attributes of
players (endowment, utility function, etc.). A profile/represents a group
of players of whom/(a>) are described by the attribute a>; the total number
of players in the group is just | |/ | | . The number A ( / ) represents the
maximal possible payoff the members of this group could achieve (using
their own resources) by cooperation. The requirement that A(0) = 0
means that the group of no players can achieve nothing. Superadditivity
has its usual interpretation: One of the possibilities open to the group
represented b y / + g is to split into the groups represented b y / a n d by g
and share the proceeds. (Notice that we do not require the profiles/ g to
have disjoint supports. The groups of players represented by the profiles
/ g will have no players in common in any case; to require that the profiles
/ g have disjoint supports would be to require that these groups have no
types of players in common.) The existence of an individual marginal
bound simply means that there are no players whose (potential) contribu-
tions to society are arbitrarily large. Continuity of A means that players
with similar attributes are near substitutes (and that players with the same
attributes are exact substitutes).

If ft is finite, we frequently refer to its elements as types. (Notice that
continuity of A is automatic in this case, and that players of the same type
are exact substitutes.)

To derive a game from the technology (Q,A), we specify a finite set N
and a function a: N —•  Q (an attribute function). We associate with each
subset S of TV a profile prof(a\S) given by
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In other words, prof(a\S)(a>) is the number of players in S possessing the
attribute co. We then define the characteristic function va: 2N—>  R+ by

va(S) = A(prof(a\S)).

Thus, the worth of a coalition S in a derived game is determined by the
technology and depends on the attributes of the players in the coalition. It
is easily checked that (A^) is a superadditive game.

4 Results

Having described the framework, we can now state our main result. If the
space Q. of attributes is finite (and so consists of a finite number of types),
it seems natural to think of a game as large if it has many players of each
type; thus each player has many exact substitutes. If Q, is not finite, it thus
seems natural to think of a game as large if each player has many near
substitutes.

Theorem 1. Let (Q,,A) be a technology. For each e > 0 there is a number
S(e) > 0 and an integer n(e) with the following property:

For any game (N,va) derived from the technology (£2,A)> if for
each player / in TV there exist n(e) distinct players^, . . . ,jn{€)
in N such that dist(a(i),a(jk)) < S(e) for each k = 1, . . . ,
n(e), then the Shapley value of (N,va) is in the individually
rational e-core of (N,va).

As we said earlier, the proof of Theorem 1 rests on the expressions of
two economic ideas. The first of these is that (relatively) small coalitions
are nearly as effective as large coalitions.

Theorem 2. Let (ft,A) be a technology. For each e > 0, there is an integer
/(e) with the following property:

For any game (N,va) derived from the technology (£2,A), if
x E R^ is a feasible, Pareto-optimal payoff not in the e-core of
(N,va), then there is a coalition S C N such that |*S| ^ /(e) and
vJLS)>x(S) +

Informally: for any derived game, any (feasible, Pareto-optimal) allo-
cation that can be e-improved upon by any coalition whatsoever can be
e/2-improved upon by a small coalition.
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The expression of the second economic idea is that the value confers
little monopoly power on small syndicates. Although we only need such a
result in the context of technologies, it is true for individual games, so we
give a general formulation.

We consider games (N,v) that are not required to be superadditive. If S
is a nonempty subset of N, then by the syndicate game (Ns,vs) we mean
the game whose player set is Ns = (N\S) U {{5*}} and whose characteristic
function is given by

vs(W) = v(W)
= v([W\{{S))]US)

That is, (Ns,vs) is the game that results if we treat the syndicate S as an
indivisible unit. We want to compare Shfe,^}) with J,ieSSh(v9i); the
difference between these two numbers might be called the power of the
syndicate (i.e., the gain or loss resulting from formation of the syndicate).

We need some terminology. We will say that the positive number Mis
an individual marginal bound for the game (N,v) if \v{W\J{j}) —
v(W)\<M for each jGN and each W C N. For y > 0, we will say that
players /, jGN are y-substitutes if \v(WU {/}) - v(WU {j})\ < y for
every WcN\{iJ).

Theorem 3. Let M and y be positive numbers and let s be a positive integer.
Then there is an integer r(M,y,s) with the following property:

For any game (N,v) with an individual marginal bound of M,
and any coalition S of TV with |5| ^ s, if for each player / in S
there are at least r(M,y,s) players not in S who are y-substitutes
for /, then

|Sh(ifc,{S}) - 2 Sh(ty)| < i\S\(\S\ + \)y.
i(ES

We emphasize again that this result is independent of the framework of
technologies. It is an assertion about the Shapley value of every game.
Thus the number r(M,y,s) depends on M, on y, and on s, but not on any
underlying technology-because there isn't one. It is possible to give an
explicit bound for r(M,y,s), but it would be very messy.

Theorem 1 follows quite easily from Theorems 2 and 3. If (N,v) is a
derived game and the Shapley value does not belong to the €-core, then it
can be e-improved upon by some coalition AcN. According to Theorem
2, it can then be e/2-improved upon by some small coalition B C N. On
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the other hand, Theorem 3 tells us that I,beBSh(v9b) is nearly Sh(vB,{B}),
and individual rationality implies that Sh(vB,{B}) ̂  vB({B}) = v(B). Put-
ting these together yields a contradiction.

The proofs of Theorems 2 and 3 involve complicated combinatorial
arguments that are too lengthy to describe here. However, the intuition
underlying the proof of Theorem 3 can be exposed in a rather simple
example.

5 Example

To expose the intuition underlying Theorem 3, we present a fairly simple
but revealing example. We consider a game (7V» with two types  of
players. Because players of the same type are exact substitutes, we can
describe a coalition by a pair (x,y) of nonnegative integers, representing
the numbers of players of types 1 and 2. We suppose that, in total, there
are k players of type 1 and / players of type 2, and that the essential
coalitions are (1,0), (0,1), (1,1), and (2,1), with v(lfl) = y(0,l) = 0,
v( 1,1) = 3, and v(2,1) = 4. Other coalitions can obtain only what is achie-
vable by (optimally) subdividing into coalitions of these kinds. Explicitly,
this yields

Ay ifx>2y,
x + 2y
3x ify>x,

10
v(x,y) = <

Let Sh(*y) be the Shapley value for type / (/ = 1,2), and let Sh(i;(U),{(1,1)})
be the Shapley value of the syndicate (1,1) in the syndicate game
(̂ (1,1)̂ (1,1))- We want to see that if k, I are both large, then

To see this, we make use of the random-order interpretation of the
Shapley value. To compute Sh(i;,l), we fix a player A of type 1 and
consider all possible orderings of the total of k + / players. For each of
these orderings we assign to player A his marginal contribution to the
coalition of all players preceding him. Finally, we sum over all orderings
and divide by the number of orderings. Equivalently, we consider all
possible coalitions (x,y) of the k — 1  other players of type 1 and /players of
type 2, multiply A's marginal contribution to (x,y) by the probability that
(x,y) occurs, and sum.

Keeping in mind that A's marginal contribution to (x,y) depends only
on proportions, we are led to the data in Table 1. The data in Table 2
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Table 1. Marginal contributions of player of type 1

Proportions in
coalition (x,y)

x>2y
2y>x>y
y > x

Probability

Pi
Pi
Pi

Marginal
contribution of
type 1

0
1
3

Table 2. Marginal contributions of player of type 2

Proportions in
coalition (x,y) Probability

Marginal
contribution of
type 2

x ^ 2y + 2
x = 2y + 1
2y > x > y
y > x

Q\
Qx
Qi
Qi

4
3
2
0

Table 3. Marginal contributions of player of
syndicate (1,1)

Marginal
Proportions in contribution of
coalition (x, y) Probability syndicate (1,1)

x ^ 2y rx 4
2y > x ̂  y r2 3
y> x r, 3

reflect the information necessary to compute Sh(i;,2), and the data in
Table 3 reflect the information necessary to compute Sh(i;(11)?{(1,1)}).
Thus
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To obtain the result we want, note that px is the probability that a
coalition (x,y) drawn at random from (k— 1,/) will satisfy x > 2y, q x is the
probability that a coalition drawn at random from (kj —  1) will satisfy
x ^ 2y + 2, and rx is the probability that a coalition drawn at random
from (k—  1,1 —  1) will satisfy x > 2y. If k, I are both large, then px —
qx —  rx. Similarly, if/c, /are both large, then p2 —  q2 —  r2, p3 —  q3 —  r3, and
#i —  0. This yields

as desired.

NOTES

1 See Shapley (1964, pp. 1,7).
2 Champsaur (1975) allows for additive production.
3 Recall that the coincidence of the value allocations and competitive alloca-

tions, even in exchange economies, depends on differentiability of the utility
functions and is not generally valid without it (see Hart 1977). It is an interest-
ing open question what the analogue of differentiable utility functions would
be for large games.

4 The terms technology and pregame have been used to describe essentially the
same structure in Wooders and Zame (1984,1987a,b,c) and Kaneko and
Wooders (1985,1986). This framework is, in part, an outgrowth of an NTU
types framework introduced in Wooders (1983).

5 This describes economies with private goods or local public goods but typi-
cally not, for example, ones with pure public goods.
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CHAPTER 14

Payoffs in nonatomic economies: an
axiomatic approach

Pradeep Dubey and Abraham Neyman

1 Introduction

It has been much remarked that different solutions become equivalent in
the setting of economies in which there is "perfect competition"; that is,
no individual can affect the overall outcome. The conjecture that the core
coincides with competitive (Walras) allocations was made as far back as
1881 by Edgeworth [11]. His insight has been confirmed in increasing
generality in a series of papers1 [20,9,2,14,13,7,8,1] over the last three
decades. Another line of inquiry originated with the recent introduction
of a value for games by Shapley [ 17]. It was found that this also coincided
with the above two [19,6,3].

The equivalence phenomenon is striking in view of the fact that these
solutions are posited on entirely different grounds. If we restrict ourselves
to smooth, transferable utilities, then the result is even sharper: not only
do the solutions coincide, but they are also unique (i.e., consist of a single
payoff). Our aim here is to give another view of this "coincident payoff"
by putting it on an axiomatic foundation. As an upshot of our approach,
we get a "metaequivalence" theorem, by way of a categorization: Any
solution coincides with this payoff if and only if it satisfies our axioms.

The transferable utility assumption is undoubtedly restrictive. But it
has a good track record of being the precursor of the general analysis (e.g.,
[6] before [3]; [17] before [18], [20] before [9]; indeed, our approach can
also be extended to nontransferable utilities [10b]). However, we confine
ourselves here to the transferable case, because it makes a cleaner presen-
tation and is, more or less, the heart of the matter.

Denote by M the class of nonatomic economies with transferable and
differentiable utilities. Any such economy can also be viewed as a produc-

But for some minor modifications, this material is taken from [10a].
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tive economy with a single consumable output. (See the discussion in
Chapter 6 of [6].) We will adopt the production interpretation for most of
our discussion. But by thinking of the output as "utiles," everything we
say can be translated into the exchange version as well.

The problem of determining payoffs (final distributions of the output)
in these economies has been approached from many sides. Let us briefly
recount some of them. First there is the classical notion of a competitive
payoff that depends on prices that clear all markets (i.e., equate supply
and demand). Equally well known is the concept of the core. It is defined
by the condition that no coalition of agents in the economy can, on its
own, improve what it gets. (See Chapter 6 of [6] for a historical survey and
detailed discussion of these concepts.) Other solutions from game theory
have also been applied to the economic model. The bargaining set
[4,12,15], which contains the core, is based upon a weaker notion of
stability: Each "objection" can be ruled out by a "counterobjection." (In
this terminology there can be a fortiori no objection to any payoff in the
core.) Then there is the concept of the nucleolus [16]. Roughly, what is
involved is minimizing the "dissatisfaction" of the most dissatisfied coali-
tion, where dissatisfaction is measured by the difference between what a
coalition "could" get and what it is getting. Finally, we have the Shapley
value [17], which has been the focus of active, recent research (and was the
starting point of this inquiry as well). It is a mapping that assigns to each
player of a game a number that purports to represent what he would be
willing to pay in order to participate; it is uniquely determined by certain
plausible conditions for all finite games [17] and a large class of non-
atomic games (pNA) that include the economies in M [6]. The value thus
obtained can also be interpreted from a complementary standpoint; it
assigns to a player the average of his marginal contributions to coalitions
he may join (in a model of random ordering of the players).

These solutions are in general quite different from each other. It is
remarkable that they become equivalent on M. The question is: What are
the crucial properties that are common across the solutions and on which,
at bottom, their equivalence depends? To set the stage for our analysis, we
take a map G on Mthat maps each economy minMtoa subset G(m) of
payoffs in m. Then we look for an irreducible list of axioms on G that will
uniquely categorize G as the coincident core-value-Walras- . . . -corre-
spondence. Four axioms are presented that accomplish the job.

The theorem we will state may be viewed as a metaequivalence
theorem. For instance, the equivalence of core and competitive payoffs
follows from our result by simply checking that both the map that takes
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each m in M to its core and the map that takes each m in M to its
competitive payoffs satisfy our axioms. That the value also coincides with
the core and competitive payoff is immediate, because it satisfies even
stronger axioms [6, chap. 1]. In general, if any solution is a candidate for
equivalence, it is both necessary and sufficient that it satisfy our axioms.

In our axioms we try to identify the minimal common characteristics
of solutions that hold not only on Mbut also when the set of agents is finite
or when utilities are not differentiate (or both). The axioms are therefore
cast in as weak a form as possible. They turn out to be categorical (i.e.,
imply a unique solution) only on M (i.e., only in conjunction with non-
atomicity and differentiability). Besides the aesthetic value of the weak
form, there is also a pragmatic reason involved. In this form the truth of
the axioms can be easily verified for a given solution concept, and thus it
provides an effective format for discussing equivalence. Once a solution
obeys the axioms, then an implication of our theorem is that on M it
coincides with the value and therefore must obey the much stronger
axioms of the value. But these strong axioms are often not easy to verify
directly. An example is provided by the core for which additivity on Mis
not obvious (and in fact is not true outside of M) but separability is.

The axioms will be spelled out precisely in Section 3, but we present
them at an intuitive level now. Denote the space of agents by [ T,^,//]. Here
T is the set of agents, <g the cr-algebra of coalitions, and // a nonatomic
population measure on [7V#]. An economy is a pair of measurable func-
tions (a,u), where a: T-+ R+ specifies the initial endowment of the n
resource commodities, and u: TXR1^>R+ the production (alterna-
tively, utility) functions. Mis the set of all pairs (a,u), subject to certain
conditions on a and u (see Section 2). For any m in M we can define an
associated characteristic function (or game) vm: % —•  R+, which assigns to
each coalition the maximum output that it could achieve by a reallocation
of the resources of its own members; that is,

vm(S) = max I J u(tMt)) d^{t): J x(t) dp = J a(t) d/i, x: T-*R»A.

Payoffs in m G Mean be thought of as integrable functions from Tto
R+, and in turn can be identified with nonnegative countably additive
measures on (T,^) that are absolutely continuous with respect to//. But let
us make only the assumptions that they lie in FA, the collection of func-
tions from % to R that are finitely additive and bounded. Let P(FA) be the
set of all subsets of FA. Then any assignment of payoffs to economies may
be represented by a map 0: M—• P(FA).
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We will impose four axioms on (f>: inessential economy, anonymity,
separability, and continuity. Our main result is that there is one, and only
one, map that satisfies these axioms: It maps m into the (unique) coinci-
dent payoff of m. An immediate corollary to this is useful to keep in mind
for the metaequivalence aspect of the result. Given two solutions (f)x:
Af-* P(FA) and </>2: Af-* P(FA), call $2 a cover of <f>x if (^(m) C $2(m)
for all m in M. Our result implies that if a solution is nonempty-valued
and has a cover that satisfies the axioms, then it must also agree on M with
the coincident payoff. Thus even though competitive payoffs, in general,
violate continuity and the nucleolus violates separability (when the agent
space is finite), their equivalence on M is ensured because the core is
readily seen to be a satisfactory cover for both.

The inessential economy axiom has to do with economies in which
agents have no motivation to collude in order to increase the output.
Indeed, suppose that m in Afis such that each coalition S G <£ achieves its
maximum vm(S) uniquely by sticking to its allocation of resources. Then
one would expect that no exchange, either of the inputs or the output, will
occur. And this is just what the axiom says.

The anonymity axiom asserts that the labels of the agents do not
matter. If we were to relabel them, this would have the effect of relabeling
their payoffs accordingly.

These two axioms hold widely for most solutions, not only on M, but in
general.

The separability axiom considers an economy made up of two sepa-
rate, noninteracting parts. Take m' and m" in M. Let us construct the
economy m by, as it were, "collating" m' and m". Each agent in m
possesses the same initial resources that he had in m' and in m"; also he
has access to both his production functions from m' and rn". However,
suppose that the input commodities of m' and m" are completely disjoint:
Those in mf cannot be used for production in m'\ and vice versa (though
the two economies produce the same output). Now consider any coalition
S that forms in m. Each agent in s can send his black-hatted (white-hatted)
representative to m' (m"). If these two types of representatives separately
maximize the output in m' and m", then the sum of what they get back is
precisely what S can obtain in m\ that is, vm(S) = vm,(S) + vm,,(S) for all
S G <g. Thus rn, in essence, consists of operating in mf and in m" indepen-
dently of each other. We require that in this case if we put together a payoff
in mr with one in m", the outcome should be feasible in m. However, we
do not exclude the possibility that other payoffs may also be obtained in
m. In symbols, (/>(ra') + 0(ra") C </>(m). This is related to the additivity
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axiom for the value, but it is so watered down as to apply to the core even
when the economy is finite (in which case additivity, <p(m) = 0(m') +
<f)(m"), no longer holds). Clearly it applies always to the value and to
competitive payoffs; indeed, both of these satisfy additivity.

The continuity axioms say that if the distance between two economies
is small, then so is that between their sets of payoffs. It is intimately bound
up with the notion of distance. The one we employ declares the distance
between two economies to be zero if they yield the same characteristic
function. Thus the payoffs depend on the characteristic function alone;
in other words, they depend on the data (a,u) of the economy only in-
sofar as it shows up in the net production of the coalitions [if vm = vm,,
4>{m) = </>(ra')]. Modulo this, however, our continuity requirement is
weak. We choose a "large" norm on the characteristic functions (the
bounded variation norm) and a "small" one on P(FA) (the Hausdorff
distance in the bounded variation norm, which is equivalent in FA to the
maximum norm).

Our axiomatic approach is akin to that of [6] and invites immediate
comparison. We begin with a point-to-set map (from M to FA). That
4>(m) is a nonempty one-element set of FA is a deduction, not a postulate,
in our case. Also note that we do not require that 4>(m) consist of efficient
payoffs; this, too, is deduced. Separability reduces to additivity if the
solution is single-valued but not otherwise. Clearly separability is weaker
than the additivity required in [6]. Continuity is closely related to the
positivity axioms of [6]. Finally, we emphasize that the axioms are in-
voked on the set of games that arise from M alone. This set is much
smaller than the general space pNA of [6]. (Its complement in /?NA is
open and dense.) Thus the uniqueness of 0 does become an issue. (Exis-
tence, on the other hand, is no problem: Simply restrict the value on/?NA
to our domain.) The very question we set out with, "What are payoffs in
nonatomic economies?" makes it desirable that we exclude any reference
to games that do not arise from M. Thus we stay within M throughout and
give a self-contained analysis of it. Each axiom is cast in an economic
framework and can be interpreted therein. It is fortunate that even though
the scope of the axioms is diminished by this restriction of the domain,
they nevertheless are sufficiently far-reaching to determine a unique map.

Our result also sheds new light on the nature of competitive (Walras)
equilibrium itself. The direct definition of this (see the next section, and
Chapter 6 of [6]) is "local." It is based on a model of individualistic
optimization of trade in the presence of complete markets with fixed
prices, and it refers only to the data (a,u) of a single, given economy. But
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because our axioms categorize it, they also serve as a definition of the
Walras correspondence on M. Here a space of economies is needed, and
the axioms express "global" properties in which two or more markets are
compared with each other. In this sense our theorem provides a dual,
global view of Walras equilibrium. The spirit of our axioms is quite
different from the Walrasian. Nowhere is the existence of prices "put
into" the axioms. Nor is it postulated that traders behave like individual
optimizers. Nor indeed is any notion of equilibrium or stability invoked.

What we do is tantamount to value theory on M. It is just that, given the
special economic structure of M, one can water down the value axioms in
such a way as to bring within their ambit various other solution concepts.
This, in turn, gives insight into the equivalence phenomenon on M.

2 Nonatomic economies with transferable, differentiate
utilities

Let us recall more precisely the economic model presented in Chapter 6 of
[6]. We begin with a measure space \T^,JX\. Tis the set of agents, ^ the
a-algebra of coalitions, and// the population measure. [ r,<£] is assumed to
be isomorphic to the closed unit interval [0,1] with its Borel sets, // is a
finite, cr-additive, nonnegative, and nonatomic measure, and we assume
(w.l.o.g.)that//(r)= 1.

Each agent / G Tis characterized by an initial endowment of resources,
a1 G R+ and a production (utility) function uu. R+ —>  R. Here R$ is the
nonnegative orthant of the euclidean space Rn, and n is the number of
(resource) commodities. Denoting the7'th component of x E Rn by xj9 a)
is the quantity of the y'th commodity held by agent t, and u\x) is the
amount of output he can produce using x. Thus, the economy consists of
the pair of functions (a,u), where a: r—>  R%_, u: TX R%_ —»  R [note the
identifications a(t) = al\ u(t,x) = u\x)].

To spell out the conditions on (a,u), we need some additional notation.
For x, y in R\, say x = y(x ^ y, x > y) when Xj = y^Xj ̂  yj9 Xj > yj) for
all 1 <7 < n\ x > y when x ^ y, but not x = y. Put ||JC|| = maxfljc,-!: 1 ^
j ^ n). Also note that R+ can be regarded as a measurable space with its
Borel sets. We will require that (a,u) satisfy the following:

(1) a: T -* Rl is integrable.
(2) u: TX R%_ —>  R is measurable, where TX R$ is equipped with

the product cr-field ^ X 2?, where B denotes the Borel sets of R^.



Payoffs in nonatomic economies 213

(3) u(x) = o(||x||), as ||x|| —•  oo? integrably in t\ that is, for every e > 0
there is an integrable function rj: T-* R such that |M'(JC)| ̂  €||JC||
whenever | |x| | > t](t).

For almost all21 G T:

(4) a' > 0 (where, without confusion, 0 also stands for the origin of
R» +).

(5) xl is continuous and increasing [i.e., x ^ y implies u\x) > u\y)].
(6) M'(0) = 0.
(7) The partial derivative du'/dXj exists and is continuous at each

point where Xj > 0.

The collection of all pairs (a, u) that satisfy (1) - (7) will be called M\ that
is, we keep the space [T^^ju] of agents fixed but vary their characteristics
(a,u); in particular, the number n of resource commodities can be any
positive integer 1, 2, 3, . . . . As we said in the introduction, to each
m = (a,u) E M, we associate a game or characteristic function vm: % —»R
by

vm(S) = max I j u'ix1) dfi{t): x:T-+R»+, x(S) = a(S)\. (8)

(For an integrable function y: T^>R$, y(S) abbreviates Js y d/i.) That
this max is attained is essentially the main theorem in [5].

FA is the collection of all functions from ^ to R that are finitely additive
and bounded, and P(¥A) is the set of  all subsets of FA. We are going to
characterize a map (f>\ M—• P(FA) via axioms. It will turn out that, for
any m G M, <f)(m) is the set of competitive payoffs in m. Recall that a pair
(p,x), where x\T-+ R\ is an integrable function with x{ T) = a( T) and/? a
price vector in R+, is called a transferable utility competitive equilibrium
(t.u.c.e.) of the economy (a,u) if, for almost all t G T,

u'(y) ~ P(y ~ a1) < u\xl) - p(x< - a')

for any y in R^; the corresponding competitive payoff is the measure vPfX

defined by

»  = f [M'(XO -
Js

for SEL^. If we denote by y/(m) the set of competitive payoffs in m, then
under assumptions (l)-(7), y/(m) is a singleton for any mE.M. (See
Proposition 32.3 in [6].)
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3 Statement of the theorem

In this section we prepare for and state the four axioms and our main
result.

Axiom 1 (Inessential economy). Suppose m = (a,u) in Mis such that, for
each nonnull set S G <g, vm(S) is achieved uniquely by a: S—>R$  [i.e.,
a: S —* R+ is  the unique solution to the maximization problem (8)]. Then
4>(m) consists of just the payoff y given by y(S) = Js uXa') dju(t) for SE.<€.

Let QM be the set of all automorphisms of [T,<€] that preserve the
measure//; that is, Q^ consists of bimeasurable bijections 6: T—> Tsuch
thaX/i(6(S)) = ju(S) for all S G <g. For m = (a,u) G Mand 6 G QM, define
dm = {Oafiu) by (Oa)(t) = a(0(t)), (6u)(t,x) = u(6(t\x). Also, for i; G ^ F
and 6 G C define Ov.^^R by (0i>)(Sf) = r(0(5)); and for ̂  C BV define
(9y4 = [Ov: v G ^ } .

Axiom 2 (Anonymity). For any m in Af and 0 in QM, 4>(6m) = 6(f)(m).

Because A C FA implies 6A C FA and mGM implies 6m G M, the
axiom makes sense.

For the separability axiom we need to define the disjoint sum of two
economies. Let m = (a,u) and m' = (a',u'), where a: T-+Rl+ and
a'\ T-*Rk+. Put m®m' = (a@ a',u® u')9 where (a @ a'): T-
and (u 0 u'): T X i^+ * -* i? are given by

(u 0 */')(',(*,}')) = u(t,x) +

(For* G Rl
+andyG R^, (x,y) is the vector R!fk whose first /components

are according to x, and the last k are according to y.) Note that
m e m ' e M i f m G M a n d m' EM. Also note that ^ + B G P(FA)
if ^GP(FA) and £GP(FA), where we define

B}.

Axiom 3 (Separability). For any m and m' in M, 4>(m) + cf)(m') C
0(m 0 m'\

The continuity axiom is stated in terms of the bounded variation norm
on set functions. A set function v is a map from ^ to R such that v(0) = 0.
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It is called monotonic if TC S implies v(S) ^ v(T). The difference be-
tween two monotonic set functions is said to be of bounded variation. Let
BV be the real vector space of all set functions of bounded variation. For
v G BV define the norm ||i?|| of v by

\\v\\ = in

where the infimum ranges over all monotonic functions u and w such that
v= u —  w.

Each characteristic function vm of an economy m in M is monotonic
and thus is in BV. Hence, we can introduce the distance d on M by
d(m,m') = \\vm - vm,\\. Also observe that FA C BV.For^and^inP(FA),
let h(A,B) be the Hausdorff distance between A and B\ that is, h(A,B) =
inf{e G R+: A C B€ and B C A% where A€ is the set {a' G FA: \\a -
a'|| < e for some a G ^4), and inf 0 = o°. We are ready for Axiom 4.

Axiom 4 (Continuity). There is a constant AT such that h{(f)(m),(j>{mf)) <
Kd(m,m').

Our main result is the next theorem.

Theorem. There is one, and only one, map 0: Af —>  P(FA) that satisfies
Axioms 1 -4 . It assigns to each m in Mthe set consisting of the competi-
tive payoff of m.

For the proof and other details see [10a].

NOTES

1 This list is by no means exhaustive.
2 This is true for all, except perhaps a //-null set of agents.
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CHAPTER 15

Values of smooth nonatomic games: the
method of multilinear approximation

Dov Monderer and Abraham Neyman

1 Introduction

In their book Values of Non-Atomic Games, Aumann and Shapley [1]
define the value for spaces of nonatomic games as a map from the space of
games into bounded finitely additive games that satisfies a list of plausible
axioms: linearity, symmetry, positivity, and efficiency. One of the themes
of the theory of values is to demonstrate that on given spaces of games this
list of plausible axioms determines the value uniquely. One of the spaces
of games that have been extensively studied is/?NA, which is the closure of
the linear space generated by the polynomials of nonatomic measures.
Theorem B of [ 1 ] asserts that a unique value 0 exists on pNA and that
||01| = 1. This chapter introduces a canonical way to approximate games
inpNA by games in/?NA that are "identified" with finite games. These are
the multilinear nonatomic games-that is, games v of the form v = F °
(//i,//2? - - - J*n)i where Fis a multilinear function and/il9/i29 ...,/*„
are mutually singular nonatomic measures.

The approximation theorem yields short proofs to classic results, such
as the uniqueness of the Aumann-Shapley value on pNA and the exis-
tence of the asymptotic value on pNA (see [1, Theorem F]), as well as
short proofs for some newer results such as the uniqueness of the// value
on/?NA(//) (see [4]). We also demonstrate the usefulness of our method by
proving a generalization to pNA of Young's characterization [6 and
Chapter 17 this volume] of the Shapley value without the linearity axiom,
and by generalizing Young's characterization [7] of the Aumann-Shapley
price mechanism. In the last chapter we use the ideas behind the multilin-
ear approximation in order to supply an elementary proof to a classic
result in analysis: the Weierstrass approximation theorem.

