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CHAPTER 1

Editor’s introduction and overview

Alvin E. Roth
UNIVERSITY OF PITTSBURGH

There are two distinct reasons why the study of bargaining is of funda-
mental importance to economics. The first is that many aspects of eco-
nomic activity are influenced directly by bargaining between and among
individuals, firms, and nations. The second is that bargaining occupies an
important place in economic theory, since the “pure bargaining prob-
lem” is at the opposite pole of economic phenomena from “perfect com-
petition.”

It is not surprising that economic theory has had less apparent success
in studying bargaining than in studying perfect competition, since perfect
competition represents the idealized case in which the strategic aspect of
economic interaction is reduced to negligible proportions by the disci-
pline of a market that allows each agent to behave as a solitary decision
maker, whereas pure bargaining is the case of economic interaction in
which the market plays no role other than to set the bounds of discussion,
within which the final outcome is determined entirely by the strategic
interaction of the bargainers. The fact that the outcome of bargaining
depends on this strategic interaction has led many economists, at least
since the time of Edgeworth (1881), to conclude that bargaining is charac-
terized by the indeterminacy of its outcome. In this view, theories of
bargaining cannot, even in principle, do more than specify a range in
which an agreement may be found; to attempt to accomplish more would
be to introduce arbitrary specificity.

The contrary view, of course, is that sufficient information about the
attributes of the bargainers and about the detailed structure of the bar-
gaining problem that these bargainers face will allow the range of indeter-
minacy to be narrowed, and perhaps eliminated. This view was illustrated
in an article written by John Nash (1950a), making use of the properties of
expected utility functions outlined by John von Neumann and Oskar
Morgenstern in their book Theory of Games and Economic Behavior
(1944).

Nash (1950a) developed what has come to be called an axiomatic
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2 Alvin E. Roth

model of bargaining. (It is also sometimes called a cooperative model,
since it models the bargaining process as a cooperative game.) He was
interested in predicting a particular outcome for any given bargaining
situation, and his approach was to propose a set of postulates, or axioms,
about the relationship of the predicted outcome to the set of feasible
outcomes, as represented in terms of the utility functions of the bar-
gainers. In this way, he characterized a particular function that selects a
unique outcome from a broad class of bargaining problems. By concen-
trating on the set of potential agreements, and abstracting away from the
detailed procedures by which a particular set of negotiations might be
conducted, Nash’s approach offered the possibility of a theory of bargain-
ing that would enjoy substantial generality. This was perhaps the first
general model of bargaining to gain wide currency in the theoretical
literature of economics.

Three years later, Nash (1953) published another article on bargaining,
which extended his original analysis in several ways. Perhaps the most
significant of these extensions was the proposal of a specific strategic
model that supported the same conclusions as the general axiomatic
model outlined earlier. His approach was to propose one very particular
bargaining procedure embodied in a noncooperative game in extensive
form. (The extensive form of a game specifies when each agent will make
each of the choices facing him, and what information he will possess at
that time. It thus allows close attention to be paid to the specific strategic
questions that arise under a given set of bargaining rules.) Nash then
argued that the predicted outcome of this noncooperative bargaining
game would be the same as the outcome predicted by the axiomatic
model. To show this, he called on the newly developing theory of nonco-
operative games, to which he had made the seminal contribution of pro-
posing the notion of equilibrium (Nash 195054) that today bears his name.
Although the noncooperative game he proposed possessed a multitude
(indeed, a continuum) of Nash equilibria, he argued that the one corre-
sponding to the prediction of his axiomatic model had distinguishing
characteristics.