This work was supported by National Science Foundation Grant DMS 8705294, and by
Israel-US Binational Science Foundation Grant 8400201.
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2 Preliminaries

We follow basically the terminology and notations of Aumann and Shap-
ley [1]. Let (/,<£) be a fixed standard measurable space (i.e., a measurable
space isomorphic to ([0,1 ],flB), where ̂  denotes the Borel field in [0,1 ]). A
game is a real-valued function v on <g with v(0) = 0. A game v is mono-
tonic if v(S U I ) > v(S) for all S and r in <g. A game i; has a bounded
variation if it is the difference of two monotonic games. The variation ||t;||
ofsuchgameis||i;|| = inf{w(7) + w(/)}, where the infimum ranges over all
monotonic games u and w for which v=w—u. The space B  V of all games
with bounded variation is a Banach algebra (see [ 1, sect. 4]). The space of
all finitely additive games in BV is denoted by FA, and the subspace of all
nonatomic measures in FA is denoted by NA. The closed Banach algebra
generated by NA is denoted by pNA. Equivalently, /?NA is the closed
linear subspace of B V generated by the powers of the nonatomic probabil-
ity measures. Let Q be a subset of BV. The set of monotonic games in Q is
denoted by Q+. A map of Q into BV is called positive if it maps Q+ into
BV+. An automorphism of (1,^) is 3.1-1 map 6 of/ onto itself such that for
every S C /, S E <# iff 6(S) E <€. The group of all automorphisms is de-
noted by ̂ . Each 6 in ^ induces a linear map 6^ of BV onto itself, defined
by (d^v^S) = v(9S). A subset (? of BV is called symmetric ifO^QcQ for
all 6 E ^. A map 0 of a symmetric subset Q of BV into BV is called
symmetric if, for every 6 E ^, 0̂  ° (f) = </> ° 0^. A map 0 of a subset Q of
BV into BV is called efficient if, for every vEQ, (4>V)(I) = v(I). Let Q be a
symmetric subspace of BV. A va/w£ on Q is a linear, positive, efficient, and
symmetric map of Q into FA. Let Q be a subspace of BV. (2 is an internal
space if for every i 'GQ and every e > 0 there exist u, w E Q+ with t> =
w —  u and ||z;|| ^ vv(/) 4- w(7) —  e. The importance of internal spaces in
the theory of values follows from [ 1, Propositions 4.7,4.12], where it was
proven that every linear, positive, efficient map of an internal subspace of
BV into FA is continuous and that the closure of an internal space is
internal. These results provide a very efficient tool for deriving unique-
ness theorems. One of the fundamental results of the theory of values of
nonatomic games [1, Theorem B] is the existence-of a unique value on
pNA. The uniqueness of the value on a dense subspace ofpNA follows
from [1, Proposition 6.1], and the uniqueness on /?NA is obtained by
showing that /?NA is an internal space.

Let n be a finite subfield of c€. The set of all atoms of II is denoted by n.
The power set 2n ofn is identified naturally with II, and thus a finite game
on the players' set n is identified with a function vv: n —»R,  with
w(0) = 0. The restriction of v E BV to II is denoted by vn. An admissible
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sequence of finite fields is an increasing sequence (IlX=i of finite sub-
fields of <£ such that U~=lnn generates <€. For every game w of finitely
many players, we denote by y/w the Shapley value of w considered as a
measure on the set of players. A game v has an asymptotic value if there
exists a game (f>v such that, for every admissible sequence of finite fields
(I1X=1 and every S in n i ? limll_« 0^n#l(S') exists and equals </)v(S). It
follows that (f)v is finitely additive, and it is called the asymptotic value ofv.
The set of all games in BV having an asymptotic value is denoted by
ASYMP. Aumann and Shapley [ 1, Theorem F] have shown that ASYMP
is a linear, symmetric, closed subspace of BV, and that the operator (/> that
associates to each v its asymptotic value is a value on ASYMP with
norm 1.

3 Multilinear nonatomic games and finite games

For every finite field I l C ^ w e denote by n the set of atoms of n .
be the space of all finite games on the players' set n. The power set 2n of n is
naturally identified with EL Thus, a game w in G(H) is identified with a
function w: Yl —>  R satisfying w(0) = 0. The space of all additive games
in G(Tl) is denoted by AG(H). The set of all monotonic games in a subset
HofG(U) is denoted by H+. Let w G G(U). Define w+ and w~ in G(n)+
such that w = w+ —  w~ in the following way:

w+(S) = max ]T max{w(S0 U Sx U • • •  U St)

where n is the number of elements in n, So = 0 , and the outer maximum
ranges over all possible orders Sl9 S2, . . . , ^ o f { T £ n : T c S ) . The
variation norm of w e G(I1) is given by || w|| = inf{w2(/) + w^/)}, where
the infimum ranges over all wx, w2 G G(Il)+ for which w = w2 —  wx.
Actually, \\w\\ = w+(I) + w~(I). Let Tn be the map from the set of all
games into G(Yl) given by Tnv = vn, where vn is the restriction to n ofv.
Note that Tn is linear, efficient, positive, and ||rni>|| ̂  ||v|| for every
i;GBV.

A carrier of a game v is a set V in ^ such that v(S) = v(S n I') for every
S G <€. Let A be a probability measure in NA. The set of all games v in pNA
having the property that every carrier of A is a carrier of v is denoted by
pNA(A). Equivalently, /?NA(A) is the closed algebra generated by NA(A),
where NA(A) denotes the space of all measures in NA that are absolutely
continuous with respect to A.

Given a nonatomic probability measure A and a finite field I l C ^ with
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the set of atoms n = {Sl9S2, . . . ,Sn) (1 < / <j ^ n => St =£ £}), denote
the restriction of A to Sh 1 < z < «, by Xs. = A,-. Let ML(A,I~I) be the set of
all games v having the form v = F ° (X{ ,A2, . . . ,AJ, where F is a multi-
linear function (see [3, and Owen Chapter 10 this volume]) on
11?.![0^(5/)]-the range of the vector measure {AX,A2, • • • >An). Note
that ML(A,11) is a linear space of games and that every game v G ML(A,II)
is a polynomial in the A/s; therefore ML(A,II) C pNA(A) C pNA. Also
note that, for every u,vE. ML(A,n), u = v iff Tnu = Tnv. That is, Tn is
1-1 on ML(A,FI). Let GX(U) be the set of all games w in G(ll) having the
property that w(S) = w(T) whenever A(5 A I ) = 0, that is, every atom in
n that is a null set for A is a null player for w. The space of all additive games
in GX(U) is denoted by AGx{Yl). For every game w in GX(H) there exists a
unique game v £ ML(A,11) with r n f = w (just take Fto be the multilin-
ear function for which FiA^S), . . . ,AW(5)) = w(5t)forall5'G 11). Thus,
the map Tn from ML(A,n) onto Gx(Tl) has an inverse rA :GA(n)->
ML(A,n). Moreover, v G ML(A,n)+ iff Tnv G GA(n)+. Therefore Tx is
also positive. Thus, both Tn and TA are linear, positive, efficient opera-
tors. Let v G ML(A,F1) and set w = Tnv. Because w = vv+ — w~ with
|| w|| = w+(I) + w'(I), we have i; = T\w+) - T\w~), which implies that

H0II < r^(w+)(/) + T\w-)(i) = ^+(/) + w(/) = INI = nrni>||.
Because we also have || Tni;|| < ||i;||, we get that Tn, and therefore, TA, is an
isometry. Finally, because we have shown that \\v\\= Tx(w+)(I) +
T\w~)(I), ML(A,FI) is an internal space.

Altogether, the following proposition holds.

Proposition 1.

(i) ML(A,n)C/?NA(A).
(ii) Tn: ML(A,11) —» GX(U) is a linear, efficient, positive isometry.

(iii) Tk\ Gk(Yl) —> ML(A,I1) is a linear, efficient, positive isometry.
(iv) Tn ° Tk is the identity map on GA(I1), and TA ° Tn is the identity

map on ML(A,I1).
(v) ML(A,n) is internal. Moreover, every v G ML(A,11) is the differ-

ence of two monotonic games vx and v2 in ML(A,n) with ||z;|| =
vx(I) +

Observe that Tx maps AGX(U) into NA n ML(A,n). Therefore for
every function/: ML(A,n) —> NA D ML(A,I1) there exists a unique func-
tion g: Gx(Il) -^ AGx(Tl) that makes diagram (Dl) commutative:
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^ NA n

-^U AGX{U) (Dl)

That is, £ = Tn ° / ° T\
By (iv) we also get that for every g:Gx(U) -*AGX(T1) there exists a

unique / : ML(A,I~I) -* NA n ML(AJl) that makes (Dl) commutative.
That is, / = Tk ° g ° Tn. Alternatively, / i s the unique function that
makes diagram (D2) commutative:

ML(A,n) — NA  H ML(/l,n)

—  AGX(U) (D2)

Let (/) denote the Aumann-Shapley value on pNA, and let y/ denote
the Shapley value for finite games. It is easy to verify that </> maps ML(A,I1)
into NA D ML(A,n), that y/ maps Gx(Il) into AGX(U), and that the dia-
grams (D1) and (D2) are commutative with/= </> and g= y/ (e.g., use [5]
and [1, note 1 on p. 166]). This gives us a very efficient tool to derive
uniqueness theorems.

Proposition 2. Let <f>:pNA —>  FA be a function that maps ML(A,II) into
NA n ML(A,I~I), where A is a nonatomic probability measure and II C ^
is a finite field. Define y>: Gx(Il) -> AGX(U) such that (Dl) will be com-
mutative with/= <f>andg= y/. Then if y/ is the Shapley value on Gx( II), <f>
equals the Aumann-Shapley value on ML(A,n).

Given any finite field II C <£ and a nonatomic probability measure A,
we denote by E^ the map from pNA(A) onto ML(A,I1) given by E^v =
T\Tnv). Note that Eh is a linear, efficient, positive projection onto
ML(A,I1), and \\Efa\\ = 1. In particular, diagram (D3) (in which / denotes
the identity map) is commutative:

ML(A,n) - ^ ML(A,n) (D3)
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4 The approximation theorem

We start with an inequality that holds in any normed algebra (X, || ||); that
is, ||xy|| < ||x|| \\y\\ for every x, y, E X. Let x{, x2, . . . , xn be fixed ele-
ments in X. For every / = (ji,j2, . . . ,A)E{1,2, . . . ,n)k denote the
product nf=1x7. = xjxxh9 . . . , xA by x(J). It follows that

(xx+x2+ ' - +xnY<= 2 XW-

Let D be the set of all / G (1,2, . . . ,ri)k such that for every 1 < / <
m < kJt ¥*  j m , and let ̂  be the set of all / E {1,2, . . . ,«}*  that are not in
D.

Lemma 3. For every xx, x2, . . . , xw in a normed algebra and for every
integer fc > 1 the following holds:

/ \k~l

( max M)(2 lWl)
i-l, . . .

Proof: For every 1 < / < « let

Then B^\J%xBl. For every 1 < / < m < fc let B]"1 = {J<E Bl:ji
./„ = /}. Then

I i - 1 II

Therefore,

\\JGB,

Hence,

/k\ II n \\k-2 n

j&B II / - lH/et f , M \ ^ / lli=Ti II i^\
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Because
n II n ||A:-2 / n \ k - 2

<( max IWD2W and £ x, ^ W
i - i , . . . ,/i <-i H / - 1 I' v-i '

The result follows. •

Theorem 4. Let (Ilw)"=1 be an admissible sequence of finite fields. Then
for every v G pNA(A), lim ̂ . i ^ i ; = i; (in the bounded variation norm).

Proof: Because all operators E^ are linear with norm 1, the space Q
consisting of all games v E /?NA(A) for which E^v n^oo> v is a closed
subspace of pNA(X). Let y be a probability measure in ML(A,nm). We will
show that for every k ^ l j ^ G Q .

Because ML(A,nj c ML(A,Iln) for every « > m j E ML(A,n n) for
every w > m, so ^nn7 = 7 f°r every n> m, which proves our claim for
k= 1. As for k > 1, for every n> m and every J=(Al ,A2, . . . ,̂ 4̂ ) ^
7r J let y(J) = nf= j yA., where 7^ denotes the restriction of y XoA. Obviously,
y(J) G ML(A,nw) whenever At ¥=  Aj for every 1 < / <y < k. Because y =
^A<ETIJA> w e c a n u se Lemma 3 to prove the existence of un G
such that

" un\\ ^ (kA (max \\yA\\) j ' = ( ! ) max y(^) ^ p ^ 0,

because y is a nonatomic probability measure on a standard measurable
space.

Obviously un^Q for every n> m (because Eh un = un for every
p > n). Therefore yk G 2 f°r every /: > 1.

Finally, since U ^ n , , is dense in % then NA D (U~=1ML(/l,nw)) is
dense in the space of all measures which are absolutely continuous w.r.t. A,
and sincepNA(A) is a Banach algebra it is the closed algebra generated by
NA n (U^=1ML(/l,nrt)). This completes the proof. •

5 Internality

Let X be a probability measure in NA, and let (IIX=i be an admissible
sequence of finite fields. By (v) ML(A,nw) is internal for every n > 1.
Because ML(A,nn) D ML(A,nj for every n>m, U ^ M L ^ I l ) , , is a lin-
ear space; and because the union of internal spaces is an internal space (if
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it is linear), U~=1ML(A,nn) is an internal space [moreover, for every v in
U~=1ML(/l,nw) there exist u,w<E (U^=1ML(A,nj)+ such that v=w-u
and ||z;|| = w(/) + u(I)]. Theorem 4 implies that/?NA(A) is the closure of
U~=1ML(A,nj, and therefore/?NA(A) is internal by [1, Proposition 4.12].
Alternatively, for every v E /?NA(A) and every e > 0 construct a sequence
of games (vk)k=l in ML(A,n^) (where (nk) is an increasing sequence) with
\\v —  vk\\ < e2~k~l for every k > 1. Let v0 = 0. For every k > 1 let f̂  —
vk_! = wfc —  uk, where uk and wk are monotonic games in ML(kJln) with
l l ^ - ^ - i l l = ^ ( / ) + ^ ( / ) . Let w = ^ = 1 ^ and u = 2°k°=luk. Then
M, wG/?NA(A)+ (because for every k> 1, M^/) + wfc(/) < e2"fc +

; = H>-M, and

2
A : = l

) + (7) + 2 ( ( / ) + (/)) |||| + e.

Because pNA = UA/?NA(A), it is also internal.

6 The uniqueness of the value

The uniqueness of the Aumann-Shapley value on pNA is mainly the
consequence of the internality of pNA that was proved in the previous
section. However, the uniqueness of the k value onpNA(A), which cannot
be based on internality observations alone, can also be derived by the
methods developed here.

Let A be a nonatomic probability measure. A set Q of games is A-sym-
metric if Q%Q C Q for every automorphism 6 with Q^X = A. Let Q be a
A-symmetric set of games. A map </> from Q into BV is A-symmetric if
#* ° 0 = 0 ° #* for every automorphism 0 that preserves A. It satisfies the
dummy axiom if 4>v(Sc) = 0 whenever S is a carrier of v.

Theorem (Monderer [4]). There exists a unique linear A-symmetric posi-
tive efficient operator (/> :pNA(A) —>  FA that satisfies the dummy axiom.
It is the restriction to pNA(A) of the Aumann-Shapley value (/>
on /?NA.

Proof: Let n C ^ be a finite field with k{A) = k(B) = l/#n for every two
atoms A, B Gn. Note that for every v E ML(A,I1), 6%v = v for every
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automorphism 6 of (/,<£) that preserves the measure X and satisfies 9S = S
for every S E n. Therefore, by a slight change in the proof of [ 1, Proposi-
tion 6.1 ] (using the A-symmetry of 0), we get that, for every v E ML(A,I1),
4>v is a linear combination of the measures XA, A ELn. Hence, <j>v E
NA n ML(A,I1). Let ^ : GA(n) -> ^ ( 1 1 ) be the function that makes the
diagram D4 commutative:

ML(A,n) -£-* NA n ML(A,n)

-*U AGX(U) (D4)

Note that y/ satisfies the Shapley value axioms on GA(Tl), so, by Proposi-
tion 2, </> = 0 on ML(A,n). Therefore, </> = 0 on U^ML^I l , , ) , where
(nw)"=1 is any admissible sequence of finite fields with X(A) = l/#nn for
every atom A of Tln. That is, 0 and (f> coincide on a dense subset of
/?NA(A). Because /?NA(A) is internal and </> is linear and positive, 0 is
continuous and thus coincides with (f> on all of /?NA(A). •

7 The asymptotic value on /JNA

In this section we will show that the asymptotic value exists in pNA. We
will show that the asymptotic value of each v E pNA equals its Aumann -
Shapley value. Let vEpNA, let (n j " r a l be an admissible sequence of
finite fields, and let TG F^. We have to show that

lim (y/vnm(T)-<f)v(T)) = 0.
m—*°°

Note that there exists a probability measure A E NA for which v E
pNA(A). Also note that for every u E ML(A,nj, y/uUn(S) = <f>u(S) for
every S E Un. In particular, y/unn(T) = <f>u(T). Finally, recall that £"^w
maps pNA(A) into ML(A,riw). Hence,

\(t>(E*Umv)(T) - cf>v(T)\.

Because for every w E BV, ||wnm|| ̂  ||w|| and ||^|| = \\<f>\\ = 1, we deduce
from the approximation theorem that

- (f>v(T)\ < 2\\v - ^ r t l - — ^ 0.
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8 Characterization of the Aumann-Shapley value without the
linearity axiom

The Aumann-Shapley value <f> on /?NA is the unique linear, positive,
efficient, and symmetric map from pNA to FA. It turns out that the value
satisfies additional desirable properties like continuity, <fiju= ju for every
fi E NA, and stronger versions of positivity. One of the stronger versions
of positivity will be called strong positivity: Let Q C BV. A map
<f>:Q-* FA is strongly positive if<f>v(S) ^ (f)u(S) whenever u,v^Q a n d

v(TU S') - v(T) > u(TU S") - u(T)

for every S' CS and T in <€. Strong positivity is a desirable property for
values, and it is satisfied by the value on pNA as well as by any other
known nonpathological value. The following theorem asserts that strong
positivity and continuity can replace positivity and linearity in the charac-
terization of the value on pNA.

Theorem 5. Any symmetric, efficient, strongly positive, and continuous
map from pNA to FA is the Aumann-Shapley value.

Proof: Let </>:/?NA—>FA be a map satisfying the conditions of the
theorem. Denote by <fi the Aumann-Shapley value on pNA. In order to
prove that (/> = </) it suffices to prove that they coincide on pNA(X) for
every probability measure X E NA. Let then A be a fixed arbitrary measure
in NA. Because </> and 0 are continuous, it suffices to prove that (f> = 0 on
ML(A,I1) for every finite field II C c€. Because <$> is symmetric, it maps
ML(A,I1) into NA n ML(A,I1) (we have already proved a similar claim in
the proof of the theorem in Section 6). Let ^/: 6^(11) —•  AGk(Yl) be the
function that makes diagram (D4) commutative. Obviously, y) is a sym-
metric and efficient map. We will show that

y/u(A)>\J/w{A) (5.1)

for every atom A of n for which

u(S UA)- u(S) > w(S UA)- w(S) (5.2)

for every SGl l . Therefore, y> is strongly positive, and by Young's charac-
terization [6, Theorem 2] it is the Shapley value y/. By Theorem 2 we get
that 0 = (/> on ML(/l,n).
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Let then w, w G ML(A,n) satisfy (5.2). Note that for every v G GX(T1)
and every i? G <£,

n ^WIT n O -
where XB(R) = X(R n £)/A(£) if A(£) > 0, and XB(R) = 0 if A(5) = 0.
Therefore, for every ^4' G <#, yl' c A,

Tkv{R U ^ ' ) - Th(R) = (XA(R U ,4') - XA{R)) ^ II K^)

•[ I] (l-lB(R))}(v(TUA)-v(T)).

Thus (2) implies that

Txu{R U A') - Txu{R) > rAw(i^ U ^ 0 - Txw(R)

for every A' CA and i? in (g.
Hence, by the strong positivity of 0 , we have

y/u(A) = 4>(Txu)(A) > 0(rAw)(^)

Corollary 6. Any A-symmetric, efficient, strongly positive, continuous
map from pNA(X) to FA is the Aumann-Shapley value.

Proof: Let 0:/?NA(A) —>  FA be a map satisfying the conditions of the
theorem. As in the proof Theorem 5, one can show that </> = </> on every
ML(A,11) for which k(A) = l/\n\ for every atom A G n.

Because for every probability measure X G NA+ there exists an admis-
sible sequence of finite fields, each of them has the above property, the
proof of the theorem follows from the continuity of 0 . •

9 Characterizations of the value on /JNA<»

For every two games u and v, we say that v> uifv —  wisa monotonic
game. Note that v > u iff v(TU S) - v(T) > u(TU S) - u(T) for every
S.TG^. Also note that for any two additive games// and y, ju >: y iff// ^ y.
The set of all games v for which there exists // G NA + such that —// <
i; < // is denoted by ACoo. ACoo is a linear symmetric subspace of BV that
contains NA. For every v G AC* let

/ G NA+, -ju < i; < //} + max{|i;(S)|:5G «} .
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It can be easily verified that (AC«.,|| IU) is a Banach algebra and that
|| || < || I!* on ACoo. Also, for// E NA, H//IU < 2||//||, which implies that the
two norms are equivalent on NA.

Lemma. Let Q D NA be a subspace of AC« and let 0 : Q  —>  FA be a
positive map satisfying <f>(v + fj) = 0(iO 4- // for every u€L Q and every
// E NA. Then ||0y - 0w|| < ||i; - w||«>  for every u,vE.Q.

Proof: For every ju E NA+ for which —  ju < v —  u_^ju,we have u — ju  <
v<u + fi. Therefor^ by the properties of 0, </>w_—  ju =£ 0i; < 0w + //.
Hence, —// < 0i?  —  0w ^ //, which implies that ||0i> —  0w|| ̂  //(/). Be-
cause the last inequality holds for every // for which —fj,  < i; —  u < /̂ , we
get ||0I7

Let pNAoo be the || ||«rclosed algebra generated by NA. pNA*. is a  || ||-
dense subspace of /?NA that contains NA as well as any game v = F °
(jUi, . . . ,jun), where //, E NA and Fis continuously differentiate on the
range of (/*!, . . . ,jun).

Theorem 7. There exists a unique value on pNAoo. It is the restriction to
of the Aumann-Shapley value on pNA.

Proof: Let 0 be a value on pNAoo. Because </> is symmetric and efficient,
4>pt = // for every// E NA. Because 0 is linear, the previous lemma implies
that it is || ||oo-continuous. By [1, Note 2 on p. 54] <p coincides with the
Aumann - Shapley value on the algebra generated by NA. Because </> and
the Aumann-Shapley value are || ||oo-continuous, they coincide on all of

We now turn to characterize the value on /JNAO, without the linearity
and positivity axioms. Both axioms will be replaced by the strong positiv-
ity axiom. We will not need any continuity assumption (compare with the
analogous result in the previous chapter). Note that because Lemma 3
holds in any normed algebra, we can mimic the proof of Theorem 4 to get
limn_oo E^v = v (in the 11 11 <=»  norm) for every probability measure X E
NA, every admissible sequence of finite fields, and every v E pNA^X),
wherepNAoo(A) is the || ||oo-closed algebra generated by NA(A). Therefore if
0: pNAoo -+ FA is a symmetric, efficient, strongly positive map that satis-
fies <f>{v + fi) = 4>(v) + 4>{fj) for every v E /?NAoo and for every ju E NA,
then it coincides with 0 (the Aumann-Shapley value) on a || ||oo-dense
subspace of pNAoo, and it is || ||oo-continuous (by the lemma in this chap-
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ter); therefore, it coincides with 0 on pNA*. As claimed, we have a
stronger result.

Theorem 8. Any symmetric, efficient, strongly positive map from pNAM
to FA is the Aumann-Shapley value.

Proof: Let 0:/?NAoo —> FA be a symmetric, efficient, strongly positive
map. As we have already mentioned, it suffices to prove that <f){v + ju) =
(j)(v) + fi for all v G /?NAoo and for all // G NA.

Let v G /?NAoo. The map G(ju) = <f>(v + ft) — 4>(v) is a strongly positive
map of NA into FA. Therefore, G(//)(5) = G(jus)(S) for all S G «. As
(/**)* = 0* and G(0) = 0, G(/*5)(S0 = G(0)(Sc) = 0. Hence, by the effi-
ciency axiom G(jus(S)) = ju(S). Therefore (f)(v + //) = 0(y) + //. •

10 Application to cost allocation

A cost problem is a pair (f,a), where a G R%.+ and/is a real valued function
on Da = {x G Rl: 0 < x ^ (2} with/(0) = 0. For each i £ / ) f l /(JC) is inter-
preted as the cost of producing the bundle x = (xu . . . ,xn) of commod-
ities or services and a is interpreted as the vector of quantities actually
produced.

Let Ai > 1. The set of all cost problems (f9a) for which a G /?£+ and /
is continuously differentiable on Da is denoted by 3Fn. Let $F = U~= {&<n. A
pr/c^ mechanism is a function y/:2F —* U".17?/I such that if/(f,a) G 7?" for
every (/^) G $ v The /-th coordinate ofi//(f,a) will be denoted by y/t(f,a).

A price mechanism y/ is cos/ sharing if

%vAf,a)at=f(a). (1)

for every « > 1 and for every (/a) G $ v
Let m>n>\ and let TT = (^ ,52, . . . ,Sn) be an ordered partition of

{1,2, . . . ,m). We define n*:Rm-*Rn by nf(x) = ^SiXj for every
x G i?w and for every 1 < / < «.

A price mechanism /̂ is consistent if for every m > « > 1, for every
b^R++, for every ordered partition 7T = (S^ ,S2, • • • A ) of
{1,2, . . . ,m) and for every (/TT*(Z>)) E ®n

y/t(fo n*,b) = y/j(f,n*(b)) (2)

for every 1 < j < « and for every / G 5}.
For each x, yERn denote x * y = (xlyl, . . . ,xwyn) and for each

X G /?$.+ denote A"1 = (1/A,, . . . ,1/AW). Also, for each function/on Rn

define (A */)(JC) =/(A * JC) for all x G Rn.
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A price mechanism yj is rescaling invariant if

(3)

for all A, a E Rl+ and (/a) E 9n.
A price mechanism y/ is strongly monotone if

J£ H (4)
for every «  > 1, for every (/a), (#,#) E ^ and for every 1 < / < «.

The Aumann-Shapley price mechanism </> was defined in [2] and [3]
by:

= \ ^-
J0 axi

for every «  > 1, for every (f,a) E ^ and for every 1 < / < «.

Theorem 9. There exists a unique price mechanism on 2F which is cost
sharing, consistent, rescaling invariant and strongly monotone. It is the
Aumann-Shapley price mechanism. •

Theorem 9 is a generalization of a result of Young [7], who proved that
the Aumann-Shapley price mechanism is the unique price mechanism
which is cost sharing, strongly monotone and aggregation invariant,
where aggregation invariance means that the price mechanism is covar-
iant under linear transformations. The following example shows that
consistency and rescaling invariance are weaker than aggregation invar-
iance even in the presence of the cost sharing axiom.

Example 10. For every n ̂  1, for every a E R++, for every (f,a) E 2Fn, and
for every 1 <j < n denote sf(f) = maxxez>a df/dxj (x). Define

Vi(f,a) = sf(f)f(a)/j^ ajsf(f)

whenever ^j=]ajSj(f) =£ 0, and

Vi(f,a) = <f>i(f9a)

otherwise.
It is easily verified that y/ is cost sharing, consistent, rescaling invariant

and not aggregation invariant.
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Proof of Theorem 9: We start with some definitions. Let n > 1. The space
of all games on (1, . . . ,ri) will be denoted by G{n). Let a E R++. The set
of all (fa) in ^ will be denoted by 9 (a). The set of all (fa) G ^(0) for
which/is a multilinear function on Da will be denoted by ML(a). Let
Ta:&(a) -* G(n) be defined as follows: For every S C {1, . . . ,«}.

where ( \ s \ = 1 V/ G S and (ls),. = 0 Vz 3 5.
It is easily verified that the restriction to ML(a) of Ta is a 1 - 1 function

onto G(«). Let T~a: G(«) -> ML(a) be the inverse function of T?ML(a). We
now turn to the proof.

Let y/ be a cost sharing, consistent, rescaling invariant, strongly mono-
tone price mechanism on 9. For each n ^ 1 and for each a E R\+ define
\jja: G(ri) —* i?w such that the following diagram will be commutative:

ML(fl) ^ - ^ Rn

G(ri) -^R",

where / is the identity map of Rn, and (a * y/)(fa) = a* (y/(fa)).
\f/a is efficient, symmetric, and strongly positive since y/ is cost sharing,

consistent and rescaling invariant, and strongly monotone respectively.
Therefore, by [6], y/a is the Shapley value. Hence by [5] y/ coincides with
the Aumann-Shapley price mechanism 0 on ML(a). Thus we have
proven that y/ and </> coincide on Uw2lflG^"+ML(fl).

Let then n > 1 and let a G Rl+. We show that y/ = (f) on &(a). For
every k > 1 let 7r(/c) = ( ^ , . . . ,Sn) be the ordered partition of
{1,2, . . . ,kn), where for each 1 < p < «

Also, denote a(k) = (al(k),a2(k), . . . ,akn(k)), where aj(k) = ap/k for
every; G Sp, and let/(fc) = / ° 7r(fc).

As yj is consistent, for every 1 < p < « and every 7 G 5P,

Wj(f(k)9a(k)) = WJif9a). (9.1)

For each fixed m > 1 and for each Z? E i^++? the space Co(Db) of all
continuously differentiate functions g on Db with g(0) = 0 is a normed
algebra with the norm

/—I
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and the polynomials that vanish at 0 are dense in CX
O(D£). Note that the

mapping f—*f{k)  is a linear isometry from Co(Da) into Cl
0(Da{k)).

Let/G C&Da) and e > 0. Let g be a polynomial on Da with g(0) = 0
such that ||/—  g\\ < e. Applying Lemma 3 to Cx

0{Da{k^ we deduce that for a
sufficiently large k, there exists a multilinear function y on Da(k) such that
||y - g(k)\\ < e. As \\g(k) -f(k)\\ < \\g - / | | , it follows that

\\y-f(k)\\<2e. (9.2)

Let L be the linear function in Co(Da(k)) that is given by,
kn

L(z) = Y max ( * ) (9.3)

As y + L and y —  L are multilinear functions on Daik),

y/(y±L,a(k)) = 4>(y±L,a(k)). (9.4)

It follows from (9.3) that for every \<l<kn,

on Da(k). Therefore, by (9.4), the consistency of both y/ and 0, and the
linearity of 0, we have:

%a(k)) - <f>t(f{k\a{k)))

Thus for every ! < / ? < «  and for every e > 0

As ap > 0 it follows that y/(/tf) = </>(f,a).

11 Bernstein's polynomials

Let/be a continuous function on [0,1]. Bernstein's theorem asserts that
the sequence of polynomials (Bn{t))n7>x converges to f(t) uniformly on
[0,1], where

^1 - t)n-kf{k/n).

It is easily verified that it suffices to prove the theorem for continuously
differentiable functions / Let then / be a continuously differentiable
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function on [0,1]. For every n > 1 define fn on Dn = {x G Rn: 0 < xt ^
1 VI < i < n) byfn(x) =f((xl +x2+ ' - - + xn)/n). Let gn be the multi-
linear function on Dn whose values on the vertices ls,SC{l,2, . . . ,ri)
ofZ)Bare/w(ls).

Let € > 0 and let n be an integer large enough such that \f'(t2) —
f'(t\)\ < e whenever \t2 — t {\^ l/n. We will show that

\gn(x)-fn(x)\<eVx£Dn. (1)

The theorem will follow by substituting x = (t9t, . . . ,0 in the last in-
equality.

We now prove (1). For each x^Dn let N(x) be the number of the
indices / for which 0 < xt < 1. Obviously 0 ^ N(x) ^ n. We will prove by
induction on k that

whenever N(x) = k.
For x G Dn with N(x) = 0, x = ls for some 5 c {1,2, . . . , « } and

therefore ^w(x) =fn(x). Assume the claim has been proven for 0 ^ /c < n.
We now prove it for k + 1. Let x G £>„ with N(x) = fc + 1. Let / G
{1,2, . . . ,«} with 0 < x l < 1. Since gn is a multilinear function,

where ^° = (^i, . . • ^ / . ^O^z+i , • • • jcn) and

Observe that for / = 0, 1, 7V(z') = k, and therefore by the induction
hypothesis

Hence,

\gJLx) -fn(x)\ < €̂/A2 + \XI(JJLZ1) ~fn(x)) - (1 -

By the intermediate value theorem:

(L(zl) ~fn(x)) -f\a){{\ -
and

(fJLx) -fn(z0)) =f'
where \a —  b\ ^ \/n. Hence,

\gn(x) -fn(*)\ * ke/n + (*7(1 - x/))€/« ^ (k + \)e/n

since x7(l —xj)^ 1. •
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CHAPTER 16

Nondifferentiable TU markets: the value

Jean-Frangois Mertens

Abstract

TU economies with private production are shown to have a value, as
defined in Mertens (1988), without any differentiability or interiority or
other restriction. An explicit formula is given, describing the value as a
barycenter of the core, for a probability distribution depending only on
the set of net trades at equilibrium.

1 Introduction

We prove existence and exhibit the formula for the value of transferable
utility markets, getting rid of differentiability assumptions and allowing
for private production (as a first step toward removing the Aumann-
Perles assumptions and the monotonicity assumptions). Under differen-
tiability assumptions, the treatment by Aumann and Shapley yielded
equivalence with the core. In the nondifferentiable case the more power-
ful value constructed in Mertens (1988) is required. In particular, whereas
the differentiable case uses the symmetry axiom only in a "first-order"
sense-comparable to the strong law of large numbers-in the nondiffer-
entiable case it is used in its full force, in a "second-order" sense-
comparable to the central limit theorem. But contrary to the case of the
central limit theorem, no normal distribution appears here. Indeed, as
shown in Hart (1980), the formulas involving those would satisfy only a
restricted symmetry property (and are not characterized by it), so no value
would be obtained. Instead a Cauchy-type distribution was obtained in
Mertens (1988) as being uniquely characterized by symmetry. In our case
of markets the averaging with respect to this Cauchy distribution disap-
pears from utility space, where it was originally defined, to reemerge
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much more naturally in the linear spaces of prices and commodities, and
the value appears thus as a barycenter of the core.

2 The model

1. A nonatomic probability space (7y#,/i) of traders is given.
2. Consumption sets are R£, and a Borel-measurable utility function

w:rXR£—»R+is given, such that, for each t, u t(0) = 0 and ut is mono-
tonic (i.e., nondecreasing) and uppersemicontinuous.

3. The Aumann-Perles assumption: ut(x) is o(||x||) integrably in /; that
is, Ve > 0, 3f](t) G Lx(n): Vx G R£, \\x\\ ^ rj(t) => u/x) ^ e • ||x||.

4. A production correspondence Yt is given - a Borel subset of T X R" -
such that Yt n R+ # 0 for all / and J Ytju(dt) is closed and has a bounded
nonempty intersection with R+.

Remark 1: Utility functions could be of the type ut(x) = 1 if x ^ dt9 and 0
otherwise, as for cost allocation problems, where individual demands are
considered as given.

Remark 2: Initial allocations are put in the production sets, and it is not
necessary to impose free disposal, because we have monotonic utilities.
Private production sets represent each trader's own productivity; coali-
tional production sets could not be introduced without changing the
whole nature of the analysis (loss of homogeneity). They can also be taken
as a proxy for general consumption sets: We could define the consump-
tion set of a trader t as his set of feasible trades R+ —  Yt9 with utility for a
trade maxprodeFf ut (trade + prod), thus reducing our model to a model
with general consumption sets and no production. (This reduction re-
mains true even in an "incomplete markets" setting, where some com-
modities, such as own leisure time, cannot be bought and sold, so trades
are restricted to a subspace For R J..) The only reason for using the present
formulation is that it permits more explicit treatment of production, as
required, for example, for cost allocation problems, and that it lets us use
existing results on the demand side (Aumann and Perles 1965; Aumann
and Shapley 1974) without having to rebuild from scratch.

Remark 3: Yt to intersect R+ is the minimum for the model to make
sense - the player has at least one action on his own to which he can attach
utility. It is also the minimum for individual rationality and cooperative
theory to be usable. The other condition too is extremely weak; still it
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ensures that, for at least one strictly positive price vector p, one has /

We write Y instead of/ Ytju(dt\ and fix y0 in Y n R£. We show first
that VM, XM= YC\(-(M,MM . . .) + R+) is bounded. Otherwise,
choose yk in this set, with \\yk\\ —•  <».  Extract a subsequence such that
.Mk/ILMfcll converges, say to y^. We have ym G R£ because of the lower
bound. By convexity of 7(Lyapunov's theorem), the line segments join-
ing y0 to yk belong to this set, and they converge to the half-line starting
from y0 in the direction y*. By closedness, this half-line belongs to the set;
hence Ff lRJ would be unbounded, because y0 belongs to it and y* > 0.
The compactness of XM implies the closedness of XM— R£, hence of
(Y-Rl)n(-(MMM • • 0 + R+), hence of y - R J .

Now choose K sufficiently large that YD {xER^L xt^ K) = 0
(possible because YD R£ is bounded). Both sets are closed and convex,
and, from what we have shown, the shortest distance between both is
achieved (i.e., at infinity the distance would go to infinity) and thus strictly
positive. Thus both sets can be strictly separated: We have a linear func-
tional p such that m i n ^ O^^K (P,X) > sup^y (p,y). The left-hand
member being bounded below implies p e R £ ; hence, because Yd
R+¥=0, the right-hand member is nonnegative; the left-hand member
being strictly positive implies that p is strictly positive. It can then be
normalized to have the right-hand member < 1.

Finally, it is easy to show that, for any measurable correspondence Yt
with nonempty integral Y (yo£ Y\ one has / supy e r / (p,y) fi(dt) =
supy€E y (p,y) for any linear function p. [Let yt be an integrable selection
from Yt9 and let Y? = {yG Yt\ \\y —  yt\\ < ri). Any measurable selection
from Yn

t is integrable, and sup(p,F") converges monotonically to
sup(p, Yt). Because there exist measurable selections yn

t from Yn
t such that

kP,ynt) - sup(/7,y?) —  e, the result follows.] In particular, any measur-
able selection from Yt D R£ is integrable.

In addition, this implies also that the closed set Y —  R\ equals f(Yt —
R+) ju(dt). Indeed, denote by zt an integrable selection from Yt —  R\.
There exists a measurable selection yt from Yt such that yt > zt. Hence, yt~
is integrable. Because (p,yt) is majorized by the integrable function
supper, (Py)* a n d becausep is strictly positive, integrability of yt follows.
Hence our claim is established.

Remark 4: An equivalent formulation of the Aumann-Perles assump-
tion is to require that for some (and then for every) strictly positive vector
of total initial resources co, the set of utility vectors achievable by redistri-
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bution be weakly relatively compact in Lx (uniformly integrable); it is
then even weakly compact if u is concave.

Indeed, assume ut satisfies the Aumann-Perles assumption. Then
ut(x) < €||JC|| for ||x|| ^f€(t); hence, by monotonicity ut(x) < e max(||x||,
f€(t)) for all x, with f€(t) integrable. Hence, for every redistribution xt and
all X > 0 we have

I ut(xt) ii(dt) < e I \\xt\\ pi(dt) + I

f
efJLt) /i(dt)

efJLt)/i(dt)

(using for convenience \\x\\ = 2 1
Hence, for any S > 0 and any co, we can first choose € > 0 sufficiently

small such that e\\co\\<S/2. Next, given this e, choose A sufficiently large
such that ftfxt)*x) €^(0 M^O - <V2, because 6/̂ (0 is integrable.

Thus we obtain fMXl)^X) ut(xt) ju(dt) < <5. Uniform integrability of
{ut(xt)\xt > 0, / x, < w} is proved, which is equivalent to its weak relative
compactness in L{, by the Dunford-Pettis criterion.

Conversely, if this set H is uniformly integrable for some strictly posi-
tive co0, there exists by the de la Vallee-Poussin criterion a convex, contin-
uous function F on R+ such that F(0) = 0, F(x)/x ^ 1, lim F(x)/x = + °°,
and sup {/ F(\ut\)/i(dt)\ut G XH] < +oo for all L Let vt(x) = F(kutx)) for
A > 0. We have

//(w) = sup {/ vt(xt) ii(dt)\f xt ii(dt) < a, xt > 0}

is finite at some interior co0. Being nonnegative for all co ^ 0 and being
concave by Lyapunov's theorem, it is finite for all co ^ 0 and clearly
monotonic. Concavity then implies H(co) <A + (p9co), where p belongs
to the supergradient of H (e.g., at co0); choosing B > max, /?,, we obtain
H(co) <A + B\\a)\\. Hence for all integrable xt and all co > / xtju(dt), we
have

S vj(xt) jji(dt) ^ A + B I, co,;
that is,

for all integrable xt. In other words, the function g(t) = supx^0 vt(x) —
B 2,- JC1' is integrable, and rr <g{t) + B 2^', or wr(̂ ) ^ OM) i7"1!^/) +
5||x||] for all t and x This inequality obviously implies the Aumann-
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Perles condition. It can be further improved. Consider the formula with
X = 1. Correct g and F so that 5 = 1 .

We could have chosen a smaller F, for example, to satisfy xF'(x)l
F(x) —> 1  when x —>  °°. Then F(Ax) ^ AcF(x) for some c and for all x and
all X > 1. Now choose a convex monotonic function H satisfying //(0) =
0, H(x)/x > 1, lim^oo H(x)/x = +oo, and lim H(F~l(x))/x = 0. Then for

_ H(ky) H(ky)
F(y) F(Ay)

Hence,

lim = 0 for all A > 0.

Thus H[e~lF~l(x)] —  ex attains a finite maximum, say h(e), for all
€ > 0. Further, the convexity of//implies H(A/e) is convex in e; thus h(e)
is a convex, decreasing function of e, as a supremum of such functions.
Then

-e\\x\\<H[e~lF

+ \\x\\. Hence

sup// - ut{x) - e\\x\\ < sup \H (- F-\a)\ - ea + eg(t)

sup // I - F~\a)) - ea < /z(c) + €g(/).

Thus, letting Z/"1 = U, we obtain that

€t/[A(e) + €(g(0 + ||JC||)] for all /, x > 0, e > 0.

Here [/ is an increasing, concave, Lipschitz function satisfying U(0) =
0 = lim^^^ U(x)/x, his a convex, decreasing function, and g is a positive
integrable function.

Thus we obtain even more precise bounds for ut(x) than do the
Aumann-Perles conditions; they involve only functions of one variable
h(e) and g(t) (and U) instead of the function of two variables f€(t).

There only remains to show that, if u is, in addition, concave, then the
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set H= {ut(xt)\f xt ju(dt) ^ co) is weakly closed in Lx. Because H is
convex, it is sufficient to prove strong closure. Consider then a sequence
xn

t ^ 0 s.t. / x?ju(dt) ^ co and ut(x?) converges in Lx, say to/(/). Extracting
a subsequence, we can also assume ut(x") —*f(t)  a.e. By Hildenbrand and
Mertens (1971), there exists a measurable function xt s.t. //-a.e. xt is a limit
point of xn

t [hence ut(xt) =/(/)] and s.t. / xtpi(dt) ^ co. Thus /e H, and
our claim is proved.

This characterization removes the apparently ad hoc aspect of the
Aumann - Perles condition and "explains" why it is the natural condition
to impose for all relevant maxima in the computation of the characteristic
function to be finite and attained. (For this last point, in case of noncon-
cave ut, a last use of Lyapunov's theorem is still required.) It also yields, in
the NTU framework, an easy characterization of those functions ut that
satisfy the Aumann - Perles conditions after multiplication by some posi-
tive Xt. Up to such a multiplication, they are those that satisfy

lim - sup sup u^x) = 0.
r—*«>  V |pcH"-r t

Indeed, if Atut(x) ^ U(g(t) + \\x\\) ^ U(g(t)) + U(\\x\\) (concavity of U),
then

1 + U(g(t))

Thus our condition is established, taking kt/[\ + U(g(t))] as a positive
multiple. Conversely, let h(r) = supjWj_r sup, ut(x). If h{r)/r converges to
zero, then, by monotonicity, the concavification U of h will also satisfy
U(r)/r -» 0, and we will have for all t and x that u t{x) < t/(||x||), which
implies the Aumann-Perles condition.

In addition, for such u, the condition for ktut{x) to satisfy the
Aumann-Perles condition is, letting vt(a) = supx^0[aut(x) —  ||x||] (vt is
convex, monotonic, with vt(0) = 0, and even v't(1S) = 0, and sup, vt<+ °°),
that / vt(fat) n(dt) < + °° for all K > 0.

3 The characteristic function

Definition. Let

x,a) = sup{/ xLtMAt)) M(dt)\S xfrW) vidt) = a,x(t) ̂  0}.
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Lemma 1

(a) The sup in the definition of u(/,a) is attained;
(b) u is monotonic, positively homogeneous of degree 1, concave,

and continuous over the product with R£ of the space of all/ > 0,
endowed with the NA-topology [or the aiL^ju), L1//))-topology].

Proof: This follows basically from the results of Aumann and Shapley
(1974, chap. VI; hereafter A.S.) and through them from those of Aumann
and Perles (1965).

Note first that the concavification uf of ut is achieved, that it also
satisfies our assumptions, and is furthermore continuous (A.S., 36.2-
uppersemicontinuity of u is sufficient). Similarly (A.S., 36.1) yields point
(a), and (A.S., 36.3) implies that U(XA) will not be affected if u is replaced
by u*. Thus we can assume u is concave and continuous. Note that it is
sufficient to prove (b) when u is replaced by a uniform (in t and x)
approximand. Thus, first add e 2, x,/(.x; + 1) to each un which are now
strictly concave and strictly monotonic. Replace them by a uniform
smoothing to obtain the differentiability assumptions of A.S., if so de-
sired. Concavity now follows from a straightforward and well-known
computation: If x* achieves the maximum at x\ a', let then for kl ^ 0,

= klx\t) + X2x\t\ a = XW +
and

(only t: x(t) > 0 are interesting). Then / y{t)x{t) ji(dt) = a, x(t) s 0, and

by the concavity of un so

/ X(t)ut{x{t)) [i(dt)

Positive homogeneity of degree 1 is obvious, and monotonicity follows
from positivity and concavity (e.g., as in Lemma 39.9 of A.S.).

For the continuity, we remark first that it is sufficient to prove continu-
ity in each variable separately. Indeed, in the space of continuous, con-
cave functions over a compact, convex polyhedron, pointwise conver-
gence implies uniform convergence (e.g., use induction over the
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dimensions of the faces), so, if Xfi~*X in the NA-topology, u{Xp,ot) still
converge uniformly to U(X,OL) on every simplex {a[Zat ^ M) (continuity
in x)- Thus if also an —•  a in this simplex, we have u(XfiAn) ~* w(/,a).
Continuity of w(/,-) in a is established in Proposition 37.13 in A.S.
(replace / dpi by d/z and use S = I). For fixed a we can assume a > 0 and
neglect the other coordinates. For the uppersemicontinuity, use A.S.
proposition 36.4 with Xo instead of S: Choose an arbitrary y(t) G R+ such
that i xHt)y{t) fi(dt) = aforsome/. Integrating the result of 36.4 with y(s)
instead of x yields

u(x,a) *s (p,a) + / X(t)f(t) ju(dt) for all a and / ,

with/(0 = ut(x{t)) —  (p,x(t)), where x achieves the maximum at (Xo^)-
Hence f(t) ^ 0, and xt is integrable by the Aumann-Perles condition on
w, because p is strictly positive. It follows that/is integrable, so the right-
hand member is cr(L00(/z),L1(//))-continuous and lies everywhere above u.
Because we have equality at/0»it follows that  u(x,&) is uppersemicontin-
uous at any Xo- The cr(L«(//),£i(//))-lowersemicontinuity is established
directly: Let the maximum at (/,a) be achieved at xt. Replace xt by
min(xt ,(M,M,M, •)) for some large constant M. It is now integrable, and
certainly feasible at (/,a), and achieves approximately the maximum
there. Now let vt(x) be utility functions of finite type, satisfying our as-
sumptions, such that vt ^ ut everywhere and vt(xt) is close to ut(xt). The
function v derived from the vt lies everywhere below u and approximates it
at (XA)- Because vt is of finite type, v is a continuous function of the
integrals of/ for finitely many measures in Lx(^\ and thus is aiL^ju),
L1(/i))-continuous. Therefore the lowersemicontinuity is established.
This proves Lemma 1. •

For all x - 0, X bounded, let

Vx=\ [XtYt] dii{() = J Yt(xt diM\

Ex
 = | I Xtlft dfJi(t)\yt integrable selection from Yt \.

Also let Yx (resp. Yx) denote Vx n R^ (resp. Vx n RJ).

Lemma 2. Vx (resp. Y_x) is dense in Vx (resp. Yx): For any (xt dju(t))- inte-
grable selection yt from Yt, there exists a sequence y\ of //-integrable
selections from Yt converging in L{(xt djut) to y such that / Xtyl dfit ̂  0 if/

^ 0.
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Proof: We clearly have inclusion. Let yt denote a (x(t) dJa(OHntegrable
selection of Yt. Let An = [t\xt ^ l/n and | | j^ | | < ri), and let v(B) = (fBXt
djut, fB XtYt djut). Let zt denote a measurable selection from Yt D R£: zt is
integrable (§2, Remark 3). We want to show that V0 < 1,3«, 3C C An s.t.
v(C) = Ov(I). Indeed, if we then put yt = ytlc + z,( 1 — / c ) , then j>, will be
an integrable selection from Yt, because yt is integrable on An. Also, if/
ytXt d/it & 0, then / ytXt d/it >v(Q = 0 J &y, <//*, > 0; and / |# - y ^
4 ^ / = fr\c\zt ~ yt\Xt dfJ<t can be made arbitrarily small, because the inte-
grand is integrable (Xt djut) and the measure of T\Ccan be made arbitrar-
ily small. Thus the lemma will follow. We will show this to be true for any
nonatomic vector measure v and for any sequence An increasing to /. For
this purpose we can separate each coordinate of v into its positive and
negative parts and normalize everything; hence we may further assume v
is a vector of nonatomic probabilities. Also if one of the coordinates of v
could be written as a linear combination of the other coordinates, this
coordinate can be deleted w.l.o.g.: in addition, v is full-dimensional. This
is well known to imply immediately that the range of v is full-dimensional.
Thus by convexity and by symmetry around i, (£,£,• • •, i) is an interior
point of the range; again by convexity, (6, 6,- • •, 6) (0 < 6 < 1) is an
interior point.

Therefore let (z,-)?-o denote the vertices of a small simplex containing 6
into its interior, with zt = v(Bt). Let zik = v(B( D Ak): ziJc —• zh so, for
k ^ JCQ , 6 is a convex combination of the zik. By Lyapunov's theorem this
implies that 3C C Ako, with v(C) = 6. This proves the lemma. •

Corollary 1. Let Vx denote the closure of Vx. Thus Vx is dense in Vx.

Definition.

= sup{w(/,a)|a e Vx + x,a^Q} (sup 0 = —<».).

v(x) = ^ ,
Corollary 2.

(1) 0^v<v.
(2) w, v, and i^are concave, positively homogeneous of degree 1, and

monotone.

Proof: The inequalities are obvious. w(X\ +;fe>*i +^2) -
2) follows from VXl + VXi = VXl+X2 (see Lemma 1 in the appendix),
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and u(Xi + Xi&\ + #2) - u(X2^i) + u(X\^i) (Lemma 1). Positive ho-
mogeneity of degree 1 follows similarly.

We only used YXl+X2 D YXl + Y^2 from Appendix Lemma 1. But it
yields VXl + VXl C VXl+X2; hence, VXl + VXl C ^I+Je2 and the proof yields
also the concavity of v.

Note that w(Xi >*i) > — °° and X2—Xi9 x2 —  xi imply wiXi^i) > — °°
(hence both >0). Thus along the whole half-line going from point 1 to
point 2 and further, the function w is concave and remains > 0. It must be
monotonic, so w is monotonic (because there is nothing to prove when
w(Xi >x\) = ~ °°)- The same argument applies for v. This proves Corollary
2. •

Corollary 3. v(x) = v(x) for / > e > 0.

Proof: Follows immediately from Lemma 2 of the appendix.

Lemma 3. Let v be a nonatomic vector measure, o = 2,-| v,-|. For any vector
measure fi denote the range of/*, {/i(C)|Ce «}, by R(/i\ and for any
/ £ Lj((7) denote by/ • v the vector measure ( / • v)(C) = Scfdv. Then for
any vector x the set of /e L^cr) s.t. R(f- v) intersects {Ax| A > 1} is weakly
open in Lx(o).

Proof: Only x =/= 0 is interesting. Then let^ be in the set; that is, 3C: JcJo
t/v = (1 + e)x Iffa converges t o ^ , then/, • Ic converges tof0 • 7C, and
R(f<Jc ' v)QR(fa' v)- Because we can clearly assume that fo(t) ¥*  0
for t GC, we can assume C is the whole space a n d / ¥=  0 everywhere. We
can then replace v byf0 - v and/, by fa/f0 and reduce ourselves to the case
where/, = 1 identically. Note also that the vector space Fspannedbyi^(v)
contains all R(fa • v). [If X is a linear functional vanishing on V, the
measure 2 Aj-v,- is zero, so its Radon -Nikodym derivative w.r.t. a, 2 A,-ft
(ft = dVi/do), is zero a.s.; hence 2 A, / 5 / , • gt do is zero for any S.] We can
thus assume w.l.o.g. that i?(v) is full-dimensional: x is an interior point of
i?(v) [by convexity (Lyapunov) and symmetry around v (£)]. Because for
each v(S) G R(v) we have v(S) = \im[(fa - v)(S)] (convergence of/, to 1),
the convexity of R(fa • v) will immediately imply that x E R( fa • v) for all
sufficiently large a. This proves the lemma. •

Proposition A. v is cr(L00(//),L1(//))-lowersemicontinuous on (

: We show lowersemicontinuity at / 0 . Let a =
yf an integrable selection of Yt, be such that u(Xo ,ct) approximates v(x) (cf.
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Corollary 1 and the definition of v). We have seen that v was not affected
by adding free disposal to the sets Yt, and, clearly, reducing the sets Yt will
only decrease v. Thus we can assume Yt = {yt ,0} for all t. By Lemma 3, the
total production set R(x • y * //)ofany coalition / in the neighborhood of
Xo will contain (1 —  e)a. Thus we will have v(x) ^ w(/,(l —  e)a) in this
neighborhood. By Lemma 1,

and for / in the neighborhood of/0, U(XA) is close to U(XOA), which is
close to v(Xo), so the proof is finished. •

Proposition B. At every Xo that is bounded away from zero, v = v and is
cr(Loo(//),L1(//))-uppersemicontinuous at Xo a s a function on {/|0 ^ X —
M).

Proof: By Corollary 3, we have to show that any x«>  in the weak*-closure of
{X\0<x- U v(x) — oc)  and that is bounded away from zero belongs to the
set. By Corollary 2 those sets are convex, so it is sufficient to consider their
!(£«,,L^-closure. Because the Mackey topology coincides on {/|0 ^X  —
1} with the topology of convergence in measure, we have to show that, if
Xi - • /a, in //-measure, 0 < /, < 1, then lim sup v(xi) - v{X<»).

We can first extract a subsequence of the// such that the v(Xt) converge
[to the previous lim sup ?(/,-)]. Next we can extract a further subsequence
Xi converging//-a.e. to;^ (and even everywhere by changing on a null set).

Now let £-(0 = supj^iXjit). The/, form a sequence of ideal set functions
decreasing to /« . Now  Xi —  L^ s o the monotonicity of v (Corollary 2)
implies v(Xt) ^ v(xd, a n d similarly v(xd is decreasing, with v(xi) ^ ?(/oo):
We can further assume that the original sequence Xi is decreasing. Utilities
are monotonic, so there is no loss in assuming free disposal in the Y,'s for
the computation of v. Our assumptions remain true with the modified
Fs.