In subsequent years, the axiomatic approach pioneered by Nash was
developed widely. The particular model he proposed was studied and
applied extensively, and other axiomatic models were explored. By con-
trast, there was much less successful development of the strategic ap-
proach. In 1979, when my monograph Axiomatic Models of Bargaining
was published, most of the influential game-theoretic work on bargaining
fit comfortably under that title. However, since then, there has been a
renewed interest in the strategic approach, resulting in a number of strik-
ing developments in the theory of bargaining.
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Recent progress in the strategic approach to the theory of bargaining
has been due in large part to two developments in the general theory of
noncooperative games. One of these developments, originating in the
work of Harsanyi (1967, 1968a, 1968b), extends the theory to include
games of “incomplete information,” which allow more realistic modeling
of bargaining situations in which a bargainer holds private information
(e.g., information that only he knows, such as how much he values some
potential agreement). The other development, originating in the work of
Selten (1965, 1973, 1975) on “‘perfect equilibria,” offers a technique for
reducing the multiplicity of Nash equilibria found in many noncoopera-
tive games, by proposing criteria to identify a subset of equilibria that
could credibly be expected to arise from certain kinds of rational play of
the game. (An important reformulation of some of these ideas on credible
equilibria, which makes explicit how certain kinds of behavior depend on
agents’ beliefs about one another’s behavior, has been given by Kreps and
Wilson (1982).)

Two articles that demonstrate how these two developments have sepa-
rately contributed to the recent progress in the theory of bargaining are
those by Rubinstein (1982) and Myerson and Satterthwaite (1983). The
paper by Rubinstein develops a model of multiperiod bargaining under
complete information, in which two agents alternate proposing how to
divide some desirable commodity between them, until one of them ac-
cepts the other’s proposal. When the agents discount future events, so that
the value of the commodity diminishes over time, Rubinstein character-
izes the agreements that could arise from perfect equilibria, and shows
that the model typically predicts a unique agreement.

Myerson and Satterthwaite consider the range of bargaining proce-
dures (or “mechanisms”’) that could be used to resolve single-period bar-
gaining under incomplete information, in which two agents negotiate
over whether, and at what price, one of them will buy some object from
the other, when each agent knows his own value for the object and has a
continuous probability distribution describing the other agent’s value.
They show that, when no outside subsidies are available from third par-
ties, no bargaining procedure exists with equilibria that are ex post effi-
cient, thatis, with equilibria having the property that a trade is made ifand
only if the buyer values the object more than does the seller. The intuition
underlying this is that a bargainer who behaves so that he always makes a
trade when one is possible must, in most situations, be profiting less from
the trade than he could be. Equilibrium behavior involves a tradeoff
between the expected profitability of each trade and the probability of
reaching an agreement on the terms of trade.

These and related results derived from strategic models have added a
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dimension to the game-theoretic treatment of bargaining that was not
present when my book on axiomatic models appeared in 1979. In addi-
tion, there have been subsequent developments in the study of axiomatic
models, and some encouraging progress at bridging the gap between these
two approaches, as well as in identifying their limitations. It was for the
purpose of permitting these developments to be discussed in a unified way
that the Conference on Game-Theoretic Models of Bargaining, from
which the readings in this volume come, was held at the University of
Pittsburgh in June 1983. Together, these papers provide a good picture of
some of the new directions being explored.

The first two selections, those by Chatterjee (Chapter 2) and by Wilson
(Chapter 3), are surveys that put in context some of the theoretical devel-
opments that depend critically on the ability to model rational play of
games under incomplete information. Chatterjee focuses on models that
predict a positive probability of disagreement in bargaining, as a conse-
quence of the demands of equilibrium behavior. Wilson focuses on the
role of players’ expectations and beliefs about one another in games and
markets that have some degree of repeated interaction among agents. An
agent’s “‘reputation’ is the belief that others have about those of his
characteristics that are private information. In particular, Wilson dis-
cusses the role that agents’ reputations, and the opportunities that agents
have to influence their reputations, play in determining their equilibrium
behavior.

The next reading, by Rosenthal (Chapter 4), discusses a rather different
approach to the effects of reputation. In his models, Rosenthal views
reputation as a summary statistic of an agent’s past behavior, in bargain-
ing against previous opponents. He considers how the reputations of the
agents mediate the play of the game when the members of a large popula-
tion of potential bargainers are paired randomly in each period.

The paper by Fudenberg, Levine, and Tirole (Chapter 5), and the paper
by Rubinstein (Chapter 6), both define a multiperiod game of incomplete
information that is sufficiently complex to allow a variety of bargaining
phenomena to be exhibited at equilibrium. Both papers conclude that the
beliefs that agents hold play an important part in determining equilibrium
behavior, and both discuss some of the methodological and modeling
issues that arise in studying bargaining in this way.

The readings by Myerson (Chapter 7) and Cramton (Chapter 8) each
consider the problem of mechanism design for bargaining with incom-
plete information. Myerson examines some single-period bargaining
models in terms of the comprehensively articulated approach to bargain-
ing that he has explored elsewhere. Cramton addresses similar questions
with respect to bargaining that takes place over time. The inefficiencies
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due to equilibrium behavior that appear as disagreements in single-period
models appear in his model as delays in reaching agreement.

The next two papers, by Osborne (Chapter 9) and by Tijs and Peters
(Chapter 10), address a different kind of question: the relationship be-
tween risk posture and bargaining ability. This question was first raised in
the context of axiomatic models, when it was shown in Roth (1979) and
Kihlstrom, Roth, and Schmeidler (1981) that a wide variety of these
models predict that risk aversion is disadvantageous in bargaining when
all of the potential agreements are deterministic. (The situation is a little
more complicated when agreements can involve lotteries; see Roth and
Rothblum (1982).) A similar result has now been shown to hold for the
strategic model proposed by Rubinstein (1982) (see Roth (1985)). How-
ever, in his selection in this volume, Osborne explores a strategic model
that yields more equivocal results. Tijs and Peters adopt the axiomatic
approach and explore how various properties of a bargaining model are
related to the predictions it makes about the influence of risk aversion.

The reading by Thomson (Chapter 11) presents a survey of a new
direction in the axiomatic tradition. Thomson looks at axiomatic models
defined over a domain of problems containing different numbers of
agents, and interprets the problem as one of fair division, which is an
orientation that reflects the close association between bargaining and
arbitration. (The problems he considers can also be viewed as multiperson
pure bargaining problemsif the rules state that no coalition of agents other
than the coalition of all the agents has any options that are not available to
the agents acting individually.)

I am the author of the next reading (Chapter 12), which reviews some
experimental results that point to limitations of the descriptive power of
both axiomatic and strategic models as presently formulated. The paper
suggests an approach that may hold promise for building descriptive
game-theoretic models of bargaining, and suggests in particular that dis-
agreement at equilibrium may have systematic components that cannot
be modeled as being due to incomplete information.

The readings by Binmore (Chapter 13) and by Hart (Chapter 14) can
both be viewed as extending bargaining models from the two-person case
to the case of multiperson games (which differ from multiperson pure
bargaining problems in that subsets of agents acting together typically
have options not available to individuals). In his analysis of three-person
games Binmore follows (as he has elsewhere) in the tradition proposed by
Nash, of developing solution concepts for cooperative games from strate-
gic considerations. Hart reviews some recent axiomatizations of solution
concepts for general multiperson games. (Both papers have the potential
to shed some light on the ongoing discussion that Binmore refers to as the
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“Aumann - Roth debate’ concerning the interpretation of the nontrans-
ferable utility, NTU, value.)

The final three selections attempt to bridge the gap between abstract
models of bargaining and more institutionally oriented models of dispute
resolution. Samuelson (Chapter 15) focuses on the consequences for effi-
ciency of assigning property rightsin cases involving externalities (e.g., the
right to unpolluted air). Sobel (Chapter 16) considers the role played by
assigning the burden of proofin a model of litigation in which a third party
(a judge) is available to settle disputes. Crawford (Chapter 17) considers
points of potential contact between the literature on mechanism design
for bargaining under incomplete information and the literature on third-
party arbitration. His paper makes clear both the necessity and the difh-
culty of establishing two-way contact between the abstract theoretical
literature and the institutionally oriented applied literature in this area.
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CHAPTER 2

Disagreement in bargaining: Models with
incomplete information

Kalyan Chatterjee
THE PENNSYLVANIA STATE UNIVERSITY

2.1 Introduction

This essay serves as an introduction to recent work on noncooperative
game-theoretic models of two-player bargaining under incomplete infor-
mation. The objective is to discuss some of the problems that motivated
formulation of these models, as well as cover some of the issues that still
need to be addressed. I have not set out to provide a detailed survey of all
the existing models, and I have therefore discussed only certain specific
aspects of the models that I believe to be especially important. The reader
will find here, however, a guide to the relevant literature.