Let us first add the vector e of length e > 0 along the main diagonal to
every production set Yt, and let V€

x denote the corresponding coalitional
production sets. We have V\ = Vx + e f xdji. Therefore if v E Pi€>0 V€

x,
then v G Vx. Therefore n€>0 Y€

X=YX. _
Also, because Y{ is compact, Y\ is also compact and Yx are compact. It

then follows that Y\ decreases to Yx in the Hausdorff topology.
Further, w(/,-)> being continuous, is uniformly continuous on com-

pact sets, and therefore v€(x) decreases to v{x). Thus it suffices to show the
uppersemicontinuity of v€. We can assume that for some e > 0, € E Yt for
all t. It follows immediately under this assumption that Yx is dense in Yx
for all / , and hence that v = v everywhere.
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Further, the continuity of u{x,ot) implies that, when Xt ~* X> u(Xt')
converges uniformly to u(x,') on bounded subsets of Rn. Hence to show
that v(Xi) —*  v(x\ it is sufficient to show that Yx. —>  Yx in the HausdorfF
topology, for decreasing sequences Xt (i.e., that n,]^. c Yx). Finally, be-
cause our Xt are all bounded from below, we only have to show that
r\tYXi c Vx. Otherwise, choose y E (D^)^. We have that ept(x) is in Yx,
and hence in all YXi, and that the Yx. are convex, so we can replace y by
(1 —  S)y 4- S • eju(x)  for J > 0 small enough and still have the same proper-
ties: We can assume that y is in the interior of the positive orthant. Also,
denote by CM the convex hull of y and (z|z > 0, 2 z; = M): For M suffi-
ciently large, CM D Vx = 0 ; otherwise we would have (y 4- RJ) n F^ ¥=
0, so yG Vx. For a separating functional A we then obtain, as in §2
Remark 3,

Xx > 0 V / and sup ^ A/Z,- < ^ Kyi-

Note that supzGKi <A,z) = e"1 supzGK< (A,z> ^ e~l supzeK;r (A,z) < oo for

Let y€
t be an integrable selection from Yt such that e 4- /(Aj^)

/ supy(Ey, (A,y) //(^) (cf. §2 Remark 3). Then 0 < ^(0 < 1 implies s u p z z

<A,z) - (Aj/(0y€(0 M*)> - €. Choose € such that sup2G^ (A,̂ ) + € <

^ sup <A,z> < ( ^ W ^ O M * ) ) + ^
Z<EVxi

Hence, going to the limit over the decreasing sequence /,, we get (since
y€(t) is integrable)

(X,y) ^ (A, I x(t)y€(t) Kdt)) 4- e ^ sup <A,z> 4- €,

contradicting our previous inequality.
This proves Proposition B. •

Theorem 1. v and i; are monotonic, positively homogeneous of degree 1,
concave, and at every Xo bounded away from zero, they coincide and are
cr(L00(//),L1(//))-continuous. v is attained at those points and is
cr(L00(//),L1(/i))-lowersemicontinuous everywhere.

Proof: The function v is attained because, at those / , Vx= Vx= Vx by
Appendix Lemma 2. The rest was shown before, except for the fact that M
could be taken as 4- oo in Proposition B. This will follow from later results
and will not be used before. •
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4 The core

This section is basically an adaption of the classical treatment in S. Hart
(1977a,b) and of course in Aumann and Shapley further up the tree (cf.
also P. Dubey 1975 for the finite type case with production).

Proposition 1. Let
~, v r v(t + rx) ~ v(t)v(x) = lim

T>0 T

[t > 0 arbitrary, / G 5(7V#)]. Then
(a) The limit always exists and is independent of t. It is uniform over

bounded subsets of B(T^) and t>to>O.
(b) v is a Lipshitz function of finitely many measures in L^JU), mono-

tonic, concave, and satisfies v(a • \+b • x) = av(\) + bv(x) for

(c) B(/) = min{v(/)|vGCore(i;)} V / G ^ ) , and v>v on

(d) Core(p) is a finite-dimensional, compact convex subset of L^ji).

Remarks:
1. Core(^) is the set of all additive set functions 0 defined on % and that

satisfy 0(S) > i>(S) VS G «, 0(7) = i;(r).
2. As seen in the previous paragraph, there is possibly some degree of

arbitrariness in the definition of the characteristic function v- maybe ?or
even the uppersemicontinuous regularization of Swould be preferred. But
certainly v is the most conservative choice, thus yielding the biggest core
and the smallest function v. Proposition l(b) then implies v is
cr(L00(//),L1(^))-continuous and, being larger than v on B+(T,<€) (c), it is
even larger than its uppersemicontinuous regularization. Hence (by (c)
again), any element of the core is larger even than this regularization, and
even on all / ^ 0.

Thus the definition of the core is completely independent of this arbi-
trariness, and for the same reason so is the definition of v. Therefore, as we
will see, so is the Shapley value.

Proof: The finite dimensionality of the core will be proved only in Propo-
sition 4. By (c) it will imply that v is a function of finitely many measures,
and even Lipshitz, although this would also follow from the general result
in Mertens (1988, Theorem 2). We now prove the remaining points.
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(a) (cf. Mertens 1980, prop. 11, p. 550.) Homogeneity of degree 1 yields

v(t + xx) - v(t) v(l+ex)-v(\) .4U x T
with e = — < —.

T 6 t t0

Thus it is sufficient to prove that (v( 1 + ex) — v( 1 )/e converges uniformly
on bounded subsets of B( Tf€). Note that concavity implies that, for e < e0
and Il/H ^ CQ1, the ratio is an increasing function of e, thus establishing
convergence. By Theorem 1, the ratios are then o(L^,L^-continuous on
this ^(Loo^O-compact subset of Lx. Thus uniformity of the convergence
will follow by Dini's theorem if we prove that the limit v is ̂ (La^LO-up-
persemicontinuous on this bounded subset. But this will follow from (c)
and Core(i>) C L^/i) (d), and uniformity of the convergence will not be
used before.

(b) v is concave and monotonic as a limit of such functions, and the
equality was proved in Mertens (1988), after Mertens 1980.

(d) Let v be an element of the core off. Monotonicity ofv implies v > 0;
because v(T) < o°, this implies v is bounded. Let Sf be an increasing
sequence of coalitions, with//(5'/) converging to ju(T). By Theorem 1, v(Sj)
converges to v(T). Hence, v(St) > v(St) implies lim v(St) >v(T) = v(T).
Positivity of v and St C S;+x ensures the existence of the limit; it also
implies v(S;) ^ v( T). Thus, v{St) converges to v( T). It follows first that v is
countably additive, hence a measure, and next that it is absolutely contin-
uous w.r.t. fji. Thus Core(i;) C LX{JJL) (Radon-Nikodym theorem). Weak-
compactness and convexity follow from the fact that we just proved that it
could have been defined as those v in the dual L* of Lx satisfying our weak
inequalities-which involve a(L*,L«,)-continuous linear functional-
and from its boundedness in L*, [a cr(L*,L00)-compact convex set that
happens to be included in Lx is obviously a(Ll ^J-compact convex].

(c) Concavity and homogeneity of degree 1 of v imply v{ 1 + €/) >
v(\) + ev{x)\ hence v(x) ^ v(x) for all x - 0. For v G Core(i;), v being
continuous and v lowersemicontinuous (cr(Loo ,LX)) at any/ > 0 (above for
v and Theorem 1 for v), and the indicator functions being dense in the set
of all 0 ^ x — 1 f°r this topology (Lyapunov), the inequalities v(S) ^ v(S)
yield in the limit v(x) ^ v(x) for 0 ^ x — 1 J and, hence, by homogeneity,
for all / ^ 0. Therefore

f o r a l l , w i t h | M s e - ,

[because v( 1) = v( 1)]. Going to the limit yields v(x) ^ v(x) for all X- Thus
min{v G Core(z;)} >: v.
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To prove equality, consider a fixed Xo- Define v on the space spanned
by Xo and the constants by v(/0) = v(Xo\ v(l) = y(l). For b > 0 we have
v(a • 1 + b - Xo) = av(\) + /w(/0) = v(# • 1 + b • /0)> s o concavity of t?
implies v(a - 1 —  6 • Xo) - v(a ' 1 ~~ b • / 0 ) : we have v > g on the whole
plane generated by Xo a n d the constants. Because v is concave and posi-
tively homogeneous of degree 1 on 2?(7V<£), the Hahn-Banach theorem
yields a linear extension of v to all of B(T<€) satisfying everywhere the
same inequality. In particular, v(S) ^ v(S) ^ v(S), so the restriction of v
to <£ coincides with a measure [cf(d)] v in the core of v. By linearity, both
coincide on all step functions, and we have seen that v is monotonic, and
the monotonicity of v follows from v(%) ^ v(x) ^ 0 for all / ^ 0. Because
they coincide on step functions and are monotonic, v and v coincide
everywhere. Thus the v we constructed is a measure in Core (v), satisfying
v(Xo) = v(Xo)' This proves equality. Finally, v(x) ^ v(%) for/ > 0 implies
by Theorem 1 that v(x) —  v(x) f°r X bounded below; hence, for x —  0,
e > 0, and for any v G Core(^) we obtain v(x + e) ^ v(x + e) ^ v(x +
6) > v(x) (the last by monotonicity). Therefore v(x) ^ v(x) (letting e go to
zero). Hence, finally, v(x) = min{v(/)|v G Core(z;)} > i^(/). This finishes
the proof of (c) and of the theorem. •

Remark: This also finishes the proof of Theorem 1: there only remains to
show the uppersemicontinuity of v at all/bounded below (this will indeed
imply that of v, because v ^ v everywhere and v(x) = v(x) at those /) .
Proposition l(c) and (d) imply the uppersemicontinuity (O(LJ(II\LX(II)))
of v at 1 because v(l) = v(l) = v(l) for v G Core(i;). Hence, v>v and
v( 1) = v( 1) imply the uppersemicontinuity of ?at 1. But if we replaced the
measure ju(dt) by the measure xo(0 ju(dt) for some /0(0 bounded away
from zero, the new economy would (by Lemma 2 of the appendix) satisfy
all properties of our economy and would have as characteristic function
w(x) = v(x ' Xo)' Hence v(x • Xo) is uppersemicontinuous a t / = 1. But if
Xa converges o(L^ ,L\) to/0, then^/Zo converges o{L^ ,LX) to 1, because Xo
is bounded away from zero [for the same reason, we do not have to
distinguish aCM/o * /4£i(*o * M)) from o(LJtii\Lx(ii))\. Thus v(Xa) =
v((Xa/Xo) ' Xo) has a lim sup ^ v(\ • / 0) : ^^s uppersemicontinuous at any
Xo bounded away from zero.

Now we turn to a description of Core(*;): the core-equivalence theorem.
First we need some vocabulary.

Definitions

(1) A feasible plan (for a coalition /,) is a pair (yt ,xt) of (/, d/z(/))-inte-
grable functions to R" such that for all t, xt G R .̂ and yt G Y, and
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such that / XtXt fi(dt) = / x$t pi(dt), which is called the corre-
sponding output. A feasible plan for the total coalition Twill be
called simply a feasible plan.

(2) A price system is a (nonnegative) linear functional p on Rn.
(3) A transferable utility competitive equilibrium (t.u.c.e.) con-

sists of a feasible plan (y,x) and a price system p such that
//(^)-a.e. ut{xt) - (p,xt) = sup^R^wX-*) - <A*» and (p,y t) =
supyG Yt(P>y) • (Note that p >: 0 would thus follow even if it was not
imposed).

(4) An efficient plan is a feasible plan (y,x) such that / ut(xt) {i(dt) =
v(T) (i.e., is maximal). The efficient outputs are the outputs of
efficient plans.

(5) The competitive payoff (c.p.) corresponding to some t.u.c.e.
(y,x,p) is the payoff function hp(t) = ut(xt) - (p,xt) + (p,yt).

(6) The set P of competitive prices is the set of price vectors arising
from some t.u.c.e.

Proposition 2
(a) The c.p. hp corresponding to a t.u.c.e. (y,x,p) depends only on p

and is given by

hp(t) = sup [ut(x) - (p,x)] + sup (p,y).

We can use this to define hp for any p.
(b) For any linear functional p and any x —  0, set hp(x) = / X(t)hp(t)

ju(dt) (note the integrand is ^0). hp is convex and {p,x) +
K(X) ^ w(XS) for all p, x, and x.p^P iffhp(T) < i;(D-i.e., iff
hp G core(i;).

(c) (y,x,p) is a t.u.c.e. iff p is a competitive price and (y,x) an efficient
plan.

Proof: (a) is obvious from the definition of a t.u.c.e. It is clear that hp is ̂  0
(choose x = y G Fr n RJ.) and convex,

(b) For p G P , ( AXJO a t.u.c.e., we have

hp(T)

because feasibility implies both f(xt —  yt)ju(dt) = 0 and the last inequality
(definition of v). For the inequality, let yt denote a production plan and xt a
consumption plan for/that yield approximately w(/,x). Then integrating
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- Xtut(xt) ~ (P,Xt(xt ~ tt)> yields hp(x) ^ u(x,a) - (p,a - y), with
a = /;^x;,andy = lyuyt- Hence, a = y + x ^ 0 withy G F^. Because they
were chosen optimally, we get hp(x) ^ w(/,;c) —  (p,x). Finally, the impli-
cation hp(T) < z;(T) => p E P will be done together with (c).

(c) Efficiency of (y,x) for a t.u.c.e. (p,y,x) follows from (b), which
implies

v(T) < j hp(t) »(dt)  = f K,(X,) /!(*) ^ K^) (cf. supra).

Conversely, assume (y,x) is an efficient plan (those exist by Theorem 1)
and hp(T) < v(T). Integrating both terms of hp(i) > ut(xt) - (p,xt) +
(PM) yields v(T) on both sides, for hp(t) because v(T) > hp(T) and for the
right-hand member because J(xt —  yt) ju(dt) = 0 (feasibility) and / ut(xt)
ju(dt) = v(T) (efficiency). Hence, we have equality a.e. and (p,x,y) is a
t.u.c.e. •

Proposition 3. Denote by E the subspace spanned by (Yx —  RJ) n R",
and neglect some null set of traders. Then, for some subspace Fof R":

(a) V n Rl = V+ = E+ = E n R .̂ (note that E+ is a face R J) (hence
EC V).

(b) For any ideal coalition Xt —  0, every feasible plan (yt ,JĈ ) for %t can
be modified on a (^//(rf/))-negligible set to yield ytG Yt= Ytn V
and xt E E+ everywhere.

(c) There exists a finite sequence of price systems pt of which Fis the
set of zeros and such that, for all /, Yt is the set of lexicographic
maximizers in Yt of the p\ and E+ is their set of lexicographic
minimizers (or joint . . . ) inR£.

(d) / Yt jit(dt) —  E+ is a neighborhood of zero in V.
(e) E, E+, and Fare uniquely determined by (a) - (d). More precisely,

(d) implies that Fis the smallest space satisfying (b), even just for
the all-player coalition T\ that is, & = 1.

(f) Let ut(xX) = ut(xfi) for (x,xf) <ERl,x<E E,x' orthogonal to E.
Then the economy % = (Y,u) satisfies all our assumptions and
has the same possible feasible plans and the same characteristic
function v as the original economy % = (Y,u).

Proof: Denote Rn by F°. If 0 is not an interior point of Yx - R£ inF°, it
can be separated: there exists a nonzero linear functional p{ which is ^ 0
on Yx - RJ. Let F1 = {x G V°\{px,JC) = 0}. px is a positive linear func-
tional because it is nonzero and bounded above on Yx —  R̂ ". Thus px
should be both positive and negative on (Yx —  R£) n R+ and therefore
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zero on the subspace E spanned by this subset: E C V1. From §2, Remark
3, supyeyi (ft 9y) = / supyey, (ft ,y) ju(dt\ and since the integrand is ev-
erywhere ̂  0 (because Yt intersect R+ and px > 0), ft being negative on Yx
implies that /z-a.e. supye jr (px 9y) = 0. Neglect the remaining set. Hence,
for any feasible plan (yt ,xt) for an ideal coalition Xt we get (px ,yt) ^ 0 and
(ft ,xt) s> 0 (because px > 0, xt > 0); so feasibility-/ xtyt ju(dt) = / xtxt
/z(afr)-yields (px ,yt) = (px ,xt) = 0, (Xt ju(dt))-a.e. On the exceptional set,
change xt to zero and yt to some measurable selection from YtnJl+. Then
(ft, y,> = (ft^r) = 0 everywhere (because we had supyey< (ft ,)>> = 0
everywhere): any feasible plan can be modified on a negligible set to yield
a feasible plan with yt and xt everywhere in Vl. Thus set Y) = Yt n F*. We
then have 7] n R£ = 7, n R£ * 0 for all t, because^! > 0 on RJ and < 0
on 7f, and the same use as before of §2, Remark 3 yields that / Y\
ju(dt) = Yx D V\ and so is closed. Thus replacing the Yt by the Y\ pre-
serves all our assumptions and all feasible plans.

Continue thus, as long as 0 is not an interior point of Y\ — V%  in Vk, to
separate it by a linear functional pk+x on Vk (which will be ^ 0 on V%
(= Vkn RJ), hence extendable as a price system pk+x on Rn) and to
construct new subspaces Vk+l of Vk and subsets Yk+l of Yk. The dimen-
sion of V decreases by 1 at every stage, so after finitely many iterations we
will stop with a subspace V, a finite sequence of price systems pi9 and
subsets Yt of Yt. For those, (b), (c), and (d) are already proved with V+

instead of E+ [(d) is the criterion to stop the iteration]. Note that (a) just
asserts V+ = E+, and that (b) will then also imply (f), since we have
already shown that § satisfies all our assumptions and has the same
feasible plans as <£, because (b) implies that ut(xt) = ut(xt) for any feasible
plan. Thus we need only prove that V+ = E+, and then (e). Because § has
the same feasible plans as <£, we have F 1 nR5.= F1nR5.. Therefore E is
still the vector space spanned by (Yx —  R£) n R£. In particular, any vec-
tor in this set lies in E+, so this set is still the same as (Yx —  E+) n E+. We
have also seen that E c V\ so inductively E c V. Because E+ C V+ c
Rl, it follows that this set is still equal to (Yx - V+) n V+. But Yx - V+ is
a neighborhood of zero in V (stopping criterion), so it follows that its
intersection (Yx —  E+) D E+ with V+ is a neighborhood of zero in V+. A
fortiori E+ is a neighborhood of zero in F+, and both are cones, so
equality follows.

There only remains to prove (e). This is obvious for E and E+. By (d),
there exist integrable selections y\ from the Yt whose integrals form the
vertices of a full-dimensional simplex containing a point x of E+ in its
interior, say x = 2 at J y' dfii with at>0, 2 a, = 1. By a version of
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Lyapunov's theorem (Mertens 1981), there exists a finite set of measur-
able selections z[ from U^yJ} such that J zj dfi = x V/ and such that some
convex combination of them is uniformly close to Sa'y'. Because a, > 0,
this implies that, for all t, the z{ and the y\ span the same affine space.
Because the z-7' are integrable selections from Y with / zj dju E E+, any
space ^satisfying (b) will contain almost all z{, hence almost all y\, hence
all integrals / y\ ju(dt). Because those integrals span a full-dimensional
simplex in V, Fwill contain V. We have shown that any space ^satisfying
(b) contains every space V satisfying (d), hence (e).

This proves Proposition 3. •

Note that this characterization of the feasible space V is not at all
sensitive to any form of pathology in the sets Yt. In §2, Remark 3 we have
seen that Y{ —  R+was still closed and the integral of the Yt —  R£, of their
convexification (by Lyapunov's theorem), and of their closed convex
hulls (by closedness of the integral). Fwas constructed only in terms of
Yx —  R+(or even the cone generated), so it would still be the same if the Yt
were replaced by their closed, convex, comprehensive hulls (or even the
cones generated by them, because the integral of those is the cone gener-
ated by Yx —  R+; thus Falso does not depend on ji but only on its null
sets, this being so for an integral of convex cones).

Note also that % and § have the same efficient plans and efficient
outputs.

Proposition 4

(a) The core of v is the set of competitive payoffs of the economy §.
(b) Denote by A the set of efficient outputs: A = {a \ a is a maximizer

of u(l,a) over Y{) is compact convex c£"+, and (y,jc) is an effi-
cient plan iff, for some a E A, y is a feasible production plan for a
and x is an efficient redistribution of a.

(c) Then the set P of competitive prices of § is the compact, convex
set of linear functional/? on F-or, equivalently, of price systems
p on R"-such that some a^A (and then every such a) maxi-
mizes (p,y) on Y{ and u( 1 ,x) —  (p,x) on V+ (= E+)\ that is, p is a
"supergradient" of u(\,x) and a supporting hyperplane of Yx at
a<EA.

(d) Equivalently, P can be characterized as the set of supergradients
on Fofw(l,x)at;c = 0.

(e) The set of supergradients of w(/,x) (xG V) at (1,0) is exactly the
set of functional hp(x) + (p,x) for p E P.
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Proof: (a) We know already (Proposition 2) that competitive payoffs are
in the core. By Proposition 1, Core(v) is a subset of Lx(ji). Thus let c(t) be
an element of the core and write c(x) for / c(t)x(t) ju(dt). Let F(x) =
s\xpx^0[w(x,x) —  c(x)] for xGV. Clearly F is monotonic, concave, and
positively homogeneous of degree 1 because w is (§3, Corollary 2; the
projection of a convex set is convex). Further, by Proposition 3(d),
W(1,JC) > — °° in a neighborhood of zero in V. Hence, F(x) > — °° there
and, thus, on Fby homogeneity. Finally, c being in the core implies that
F(0) = 0, by Proposition l(c). It follows that F(x) < +°° for x G V\ in-
deed, because F(—  x)>—  °°, ir(x) = 4-oo would by concavity imply
F(0) = + oo. Thus Fis real-valued on V. Hence, by the separation theorem
there exists a linear functional p on V such that F(x) ^ (p,x) on V. F is
monotonic sop ^ 0 (i.e., (p,x) >0forxEE+ = V+). This implies thatp
can be extended, if desired, to a price system on Rn [hence the "equiva-
lently" sub(c)]. It follows that, forall^; ^ 0, w(x,x) ^ (p,x) + c{x)\ that is,
for all aGE+ and y E K̂  we have w(/,a) + (/?,y —  a) ^ c(^). Thus for all
integrable selections xt from E+ and yr from yr,

Xt[ut(xt) + < A ^ " *,> - c(0] M*) ^ 0

for all Xt\ hence

c(t) > M^/) ~ <P^>
for all integrable ;cr and yr, so

c(t) ^ sup [wX̂ ) - {PfX)] + sup (Ay) = hp{t) //-a.e.

and the feasibility of c [c(T) = v(T)] and hp(T) > v(T) [Proposition 2(b)]
imply c(t) = hp(t) a.e. and Ap(r) = v(T). Thereforep G Pby Proposition
2(b).

(a) is proved, (b) is obvious, and the characterization in (c) follows
easily by integration from the definition of a t.u.c.e. [for the "and then
every such a," one may use, for example, Proposition 2(c)]. Closedness
and convexity of P follow immediately, and boundedness (hence com-
pactness) in the dual of V (obviously not in the dual of Rn) follows from
w(l,a) —  (p,a) ^ w(l,0) —  (p,0) = 0 (by maximization), and

(p,a) = max{</?,y> \y G Yx) = max{(Ay> I y G Yt -(p,a) max{</?,y> \y G Yx) max{(Ay> I y G Yt E)
(the last equation because we have seen that p must be nonnegative on
E+)] hence

max{(p,y)\y EL?X-E+,pf=P}< u(l,a) = v(T) < +» .
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The boundedness of P follows because Yx —  E+ is a neighborhood of zero
[Proposition 3(d)] in V.

For (e), note that for any supergradient c(x) + (P,x) of w(x,x) at (1,0),
c(x) must be a supergradient of v(x) = w(xfi) at / = 1 -that is, c must be
in the core. Hence, we can use the proof of (a), where we deduced from
c G Core(iO and w(x,x) ^ c(x) + (p,x), that c = hp and/? G P: Any super-
gradient has the required form. The converse follows from Proposition
2(b).

Finally for (d), (e) implies that all/? G Pare supergradients. Conversely,
let/? be a supergradient of w( 1 ,x) at zero: even if the economy is allowed to
trade commodities with the auctioneer at prices/?, it cannot do better than
w(l,0) = v(T). Hence, if players are individually authorized to trade this
way and thus obtain hp(t\ they will not do better than v(T) in total:
hp(T) < v(T\ so /? G P by Proposition 2(b).

Definition. Denote by X the set of vector measures £ = (&,£), with &
real-valued and ^ F-valued, that are obtained as £0(£) = fs ut(xt) ju(dt),
&S) = fs(yt —  xt) lAdt) for efficient plans (x,y). Also let [p£] = £0 +
(p,£) for £ G X, /? in the dual of F.

Define F: V^ R by F(v) = min^p <p,i;>.

Corollary.

(a) hp —  [p,£] is an affine function on the compact convex set P,
independent of £ G X.

(b) core(u) = {/2̂ |/? G P} is a finite-dimensional, compact, convex
set.

(c) HX) = «X) + F ( t o for any {  G X and all x.

Proof: (a) restates Proposition 2(a) and (c) [affinity is obvious from the
definition of [/?,£], and compactness and convexity come from Proposi-
tion 4(c)]; (b) follows from (a) and Proposition 4(a); and similarly (c)
follows from (a) and (b) and Proposition l(c).

Remarks:
1. With (b), the proof of Proposition 1 is also finished.
2. Proposition 3(c) allows us to interpret Proposition 4 as an equiva-

lence theorem for the original economy % too, under the "lexico-
graphic price system" (/?i,/?2,/?3, - - - \ P)> where the /?/s come from
Proposition 3(c) and p from Proposition 4. Such infinite prices can be
interpreted not only as those consumers may have in mind for objects that
cannot be produced-but that are in the model, for example, because they
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might be producible tomorrow or in another state of nature due to techno-
logical progress-but also as constraints (of the "zero-discharge" form:
(Pi,y) —  0) put on producers to prevent them from adopting production
plans that would put consumers outside their consumption sets. (Think of
the safety regulations imposed on the nuclear electricity generating in-
dustry, and of the total cleanup exacted after the Harrisburg incident.)
Alternatively, one may just interpret Fas an "incomplete markets" limi-
tation. Observe finally that, in many cases, high finite prices will be
sufficient, and the infinite ones just a convenience in the proof.

3. Because the dimension of Fmay be higher than that of its positive
orthant V+ = E+, studying the markets £ restricted to Fis also a way to
model situations where there are more primary inputs and intermediate
goods than there are final consumption goods.

5 The value

Definition. For £ = (£0,£) £ X, define the range of £ as the ball

[using Lyapunov's theorem and the fact that £ has total mass zero (J(y —
x) dji = 0)]. R$ is the set of net trades at the efficient plan <!;.

The relevant concept of value for the next theorem was defined in
Mertens (1988). Otherwise, the result is reminiscent of Hart (1980).

Theorem.

(a) Let P* = / p{z) dC(z), where p(z) denotes the set of minimizers of
(p,z) on P, and dC(z) denotes the distribution on Rn with Fourier
transform exp(—  N(q)), where the pseudonorm TV is the support
function of the ball R^; that is, N(q) = || (#,<!;) II= supzeJ^ (q,z).
Then P* is a well-defined compact convex subset of P, indepen-
dent of { £ 1

(b) The game v has a value <fi(v) given by (f)(v) = hp for any p E P*.

Proof: We start with (b). Note that the extension, say w(%), of the charac-
teristic function is not necessarily well defined for ideal set functions/that
are not bounded away from zero. It could, at worst, be anything between
v(x) (which is lowersemicontinuous) and the uppersemicontinuous regu-
larization of v, and [§4, Proposition l(b), (c)] this is smaller than v(x).
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Literally speaking, we could therefore not use the operator "</>3" as de-
fined in Mertens (1988). We should either resort to the generalization
mentioned in Section 4 of that paper (e.g., operator y/ of 4.3), or just note
that a trivial modification in the definition of the domain of 4>3 will
already suffice to include our games. We therefore use the second route,
which shows better how little is at issue and which deals better at the same
time with the margin of uncertainty about the true characteristic function
[v(S) or v(Sn

Note that all specifications of w agree on constant functions. Thus for
any specification and any r > 0,

v(t + zx) ~ v(t) _ w(t + TX) ~ w(t) v(t + TX) ~ v(t)

Let us show that

•dt

converges to v(x) uniformly on bounded subsets of B(T9C). This will also
imply the corresponding statement with v instead of v and, hence, with an
arbitrary specification w (with the uniform convergence independent of
the choice of w). This follows, as noted in Mertens (1980, Proposition 11),
from §4, Proposition l(a) using Lebesgue's dominated convergence
theorem, because the integrand is uniformly bounded by ||/|| • v(l) (loc.
cit. Proposition 4).

As one immediately checks, the entire first section of Mertens (1988)
goes through as soon as any specification w of the extension of v- with w
between the DNA uppersemicontinuous and the DNA lowersemicontin-
uous extensions of v- the same (f)3 yields after integration. Here we have
even more, because we prove convergence for the unsymmetrized ver-
sion, but only the symmetrized version-convergence of Jo [[w(t + ^x) ~
w(/ - Tx)]/(2T)]dt to \[v(x) - &(-/)]-is required.

Because %(v(x) ~ H~X)) is a function of finitely many measures [§4,
Corollary, part (c)], Section 2 (Theorem 2) of Mertens (1988) implies the
game has a value, independent of the exact specification oft; (such as: v(S)
or v(S)l). This value (f)(v) is obtained by averaging the gradient of
i(v(x) ~ H~X)) w^h a certain Cauchy distribution. This distribution is
symmetric, and the gradient of v exists a.e. w.r.t. this distribution [using
the fact that v is either a concave or a Lipshitz function of finitely many
measures; the Lipshitz case is known as Rademacher's theorem and was
essentially rediscovered in the proof of loc. cit., Theorem 2], so we obtain
that equivalently <f)(v) is the Cauchy average of the gradient of v.
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By the corollary of §4, we have v(x) = <?(x) + F(€(x)), wi*h F(z) =
minp<=P(p,z) = (p(z),z), and/?(z) is an uppersemicontinuous correspon-
dence with nonempty, compact, convex values in the compact, convex set
P (hence P* is a compact, convex subset of P).

It follows by an elementary computation that the directional derivative
Fz(z') of F at z in the direction z' is

Fz(z')=min
e * )

Hence, in the notation of Section 2 of Mertens (1988) (with the afore-
mentioned proviso),

fl(* + ^ - * d lim <

By Theorem 2 (loc. cit.) we have therefore

where C is the distribution of £(%) under the cylinder probability on
B(T,C) having Fourier transform exp(—  \\JLL\\). Thus the Fourier transform
ofCis

J exp(/<tf,z» dC{z) =  J

The proof of Theorem 2 in Mertens (1988) showed that, for any zf in
the space spanned by i?(£), Fhad dC(z) a.e. two-sided directional deriva-
tives in the direction z'; that is, F2{z') + Fz(- zf) = 0, or (p(z),z') is C(dz)
a.e. single-valued. Thus C(dz) a.e., Fz(z') = (^(z),zr), and hence
[<Kv)](x) = <J°(jf) + </ P(z) dC(z)4(x)), which proves (b).

To prove (a), we need only show that P* is independent of £ E X. We
know that Pis a canonically defined, compact, convex set in the dual of V.
Denote by A the vector space of all affine real-valued functions defined on
P, and let P' = ^4/R be the quotient by the subspace of constant functions.
P' can be identified with the dual of the affine subpace spanned by P. Any
\ E X, being a V-valued measure, induces canonically an ̂ 4-valued mea-
sure h:p^> [p£] = hp, which is independent of £ E X(§4, corollary). For
zE. Fthe set p(z) depends only on z viewed as an element of P\ so only
the image distribution of C(dz) on P' is relevant for the computation of
P*. But this is the canonical image in P' of the distribution ofh(x) on ̂ 4,
where x has our cylinder probability on B(T,C). Thus it is canonical;
hence (a) is proved.
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Appendix

Let Ut denote an integrable correspondence (i.e., measurable graph with
an integrable selection). Let Vx = J x(t)Ut dpi(t) (x ^ 0 bounded measur-
able).

Lemma 1. V# Vx is convex nonempty and VXxXl+klXl = XxVXx + X2VX2

Proof: Note first that Vx^0 because Ut is integrable. Vkx = XVx and the
inclusion VXl+X2 C VXl + VX2 are obvious from the definitions. For the
reverse inclusion let v = vx + v2,ViE. Vx. with

vt = I xMyAt) d/i(t)9 Xi(*Mt) e £,(//), yt(t) G t/,.

We want to show that v = J(Xi(t) + ^(OMO ^(0»  w i t h (/i(0 +
Z 2 ( 0 M 0 G i M and yit)e{yx(t)9y2(t)). Hence, let a(t)=Xi(t)/
[XiW + X2M] [= i ifZi(0 = Xiif)l and let z,(0 = (/,(/) + Xi(t))yt(t). We
have a(t)zx(t) and (1 —  a(0)^2(0 //-integrable, and we look for a //-inte-
grable z(t) G {zx(t\z2(i)} with

It is sufficient to construct this on {a ^ £}. On the complement, per-
mute the two indices 1 and 2. Then we have, in addition, z2(t) //-inte-
grable, and we look for a measurable set A such that IAzx{t) is//-integrable
and

f [IAzx(t) + IAez2(t)] dju(t) = j [a{t)zx(t) + (1 - a(t))z2

or, because z2(t) is //-integrable,

f (Zx(t) - Z2(0) ^ ( 0 = f <7(0[*l(0

with IA(zx(t) —  z2(t)) //-integrable. We can also w.l.o.g. assume a(t) > 0
everywhere (on the complement, A = 0) . We have a(t)[zx(t) —  z2(t)] is
//-integrable, so we denote by v the vector measure (a(t)[zx(t) —  z2(t)]+

d/i(t)9<r(t)[zx(t) - z2(/)]- diM) and let f(t) = \/a(t) (>2).
The problem is then as follows: Given a nonnegative nonatomic vector

measure v and a measurable function f(t) ^ 2, find a measurable set A
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such that SAf(t) dv(t) = v(7) [v is nonnegative and bounded, so this will
automatically ensure the //-integrability ofIA(zx(i) —  z2(t))].

Let In = {n<f<n+ 1} (n = 2,3,4, . . .) and use Lyapunov's
theorem to choose An c /„ so that JAnf(t) dv(t) = v(In). Then A = UnAn
satisfies our requirements, by the monotone convergence theorem. This
proves our formula. The same formula, with X\ = Xi a n d Aj + A2 = 1
shows the convexity of Vx. •

For the next lemma, call a set S an archimedean cone when
(1) it is an abelian semigroup (i.e., endowed with an associative and

commutative addition) having the archimedean property V/j,
X2 e S, 3*3 e H, 3w:/iXi =*2 + *3> and

(2) it is endowed with a multiplication by the positive real numbers
satisfying (A//)(*) = A(/#), 1 • * = X, (A + //)* = A* + //*,

E).

Remark: The set E = {/ E ^(/,C)|inf / > 0} is an archimedean cone. The
convex subsets of Rn also form a (not necessarily archimedean) cone.

Lemma 2. Let E denote an archimedean cone and V x E E let Vx denote a
subset of Rn such that ("linearity") VXlXl+A2X2 = ^iVXl + k2VX2. Then

(a) All sets Vx are convex.
(b) (F^0VZGH)--(3/EE:F^0).
(c) (Vx is closed V/ E S) • = • (3/ E S: V x is closed).

(a) follows by taking / t = Xi = X, *>i + ^2 = 1 •
(b) follows because otherwise let VXl ¥=  0 , VXl = 0 , and choose n and#3

such that nXl =Xi +X*. We get 0 # /iKZl = K^ = F,2 + F,3 = 0 + F,3,
which is impossible.

(c) By (b), (c) is obviously true if 3 / E S: F^ = 0 . So we can assume
that VXo is closed and nonempty. We know then, because of (a) and (b),
that all sets Vx are nonempty convex sets and thus have a dimension dx.
Again, the linearity and the archimedean property imply immediately
dXl = dXl V^!, Xi E E: for some d > 0, all sets Vx are J-dimensional convex
sets.

We prove (c) by induction on the dimension d. Clearly for d = 0 there
is no problem, because zero-dimensional convex sets are points and hence
closed. Thus we can assume (c) is proved for all dimensions d < d0.

Let us first show that we can further assume d0 = n. If not, for each/let
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vx denote the projection of zero on the d0-dimensional affine subspace
generated by Vx. Because all those subspaces are parallel (d0 being inde-
pendent of/), it follows that ^depends linearly on / . Hence, Vx = Vx —  vx

would be another linear correspondence, with values in a fixed do-dimen-
sional subspace of R" and having the same closedness properties as Vx.
Hence, it would be sufficient to do the proof for Vx, which takes values in a
d0-dimensional space.

In short, we can assume each Vx is a full-dimensional convex set in R",
and (c) is proved for all correspondences Vx of dimension d < n.

For the induction step, we introduce some notation:

1 Vx is the closure of Vx.
2 4>x is the support function of Vx (and of Vx): ^p) =

supyGK,< P,v) = supv(=vx(p,v). Then
a. </> has values in R U {+00}.
b. (f)x is, V/, convex and positively homogeneous of degree 1 in p.
c- <f>x*i+i2X2= ^xi + *2<f>x2

 f r o m t h e linearity (using
0 -(+oo) = 0).

d. This last equation_and the archimedean property imply that
the convex cone n = {pl^p) < +00} is independent of/.

3 FPJC = {vG Vx\(p,v) = 0 ^ ) } ; Fpjc = {vG Vx\(p,v) = ^p)}.
Clearly for each p, the linearity in / of Vx carries over to FPJC.

4 n = {p\FPJC ¥*  0 } ; T!̂  = {p\FPtX ¥*  0 } [by (b) and the linearity of
FPJC9 n does not depend on the choice of / ] .

Our first step will be to show

Claim 1. For p ¥=  0, FM * 0 => FM = FPOL (i.e., p G II =» F M = F w ) .

Proof: By the induction hypothesis, FPX is closed for/? =£ 0, because FPJCo is
closed and not of full dimension. Thus we will only have to prove that, for
p G n , FPX and Fpx have the same support function. Hence, let y/PtX(q) =
supy€E/rAjr<0,)>>, Wp,x(Q) = s u p ^ ^ ^ ^ y ) : y/ > ^, and, forp G n , both have
values in R U {+«>}.  Further, y/p>xlXl+hx2 = h\VP,xx + A2VP,X2 by the linear-
ity of FPtX and VP,AlXi+hx2z; *IVP,XLJ- *2VP,X2 because the linearity of
F Jmplies v^x^lX2 2 *xVXl + X2VXi, hence ^

It follows first that y/pJiq) < °° for some / implies y/PJ<Q) < °° for a ^ X,
and then that if we set for such pairs (p,q) hpq(x) = WPJ<q) ~ ¥ PJiq\ then
hpq is nonnegative, concave, and positively homogeneous of degree 1 in / .
Further, VXo = VXo implies hpg(Xo) = 0. For / arbitrary, choose n and /
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such that nxo = X + L anc* consider/(#) = hpg(x + Ox):fis a nonnegative
concave function of 6 ^ 0 satisfying/(l) = 0. Therefore/(#) = 0 for all 6;

Thus, for/? E n, we have shown that for all# G H either y/pj^q) < °° and
then y/^q) = y / ^ ) or y/pJjl) = + °o and then also y/pJ,q) = y/^tf). Thus,
for p G l l , Fpx and i 7 ^ indeed have the same support function, and
therefore are equal. This proves Claim 1.

To finish the induction step, and thereby the proof of Lemma 2, there
only remains to show that p 3 n => FPX = FPJC = 0 . Indeed, it will then
follow that, Vx, FPX = Fpx Vp =£ 0, and hence Vx= Vx( Vxbeing convex).
Thus we have

Claim 2. Fpx = 0=*FPfX = 0 (i.e., Ux = U).

Proof: We start the proof of Claim 2 by a sublemma.

Sublemma. Let Ck denote a decreasing sequence of closed convex sets in
R", with r\kCk = 0 . Then 3q\mtc^Ck{q,c) ^ » + 00.

Proof: The lemma should be well known. For instance, we can take for q
any element of the relative interior of the polar of the intersection of the
asymptotic cones of the Ck. For the sake of completeness, we give an easy,
direct proof of the sublemma.

Let (frjlq) = inf{(#,c)|c G Ck). The <f>k are increasing with k and are
concave and positively homogeneous of degree 1 in q, with values in
RU{—°°}. If the sublemma were not true, we would have </> =
lim^oo^ < + 00, and </> also would be concave and positively homoge-
neous of degree 1. Let D = {(a,q) G R X Rn|a ^ </>(#)}, and D denote the
closure of D. I claim (/> is uppersemicontinuous at any point q of the
relative interior of the convex cone V= {q\<f)(q) > —  °°}. Indeed, there
would otherwise exist a sequence qt converging to q with lim0(^) >
<t>(q) > ~°°. Hence, we can assume (f)(qt) > — °° for all / (i.e., qt G V).
Thus, because q is in the relative interior of F, the contradiction would
follow from the continuity of concave functions in the interior of their
domain.

This uppersemicontinuity implies in particular that 3 OQ such that
(#o & $ D. Denote by (A,JC) a linear functional that strictly separates (OQ ,q)
from D. We have v = Aoo 4- (q,x) >to+ (q,x) V(a,q): a < cf>(q). It fol-
lows immediately (from a ^ 4>(q)) that X > 0, and from the strict inequal-
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ity that X¥=0 (otherwise let q = q). Hence, by renormalizing we can as-
sume X = 1. Therefore, changing the sign of x, we get that </>(#) —  (q,x) is
bounded from above (by v); because it is positively homogeneous of
degree 1, we get zero as the upper bound: 3 x: V/c, V#, (f)^q) ^ (q,x); in
other words, because Ck is closed and convex, x E Q : the sets Ck have a
nonempty intersection. This proves the sublemma.

Now we prove Claim 2.

Proof of Claim 2: If the claim were not true, let lip II = l,vE. FptX, i//(x) =
4>^p), and FpX = 0 V / e E . Choose e > 0 and #j_G H (archimedean
property) such that x=ex0+X I • We have 0 = F ^ o = FptXo, so if we let O5=
{v G ^ . | ( j?,y) ^ (K/i) —  5}, then the C°s form a decreasing sequence of
closed convex sets with empty intersection. Thus by the sublemma,
3q:mfv^co(q,v) ^ > + oo (and II9II = J ) .

Now choose D £ ^ such that II v —  v\\ ^ //, v = ev0 + vx, ^ E F^.. Then

and because (p,vt) ^ ^(//X w ^ obtain <p,^0) - ^(/o) ~

In particular, given rj0 and (5, choose // = min(//0 ,eS, 1). We then get the
existence of v0 G C°s and vx E C* such that ll(ei;0 + y^ - iFll < 1.

If we had chosen S sufficiently small such that infvGCo(q9v) ^ Me~\
then we would have M+ {q,vx) — (q,v) < 1 (i.e., (q,v x) ^ (q,v) +
1 —  M). Therefore infyGCi(^,i;) =—00. i n particular, we can choose
v\ G VXl such that (q,vj) < - / 2 and </?,*;/) -* ^ ( / i ) .

Now choose « and ^ 2 such that nx0 = Xi + /2 (archimedean property)
and choose a sequence 1;? G P^2with<^",i;?> ^ /and (At;?) ~^ K ^ - T h e n
for i;; = (l/n)[vj + 1;?] we obtain ^ G F^, (^,1;,) -^—00 and (p,v t) —>
^(/o) (=[^(Zi) •+" V(#2)]/^)> which contradicts the definition of <?. This
proves Claim 2, and thus Lemma 2.
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CHAPTER 17

Individual contribution and just
compensation

H. P. Young

Abstract

The "marginality principle" states that the share of joint output atrribut-
able to any single factor of production should depend only on that factor's
own contribution to output. This property, together with symmetry and
efficiency, uniquely determines the Shapley value. A similar result char-
acterizes Aumann-Shapley pricing for smooth production functions
with variable input levels.

1 Introduction

In a perfectly competitive market, the wage of a laborer equals his mar-
ginal product. No ethical judgment need be made as to whether marginal
productivity is a "just" rule of compensation so long as competitive
markets are accepted as the correct form of economic organization. Nev-
ertheless, the idea that rewards should be in proportion to contributions
has considerable ethical appeal in itself, and appears to reflect widely held
views about what constitutes "just compensation" without any reference
to the theory of perfect competition.

In this paper we shall ask what "compensation in accordance with
contribution" means in the absence of competition. How does the mar-
ginality principle translate into a rule of distributive justice when coopera-
tion rather than competition is the mode of economic organization?

Unfortunately, if we attempt to translate marginalism directly into a

This research was supported by the Office of Naval Research under contract N00014-86-K-
0586.
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cooperative sharing rule, difficulties arise. For, except in very special
cases, the sum of individuals' marginal contributions to output will not
equal total output. If there are increasing returns from cooperation, the
sum of marginal contributions will be too great; if there are decreasing
returns, it will be too small.

One seemingly innocuous remedy is to compute the marginal product
of all factor inputs and then adjust them by some common proportion so
that total output is fully distributed. This proportional to marginal prod-
uct principle is the basis of several classical allocation schemes, including
the "separable costs remaining benefits" method in cost-benefit analysis
[3,6]. We show by example, however, that the proportional to marginal
product principle does not resolve the "adding up" problem in a satisfac-
tory way. The reason is that the rule does not base the share of a factor
solely on that factor's own contribution to output, but on all factors'
contribution to output. For example, if one factor's marginal contribu-
tion to output increases while another's decreases, the share attributed to
the first factor may actually decrease; that is, it may bear some of the
decrease in productivity associated with the second factor.

We show that there is essentially only one cooperative sharing rule that
avoids this difficulty-the Shapley value. More particularly, the Shapley
value is the unique sharing rule with the following three properties:

(i) Output is fully distributed,
(ii) Factors that enter into the productive function in a symmetric

way receive equal shares,
(iii) A factor's share depends only on its own contribution to output.

This result holds for all production functions with discrete factor inputs
(i.e., all cooperative games). A similar result characterizes the Aumann-
Shapley sharing rule on the class of smooth production functions with
variable levels of input. In this sense it can be said that the Shapley value
(and Aumann- Shapley prices in the continuous case) are the natural
interpretations of marginalism in problems of pure cooperation.

2 Sharing as a cooperative game

Consider n agents TV = (1,2, . . . ,«} who can cooperate to produce a
single joint product. The product is assumed to be perfectly divisible. The
agents have different skills, so some agents may contribute more to pro-
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duction than others. For each subset of agents ScN, let v(S) be the total
amount produced by S when the agents in S pool their skills. We assume
that nothing is produced for free; that is, v(0) = 0. The set function v
defines a cooperative game on the fixed set TV of agents. A sharing rule (or
"solution concept") is a function </>, defined for every cooperative game
on the fixed set N, such that <j>(v) = (ax, . . . ,an) E Rn. Here at is inter-
preted to be /'s "share" of the total output v(N).

We shall be interested in sharing rules (/> that obey three properties.
First, the output v(N) should be fully distributed:

?4i(v) = v(N). (1)

This property is also known as efficiency [5].
Second, an agent's share should depend only on his structural role in

the function v, not on his name. We say that <f) is symmetric if for every
permutation n of TV, (f>n{i){nv) = (f>i(v).

A third important property is that each agent's share should depend
only on his own contribution to output. The problem immediately arises
of how to define "own contribution" unambiguously. Consider the fol-
lowing example. Two agents, 1, 2, each working by himself can produce
two units per period; working together they can produce ten units per
period. Thus v(l) = v(2) = 2, i?(l,2) = 10 (and v(0) = 0). What is fs
contribution? Relative to the state of full cooperation (i.e., the set {1,2}),
each agent contributes eight units at the margin. But relative to the state of
noncooperation, each agent contributes only two units at the margin. The
meaning of "marginal contribution" is ambiguous because one cannot
say a priori which of the coalitions will actually form.

One way around this impasse is the following idea, due to Shapley [5].
Imagine that the agents arrive on the scene of cooperation in some ran-
dom order. If, say, agent 1 arrives first, then 1 is credited with a marginal
contribution of v( 1) —  v(0) = 2 units. Agent 2 arrives next and is credited
with a marginal contribution of v( 1,2) —  v( 1) = 8 units. In this case, there
is a premium on arriving last. To place all of the agents on the same
footing, we can average the agents' expected marginal contributions over
all n\ orderings. The result is the Shapley value

SQN-i liVl*

Instead of determining contributions according to a random ordering of
the players, let us postulate merely that each agent's share should depend
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in some fashion on his own contributions. A full description of agent /'s
marginal contributions, at all possible levels of output, is contained in the
partial derivative of v with respect to i, namely, the function vt defined as
follows:

vi(S) = v(S+i)-v(S) if i4S,
= v(S)-v(S-i) if/eS. (3)

The sharing rule 4> satisfies the marginality principle if <f>i(v) is solely a
function of vl,: in other words, if for every i GE TV and every two games v, w
on TV,

v( = Wj =»  (f)j(v) = <f>j(w). (4)

If a sharing rule does not satisfy the marginality principle, it is subject to
serious distortions. For, if one agent's share depends on another's contri-
butions, the first agent can be rewarded (or punished) for actions under-
taken by the second. Such rules force dependencies among agents that are
not at all necessary for cooperation, and may penalize individual initia-
tive.

Consider the proportional to marginal product rule:

This rule does not satisfy the marginality principle because (f>i(v) depends
on v(N)/J,j(=NVj(N), which involves other agents' marginal contributions.
This dependence can lead to unfortunate results, as shown by the follow-
ing example. Suppose that two agents can pool their labor and resources
to produce grain. Agent A alone can produce 20 bushels per year by his
own labor on his own land (net of his own subsistence requirements).
Agent B alone can grow 60 bushels per year (net of subsistence). Working
together they can produce 100 bushels per year (net of subsistence). The
marginal contributions to the grand coalition are 40 for A and 80 for B.
Hence, the proportional to marginal product rule implies that A's share of
net output is 33^ and B's is 66j. Now suppose that A works more effi-
ciently than before: for example, A tightens his belt and eats 1 bushel per
year less. Thus A adds 1 bushel a year to net output whether working alone
or with B. Simultaneously, suppose that B uses up 21 bushels per year
more, either through waste or self-indulgence. Combining both effects,
the new output function will be
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0: 0
A: 21

B:39

A, B: 80

A's marginal contribution to every coalition of which it is a member has
increased by 1, and B's has decreased by 21. Yet the proportional to
marginal product rule now gives A 32.8 bushels and B 47.2 bushels. Thus,
even though A becomes more efficient, A is penalized for B's becoming
less efficient.

The following result [7] shows that this sort of injustice can be avoided
in essentially only one way. (This generalizes a result of Loehman and
Winston [4], who showed it for a special class of cooperative games.)

Theorem 1. The Shapley value is the unique sharing rule that is symmet-
ric, fully distributes all gains, and satisfies the marginality principle.

Proof: Fix a set of agents N = (1,2, . . . ,«}.  For every gamer defined on
TV, it is clear that the Shapley value (2) satisfies the properties of symmetry
(S), full distribution (D), and marginality (M).

Conversely, let 0 be a sharing rule defined for all games v on TV such that
S, D, and M hold. First we shall show that an agent whose marginal
contribution to every coalition is zero (i.e., a dummy) gets nothing. Con-
sider the game w that is identically zero for all S C TV. This game is
symmetric in all agents, so all agents receive equal shares. Because
^iei^iM = 0, it follows that </>/(w) = 0 for all i E TV. Now suppose that /
is a dummy in an arbitrary game v on TV. Then vt is identically zero. Hence
Vj = wh so marginality implies that 4>i(v) = </>/(w) = 0. Thus dummies get
nothing under 0.

Next we show that (f)(v) must be the Shapley value for every game v on
TV. Consider first the case where v is a unanimity game: For some non-
empty subset RcN,v = vR, where

, c x fl ifRcS,

It is easy to see that every i' $ R is a dummy in vR. Hence, the preceding
implies that (f>i(vR) = 0 for all / 3 R. Because vR is symmetric with respect
to all agents / G R, symmetry implies that 4>i(vR) = <f>j(vR) for all ij E R.
This, together with full distribution, implies that (f>t(vR) = 1/|/?| for all
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/ E R. This argument shows that </>(v) is the Shapley value whenever vR is a
unanimity game. A similar argument shows that <f)(cv) is the Shapley
value whenever c is a constant and v is a unanimity game.

For a general game v on iV, we may write

2 Cjtifc, (6)
QN

where each vR is a unanimity game and the coefficients cR are real num-
bers. Let I(v) be the least number of nonzero terms in such an expression
for v. (If v is identically zero, I(v) = 0.) The proof that (f)(v) is the Shapley
value for v is by induction on I(v). We have already shown that this is the
case when I(v) = 0 or I(v) = 1.

Assume now that <f)(v) is the Shapley value whenever the index off is at
most /, and let v have index / + 1 with expression

i+i

Let R = n£t\ Rk and choose / 3 R. If/ is a dummy, then <f>i(v) = 0, which
is also the Shapley value of z. If / is not a dummy, consider the game

Since / ^ .R, the index of w is at most /. Furthermore, wt(S) = i;,-(5) for all
ScN, so marginality implies that </>,(*;) = </)/(w). By the induction hy-
pothesis,

which is the Shapley value of /.
It remains to show that ^(v) is the Shapley value when iGR =

n£ti Rk. By symmetry, <f>i(v) is a constant c for all members of R; likewise
the Shapley value is some constant cf for all members of R. Because both
allocations sum to v(N) and are equal for all / 3 R, it follows that c = c\

Q.E.D.

If it is desired to stay entirely within the class of superadditive games,
the foregoing proof may be modified as follows. Every superadditive game
v may be written in the form v = u —  ^cRvR, where all cR > 0, u is super-
additive, and u is symmetric in the sense that u(S) depends only on the
cardinality of 5*. (Every unanimity game vR is also superadditive.) Proceed
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by induction on the minimum number of nonzero terms in such an
expression, observing that the deletion of any term cRvR leaves a superad-
ditive game. The result holds in the base case v = u, because symmetry
and full distribution imply that </>/(w) = u(N)/\N\, which accords with the
Shapley value.

3 Aumann-Shapley pricing

In this section we show that a similar set of axioms characterizes the
Aumann-Shapley pricing mechanism. Consider a firm that produces a
single homogeneous product as a function of several resource inputs. Let
y = / ( * i fa, • • •  ,xn) be the maximum quantity of output that can be
produced with X/units of each resource/(/: = 1,2, . . . ,n). Assume that
/(x) is defined for all x on some bounded domain of the form D =
D(x) = { x G R " : f l ^ x ^ X), where x > 0. The target level of production is
/(x). Assume that / has continuous first partial derivatives on D (the
one-sided derivative applies on the boundary of D). Assume further that
there are no fixed costs-that is, /(0) = 0. A pair (^x) satisfying these
conditions will be called a variable-input production problem.

How much product should be attributed to each of the n inputs? This
question arises in a firm that wants to allocate profit to different inputs for
purposes of internal accounting and control. Assume for simplicity that
output is measured in terms of revenues, and inputs are measured in
terms of costs. The firm wants to allocate total revenue y =/(x) among
the various inputs i = 1, 2, . . . , n so that a net profit can be imputed to
each input (or groups of inputs that constitute "profit centers"). In other
words, the firm wishes to find a vector of unit prices {px, . . . ,/?„) such
that ZieNPiXi?=/(x).

A pricing rule is a function y/ defined for all production problems (/x)
on some fixed set of inputs TV = {1,2, . . . ,«}  such that y/t (fix) = pt is the
unit price associated with /. Full distribution requires that

If/(x) is the total revenue from production and xt is the total cost of
input /, then i//i(f,x) may be interpreted as the imputed revenue per unit
cost of/, and ^z( /x) —  1 is f s imputed rate of profit. A pricing rule might
be used as part of a compensation or bonus scheme to reward different
profit centers according to their imputed profitability. Alternatively,
management might treat the rule as an internal accounting method for
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monitoring the performance of profit centers or divisions over time. In
either case it is reasonable to require that the unit price imputed to /
depends only on Vs own contribution to revenue or product. That is,
y/i(f,x) should be a function only of the partial derivative ft(x) =
df(x)/dxh 0 < x < x (and possibly of i itself).

The function y/ satisfies the marginality principle if and only if for every
i E TV and for every two production functions/and g defined on the same
domain D = { x E i ? " : 0 ^ x ^ x},

f;(x) = gt(x) for all x E D implies y/t(f,x) —  ^,(g,x). (8)

A method that does not have this property is the proportional to mar-
ginal product pricing rule:

i where A = —-^ ( x )

Like its relative in the finite case, this method behaves in an unsatisfactory
way when the production function shifts. In particular, it may impute a
lower unit revenue to i even though f s marginal revenue product in-
creases over all possible levels of output. The reason is that f s imputed
revenue may be dragged down through its dependence on the other fac-
tors' marginal revenue products.

We claim that there is only one plausible pricing mechanism that is
fully distributive and satisfies (8), namely, Aumann-Shapley pricing:

Jo

To establish this fact, we need continuity plus a condition analogous to
symmetry. One natural formulation of symmetry is the following: If/is
symmetric in the two factors / and j , that is, if

J\X\, . . . ,X/? . . . ,Xj, . . . ,Xn)
=/(x1 ? . . . ,*,-, . . . ,xh . . . ,.*„) for all x, 0 < x < x ,

then y/i(f,x) = y/j(f,x). In fact, we need a somewhat stronger condition
that identifies inputs which are essentially the same. Consider the case
where two inputs represent the same item expressed in different units. For
example, let xx be the number of quarts of gasoline and x2 the number of
pints of gasoline used in production. The number of gallons of gasoline is
therefore y = xJA + x2/8. If the imputed price per gallon is /?, then it is
natural to assign a unit price ofp/4 to JC, and p/8 to x2.
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In general, define a linear aggregate of the input factors xu . . . ,xwto
be an input of the form yt = SjLifl,^-, where all atj ^ 0. Let g(y) be a
production function ofm aggregate inputs yl9 . . . ,ym, each of which is
a linear combination of inputs jq, . . . , xn. Thus y = Ax, where A is a
nonnegative matrix. Consider the production function/defined directly
on x as follows:/(x) = g(Ax). The pricing rule y/ is aggregation invariant if
whenever^ ^ 0 and^x = y > 0 , /= g ° A implies y(/x) = [y/(g,Ax)]A.
In other words, the prices to the y inputs are imputed to the x inputs via
the linear system A. (A similar property was defined by Billera and Heath
[2]). Notice that symmetry follows from aggregation invariance by taking
A to be a transposition matrix.

For every x E RN, x > 0 , let Cl(x) be the Banach space of all contin-
uously differentiate, real-valued functions/defined on D = D(x) such
that/(O) = 0, with norm

df(x)
l = sup|/(x)|+2sup

dxt

The pricing rule y/ is continuous if for every fixed x > 0 y/(f,x) is continu-
ous in/ in the topology of Cl(x).