The title of this chapter was chosen to emphasize the phenomenon of
disagreement in bargaining, which occurs almost as a natural conse-
quence of rational behavior (i.e., equilibrium behavior) in some of these
models and is difficult to explain on the basis of equilibrium behavior
using the established framework of bargaining under complete informa-
tion. Disagreement, of course, is only one reflection of the problem of
inefficient bargaining processes. I also spend some time on the general
question of efficiency and its attainment. Whereas in most models classi-
cal Pareto-efficiency is not attainable in equilibrium, it may be obtained
by players who deviate from equilibrium, as will be shown.

The chapter is organized as follows. Section 2.2 lays out the problem
and discusses the important modeling approaches available. Section 2.3
focuses on a particular group of models, each of which specifies a strategic
(i.e., extensive) form of the bargaining process. Section 2.4 is concerned
with studies in which the strategic form is not specified. The final section
contains conclusions about the material covered.

Iam grateful to Al Roth, Gary Lilien, and an anonymous referee for their valuable
comments.
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10 Kalyan Chatterjee

2.2 Problem context and modeling approaches

The process of resource allocation through bargaining between two par-
ties who have some common interests and some opposing ones is wide-
spread in the modern world. Examples include negotiations between an
industrial buyer and a potential supplier (or, in general, between any
buyer and any seller), between management and union representatives,
and between nations. (Raiffa (1982) contains accounts of many different
bargaining situations.)

In view of its importance, it is not surprising that bargaining has gener-
ated much theoretical interest, beginning with the classic work of Nash
(1950, 1953)and Raiffa (1953). Until a few years ago, most of the theoreti-
cal work had assumed complete information; that is, the bargainers’ util-
ity functions, the set of feasible agreements, and the recourse options
available if bargaining failed were all considered to be common knowl-
edge. Any uncertainty present in the situation would be shared uncer-
tainty, with both bargainers having the same information about the un-
certain event.

Within this set of assumptions, the problem has been explored using
one of three broad categories of theoretical endeavor. The first approach,
present in Nash (1950, 1953) and Raiffa (1953) and extended and com-
pleted in recent work (see Roth (1979)), has not sought to describe the
bargaining process explicitly through a specific extensive form. Rather, it
has concentrated on formulating and exploring the implications of gen-
eral principles that are compatible with possibly many different extensive
forms. These principles can be interpreted as descriptive of actual bar-
gaining but often have been regarded as normative rules.

The main theoretical results in this type of work lead to the specifica-
tion of a rule for choosing an agreement (usually leading to a unique
solution) that is characterized by a particular set of principles or axioms.

This approach is often described as “cooperative” since the jointly
agreed-upon solution is implemented presumably by a binding
agreement.

The second way of exploring the bargaining process specifies a bar-
gaining game, whose equilibrium outcome then serves as a predictor of
the actual bargaining process. For example, the Nash solution is an equi-
librium (only one of many) of a simple one-stage demand game in which
players make demands simultaneously, and the agreement occurs if the
two demands can be met by a feasible agreement. (If the demands are not
compatible in this way, a conflict occurs, and the “status-quo point” isthe
solution.) Work by Harsanyi (1956), Binmore (1981), and others has
sought to explain why the equilibrium given by the Nash solution would,
in fact, be the one chosen in the bargaining.
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Note that the presence of multiple equilibria may explain why bar-
gainers disagree, even under complete information. In Chapter 12 of this
volume, Roth proposes a simple coordination game in which players use
mixed strategies and thus may, with positive probability, not choose the
same outcome.

The third approach to investigating bargaining, which will not be con-
sidered here, applies general theories to construct explanations for specific
problems, for example the determination of the wage and the amount of
labor used in management—union bargaining (e.g., see McDonald and
Solow (1981)).