Theorem 2. Aumann-Shapley pricing is the unique pricing rule that is
continuous, aggregation invariant, fully distributive, and satisfies the
marginality principle.

Proof: The reader may verify that the Aumann - Shapley pricing rule has
the required properties. (Aggregation invariance follows from Corollary 4
in [2].)

Conversely, let y/ be a pricing rule with these properties. Consider first
the case where the production function/is a polynomial in x{, . . . ,xn
and/(0) = 0. Aumann and Shapley [1] showed that in this instance/(x)
can be written in the form

/(*) = 2 ckPk(x), where Pk(x) = ( £ bkjx)j\ (10)= ( £ bkjx)j\

rk is a positive integer for all k, and all bkj > 0.
Let the index I of / b e the least number of nonzero terms in any

expression for/(x) of form (10). (If/is identically zero, let / = 0.) Assume
that the theorem is false for polynomial/and we shall derive a contradic-
tion. Let /* be the least index (/* > 0) for which there exists a problem
(/x), such that x > 0, / is polynomial with index /*, and ^(/x) ¥=
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If /* = 0, then/is identically zero. Let y = 2-Li.x, and g(y) =f(x).
Then g is identically zero, and, by full distribution, y<f>{g,y) = g(y) = 0.
Since y > 0, it follows that y/(g,y) = 0. By aggregation invariance, it fol-
lows that for all /, ^ ( / x ) = 0 = ^ ( / x ) , a contradiction.

Assume then that /* > 0. Consider an expression of form (10) for/ Let
/ + b e the subset of indices / for which xt has a positive coefficient bki > 0 in
every term ckPk(x), and let J° be the set of all other indices. If/ G J°, then
by deleting the terms ckPk{x) in which xt has a zero coefficient, we obtain a
polynomial function g(x) with index less than /* such that, for this partic-
ular /,

gi(x)=fi(x) for all x G D(x).

Thus by the induction assumption y/i(g,x) = y/^igix). From the margin-
ality principle it follows that

y/t(f,x) = y/i(g,x) = y/?s(g,x) = y/fs(/x).

If/+ is empty, it follows that y/(f,x) = ^AS(/x), contrary to assump-
tion. If/"1" consists of a single index, say /, then the fact that y/and i//AS must
both satisfy (7) implies (because xt > 0) that ^7(/x) = ^fs(/x).

The case J+>2 remains. Without loss of generality let 1 G / + , so
bkl > 0 for all k, 1 < k < /*. Define an aggregate product yx as follows:

n

tt=*i + 2 f l i . / * / ' w h e r e aij= m i n

Let ^ = Xj for 2 < y < «, and let  4̂ be the nonnegative, « X «  matrix
such that y = Ax. Let

/ •

g(y)= E
A : = l

where

J

n

+ y (bki - bkxaXi)yi I for 1 < k < /*.

Then ̂ (̂ 4x) =/(x). By choice of the coefficients a lj9 yx is the only variable
that has positive coefficients in every term of (11). By the preceding
argument, we can conclude that for all y > 0 and all /,
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For all x > 0 let y = Ax > 0 and conclude by aggregation invariance
for y/ and y/AS that

i//(f,x) = y/(g,y)A = y/AS(g,y)A = y/AS(f,x),

a contradiction. This establishes that y/ is identical with Aumann-
Shapley pricing for all problems (/x) in which/is a polynomial in Cl(x).
Since the polynomials are dense in Cl(x) and both y/(f,x) and y/AS(f,x) are
continuous i n / it follows that y/(f,x) = ^ ( / x ) for all/in Cl(x). This
concludes the proof of Theorem 2.

Several variants of Theorem 2 can be obtained by strengthening the
marginality principle. One natural variation is to require that the unit
price of each product / be monotone nondecreasing with respect to / 's
marginal contributions. We say that a pricing rule y/ is monotonic if for
every i E N, every positive x E RN, and every/ g E C*(x),

M ^ l for all x E D(x) implies ^-(/x) ^ y/^x). (12)

If we assume monotonicity instead of marginality, then the continuity
assumption may be dropped in Theorem 2 (see [8] Theorem 2). The
reason is that every / in Cl(x) may be sandwiched between two
sequences of polynomials in Cl(x) that converge to/from above and
below in the topology of Cl(x).

The marginality principle may be strengthened in another way to
incorporate symmetry. We say that y/ satisfies the symmetric marginality
principle if every two inputs with equal partial derivatives are priced
equally. That is, for every /, j E N, every positive x E RN, and every

^ T = ^ T f o r a11 x G D(5) implies ¥i{f^ = y/j(g^)' (13)

The symmetric marginality principle, together with continuity and full
distribution, uniquely characterizes Aumann - Shapley pricing. The
method of proof is different than that used to derive Theorem 2 (see [8],
Theorem 1).

Finally, we may combine (12) and (13) into the following single condi-
tion: for every /, j E N, every positive x E RN, and every/ g E Cl(x)

^ ^ ^ for all x E D(x) implies ^ ( / x ) ^ y/j(g,x). (14)
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This allows us to drop both aggregation invariance and continuity.
That is, (14) and full distribution uniquely characterize Aumann-
Shapley pricing on C*(x) (see [8], Theorem 1).
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CHAPTER 18

The Aumann-Shapley prices: a survey

Yair Tauman

1 Introduction

The theory of values of nonatomic games as developed by Aumann and
Shapley was first applied by Billera, Heath, and Raanan (1978) to set
equitable telephone billing rates that share the cost of service among users.
Billera and Heath (1982) and Mirman and Tauman (1982a) "translated"
the axiomatic approach of Aumann and Shapley from values of nonatom
games to a price mechanism on the class of differentiable cost functions
and hence provided a normative justification, using economic terms only,
for the application of the theory of nonatomic games to cost allocation
problems. New developments in the theory of games inspired parallel
developments to cost allocation applications. For instance, the theory of
semi-values by Dubey, Neyman, and Weber (1981) inspired the work of
Samet and Tauman (1982), which characterized the class of all "semi-
price" mechanisms (i.e., price mechanisms that do not necessarily satisfy
the break-even requirement) and led to an axiomatic characterization of
the marginal cost prices. The theory of Dubey and Neyman (1984) of
nonatomic economies inspired the work by Mirman and Neyman (1983)
in which they characterized the marginal cost prices on the class of cost
functions that arise from long-run production technologies. Young's
(1984) characterization of the Shapley value by the monotonicity axiom
inspired his characterization (Young 1985a) of the Aumann-Shapley
price mechanism on the class of differentiable cost functions. Hart and
Mas-Colell (1987) used their characterization of the Shapley value via the
potential function approach to characterize the Aumann - Shapley prices
of differentiable cost functions. Recently, Monderer and Neyman (Chap-
ter 15 this volume) applied Owen's multilinear extension to provide a
simple alternative proof to the existence and the uniqueness of the value
on the class pNA of nonatomic games as well as to characterize the
Aumann-Shapley prices. Finally, Mirman and Neyman (1984) proved
the diagonal property of cost allocation prices in a way analogous to

279
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Neyman's (1977) result, which asserts that continuous values of non-
atomic games are diagonal.

Some developments, however, in the theory of Aumann-Shapley
prices cannot be identified with a parallel development in game theory. In
this category we have, for example, the application of the Aumann-
Shapley prices for cost allocation in transportation models (Samet, Tau-
man, and Zang 1984), the extension of the Aumann-Shapley prices to
cost functions that include a fixed-cost component (Mirman, Samet, and
Tauman 1983), and the use of the Aumann - Shapley prices as sustainable
prices in the theory of contestable markets (Mirman, Tauman, and Zang
1985a, 1986).

This chapter surveys the works related to the Aumann - Shapley prices.
The axiomatic approach to cost-sharing prices as discussed By Billera

and Heath (1982) and by Mirman and Tauman (1982a) can be regarded
as an extension of the average cost pricing to the multiproduct case (Mir-
man et al. 1986). Let AC(F,a) = F(a)/a be the average cost pricing rule
for the single-product case, where F is a differentiate cost function and
a =£ 0 is a specific production level. Consider the following four properties
ofAC(.,.).

I Cost sharing. aAC(F,a) = F(a) for each a. > 0.
II Additivity. AC(F + G,a) = AC(F,a) + AC(G,a).

III Rescaling. If G(x) = F{kx\ then AC(G,a) = AAC(F,Aa).
IV Continuity. AC( • ,a) is continuous with respect to the C1 norm

(i.e., if Fn-*F in the C1 norm on [0,a], then AC(Fn,a)^>
AC(F,a) as n -* »).

These four properties of the average cost pricing rule for the single-
product case are used as the basis of the multiproduct extension.

Let $F be a family of functions F defined for some M on a full-dimen-
sional comprehensive subset CF of is+^i.e., oc^CF implies Ca C CF,
where Ca = (xG E+\x ^ a}). By a price mechanism on 9 we mean a
function P{ -, •) that assigns to each cost function Fin 2F and each vector a
in CF with a > 0 a price vector,

P(F,a) = (

We impose the four properties of the average cost pricing on P( -, •).

Axiom 1 (Cost sharing). For every F £ f and every a E CF,

a - P(F,a) = F(a)

(i.e., total cost equals total revenue).
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Axiom 2 (Additivity). If F and G are in 9 and a E CF+G, then

where CF+G = CF n CG. [If the cost is broken into two components (e.g.,
management and production), then the prices are the sum of the prices
determined by the two components separately.]

Axiom 3 (Rescaling). Let F be in 9 with CF C E%. Let kx, . . . , kM be
M positive real numbers. Define C={(xl9 . . . , xM)\(kxxl9 . . . ,

F), and let G be the function defined on CG = C by

= F(kxxl9 . . . ,kMxM).

Then for each a E CG and each m, 1 ^ m ^ M9

(A change in the scale of the commodities should yield an equivalent
change in the prices.)

Axiom 4' (Continuity). Let F E 9 be defined on CF, and let (Fn)"-X be a
sequence of functions in 9 s.t. for each n CFn = CF and suppose that
Fn -* F, as « -^ ^ ? in the C1 norm on Ca. Then P(Fw,a) -> P(F,a) as
n - * oo.

The continuity axiom can be replaced by the following positivity
axiom.

Axiom 4 (Positivity). If F E ^ is nondecreasing on Ca for some o: E CF,
then P(F,a) > 0.

To connect the multiproduct case with the single-product case, we
require that two (or more) commodities that are "the same commodity"
should have the same average cost. Because average cost prices depend
only on the cost structure, being "the same commodity" means playing
the same role in the production cost. As an illustration, consider the
production of a specific car with n different colors. The cost of producing
x = 2£f_! xm cars, where xm is the number of cars of the rath color, can be
represented by an Af-variable function F as F(xl9 . . . , xM). However, if
G(x) is the cost of producing a total of x cars, regardless of their colors,
then

F(x
l9
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In this case it is required that the average cost of a blue car be the same as
the average cost of a red car, and so on.

Axiom 5 (Weak consistency). Let F G 9 and assume that CF C Elf. Let C
be the subset of E\ defined by C = {y G El\y = 2^=1;cm, x G CF), and
let G be a function on C such that F(xi9x29 . . . , xM)
Then for each m, 1 < m < Af, and for each a G CF,

Definition. Let ̂ 0 be the subclass of ̂  that consists of all functions F such
that

(a) F(0) = 0; that is, F does not contain a fixed-cost component.
(b) F is continuously differentiate on Ca for each a G CF.

Theorem 1 (Mirman and Tauman 1982a). There exists one and only one
price mechanism P ( v ) on ^ 0 that satisfies Axioms 1-5. This is the
Aumann-Shapley price mechanism; that is,

„ , fl dF
Jo dxm

Pm(F,a)= j-(ta)dt, m= 1, . . . , M,Jo <*xm

for each F E f 0 and a G C f (Cis^f). Furthermore, the theorem holds if
Axiom 4 is replaced by Axiom 4'.

Theorem 1 is Theorem 1.2 of Mirman and Tauman (1982a). The
Aumann-Shapley price mechanism (ASPM) is therefore considered to
be a natural extension of the average cost pricing from the single-product
case to the multiproduct case. A similar axiomatic approach to ASPM was
independently obtained by Billera and Heath (1982).

Billera et al. (1978) were the first to introduce the AS prices as an
application of the theory of values of nonatomic games developed by
Aumann and Shapley (1974). They proposed equitable telephone billing
rates that share the cost of service. One can use their idea to allocate costs
through prices when a finite number of any infinitely divisible commodi-
ties are produced. Their idea can be roughly described as follows. Suppose
that F(xx, . . . , xM) is a cost function satisfying F(0) = 0. The variables
xm denote nonnegative quantities of the commodities produced. Let
a = (a{, . . . , aM) be a vector of quantities of these commodities. Sup-
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pose that these are various types of corn that are piled together into one
heap. Identify this heap with a continuum of players and associate with it
a cooperative game va defined as follows: For each subset S of the heap let
va(S) be the cost of producing S. The Aumann-Shapley value for this
nonatomic game is a measure defined on the space of players (the heap)
that assigns to each coalition its contribution to the total production cost
of the heap (i.e., to the cost of producing a). The AS price of the mth
commodity is the value of a unit of this commodity (i.e., the contribution
of this unit to the total cost). The existence of a value for the game va
described here is guaranteed whenever va belongs to the class pNAD of
nonatomic games. Moreover, on this class of games, there is only one
continuous value (this follows from Propositions 43.13 and 44.22 of
Aumann and Shapley together with Neyman 1977). Using the value
formula on pNAD, the value of the game va assigns to a unit of the mth
commodity the magnitude

Pm(F,a)= -r-(ta)dt,
JO °Xm

which is the AS price of the mth commodity.

2 Other characterizations of the Aumann-Shapley price
mechanism

Since the works of Billera and Heath (1982) and Mirman and Tauman
(1982a), other alternative characterizations of the AS pricing rule have
been obtained. Samet and Tauman (1982) suggested two alternative re-
quirements to replace the additivity axiom. Young (1985a) offered a
characterization based on a monotonicity axiom. Hart and Mas-Colell
(1987) offered to use their concept of potential functions to characterize
the ASPM and Monderer and Neyman (Chapter 15 this volume) made
use of the multiextension function (see Owen 1972) to relax Young's
result.

We start with Samet and Tauman (1982). They showed that the addi-
tivity axiom can be replaced by the assembling and the separability
axioms. The first one asserts that if two commodities are combined to one
(i.e., a unit of the "new" commodity consists of a unit of the first com-
modity and a unit of the second commodity), then the price of the new
commodity should be the sum of the prices of the two original commodi-
ties.
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Axiom 6 (Assembling). Let F be a function on CFCE+, where
k= E£f=1 nm. A n y x E CFisof theformx = ( x n , . . . ,xlni,x2l, . . . ,
*2n2, . . . ,XM19 . . . ,xMnJ. Define

= F(xu . . . ,xux2, . . . , ^ J X J I / , . . . , xM).

nx n2 nM

Then for each m, 1 ̂  m^M, and for each a e CG,

The second axiom deals with the case where the set of commodities
consists of two independent subsets (i.e., the production processes of the
two groups of commodities are independent). Then it is required that the
price of each commodity depend only on the part of the production cost
that it affects. To state it formally, we need the following notations. Let
N={il9 . . . ,/„}, where ix<i2< • • • < / „ is a subset of (1,
2, . . . , M), and let x E EM. Denote by xN the element in En defined by
xN= (xil9 . . . ,xin).

Axiom 7 (Separability). Let A^ and 7V2 be two disjoint sets with Ml and M2
elements, respectively, such that N{ U N2 = (1, . . . ,M). Leti7, G, and
H be defined on CF, CG, and CH, respectively, where CFCE^
CG c E%\ and CH c E%\ Suppose that CF

Ny = CG, CF
Nl = C", and, for

each x E CF,

F(xN) = G(xNl) + H{xNl).

Then, for each a E CF,

PNl(F,a) = P(G,aNl) and PNl(F,a) = P(H,aN2).

Proposition 1 (Samet and Tauman 1982). Axioms 6 and 7 imply the
additivity axiom.

The proof of this proposition is stated in Samet and Tauman (1982) for
the case where the functions are defined on E!f (for some M\ but it can
be directly extended to functions with any comprehensive domains.
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Young (1985a) introduced the monotonicity requirement and showed
that this together with a stronger version of the weak consistency axiom
and the cost-sharing requirement are sufficient for the characterization of
the ASPM.

Axiom 8 (Monotonicity). Let F and G be two functions in &0 s.t.
CF = CG c E%. Let a <ECF and suppose that for any x, 0 < x < a, and for
any m, 1 < m < M, dF(x)/dxm > <9G(jt)/dxm. Then Pm(F,a) > Pm (G,a).

The next axiom used by Young was first introduced by Billera and
Heath (1982). This is the aggregation invariance requirement. Consider a
function G defined on a comprehensive set CG. Suppose that
G(yi> • • • , y j is the joint cost of producing «types of gasoline where the
quantity yt of each type is a blend of M refinery grades xl9 . . . ,xM,
yt = S ^ aimxm, where aim > 0. Let A = (aim) and define

That is, F(x{, . . . , xM) is the cost of producing 2£f= x aimxm units of the
/th type of gasoline for all /, 1 < / < «. A price mechanism satisfies the
aggregation invariance property if costs are aggregated in the same man-
ner as product quantities. We state this formally as follows:

Axiom 9 (Aggregation invariance). Let CF C E+ and CG C E\ be the
domains of F and G, respectively. Let A be a nonnegative matrix of
dimension n - M. Suppose that CG = A • CF and that, for any x E CF,

= G(Ax). Then, for any a e CF,

A.

Theorem 2 (Young 1985a). The Aumann-Shapley price mechanism is
the unique mechanism on ^0 that satisfies Axioms 1 (cost-sharing), 8
(monotonicity), and 9 (aggregation invariance).

Monderer and Neyman (Chapter 15 this volume) proved Young's
result with a requirement weaker than aggregation invariance. They re-
quire the rescaling axiom and the consistency axiom, first introduced by
Mirman and Neyman (1983). To state this axiom, we need the following
notations. Let T= (Tl9 . . . , Tn) be an ordered partition of
{ ! , . . . ,Af}. That is, T is an ordered «-tuple of nonempty disjoint sub-
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sets of {1, . . . ,M) such that UJLj Tt = {l, . . . ,M). The ordered par-
tition T induces a mapping T: En —»  EM defined by

Tx = (x(Tl),x(T2\ . . . ,x(TM)),
where x{Tt) =

Axiom 5' (Consistency). Let CF C £5. and CG C £^be the domains of F
and G, respectively. Let T=(Tl9 . . . , Tn) be an ordered partition of
{1, .. . . ,M) such that 7 C F = CG. If, for anyxEC G , G(JC) = F(Tx\
then for any a G CG,

Pm(G,a) = Pt(F,Ta) where w G T,-.

For a better understanding of Axiom 5', notice that it is equivalent to
the following two requirements.

Axiom 5". Let CF C ^f"1 and CG C £ f be the domains of F and (?,
respectively. Suppose that C F = {yGE^~l\y = (x{ +x 2 ,x 3 , . . . ,xM),
x E CG} and that G{x) = F(xx + x2, x3, . . . ,xM\ x G CG. Then for
any a G CG,

Axiom 5" differs from Axiom 5 (weak consistency) in only a technical
manner. Axiom 5 allows for irrelevant split of one commodity in the
production of a single good, whereas Axiom 5" allows a split of one
commodity in the production of any number of goods.

Axiom 10 (Symmetry). Let CF C E% and CG C E% be the domains of F
and G, respectively. Let n be a permutation of {1, . . . , M). For x G EM

let nx G EM be defined by nxm = x<m). Suppose that CG = 7rCF and, for
any x G CF, F(x) = G(nx). Then for any a G CF,

P(F,a) = nP(G,na).

The following is an easy observation.

Proposition 2. Axioms 5" and 10 are equivalent to Axiom 5'.
Observe that Axiom 9 is stronger than Axiom 5r, because it implies

Axioms 5" and 10. In addition, Axiom 9 implies Axiom 3, but it is not
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equivalent to Axioms 3, 5", and 10 (see Monderer and Neyman chapter
15 this volume).

Theorem 3 (Monderer and Neyman 1987, Chapter 15 this volume). The
Aumann - Shapley price mechanism is the unique mechanism on 2F0 that
satisfies Axioms 1, 3, 8, and 5'.

A different characterization of the ASPM is via the potential approach
due to Hart and Mas-Colell (1987). A potential of a cost function i7 e ^ 0 ,
which is defined on CF, is a differentiate function PF: CF^> El such
that xVPF(x) = F(x) for each x E CF, where VPF(x) is the gradient of PFat
x. It can be shown that any cost function F E $F0 is associated with a
unique potential PF, defined by

PF(x)= -F(tx)dt, x(ECF.
Jo t

Furthermore, among all price mechanisms on $F0 that satisfy the cost-
sharing requirement (Axiom 1) the unique solution to the functional
equation P(F,a) = VPF(a) is the ASPM.

3 Price mechanisms without the break-even assumption

In this section we review the characterization of Samet and Tauman
(1982) of price mechanisms that satisfy Axioms 2-5 (i.e., price mecha-
nisms that satisfy additivity, rescaling, positivity, and weak consistency
but not cost-sharing). This characterization stems from that of Dubey et
al. (1981) of semivalues on pNA.

Theorem 4 (Samet and Tauman 1982). P( •, •) is a price mechanism of  ̂ Fo
that satisfies Axioms 2-5 if and only if there is a nonnegative measure ju
on ([0,l],flB) (98 is the set of all Borel subsets of [0,1]) such that for each

0 with a domain CF C Elf and for each a G CF,

f1 dF
= —(ta)4i(t) 9 m = l , . . . , M

Jo °X
m

Moreover, for a given price mechanism P( •, •) that satisfies Axioms 2-5
there is a unique measure ju that satisfies (*). In other words, (*) defines a
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one-to-one mapping from the set of all nonnegative measures on ([0,1 ],98)
onto the set of all price mechanisms on 2F0 satisfying Axioms 2-5.

If ju is the Lebesgue measure on [0,1], then the corresponding price
mechanism is the ASPM. If ju is the atomic probability measure whose
whole mass is concentrated at the point t = 1, then the corresponding
price mechanism is the marginal cost pricing. The next goal is to use
Theorem 4 for the characterization of the marginal cost pricing rule. For
this purpose we introduce a stronger version of the positivity axiom.

Axiom 4". Let CF C E% be the domain of F and let a G CF. If F is
nondecreasing at each JC ^ a in a neighborhood of a, then P(F,a) ^ 0.

Theorem 5 (Samet and Tauman 1982). A price mechanism P( •, •) on ^ 0

satisfies Axioms 2, 3,4", and 5 if and only if there is a constant c > 0 such
that for each F<E&0 with CF C Ef and for each a G CF,

Pm(F,a) = c — - (x). m = 1, . . . , M.
OXm

If in addition to Axioms 2, 3, 4", and 5 we impose a normalization
condition, [e.g., for the identity (one-variable) function H(x) = x,
P(H,\) = 1], then c = 1 (i.e., the marginal cost pricing is the only price
mechanism that satisfies these requirements).

4 The Aumann-Shapley price mechanism on classes of
nondifferentiable cost functions

We have discussed various characterizations of the ASPM on the class ^ 0
of differentiate functions. This analysis was extended to cost functions
that are not necessarily differentiable. Mirman and Neyman (1983) char-
acterized the ASPM on the class Hc of cost functions that arise from
long-run production technologies. These are cost functions that are non-
decreasing, homogeneous of degree 1, and convex and do not include a
fixed-cost component. Notice that the ASPM coincides with the marginal
cost price mechanism on cost functions that are homogeneous of degree 1.
Thus, the characterization of the ASPM on Hc is equivalent to that of MC
prices on Hc. In their study, Mirman and Neyman extended the definition
of price mechanism to be a map y/ that associates with each
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and a G CF, a set of prices. The axioms were adjusted accordingly. For
example, additivity was replaced by superadditivity, which asserts that

They defined a certain topology on the set of problems (F,a), where
F e / / C and a G CF, and showed that the ASPM is the unique price
mechanism that satisfies (i) superadditivity, (ii) consistency, (iii) continu-
ity, (iv) rescaling, and the following normalization condition (v). If Fis
linear, then y/(F,a) = VF(a). Their work was inspired by a parallel devel-
opment of Dubey and Neyman (1984) in the theory of nonatomic econo-
mies.

The next work by Samet et al. (1984) applied the ASPM to cost alloca-
tion problems in transportation models. To motivate this work, consider
the following example.

Example. Suppose there are two destinations^ and^42 and two origins Bx
and B2, and a certain commodity available at the origins is shipped to the
destinations. The following 2 X 2 matrix C = (Cnm) represents the cost of
shipping a unit from origin n to destination m:

C21 = 1000

C1 2=15

C22 = 1500

r, =20 x, = 20

Each origin has 20 units of available resources, and each destination
demands 20 units. It is easy to verify that the optimal solution is obtained
by transporting 20 units from B2 to Ax with associated cost of
20 • 1000 = 20,000, and by transporting 20 units from Bx to A2 with costs
20 • 15 = 300. However, destination Ax should not be allocated 20,000
out of the total cost of 20,300.

The solution turns out to be optimal because the penalty paid, once A2
is not supplied from its cheapest origin, is much higher than the penalty
paid if case Ax is not supplied from its cheapest origin. Therefore, Ax
should be supplied from the more expensive origin for him, namely from
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B2, in order to achieve overall minimization of cost. Hence, destination
A2 subsidizes destination Ax. But this cannot be a reason to charge Ax a
price higher than A2 is charged. On the contrary, transportation from each
of the origins to A x is cheaper than to A2, so it is expected that the price per
unit charged at Ax should be less than the one charged at A2.

It is suggested (and later on will be axiomatically justified) to use here
the AS prices for the allocation of the total cost of 20,300 between the
destinations. To that end, we consider the cost function that associates
with each feasible demand vector x = (xx ,x2), xx 4- x2 < 40, xx ^ 0, and
x2 ^ 0, the minimum cost F(xx, x2) of shipping xx units to the first destina-
tion and x2 units to the second destination. In this case

CF = {(x, ,x2)\xx + x2 < 40, xx 2s 0, x2 > 0},

and it is easy to check that

40

20

F(xl9x2)= '

40

\0xx + 15x2, xx > 0, x2 > 0, xx 4- x2 < 20,
1000^ + 1005x2 - 19,800,

0 < x2 < 20, 20 < xx + x2 < 40,
4- 1500x2 - 29,700,

xx > 0, x2 ^ 20, xt + JC2 < 40.

Consequently, for a = (20,20),

VF(ta) = (10,15) f o r O < / < i ,
= (1000,1005) f o r ^ < / < 1,

and thus the AS prices are given by

The general transportation model under consideration consists of TV ori-
gins Bx, . . . , BN and Mdestinations Ax, . . . , AM, an TV X Mmatrix
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C = (Cnm), where Cnm is the cost of shipping a unit from the origin Bn to
the destination Am, a vector b = {bx, . . . , bN) of the available resources
in the TV origins (bn in Bn) that is assumed to be fixed, and a vector of
quantities x = (x{, . . . ,xM), where xm is the demand at Am satisfying
the condition 2 f̂ = xm ̂  E^Lj &„. Let i 7 ^ , . . . ,xM) be the minimal
cost of supplying x. Formally,

F(xl9 . . . ,xM) = min ^ Cnmynm

subject to 5) ̂ m = xm, m = 1, . . . , M,

y*»  ^ o.
It is well known that the cost function F, which is defined on the simplex
{x E 2^12^=! xm - 2^-i bn), is piecewise linear and convex.

Cost functions derived from the solution of general linear program-
ming (LP) problems are piecewise linear. In many cases, however, one
may have an LP cost function F together with a vector a in its domain
such that the linear segment [0,a] contains a continuum of kinks (of F).
For example, let

F(xux2) = miny
s.Ly>xuy>x2, (TP)

and let a = (1,1). Then F(xx, x2) = max(Xj, x2), and Fis not differentiate
along the line segment [0,a]. Thus, one cannot apply the AS formula to
obtain prices for these Fand a. Fortunately, this is not the case for TP cost
functions or for the generalized TP cost functions (as shown later). The
latter are cost functions of the form

F(x) = min ^ 2 c™ynm

subject to j? anmynm = xm, 1 < m < M,

M
2 dnmynm ^bn, 1 < «  < TV,

m - l

ynm ^ 0, (WDP)

where anm ,dnm > a n d Cwm are nonnegative for all« and m. In addition, it is
required that each ynm have a nonzero coefficient in at least one equation.
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We also assume, without loss of generality, that the rank of the constraints
matrix is M + N. This LP problem is known in the literature as the
weighted distribution problem (WDP) or as the generalized transporta-
tion problem (Dantzig 1963, chap. 21). The first result applies to WDP
problems for which all constraints are equalities. We denote this problem
by WDPE. Note that a WDP problem can be transformed into an equiva-
lent WDPE problem by the addition of slack variables to the nonequality
constraints. Thus, the next theorem applies to WDP cost functions as a
special case.