Each of the first two approaches has its strengths and weaknesses.
Specifying an extensive form enables us to model (e.g., in the work under
incomplete information) the strategic use of private information and,
therefore, has implications that could prove useful for individual bar-
gainers. However, an extensive form is bound to be arbitrary to some
extent, and the axiomatic approach cuts through disputes about choice of
extensive forms.

The focus of the remainder of this chapter is on models of bargaining
under incomplete information. These models are concerned with situa-
tions wherein each party has private information (e.g., about preferences)
that is unavailable to the other side. This relaxation of the assumptions
made in the complete-information framework has crucial implications.
The most interesting one for economists is the persistence of Pareto-
inefficient outcomes in equilibrium, the most striking of which is the
existence of disagreement even when mutually beneficial agreements
exist. The bargaining research has also generated new notions of con-
strained efficiency that appear to be of general relevance in many different
areas of economics.

As before in the case of complete information models, the theoretical
studies under conditions of incomplete information have employed two
somewhat different research strategies. The axiomatic approach was pio-
neered by Harsanyi and Selten (1972). The strategic approach is based on
Harsanyi (1967, 1968), work that supplied the extension of the Nash-
equilibrium concept essential to explaining games of incomplete infor-
mation. The two basic contributions of this series of papers by Harsanyi
were: (1) the specification of the consistency conditions on the probability
distributions of the players’ private information (or, to use Harsanyi’s
term, “types’’); and (2) the specification that a player’s strategy consisted
of a mapping from his type to his action. A conjecture about an oppo-
nent’s strategy combined with the underlying probability distribution of
the opponent’s type would generate a probability distribution over the
opponent’s actions. A player would maximize his conditional expected
utility given his type and this conjectured probability distribution.
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Table 2.1. Strategic models of bargaining under incomplete information

Features

Models 1 2 3 4 5 6 7 8
Binmore (1981) v v
Chatterjee and Samuelson (1983) v v v v
Cramton (1983) v v v v
Crawford (1982) v v v
Fudenberg and Tirole (1983) Ve v v
Fudenberg, Levine, and Tirole

{Chapter 5, this volume) v Ve v v
Rubinstein (1983) v v
Sobel and Takahashi (1983) v v v
Wilson (1982) v v v v v

Key to Features:

1 - Two-sided incomplete information

2 - Continuous probability distributions

3 - Both parties make offers

4 - Sequential-information transmission incorporated in model

5 - Bargaining on more than one dimension

6 - Explicit consideration of alternatives to current bargain

7 - Many buyers and sellers in market

8 - Bargainers uncertain before bargaining of the size of gains from trade
@ This feature is included in some of the models proposed.

Selten (1975) and, more recently, Kreps and Wilson (19824, 1982b)
have proposed that an equilibrium pair of strategies should satisfy an
additional requirement, that of “perfectness,” or ““sequential rationality,”
in order to be considered an adequate solution. This requirement entails
that a player’s equilibrium strategy should still be optimal for him at every
stage of a multistage extensive-form game, given his beliefs about the
future and current position in the game. For example, an equilibrium
based on a threat strategy (e.g., to blow up the world) that would clearly
not be in a player’s best interest to implement would not be a perfect
equilibrium,

The theoretical research in strategic models of bargaining is summa-
rized in Table 2.1. This summary table is by no means an exhaustive list of
all the features important to modeling the bargaining process. It does,
however, contain some salient ones useful for comparing the different
models.

Three explanatory notes are in order here. First, papers such as Craw-
ford (1982) are written in terms of utility — possibility sets and therefore
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theoretically encompass bargaining on more than one dimension. How-
ever, players engaged in such bargaining will not find any strategic advice
in these papers.

Second, feature 6 refers to determining explicitly what recourse players
have in the event of disagreement — in other words, models of variable
conflict outcomes. Crawford (1982) contains some pointers on develop-
ing such a model, although a scheme is not fully laid out.

Third, one area of analytical research is not included in Table 2.1. This
area consists of the asymmetric decision-analytic models inspired by
Raiffa (1982). In these models, no equilibrium conjectures are used to
generate probability distributions of the other player’s acts. Rather, such
probability distributions are assessed directly, based either on subjective
judgment or on empirical observation of the other player’s past behavior.
Although this approach is evidently incomplete as a formal theory of
interaction, it has the advantage of being able to provide advice to bar-
gainers faced with complex tasks. For example, in Chatterjee and Ulvila
(1982), a start is made (in work by Ulvila) in analyzing multidimensional
bargaining problems. In this study, bargainers possess additive linear
utility functions over two attributes, with the relative importance ac-
corded to each attribute being private information. The bargainers an-
nounce these weights, and the Nash solution conditional on these
announcements is used to determine the attribute levels. The analy-
sis is done for a given probability distribution of announcements by the
opponent, and an optimal strategy, which proves to be discontinuous,
is calculated.

Papers by Chatterjee (1982) and Myerson and Satterthwaite (1983)
provide a bridge between the extensive forms of Table 2.1 and the full-
fledged axiomatic approach of Myerson (1983, 1984). Essentially, these
papers show the general Pareto-inefficiency of bargaining procedures
under incomplete information and the tradeoffs needed to restore
efficiency.

In the new cooperative theory developed by Myerson, there is explicit
recognition of the constraints imposed by incomplete information. Not
all binding contracts are possible; since players’ strategies are unobserv-
able, a requirement of any contract is that it is sustainable as an equilib-
rium of some extensive-form game. These recent papers by Chatterjee
and by Myerson and Satterthwaite therefore constitute a synthesis of the
two prevalent approaches.

Finally, bargaining is especially suited to controlled experimentation.
Various carefully designed experiments involving conditions of complete
information have been conducted by Roth (see Chapter 12 in this vol-
ume) and others. Somewhat more informal experimentation under in-
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complete information is reported in Chatterjee and Ulvila (1982) and
Chatterjee and Lilien (1984). These latter articles cast some doubt on the
validity of Bayesian equilibrium as a predictor of the outcome of bargain-
ing under incomplete information.

2.3 Models of disagreement and
incomplete information

In this section, models that seek to explain the inefficiency of actual
bargaining as an equilibrium phenomenon are considered. The concept
of efficiency used here is the familiar one of Pareto-efficiency (often called
“full-information efficiency”) - namely, trade takes place ifand only if it
is mutually advantageous for both bargainers to conclude a trade. The
next section presents a discussion of the study of efficient procedures or
mechanisms for bargaining (which could, in general, lead to inefficient
outcomes).

The concept of equilibrium used is the Nash-equilibrium notion in the
setting of incomplete information (developed by Harsanyi (1967, 1968)
and called Bayesian equilibrium in the literature). Models that involve
multistage extensive forms need, in addition, to consider whether com-
mitments made at one stage would be rational to carry outin future stages.
Some models accomplish this by explicitly using perfect equilibrium as
the solution concept, whereas others use an implicit perfectness notion in
the model formulation (see Chapter 3 in this volume for a more detailed
discussion of the numerous papers in various fields of economics that
could be completed by making an explicit perfectness argument).

All of the models presented here involve incomplete information, and
some also include sequential offers (see Table 2.1). The main concern is
that most of these models do not have equilibria that are full-information
efficient, with finite-horizon models expressing this inefficiency through
disagreement in the presence of gains from trade, and infinite-horizon
ones through delayed agreement. However, there are incomplete-infor-
mation models that exhibit efficient equilibria.

An example is Binmore (1981). I shall mention briefly some aspects of
this model relevant to this chapter, although the main thrust of Binmore’s
work lies elsewhere.

The paper by Binmore considers the “divide-the-dollar” game with
incomplete information. That is, there is some perfectly divisible com-
modity of a known amount that has to be divided between two players, I
and IL. Player I could be one of a finite set of typesi= 1, 2, . . . , m,with
commonly known probabilities A, 4,, . . . , 4,,, respectively. Player I
knows his type, but player II knows only the probabilities of the various
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different types. Similarly, player II could be any one of types
j=1,2, ..., nwithcommonly known probabilities ¢, , it5, . - . , i,
respectively. Player II knows his own type, but player I knows only the
probabilities. Each player has a von Neumann-Morgenstern utility
function on the amount of the commodity that he obtains in the event of
an agreement and on his payoff if there is no agreement. A player’s utility
function depends also on his type.