Theorem 6. Let F be a WDPE cost function. Then Fis a piecewise linear
function, and there is a finite number of hyperplanesH!, . . . , /
form

m - 1

where kj
m ̂  0 and Pj ^ 0 such that F is continuously differentiate off

Corollary. If F(xi9 . . . ,xm) is a WDP cost function defined on a com-
prehensive domain CF, then for each a in CF, Fis continuously differen-
tiate along the line segment [0,a], except perhaps for finitely many
points. Thus, the AS formula can be applied to any WDP cost function.

The next goal is to characterize the ASPM on the class of cost functions
spanned by all WDP cost functions (this is the class ̂ 3 defined later). This
characterization uses exactly the same set of axioms used by Mirman and
Tauman (1982a) for the class of all differentiable cost functions. To state
the results, we need some notation.

Let Cbe a subset ofEM, and let Hl9 . . . , Hk be k hyperplanes in EM.
Each hyperplane Hj defines two closed half-spaces, which we denote by
Hf and Hj. We call each nonempty subset of the form C n H\x n • • •
n H%k, where €j stands for 4- or —,  a region.

Definition. A function F defined on a subset C of EM is piecewise contin-
uously differentiable (p.c.d.) if it is continuous and there are k hyper-
planes Hx, . . . , Hk in EM and r continuously differentiable function
F\ . . . , Fr on EM such that F coincides on each of the regions of C
(determined by Hl, . . . ,Hk) with some FJ, 1 ^j^r.
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Definition. Let 9f be the family of all functions F such that

(a) F is defined on a full-dimensional comprehensive subset CF of
EM

(b) F(0) = 0.
(c) F is p.c.d.
(d) Thehyperplanesi/i, . . . 9Hk involved in the definition of Fare

defined by positive functionals; that is,

Hj = {x\Xjx = aj)
where Xj

m > 0, Xj * 0, j = 1, . . . , k, m = 1, . . . , M.

Notice that ZF™ is  a linear space when F + G is taken to be the function
on CF n CG defined by

(F + G)(x) = F(x) + G(x), x G Cfn CG.

Now set 3FX = U^=1 &¥•  N o t e that SFX contains ^ 0 and, in view of the
preceding corollary, all WDP cost functions. In particular, all TP cost
functions are in 3FX.

Let $^be the linear space consisting of the piecewise linear functions
in &¥, and let ̂ 2

 = UAT=I &¥-  BY &¥  w e denote the linear space spanned
by all WDP cost functions with M variables. Again, let ^ 3 = U^=1 9%.
Notice that 9X D &0 and that ^ D ^ D ^ .

Theorem 7 (Samet et al. 1984). For each of the spaces 9099i9929 and &3
there exists one and only one price mechanism P( • , • ) that obeys
Axioms 1-5. This is the Aumann-Shapley price mechanism; that is, for
each FG 9f (i = 0, 1, 2, 3) and « G C f , a » 0 ,

5 The extension of the Aumann-Shapley prices to cost
functions with fixed-cost component

The ASPM has been defined only for cost functions without a fixed-cost
component. Mirman et al. (1983) extended the analysis to the class 2FFC of
functions of the form F + c9 where F G 90 [i.e., a differentiate function
on a comprehensive subset CF oiE+ s.t. F(0) = 0] and c is the fixed-cost
component, a nonnegative real number. It is easy to verify that the three
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axioms of cost-sharing, additivity, and weak consistency are incompati-
ble. For example, let xx + x2 + c be the cost function and suppose that
a = (1,1). By the consistency axiom the prices of the two commodities
should be the same. But if we decompose this cost function into x{ and
x2 + c and apply the additivity and the cost-sharing axioms, we find that
the price of the first commodity covers only the variable cost of producing
one unit, which is 1. The price of the second commodity is 1 + c, and it
covers all of the fixed cost. This contradicts the consistency axiom. Mir-
man et al. (1983) suggested modifying the additivity axiom in order to
extend the ASPM to &FC.

Axiom 2'. Let Fbe a function in ^ 0 defined on CF, and let c be a nonnega-
tive number. Then for each G in &0 for which CG = C^and G^ F, there
is a nonnegative number cG such that if F = EJL i Gt then c = 2JL i cG. and

That is, it is not necessary to specify a priori how the fixed cost is split
between different variable-cost components. It is only required that there
be a way to do it.

The second axiom asserts that the part cG. of the fixed cost c that is
associated with the component Gt should be at least as large as cG when-
ever the part Gt{a) in the total variable cost F(a) is at least as large as Gy(ex).

Axiom 11. Let F, Gl9 . . . , Gn9 and c be as stated in Axiom 2'. Then
Gt(a) > Gj(a) implies cGi > cGj.

Theorem 8 (Mirman et al. 1983). There exists a unique price mechanism
P{ - , •  ) on ?FFCthat satisfies Axioms 1,2', 3 - 5, and 11. This mechanism
is defined as follows: For each (F,a) s.t. F(a) # 0

where P(F,a) is the AS price vector associated with (F,a); that is,

m=\, . . . , M.J Jo dxm

For further discussion, see also Mirman, Tauman, and Zang (1985b).
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6 The Aumann-Shapley price mechanism as an incentive
compatible scheme

Recently, Schmeidler and Tauman (1987) considered a transportation
model, like that described before, with one additional characteristic-that
the destinations can self-produce their demands (possibly at higher costs
than offered by the origins). Consequently, depending on the cost-sharing
mechanism used, it may be to their advantage to misreport their true
demands and to self-produce (or to dispose) the difference. An interesting
problem in this model is to characterize the cost-sharing schemes that are
incentive compatible. Schmeidler and Tauman showed that the ASPM is
an incentive-compatible cost-sharing scheme. That is, to report the true
demands is a dominant strategy for each destination, if the ASPM is used
to share the production and the transportation costs of the reporting
demands. Also, it was shown that the second-best Ramsey price scheme
(defined later) and the price mechanism P( • , • ) that allocates the costs
proportional to the marginal cost [i.e., P(F,a) = c • VF(a), where c satis-
fies c - VF(a) = F(a)] are not incentive compatible. That is, the Nash
equilibrium of the strategic game played by the destinations (where the
levels of reported demands are their strategies) can result, under these two
schemes, in strategies where some of the destinations will not report their
true demands.

7 The Aumann-Shapley price mechanism as a demand-
compatible scheme

We have shown that the ASPM is uniquely determined by a set of axioms
formulated in purely economic terms. A natural question arises: If the
ASPM is used to regulate a public firm or a monopoly, would these prices
be compatible with demands and, in the case of a natural monopoly,
could they deter undesirable entry. Mirman and Tauman (1981, 1982a)
considered a partial equilibrium model consisting of n consumers and one
firm that produces several commodities jointly, using only one input. The
monopoly is regulated through the AS prices. It was shown that under
standard assumptions on preferences and weak assumptions on the cost
structure there exists a supply decision such that the corresponding AS
prices lead to demands that match supply. The equilibrium depends on
both supply (or costs) and demand. This result is independent of the
returns to scale properties of production. In the case of constant returns to
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scale, AS prices and MC prices coincide and the standard competitive
equilibrium is obtained.

The assumptions on the cost function Fthat guarantee the existence of
an equilibrium in the Mirman- Tauman model are (1) F(0) = 0, (2)
dF/dX; exists on xt > 0 and is continuous there, and (3) F is continuous
and nondecreasing on CF, and for each a E CF, a E E+, the line segment
[ta], 0 ^ / ^ 1, contains at most a finite number of points at which Fis not
continuously differentiate. The last assumption describes the case in
which the means of production is not infinitely divisible. Enlarging the
quantities produced along some nondecreasing path starting at zero and
ending at a yields changes in the configuration of the means of production
that may change the slope of the cost function (noncontinuously). It is
natural to assume that on each such path only a finite number of changes
occur. This implies that on each such path there may exist a finite number
of kinks. Assumption (3) requires even less: Only intervals [0,a], a E Elf,
are assumed to contain a finite number of kinks, whereas general paths
may contain an infinite number of kinks. The main difficulty in the
existence proof was to prove that under the three assumptions the ASPM,
P(F,a), is continuous in a. This result was shown in Mirman and Tauman
(1982b). In fact, their result is more general. Suppose that, for each a E

+, /ia is the vector measure defined on the interval [0,M] by

where a = (ax, . . . ,aM),AistheLebesguemeasureon[0,M],andiSisa
Borel subset of [0,M ]. Let va be the nonatomic game defined by

The interval [m —  l,m] represents the mth commodity, and Sis a coali-
tion that represents a vector x = fia(S) of quantities of consumption
goods.

Theorem 9 (Mirman and Tauman 1982b). Let F: E%'-* R be such that
F • jua E pNAD for each a E E%+. Then the ASPM P(F, • ) is continuous
on E++.

As shown in Mirman, Raanan, and Tauman (1982), if the cost func-
tion F satisfies our three assumptions, then for any a E CF F • pta E
pNAD and, thus by Theorem 9, P(F, • ) is continuous on CF.

Boss and Tillmann (1983) extend the existence result of Mirman and
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Tauman (1981, 1982a) to include all price mechanisms that satisfy
Axioms 2-5 . By Theorem 4 these are prices of the form

for some nonnegative measure JU. They proved that these price schemes
are compatible with demand if the financing of deficits or the distribution
of profits of the regulated public firm is made via lump-sum transfers that
are specified in advance. Their assumption on the cost structure is
stronger than the three assumptions given here because they assumed that
the cost functions are continuously differentiable on E+.

Dierker, Guesnerie, and Neuefeind (1985) and, independently, Bohm
(1983) have substantially extended the aforementioned existence results.
Dierker et al. prove the existence of an equilibrium in a general setting.
They consider an economy in which there are two sectors, the private
sector and the public sector. The firms in the private sector behave com-
petitively (price takers), whereas the firms of the public sector follow
special pricing rules (possibly different pricing rules for different firms).
These firms consider the output levels of their own products as well as the
prices of the inputs as given, minimize their cost, and set prices for their
products according to a specific abstract pricing scheme (e.g., one that
satisfies (*) or the second-best price scheme). Bohm has a similar setup but
somewhat less general. He does not allow for more than one price-setting
firm and requires the public firm to charge break-even prices.

8 Aumann-Shapley prices and contestable market theory

The theory of contestable markets (Baumol, Panzar, and Willig 1982) has
focused on the idea that potential entry has the effect of self-regulation, so
in a natural monopoly industry only a single firm, making normal profits,
will survive. The issue remains, however, whether there exist prices that
do not yield an incentive for entry by a potential entrant and that generate
normal profits for the monopolist. This question is particularly relevant
for a multiproduct monopoly because a potential entrant need not neces-
sarily enter all markets but may enter any subset of the markets. These
questions have led to the development of a theory of sustainable prices
(Baumol et al. 1977; Panzar and Willig 1977).

The conditions under which a multiproduct natural monopoly may be
sustained by prices, in the sense that no profitable entry will occur in any
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of the markets, are less understood. Because it is clear that for prices to be
sustainable one good should not cross-subsidize another, the concept of
sustainability is closely related to various concepts of nonsubsidizing
prices that are discussed in the literature. These are the notions of sub-
sidy-free prices (Faulhaber 1975), anonymously equitable prices (Faul-
haber and Levinson 1981), and supportability (Sharkey and Telser 1978).
Generally speaking, these are core concepts in various relevant cost
games, and they play a crucial part in characterizing sustainable prices.

Consider a firm producing M infinitely divisible goods with a technol-
ogy, expressed by a nondecreasing joint cost function C: E*+ —>  R, where
C(y) is the minimum cost of producing the output vector y G E*£. Let
Q{p) be the inverse demand function; that is, for eachp E E+,

Q(P) = (QI(P), • • • ,QM(P))

denotes the vector of quantities demanded at prices p.
Denote by N = {1, . . . , M) the set of all goods, and let S c N be a

subset of N. Let s denote the number of goods in S (or the cardinality of S).
Then for a given S CN,ys [or similarly Qs(p)] and ps are vectors in E%
denoting quantities and prices, respectively, of goods in S. For S = TV the
superscript is omitted. Thus, ys and ps are the projections of y and p,
respectively, on E+.

The first concept of nonsubsidizing prices is due to Faulhaber (1975)
and Faulhaber and Levinson (1981).

Definition. A price vector p is subsidy-free if (i) py = C(y\ (ii) psys ^
for each ScN, and (iii) y = Q(p).

That is, p is subsidy-free if the cost of producing the entire market
demand at p is covered by the total revenue and, furthermore, the revenue
generated from each subset of the goods is not greater than the stand-alone
production cost for this subset. Hence, in a market in which a subsidy-free
price vector prevails (through regulation or competition), there is no
profitable way of producing the entire demands of any subset of the goods.

The second concept of nonsubsidizing prices is due to Sharkey and
Telser (1978).

Definition. The cost function C is supportable at y0 if there exists a/?G E+
such that (i) py0 = C(y0) and (ii) pz < C(z) for any z E Ef such that
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Faulhaber and Levinson (1981) introduced the third concept of anony-
mous equity.

Definition. The price vector p is anonymously equitable if (i) py = C(y),
(ii) pz < C(z) for any z E E*+ such that z < y, and (iii) y = (?(/?).

Thus, if for some p e £^ , C is supportable at Q(p) by /?, then p is an
anonymously equitable price vector. Also, notice that any anonymously
equitable price vector is subsidy-free. In a market in which an anony-
mously equitable price prevails, no attempt to produce a portion of mar-
ket demand at the prevailing price can be profitable. In such cases entry
can occur only if prices are lowered. Prices that prevent entry by making it
nonprofitable are called sustainable prices.

Definition. The price vectorp with the property pQ(p) —  C(Q(p) ^ 0 is
sustainable if every triple (S, ys, ps) satisfying (i) ps < ps and (ii) ys ^
Qs(ps,yN/s) also sat isf ies^ 5 - dy5) =£ 0, where Qs(ps,pN/s) is the de-
mand vector for the goods in S under the entrant prices ps for the goods in
S and the monopoly prices vector pN/s for the goods in N/S.

Conditions (i) and (ii) describe the behavior of an entrant: For the
goods in S, prices are offered that are no greater than those already pre-
vailing in the market [condition (i)]. At these prices any quantities up to
those determined by the market demand functions evaluated at the new
(lower) pricesps for goods in S and at the prevailing pricespN/s for the rest
of the goods [condition (ii)] may be sold. Thus, p is sustainable if a
potential entrant cannot anticipate positive profits by lowering some or
all of the prices.

Let vc be the cost game associated with the cost function C. [This game
was defined in the previous section as va for a = (1, . . . ,1).] Thus,
vc(S) = C(z), where z is the vector of quantities associated with the coali-
tion S. An imputation of C(a) is a price vector p = (/?1? . . .
such that

The set of all imputations of C(a) is denoted by P(a). The core H(a) o(vc
is defined by

H(a) = (/?£ P(a)\pz < C(z) for all z < a}.
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The set H(a) is related to the concept of anonymous equity. A price vector
p is anonymously equitable iff pG H(a\ where a = Q(p). Note that
supportability at a is equivalent to the nonemptiness of H(a).

Mirman, Tauman, and Zang (1985a) provided sufficient conditions
under which the cost function is supportable under AS prices and for the
existence of an AS price vector that is anonymously equitable and sus-
tainable. To state their results, we need three assumptions.

Assumption 1 (Cost complementarity). The cost function C is twice dif-
ferentiable and

fP-Cc°
Assumption 2 (Weak gross substitutability). For 7 e N, Qj( • ) is differen-
tiable on Ef\{0} and dQj/dpm ^ 0 for each m ¥=j.

The assumption that all goods are cost complements implies that the
cost function is subadditive-the usual definition of a natural monopoly.
Moreover, this assumption means that the marginal and average cost
functions are downward sloping.

Assumption 3. The demands are inelastic with respect to prices below p\
that is,

Proposition 3. Suppose that C is a nondecreasing function on Ef. Then
under cost complementarities (Assumption 1) the cost function Cis sup-
portable by AS prices.

Proposition 4. Under cost complementarities (Assumption 1) and upper
semicontinuity of demands, there exists an Aumann-Shapley price vec-
tor p that is anonymously equitable; that is, there exists p E Elf, such that

(i) p<=H(Q(p))9

(U) P* = f' 7T- CQ<^)) dt> m = ^ ' ' * 'M

Jo tym
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If, in addition, the assumptions of weak gross substitutability and inelas-
ticity of demand (Assumptions 2 and 3) hold, then p is sustainable.

It can be shown that Assumption 3 can be replaced either by the
assumption of nonnegative marginal profitability on E+ or by both non-
negative marginal profitability at p and pseudoconcavity of the profit
function (see Mirman et al. 1985a).

9 Aumann-Shapley prices and Ramsey prices

In this section we define the Ramsey prices and discuss their relationship
with AS prices. Consider a model of one input (labor) and M + 1 outputs
(one which is leisure). Suppose that L is the total labor market allocated to
production. Then

where Q(p) G Elf is the demand vector for the M outputs, C(Q(p)) is the
cost of producing Q(p) (in units of labor), and R is the amount of leisure.
The Ramsey problem is to maximize, over output prices, an indirect
social welfare function v(px, . . . ,pn,R) subject to the constraint (*) and
subject to a cost-sharing (or fixed profit) constraint

Under the assumption of redistribution of income, a Ramsey price
vector p* obeys, for some X ^ 0,

pf - MCj = - A(MR, - MCj) if yf > 0,

< - A(MR, - MCJ) if yf = 0.

Thus, if for example the labor supply has zero elasticity, namely just a
fixed quantity of labor is offered in exchange for the monopoly's products,
then MR, = 0, and it follows that a Ramsey price vector is proportional to
marginal cost prices. Namely, p* satisfies

where a is determined by the cost-sharing constraint

= C(Q(pt*)).

For further discussion see Mirman et al. (1986) and Young (1985b).
The Ramsey prices are named after Frank Ramsey (1927), who sug-

gested using them to determine optimal methods of taxation. Since then
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they have been discussed extensively in the economic literature, especially
by Boiteux (1971). (The Ramsey prices are sometimes called the
Ramsey-Boiteux prices.) By definition, the Ramsey prices are most effi-
cient among all cost-sharing prices, because they maximize the total wel-
fare of consumers. Nevertheless, they are debatable in some aspects. The
first one is the fairness aspect. For example, low-income families who
need telephones for emergencies may, under the Ramsey prices, subsidize
long-distance usage by businesses. From the practical aspect, Ramsey
prices may be difficult to compute, because they rely on demand elastici-
ties that may not be known. A third aspect is that Ramsey prices in general
are cross-subsidizing prices and thus cannot sustain a natural monopoly.
Even in the separable-cost case they differ from the average cost pricing,
which are, in this case, necessary to sustain a natural monopoly against
undesirable entry. (For further discussion see Mirman et al. 1986.) Never-
theless, Baumol et al. (1977) have shown that the Ramsey prices sustain a
natural monopoly. However, to obtain their result, they assumed, among
few other conditions, the following two assumptions: strictly decreasing
ray average cost, which means that

C(Sy) < SC(y\
The other condition is the transray convexity, namely,

C(kyl + (1 - X)y2) < XC(yl) + (1 - X)C(y2\ 0 < X < 1.
These two conditions, when stated globally, are contradictory. Therefore,
Baumol et al. required that the transray convexity of C( •  ) held only on a
hyperplane defined by the marginal profits at the Ramsey optimal price
vector and not on E^.

Because sustainable prices cannot be cross-subsidized and must coin-
cide with the average cost prices when the cost function is separable, the
AS prices seem to be a more natural candidate to sustain a monopoly.
Also, to compute AS prices, we need only the cost structure and the
aggregate demand. Finally, as a closing remark on the difference between
AS prices and Ramsey prices, we mention that in contrast to the Ramsey
prices, AS prices are incentive compatible in strategic transportation
models. This is discussed in Section 6.
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CHAPTER 19

Utility comparison and the theory of games

Lloyd S. Shapley

1. Interpersonal comparability of utility is generally regarded as an un-
sound basis on which to erect theories of multipersonal behavior. Never-
theless, it enters naturally - and, I believe, properly - as a nonbasic, deriva-
tive concept playing an important if sometimes hidden role in the theories
of bargaining, group decisionmaking, and social welfare. The formal and
conceptual framework of game theory is well adapted for a broad and
unified approach to this group of theories, though it tends to slight the
psychological aspects of group interaction in favor of the structural
aspects-e.g., complementary physical resources, the channels of infor-
mation and control, the threats and other strategic options open to the
participants, etc. In this note I shall discuss two related topics in which
game theory becomes creatively involved with questions of interpersonal
utility comparison.

The first topic concerns the nature of the utility functions that are
admissible in a bargaining theory that satisfies certain minimal require-
ments. I shall show, by a simple argument, that while cardinal utilities are
admissible, purely ordinal utilities are not. Some intriguing intermediate
systems are not excluded. The argument does not depend on the injection
of probabilities or uncertainty into the theory.

The second topic concerns a method of solving general ̂ -person games
by making use of the interpersonal comparisons of utility that are implicit
in the solution. After two complementary modes of comparison have
been distinguished, a "principle of equivalence" points the way to an
attractively direct extension of the definition of the value of a game, from
the "transferable" case to the "nontransferable" case.

Reprinted from La Decision: Aggregation et Dynamique des Ordres de Preference (Paris:
Editions du Centre National de la Recherche Scientifique, 1969), pp. 251-63. The views
expressed in this paper are those of the author, and should not be interpreted as reflecting the
views of the RAND Corporation or the official opinion or policy of its governmental or
private research sponsors.
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2. A number of qualitatively different definitions of "solution" exist in
the literature of ̂ -person game theory. An explanation for this multiplic-
ity may be found in the essential ambiguity of decision making in the
presence of several independent "free wills". Simple rationality (utility
maximization) is not a sufficient determinant of behavior when one ven-
tures beyond simple cases like the one-person decision problem or the
two-person game with directly opposed interests. Determinateness (i.e.,
uniqueness of outcome) may be desirable in a solution, but it can gener-
ally be obtained only at the price of oversimplifying or ignoring the ob-
served tendencies toward organized cooperation (e.g., markets, political
parties, cartels, etc.) when real people cope with the indeterminacy of
real-life multilateral competition. Such social, political, or economic in-
stitutions, often highly abstracted, are at the heart of many of the best-
known solution concepts.

In this note, however, we shall be dealing only with the simplest kind of
solution concept, which seeks to reduce each game to a single vector of
payoffs, known as the value of the game. From what has just been said, it
should be clear that a "value" concept is not the only possible capstone to
a well-built theory of games. Hence conclusions (such as those in this
paper) that are based on the assumed existence of a self-consistent method
of game valuation can be rejected without necessarily demolishing the
entire theory. From some plausible standpoints, in fact, it can be demon-
strated that a valuation theory free from contradiction is unattainable.

But there are other standpoints from which it can be argued that a
valuation theory is virtually indispensible. The most compelling argu-
ment, perhaps, is one that takes us back to the basics of utility theory. Let
an individual be confronted with the prospect of entering some sort of
multilateral game situation, e.g., a partnership, an oligopolistic industry, a
political office. What is the utility to him of that prospect?

3. For our first topic, we consider a two-sided negotiation. The "rules
of the game" are simple: If the parties agree, they can have any outcome in
an "agreement set" A, but if they fail to agree, they must take the "dis-
agreement point" D. A and D are construed in the cartesian product of the
two bargainers' utility spaces, which we take to be real numbers scales,
and A is assumed to be a continuous, strictly monotonic curve with
endpoints aligned with Z), as shown in Figure 1.

Let us postulate a valuation theory for cooperative games that is power-
ful enough to resolve at least this elementary kind of bargaining game
(hopefully more), and that gives some interior point of A, say V, as the
solution. Let us further postulate:
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Figure 1

(I) The solution depends only on the configuration (A,D) in the joint
utility space, and not on any nonutilitarian attributes (e.g., physical sym-
metry, numerical quantities) of the actual subject of negotiation.

(II) The solution is covariant (i.e., the physical outcome is invariant)
under some group G of order-preserving transformations, applied sepa-
rately to the two utility scales.

What do these postulates imply about the nature of the group Gl
First, let us test the ordinalist assumption. Let G be the group of all

continuous order-preserving transformations on the real line R. We soon
run into trouble. Let us apply to the first player's utility scale any continu-
ous order-preserving transformation that leaves the endpoints of A fixed,
but moves F. A curve like A' might result (Figure 2), the points of A
having been displaced horizontally. But now we can immediately con-
struct a transformation of the second player's scale that restores the curve
A, by displacing the points of A' vertically. Since the point D has not
moved, our first postulate plainly requires that V be the solution of the
twice-transformed problem. But since the outcome originally at Fis now
at F", our second postulate just as plainly requires that V" be the solution.
Since V ¥=  V", we are forced to conclude that purely ordinal utilities are
inadmissible.

4. This kind of contradiction is always present so long as there is any
element of G that has two fixed points with a nonfixed point in between.
Indeed, if gis such an element, we can arrange (A,D) so that g~l applied to
the second scale restores the displacement of A caused by g applied to the
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Figure 2

first scale, and in such a way that every interior point of A is shifted in the
process. Conversely, if G contains no such element, then postulates (I)
and (II) can never be brought into conflict. Let us call such a group-
characterized by the property that the set of fixed points of each element is
convex-an unwavering group.

Of course, a complete valuation theory will have other postulates,
which may further restrict the admissible utilities. Nevertheless, it is of
some interest to explore the class of unwavering groups, to discover just
how far (I) and (II) force us to go in our retreat (advance?) from purely
ordinal utility. The group of all positive linear transformations, which
characterizes the usual "cardinal" or "linear" utility, is certainly unwa-
vering, as are its subgroups. But there are various other possibilities,
qualitatively different; the least strange among them is the group that
leaves some point, say 0, fixed (the status quo?) while operating separately
in a linear fashion on the positive and negative half lines. Our most
interesting result, in the context of the present discussion, is the following

Theorem. If G is an unwavering group of order-preserving transforma-
tions of the real line R, and if G is transitive1, then there exists a continu-
ous order-preserving recoordinatization of R such that, in the new coordi-
nate system, every element of G is a positive linear transformation.

Our main conclusion is that if we want a value theory for bargaining
games that is based on utility considerations alone, then we cannot use
ordinal utilities, but are driven to cardinal utilities or some even more
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stringent system. This can perhaps be made more palatable to the intu-
ition if we reflect that bargaining, by its very nature, tests the intensities of
the desires of the contending parties. In other words, utility differences
become comparable, between persons. By repetition, utility differences
may also become comparable between different parts of the same person's
scale of values. Thus, speaking intuitively, experience in bargaining forces
an individual to "straighten out" his value system - makes him decide not
only what he wants but how badly he wants it. A nonlinear transformation
of such a man's utility scale would represent a real change in his bargain-
ing attitudes.

5. We now turn to our second topic. The interpersonal utility compar-
isons that figure in negotiatory processes can be divided into two classes.
The distinction is one of relative direction. At times, a person may com-
pare his projected gain against another's loss, or his loss against another's
gain. Thus: "Do me a favor! It would only be a little bother for you, and
would help me a lot." The comparison is implicit in the words "a lit-
tle . . . a lot"; and the point of the comparison is that society as a whole
would be better off if the request were granted.

At other times, a person may compare his gain against another's gain,
or loss against loss. "This is going to hurt me more than it hurts you!", the
classic slogan of parental discipline, has its counterpart in the language of
negotiation. The criterion in this form of comparison is not total welfare,
as above, but "fair division," or "equity." It must be stressed that the
utility comparison implicit in our use of these terms is not of an absolute
or universal nature, but is relative to the realities of the particular bargain-
ing positions, i.e., to the competitive rules of the game. In the previous type
of comparison, only the cooperative rules, which determine feasibility,
were relevant.

Given a game and its outcome, we can make separate estimates regard-
ing the two types of interpersonal comparison we have described. On the
one hand, we can measure the given outcome against other possible
outcomes-for example, nearby points on the Pareto surface, and base a
utility comparison on the exchanges that could have occurred, but did
not. On the other hand, we can measure the given outcome against the
initial prospects and opportunities of the players, and base a comparison
on the presumption that each player "got what he deserved"- i.e., that the
outcome was in some sense equitable. (In contrast, we might say that the
first comparison was based on the presumption that the given outcome
was efficient). If the comparisons are expressed as sets of weights, or
scaling factors, to apply to the players' (cardinal) utility scales, then the



312 Lloyd S. Shapley

first set of weights becomes a guide to the maximization of social welfare,
the second to the sharing of social profit.

6. Having thus sketched a qualitative distinction between two modes
of interpersonal comparison that may be detectable in the outcome of a
cooperative multiperson game, we now proceed to declare their equiva-
lence, as a central prerequisite for a value theory.

(Ill) An outcome is acceptable as a "value of the game" only if there
exist scaling factors for the individual (cardinal) utilities under which the
outcome is both equitable and efficient.

As it stands, (III) is a guiding principle rather than an exact postulate,
since there remain several questions of interpretation, particularly re-
garding the meaning of "equitable." Before continuing, however, it may
be helpful to show how this principle works in a special case: the familiar
two-person pure bargaining game.