Binmore then considers a bargaining game in which players make
demands in terms of amounts of the commodity desired. If the sum of the
two demands is at most the amount of the commodity available, each
player gets his demand. If not, each gets his conflict payoff. Note that the
demands are firm commitments from which neither player is permitted to
back down in the event of a disagreement.

It is clear that there exists a set of *“‘just-compatible commitment”
equilibria (using Crawford’s (1982) terminology), with all types of player I
demanding x, and all types of player Il demanding x, , where the sum of x;,
and x, equals the amount of the commodity available. Such equilibria are
“nonrevealing” or “pooling,” in that the demand is the same for all types
of a given player. They are also efficient despite the incomplete knowledge
of the players’ payoffs involved in the model. On the other hand, it is
possible, as Binmore shows, to obtain “revealing’ or “separating” equi-
libria in such models, wherein the demand made by a player does depend
on his type. Such separating equilibria could involve some probability of
disagreement (even though both players are manifestly better off agreeing
than not agreeing).

This brings us to the tricky question of which equilibrium, separating
or pooling, will be the more accurate predictor in a given bargaining
situation. Empirical data on this might be the best indicator. Another
indicator might be the theoretical properties of the equilibrium itself. The
efficiency of a nonrevealing equilibrium in this setting is an attractive
feature, as is Binmore’s demonstration that nonrevealing equilibria of a
smoothed demand game approximate the Harsanyi- Selten generalized
Nash bargaining solution (Harsanyi and Selten (1972)).

The key features of the Binmore example for the present discussion are
that the efficient equilibrium outcome is not *‘responsive’ to the types of
the players (the same outcome is obtained for all types), and that the size
of the total gains from trade is fixed.

Two points should be noted in passing. First, Binmore’s model has
already specialized the abstract Nash framework to bargaining over a
single issue, as do most of the studies discussed here. Second, a version of
the game discussed previously in which bargainers’ nonnegative costs of
disagreement were private information, would have the same just-
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compatible commitment equilibria because any agreement would be
preferable to no agreement.

A natural extension of the Binmore approach might be to make the
amount of the divisible commodity variable and dependent on the bar-
gainers’ private information. An article by Bill Samuelson and myself
(Chatterjee and Samuelson (1983)) could be interpreted as providing this
extension. Once again, the bargaining is on a single issue, namely, the
price of an object owned by a seller who is willing to part with it for
anything less than an amount v, (which we call the seller’s “‘reservation
price”) and desired by a buyer who is unwilling to pay any more than v,
(the buyer’s reservation price). The size of the potential pie is then v, — v,,
if v, > v, . However, in our model, each bargainer knows his own reserva-
tion price but not the other player’s. Probability distributions on the
reservation prices are commonly known and are, in the model, continu-
ous. The bargaining game consists in each player making an offer or a
demand. If the buyer’s offer, a,, is at least as great as the seller’s offer, a,,
there is an agreement at a price between 4, and a,, perhaps midway
between them. If not, there is no agreement, and the players obtain zero
payoffs. Once again, therefore, irreversible commitments are assumed.

Welooked for equilibrium strategies in this game that were revealingin
that a player’s offer would be strictly increasing in his type (or reservation
price). A player would choose an offer to maximize his conditional ex-
pected return given his type and a probability distribution over the other
player’s offers. An optimal strategy would therefore be a Bayes’ decision
rule against the probability distribution of the other player’s offers. In
equilibrium, this probability distribution of offers would be identical to
that generated by the other player’s equilibrium strategy and the underly-
ing probability distribution on that player’s reservation price. (This
Bayesian/Nash equilibrium therefore has a fulfilled-expectations prop-
erty, not unexpectedly, as several authors have pointed out earlier.)