In Figure 3, the point X implies "efficiency weights" in the ratio 1:3,
since the slope of the tangent at X is —\. (That is, in order for X to
maximize the sum of utilities, the second player's nominal, numerical
payoffs must be tripled). At the same time, X implies "equity weights" in
the ratio 2:1, since the line joining D to Xhas slope 2. (That is, in order for
the players to be sharing equally at X, the first player's payoffs must be
doubled). Since the two sets of comparison weights are not proportional,
X cannot be the value of the game, according to (III).

It is well known that a pure bargaining situation of this kind has a
unique solution satisfying (III), namely the "Zeuthen-Nash" outcome
that maximizes the product of the utility gains (the point Fin the figure).
It can be given a much more solid derivation than we have given here; the
only virtue we claim for our present method is that it can be generalized,
as we shall now proceed to demonstrate, to the more complex models of
general game theory, where strategies and coalitions play essential roles.

7. We must first become more explicit about the notion of "equitable"
(with respect to a given set of comparison weights), when used in a multi-
person, strategically rich context. The simple idea of "sharing equally" no
longer works; it may not even be well defined.

Our procedure, in the present note, will be to assume that we have a
notion of equitable value for games where utility is transferable, at stated
rates of exchange, so as to concentrate on the extension to the more
general, nontransferable case. Our nominee for this "transfer value" is the
value for games with sidepayments, discovered by Harsanyi2 and axi-
omatized by Selten,3 but our method of extension will be independent of
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Figure 3

this particular choice. We shall require merely that the transfer value be
unique, Pareto optimal, individually rational, and continuous as a func-
tion of the game's payoffs.

Consider now an ^-person game in which there is no vehicle for the
direct, unrestricted transfer of utility, but in which utility is nevertheless
assumed to be interpersonally comparable according to some definite
system of weighting factors. For convenience, assume that the weights are
all equal. In this case, the efficient outcomes are simply those that maxi-
mize the sum of utilities. But which are the equitable outcomes?

A first candidate would be the transfer value, which by assumption is
equitable if utility sidepayments are admitted. In general, however, the
transfer value will not be a feasible outcome in the nontransferable game.
To be sure, one might propose as equitable all outcomes of the form

- x, ,</>„- x \

where 0 is the transfer value and x is large enough to make the result
feasible (or subfeasible). (This rule would pick out the outcomes along the
line DX in Figure 3, if the first player's payoff is doubled). However,
"equal taxation to overcome the deficit" is a dubious principle of fair
division, and we do not insist on it. Instead, we shall make only the more
modest claim that any outcome giving some player more than his transfer
value, while giving some other player less, is certainly inequitable. This is
illustrated schematically in Figure 4.
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^ Transfer hyperplane
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Figure 4

As already intimated, we shall also claim that the transfer value itself, if
it is feasible, is certainly equitable. This may be regarded as an application
of the "principle of irrelevant alternatives": If restricting the feasible set by
eliminating sidepayments does not eliminate some solution point, then
that point remains a solution.4

A glance at Figure 4 may now convince the reader that an outcome can
be both efficient and equitable, as required by the principle of equivalence
(III), if and only if it is the transfer value and the transfer value is feasible.
To prove this, we merely note that the transfer value and all the efficient
points lie on the hyperplane representing the maximum feasible utility
sum. Hence, if the transfer value is feasible, then it is efficient as well as
equitable, while if it is not feasible then the efficient points all lie in the
"certainly inequitable" zone.

8. To complete the picture, we must of course allow for different sets of
weights. Varying the weights will in general move the set of efficient
points, since it changes the slope of the transfer hyperplane. Also, it will in
general move the transfer value. (Under our assumptions the second
motion will be continuous, the first semi-continuous). We shall therefore
speak of "A-efficiency" and the "A-transfer value," where A =
(A1? . . . ,AJ is an arbitrary vector of nonnegative weights, not all zero.

In view of the preceding discussion linking feasibility and efficiency,
our goal is to choose A in such a way that the A-transfer value is feasible and
hence A-efficient. By the principle of equivalence (III), no other outcomes
are acceptable as value solutions of the nontransferable game.

It may be noted that we can put SA,- = 1 without loss of generality, since
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only ratios matter in the end. Hence there are really only n — 1  "degrees of
freedom" in the choice of A. On the other hand, there are essentially n —  1
conditions involved in requiring the A-transfer value to be feasible, since
the transfer hyperplane is /t — 1  dimensional. This naive "equation
counting" suggests that there may be a unique A such that the A-transfer
value is feasible, or at worst, a O-dimensional set of such A. Thus encour-
aged, we propose (III) as a sufficient as well as necessary condition, and
define a value of the nontransferable game to be any A-transfer value that
is feasible. As a companion to each value vector, 0, obtained under this
definition, there will be a vector, A, of intrinsic utility-comparison
weights.

9. Our fundamental existence theorem states that every game (of a
suitably wide class of games) has a value. Since the present account has so
far been free from complicated mathematical argumentation, we have
put the formal proof (previously unpublished) in an appendix. However,
an outline of the proof can be given in a few words, as follows:

For each A we consider the possible sidepayment vectors that could
take us from the A-efficient set to the A-transfer value, which we denote
4>(X). The set of all such vectors, denoted P(X), is nonempty, convex, and
compact under the hypotheses of the theorem, and it varies uppersemi-
continuously with A. If P(X) contains the zero vector, then 0(A) is feasible
and we are through. Restricting A to the hyperplane 2A,- = 1, we define a
point-to-convex set mapping X —*  X-\- P(X). After an extension, which is
needed to make this mapping go from points of a simplex to subsets of the
same simplex, we apply the Kakutani fixed-point theorem to show that
the mapping has a fixed point. The individual rationality of the A-transfer
value is then invoked, to ensure that the fixed point belongs to the original
mapping rather than the extension, and we conclude that for at least one A,
0 E P(X).

10. The value definition developed here was first contrived in an at-
tempt to approximate Harsanyi's 1963 bargaining value5 by something
that might prove analytically more tractable in dealing with economic
models having large numbers of participants.6 We then perceived that the
"approximation" had virtues of its own. Despite the rather different ap-
proach we have adopted (deductive rather than constructive), the influ-
ence of Harsanyi's work remains considerable—particularly his key idea
of using intrinsically defined utility weights.

The two values have the following common features: (1) Zero weights
can occur, and must be allowed if the existence theorem is to hold in



316 Lloyd S. Shapley

general. (2) Nonunique solutions can occur, even in games (with three or
more players) that are not noticeably exceptional. But different solutions
never have the same comparison weights. (3) If utility is transferable, then
the solution is unique and agrees with the "Harsanyi-Selten" value (or
"modified Shapley" value). In fact, uniqueness holds whenever the Pareto
surface is a hyperplane, or coincides with a hyperplane over a sufficiently
large compact set.7 (4) In the two-person case the solution is "almost
always" unique, even without transferable utility, and agrees with the
Nash cooperative solution for such games.8

We have no results indicating how well or poorly the two solutions
approximate to each other, nor have we discovered any concrete example
where the numerical contrast between them seems especially significant.
But we can state two general properties of our present solution that are not
satisfied by the other; either one, in fact, could be used (with suitable
technical adjustments) in place of the principle of equivalence (III) in the
derivation of our definition:

(IV) If two games have the same solution (payoffs and comparison
weights), then any probability mixture of the two games-i.e., a game in
which the first move decides by chance which of the two given games is to
be played-also has that solution.

(V) If a game is modified by allowing side payments (restricted or
unrestricted in amount), at exchange ratios corresponding to the compar-
ison weights associated with a solution of the original game, then that
solution remains a solution of the modified game.

(The latter will be recognized as a converse of the "irrelevant alterna-
tives" condition that we invoked earlier).

Finally, for those familiar with the Harsanyi model, we might briefly
describe the modification that would be required to obtain the present
value. In effect, one must permit each syndicate, after maximizing its
potential as measured by the weighted sum of the members' utilities, to
pay dividends in "utility scrip," written in the utility units of any or all of
its members, without regard to who receives it. One would then require, as
an additional equilibrium condition, that all the scrip so issued be re-
deemed in the end-i.e., traded back to the players named on the face of
the scrip, at the rates of exchange corresponding to the weights of the
game. While the immediate effects of this modification (which can be
expressed in other ways) seem to complicate the bargaining model, there
is indirect compensation in the new ability of the syndicates to transfer
utility internally, which removes some of the modeling difficulties asso-
ciated with variable threats.
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Appendix: the existence theorem

The mathematical formulation of the game F in normal, extensive, or
characteristic function form is not relevant for our purpose; our only
assumption is that the set F of payoff vectors that are feasible for the
all-player coalition without the use of side payments is compact and
convex. Let F(A) denote the same game with the payoffs to players 1,
2, . . . , n multiplied by A i,A2, . . . , Aw, respectively, where A is a point
in the simplex A = (A > 0|2A,- = 1). Let F(A) denote the feasible set for
T(A), and let 0(A) denote the sidepayment value of F(A)—i.e., the A-
transfer value of F. We assume that 0(A) is continuous in A, Pareto opti-
mal, and individually rational. From the latter it follows that A, = 0 im-
plies (/),(A) > 0; this is the only use we make of individual rationality.

Theorem. Under the stated assumptions, there exists A G A such that

Proof: Let P(A) be the set of vectors n such that 27rz = 0 and 0(A) —  n G
F{X). P(A) is nonempty, convex, and compact, for each A G A, and is an
uppersemicontinuous function of A. Define the set-valued function Thy

T(X) = A + P(X) = (A + n\n G P(A)}.

Let A be a simplex in the hyperplane {a \ ̂ a{ = 1}, large enough to contain
all sets T(A), A G A, as well as A itself; the upper-continuity of Tmakes this
possible-i.e., makes T(A) compact. Extend the definition of Tto A by

T(a)=T(f(a)), where £(<*) =.

According to Kakutani's theorem, there is a "fixed point" a* satisfying
a* G T(a*). Denote/(a*) by A*. Suppose first that a* ¥=  A*. Then a* G
A-A, and for some / Af = 0 > a*. But a* G T(A*) = A* + P(A*), hence
7rf < 0 for some n* G P(A*). Since 0/(A*) > 0 by individual rationality,
the feasible payoff vector 0(A*) —  7r* G F(A*) gives player / a positive
amount. But this is impossible without sidepayments, since all his payoffs
in F(A*) are zero. We conclude that a* = A*; hence that 0 G P(A*); hence
that

0(A*)
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Discussion

M. Dreze a M. Shapley

Question. - Given a complete preordering se of points (x,y) in R2, and two
monotonic transformations/^), g(y), there will under fairly general con-
ditions exist a derived ordering ^ such that (x,y) ^ (x',y') o
[f(x)>g(y)] ^ [fix'),g(y')\. In what respects is your problem different
from the one just mentioned?

Does your theorem bear upon the conditions under which S£ does
indeed exist?

(Please feel free to disregard this question if you do not particularly care
to answer it).

Reponse.-I believe there is no formal connection between the two prob-
lems. [I might add that by requiring the monotonic transformations to
form a group, we a fortiori require them to be invertible and hence strictly
monotonic and continuous.]

M. Rapoport a M. Shapley

Question.-Do you agree that while the negotiation set is naturally deter-
mined by the set of payoffs, the point of disagreement is not uniquely
determined without further assumptions?

Reponse.-I regard the Nash (two-person cooperative) solution, or some-
thing in the absence of a fixed disagreement point equivalent to it, as
probably the only satisfactory way to proceed here.

M. Barbut a M. Shapley

Question.-Avez-vous etudie le groupe G (unwavering group) dans le cas
ou la condition II est modifiee de sorte que les transformations mono-
tones n'agissent plus separement sur les deux composantes?

au lieu de:
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Reponse.-I have no immediate comments to make on this mathemati-
cally very interesting idea, except to agree that it seems to merit further
study. [Later, in conversation, M. Barbut suggested the possibility of
certain physical applications for a theory of "unwavering" group on
higher-dimensional spaces.]

NOTES

1 Transitivity is equivalent to the assertion that the orbit of any point of R is R
itself. The theorem remains valid if this is weakened to the assertion that the
orbit of each point ofR is dense in R.

2 Ann. Math. Study 40 (1959), pp. 325-355.
3 Ann. Math. Study 52 (1964), pp. 577-626.
4 In thinking about these claims concerning "fair division," it is well to re-

member that they are being made in reference to a never-never land in which
utility has been assumed to be extrinsically comparable. This assumption is a
technical expedient with no standing in the final theory, introduced merely to
aid in uncovering a possible intrinsic comparability.

5 J. C. Harsanyi, "A simplified bargaining model for the w-person cooperative
game," International Economic Review 4 (1963), pp. 194-220.

6 The author and Martin Shubik have calculated explicit values, as functions of
«, for an "Edgeworth" market game (i.e., bilateral exchange economy) with 2n
players. Interestingly, as n tends to °° the value payoffs (which are covariant
only under positive linear transformations) and the competitive equilibrium
payoffs (covariant under arbitarary order-preserving transformations) con-
verge to the same limit. See "Pure competition, coalitional power, and fair
division", International Economic Review 10 (1969), pp. 337-62; also the
RAND Corporation, Memorandum RM-4917-1.

7 For our present value, which can easily be shown to be individually rational, it
is sufficient that the Pareto surface coincide with a hyperplane within the
individually rational zone. I do not know of any proof that Harsanyi's 1963
value is necessarily individually rational (but see Harsanyi, op. cit., p. 194,
footnote 4).

8 J. F. Nash, "Two-person cooperative games," Econometrica 21 (1953), pp.
128-140.





CHAPTER 20

Paths leading to the Nash set

Michael Maschler, Guillermo Owen, and Bezalel Peleg

Abstract

A dynamic system is constructed to model a possible negotiation process
for players facing a (not necessarily convex) pure bargaining game. The
critical points of this system are the points where the "Nash product" is
stationary. All accumulation points of the solutions of this system are
critical points. It turns out that the asymptotically stable critical points of
the system are precisely the isolated critical points where the Nash prod-
uct has a local maximum.

1 Introduction

J. F. Nash (1950) introduced his famous solution for the class of two-per-
son pure bargaining convex games. His solution was defined by a system
of axioms that were meant to reflect intuitive considerations and judg-
ments. The axioms produced a unique one-point solution that turned out
to be that point at which the "Nash product" is maximized. Harsanyi
(1959) extended Nash's ideas and obtained a similar solution for the
class of ̂ -person pure bargaining convex games. (See also Harsanyi 1977,
chap. 10.)

Harsanyi (1956) also suggested a procedure, based on the Zeuthen
principle, that modeled a possible bargaining process that leads the
players to the Nash-Harsanyi point. (See also Harsanyi 1977, chap. 8.)

Recently, in an elegant paper, T. Lensberg (1981) (see also Lensberg
1985) demonstrated that the Nash-Harsanyi point could be character-
ized by another system of axioms. His main axiom was a consistency
requirement. Lensberg's axioms are an important contribution because
they offer a justification of the Nash solution in those cases where Nash's
axiom of independence of irrelevant alternatives can be criticized.

321
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Consistency means, essentially, that if some of the players gather to-
gether and inspect what they received at a solution point, they will have no
motivation to move away, because what they received was precisely the
solution point for their "reduced game."1

If consistency requirement is an appealing concept, then it should also
guide us when viewing these games more dynamically: Suppose the
players negotiate at a Pareto optimal point that is not a Nash point. Then
surely there will be some players-in fact, even a pair of players-who will
realize that they are not getting their Nash point in their reduced game.
They will therefore ask for shifts in the payments in a direction of decreas-
ing the "unfairness." Unfortunately, if such shifts are taken simulta-
neously, the players, in general, will arrive either at an infeasible point or
at a non-Pareto-optimal point. One way to overcome this difficulty is to
perform shifts only within tangent hyperplanes2 and make them infinites-
imal. In other words, one has to consider a system of differential equa-
tions.

In this chapter we construct such a system, which models simultaneous
requests of bilateral shifts, and show, among other things, that every
solution of this system converges to the Nash point.

While doing this research, we realized that a great part of it does not
require the feasible set to be convex. We therefore consider a general pure
bargaining game. In this generality one loses uniqueness of the Nash
point. We define the Nash set to be essentially the set of individually
rational and Pareto-optimal points for which the Nash product is station-
ary (see Section 2). In general, this set may contain many or even a
continuum of points, and it is easy to see that it coincides with the set of
Shapley's NTU values (see 19693). In Section 3 we derive the dynamic
system whose critical points are the points of the Nash set. We show that
each accumulation point of any of its solutions belongs to the Nash set. It
follows that if the Nash set consists of discrete points, then each solution
converges.

Section 4 is devoted to stability properties of the critical points of the
system. It turns out that the points in the Nash set are not going to occur
"equally likely." The asymptotically stable points of the system are pre-
cisely those points of the Nash set that are isolated and whose Nash
product is a local maximum.

To avoid complications, we have assumed that the Pareto set in our
games is C ̂ smooth. If this is not the case and the game is convex, then
presumably one could replace the tangent hyperplane by all supporting
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hyperplanes and replace the system of differential equations that repre-
sent our dynamic system by a system of differential inclusions. If the
feasible set is neither smooth nor convex, it is not clear how a generaliza-
tion should proceed. At any rate, it would be interesting to learn to what
extent our results can be generalized when one relaxes the smoothness
conditions on the feasible set.

2 Notation, definitions, and preliminary results

We shall be concerned with a pure bargaining game £ on a set N of n
players, with a conflict point normalized to be the origin and a feasibility
set4 S in the utility space RN of the players. On S we impose the following
conditions:

(i) S is comprehensive; namely, if x G S, then x —  R+ C S.
(ii) S n R%+ is nonempty and S n /?£ is compact. Here, R!{+ = (JC£

RN:xt > 0 for all / G TV) and R% = cl R%+.
(iii) The northeast boundary dS of S can be represented as a graph of

an equation g(x) = 0, where g is a C1 function,
(iv) The partial derivatives pt = dg(x)/dXi are positive on dS+ =

Note that we do not require S to be convex.
The Nash set of a game S is defined to be the set of points x in dS++ =

dS n R++ for which the product V(x) = xx x2 • • * xn is stationary. Points
of this set will be called Nash points.

Theorem 1. Let x be a Nash point of a game S and let H(x) be the tangent
hyperplane to dS at x. With this notation, x is the center of gravity of the
simplex A = H(x) n i?+. Moreover, the Nash points are characterized by
this property. Thus, the Nash set is the set of Shapley's NTU values of the
game S (see Shapley 1969).

Proof: Using the method of Lagrange multipliers, we characterize a sta-
tionary point of V(x) by the system

1 - x n - X g ( x ) ] = 09 V / G 7 V ,
OXj

g(x) = 0, x e ^ ; (1)
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that is,

0, V/G7V,

GRZ+. (2)

So, the stationary point x is characterized by

px(x)xx = p2(x)x2 ==-'- = pn(x)xn, x<E 3S++. (3)

The hyperplane H(x) is given by

{y:p(x) - y = r(x)\ where r(x) = p(x) • x,
P(x) = (Pi(x),p2(x), • • • ,P

so the vertices of A are

r(x) r(x) r{x)

where e, is theyth unit vector, j = 1, 2, . . . , « .
By (3) and (4), Pj(x)xj are all equal to r(x)/n, so x is indeed the center of

gravity of A.
The proof of the second part reverses the above arguments.

Corollary 1. The Nash points are characterized by (3).

Proof: Proof of Theorem 1.

Remark 1: Because the pt(x) are all positive and 0 3 dS, it follows that (3)
cannot be satisfied at a point where some x/s are zero; consequently, the
Nash set is closed.

Corollary 2. A point x is a Nash point if it remains a Nash point when S is
replaced by the half-space bounded by the hyperplane through x that is
tangent to S.

3 The dynamic system

Suppose the players find themselves at a point x is dS+ that is not a Nash
point. Using the idea of consistency, we wish to model their tendency to
move away from x along a path that hopefully will lead them to a Nash
point. This path should make intuitive sense.
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Consider a pair of players ij for which, say, Pi(x)xt < Pj(x)Xj\ then the
players may reason as follows: At x there is a natural rate of exchange
between their utilities, given by the coefficients pt(x\ Pj(x). Thus, in
"common" units, player 7 is receivingPj(x)Xj, which is more than/j^x)*,.
Player / therefore claims that j is getting "too much"; hence, j should
transfer (in the common units) an amount of e(pj(x)Xj —  Pi(x)X;). Doing
these transfers simultaneously for all players j , player / is actually de-
manding (in the common units) the sum5 *2,{e(Pj(x)Xj? —  Pi{x)x^):jE
N\{i}}. But the players can only move on dS, so e must be infinitesimal,
and we are thus led to the system of differential equations

Pi(x)Xi= 2 [ P j O t e j - P i i x f r i l / = 1 , 2 , . . . , « ;  ( 5 )

here, dot means time derivative.
Note that 2{/?,(;C)JCI : / G TV} = 0, so solutions to this equation lie on dS.

From the continuity of the Pi{x) and their positiveness, it follows that
through each point JC of dS+ there passes at least one trajectory.

In particular, in view of Corollary 1, the critical points of this system are
precisely the Nash points.

Definition 1. Let x = <f)(t) be a solution of (5). A point x is called an
accumulation point of the solution if there exists a sequence (/„) that tends
to infinity such that

lim (f)(tn) = x. (6)
n—*°°

Obviously, every Nash point is a limit point of some solution (f)(t) (e.g.,
a solution passing through such a point). The next theorem will show that
the converse is also true.

Theorem 2. Each solution x = 0(0 of (5) that at some time passes through
dS+ has an accumulation point; and each such accumulation point is a
Nash point.

Proof: Let x = 0(0 be a solution of (5), satisfying, say, 0(0) G dS+. If
0/(0) = 0 for one or several /'s, we see from (5) that 0(0 moves in the
direction of increasing 0, for these f s. Thus, for convenience, we "start"
our time count when 0(0) is already in dS++. We shall later see that 0(0
will remain in 8S++.
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We introduce the Lyapunov function

^lnxj, (7)

whose domain is dS++, and study its behavior along the path x = d(t) as
long as (9(0 G 3S++. Clearly, by (7),

iW = i~. (8)
However, by (5),

n

Pj(Xj)Xj = 2 (ftW^v ~ Pj(x)Xj) = 2 PvW-̂ v - npj(x)Xj\ (9)

therefore,

and (8) becomes

L k • 2  PJLxyx, - n\ ( l i)

Let //(x) be the harmonic mean of the^v(x)xv's and A{x) their arithme-
tic mean; with this notation, (11) becomes

As is well known, A(x) ^ H(x), with equality holding only when all the
pv XyS are equal, namely, only if our solution has reached a Nash point.
Thus, for x = 4>(t), L(x(t)), and therefore V(x(t)), strictly increases at all
times unless a Nash point has been reached. In particular, this implies that
if 0(0) G R%+, then (f>(t) G R%+ for every t > 0, because V{x) is continu-
ous, positive at points of R*t+, and vanishes in RIt\RIi+. Thus, the discus-
sion is valid throughout tGR+, and (f)(t) remains in the compact set dS+.
Thus, 4>(t) must have accumulation points.

Let z be one of them. It remains to show that z is a Nash point. Indeed,
otherwise, the Pj(z)z/s are not all equal and so A(z) > H(z). Thus,6

L(x) > 0 at x = z, and we may write

L(z) = e > 0 . (13)
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By continuity, there exists r > 0 such that L(x) ^ e/2 whenever x E U =
{x:lljc-zll<r}. Define

A-max V 2 f^i) 2 (^K-^,(x)x,)] . (14)
By compactness, this maximum exists, so, by (9),

^xj(t)<h2 if x = <Kt)*=U. (15)
j<EN

We have proved that any solution x = (f>(t) that enters £/moves there at a
speed at most h, as long as it stays in U.

Let U' = {x\\\x —  z\\ < r/2). Because z is an accumulation point of
x = 0(0, there is an infinite sequence (/„), tn —>  »,  such that x(tn) G t/r for
all «.  By taking, if necessary, a subsequence, we can assume that

Consider now the behavior of the trajectory during the time period
['»>'«+il-  ̂ 0 ( 0 E t/during this period, then L(c/)(t)) has increased at this
period at a rate e/2, at least, so

L(<f>(tn+l)) > £(<£(;„)) + 1 (rn+1 - O s £,(#/„» + 1 ^ . (17)

If 4>{t) is not in (7 all the time, then there is a last moment /', V G
[?„,?„+,] in which $(?) enters [/, so for t' s / < ;n+1, $(;) is in [/. Now

(18)

Because x = </>(/) moves with speed at most h, while in U, it takes at least
r/2h to reach from <f)(t') to <£(*„+1), so

tn+l^t' + ̂ , (19)

and because L((f>(t)) a e/2 for ? ' s ; < ^ + 1 , w e obtain

+ !£, (20)
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and by the monotonicity of L(<f)(t)\ we obtain (17) again. Thus, (17)
always holds, and it follows that

L(0(^+ 1))>L(0(/1))-h—, n=l,2, . . . , (21)

which shows that L((f)(t)) is unbounded.
This is impossible, so the contradiction shows that z must be a Nash

point.

Corollary 3. If all Nash points are isolated, then each solution converges to
a Nash point.

Proof: Let 4>{t) be a solution. Let JC* be one of its accumulation points. By
Theorem 2, x* exists and is a Nash point; and because it is isolated, there
exists r > 0 such that no other Nash point lies in {JC: II JC — JC*II< r}. Sup-
pose <f)(t) does not converge to JC*; then it must have some other accumu-
lation point, z, and IIz - JC*II ^ r. Let W= {y:r/4 < IIj;- x*\\ ^ 3r/4).
Note that Wis compact and contains no Nash point. Because both JC* and
z are accumulation points of </>(£), the trajectory must enter each neigh-
borhood W = {y:IIJC* - y\\ < r/4} and W" = {y\\\z-y\\< r/4} an infi-
nite number of times that tend to infinity. A trajectory cannot pass from
W to W" without entering W\ so there exists an infinite sequence (tn),
tn —* °°, so that 4>(tn) E W. Thus, FFmust contain an accumulation point,
which, by Theorem 2, is a Nash point. This contradiction shows that <f>(t)
converges to JC*, and concludes the proof.

4 Asymptotically stable Nash points

As has been said, each solution that reaches a Nash point at a certain time
remains there forever. Is it, however, true that every solution that comes
to a small enough vicinity of an isolated Nash point converges to that
point? In this section we shall give a negative answer to this question and,
moreover, characterize those Nash points that are asymptotically stable
with respect to our dynamical system (5).

Theorem 3. Let JC* be an isolated Nash point at which the Nash product
V(x) is a local maximum. This Nash point is asymptotically stable with
respect to the dynamical system (5).
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Proof: Let £/be a neighborhood of x* (relative to dS+). Without loss of
generality, we may assume that it is small enough, so V(X) has a unique
maximum at x*, in the closure U, and that U has only one Nash point.
Let r be the maximum of V(x) on the boundary dU of U. Clearly, r <
V(x*).

Consider the set U' = {yE. U: V(y) > (V(x*) + r)/2). Clearly, it is a
neighborhood of JC*. By the proof of Theorem 2, L(x) and, therefore, V(x)
increase along solutions x = (/>(t). Thus, a solution that enters U' at a
certain time will never leave U. This proves that x * is stable with respect to
(5). Such a solution must have accumulation points, and all are within U.
By Theorem 2, these are all Nash points, so they all coincide with x*. This
proves that any solution that enters U' must converge to x*. We have
therefore proved that x* is, moreover, asymptotically stable.

Theorem 4. Let x* be an isolated Nash point that is not a local maximum
of V(x). In that case x* is not stable with respect to the dynamic system (5).

Proof: Let £/be a neighborhood of x* such that in an open neighborhood
Uof U, only x* is a Nash point. Let Fbe an arbitrary neighborhood of x*.
Because x* is not a local maximum, V contains a point x° such that
V(x°) > V(x*). Any solution x = (f)(t) that at some time t0 passes through
x° will have F(0(/)) > V((f)(t0)) for t > t0. Therefore, such a solution will
not have x* as an accumulation point. But (f)(t) has accumulation points,
and they are all outside U\ therefore, <f>(t) must leave C/at some time. This
shows that x* is not stable with respect to the dynamic system (5).

A Nash point that is not isolated cannot be asymptotically stable (al-
though sometimes it is stable), so, in view of the theorems, the asymptoti-
cally stable critical points of the system (5) are precisely those isolated
Nash points at which V(x) has a local maximum.

NOTES

1 For precise definitions the reader is referred to Lensberg's paper.
2 Which, as we assume in this paper, always exist.
3 In Shapley's paper the characteristic function happened to consist of convex

sets; however, his definition per se makes sense in more general contexts.
4 We use S to denote both the game and its feasibility set.
5 Some of the terms may be negative; namely, when player / has to do the

transferring.
6 We regard L(x) and L(x) as functions of position, defined by (11) and (12).

L(x) becomes a true derivative only along solutions passing through x.
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