We found that if there were revealing strategies in equilibrium, we
could characterize them as involving a positive difference between a
player’s reservation price and his offer, with the amount of the difference
being dependent on the derived probability distribution of offers. Of
course, this meant that the bargaining game was not full-information
efficient and could lead to disagreement. This equilibrium was not
unique. In particular, there were uninteresting (and inefficient) nonre-
vealing equilibria that would never lead to an agreement (e.g., offer some-
thing such that the probability of agreement is zero), and sometimes
partially revealing equilibria.

We could not show, however, the existence of such revealing equilibria
under general conditions. A weakening of the requirement to a revealing
epsilon equilibrium might lead to more positive results.
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Despite this problem, we believed that the revealing equilibrium stud-
ied would have considerable appeal to bargainers who would want their
offers to be strictly monotonic in their reservation prices. To some extent,
this belief was bolstered by the strategies obtained from classroom simula-
tion in Howard Raiffa’s course at Harvard. Of the groups that played this
game with which I am familiar, very few chose nonrevealing strategies,
and those that did fared badly. (Some of these results are reported in
Chatterjee and Ulvila (1982) and in Raiffa (1982).)

As contrasted with Binmore’s model, in this model the final outcome
was responsive to the types.

An alternative explanation for disagreement is offered by Crawford
(1982), who relaxes the requirement that commitments, once made, are
irreversible, and allows bargainers to reverse them at a cost. (The cost
could be private information to the individual bargainer, but a player
learns his costs only after the first-stage decisions have been made.) Craw-
ford shows in his model that, in some instances, commitments to incom-
patible demands are in equilibrium. The intuition comes through clearly
in the section of the article where he assumes that players have constant
probabilities of not backing down in the second stage from incompatible
commitments made in the first stage. Thus, if incompatible commit-
ments (or demands) are attempted in the first stage, there is a positive
probability of disagreement resulting from both bargainers holding firm.
Crawford then shows that when dominated options are removed, the
choice of demanding one’s maximum utility level dominates that of not
making any commitments, and so ex ante one would expect a positive
probability of disagreement.

Crawford’s model might be useful in developing a theory for negotia-
tion between agents with principals exercising veto power on the final
agreement. An initial demand, once made, may be costly to back away
from, because some principals might lose by the concession. However, the
initial demand might be sufficiently high as to convince the principals that
the agent was bargaining honestly on their behalf.

The Crawford model also begins to address an issue that has been
developed further in several recent papers. The issue is the descriptive
relevance of a model that assumes irreversible commitments (Or, to put it
another way, a one-stage bargaining game), possibly ending in disagree-
ment even though both sides are aware after the fact (perhaps by inverting
the equilibrium strategies) that an agreement is possible.

Such an argument has been made in the recent literature on sequential
bargaining models (Cramton (1983), Fudenberg and Tirole (1983), Ru-
binstein (1983), Sobel and Takahashi (1983), and Chapter 5 of this vol-
ume). All of these models involve incomplete information, at least about
the buyer’s reservation price, with Fudenberg and Tirole (1983) consider-
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ing incomplete information about both sides’ reservation prices for a
discrete probability distribution, and Cramton (1983) extending the
framework to continuous uniform distributions. Because these models
are discussed elsewhere in this volume (see Chapter 3). I will not consider
them in detail here. The essential difference with the one-stage and other
finite-horizon models is that the bargaining inefficiency does not result
from a lack of agreement when agreement is mutually beneficial but from
a delay in the eventual agreement caused by information being revealed
over time in the bargaining process. Of course, because of unequal time
preferences, an agreement may not be beneficial at the time all the infor-
mation is revealed (and therefore will not occur), even though it may have
been beneficial in the first stage of the game. The models that involve
one-sided incomplete information (e.g., Sobel and Takahashi (1983))
contain the intuitive feature that perfect equilibrium offers by the seller
involve concessions over time. (In this model, the seller can commit to
repeating the same offer before the bargaining begins, but this is not a
credible commitment once the bargaining is in process.) The models
involving two-sided incomplete information need not have an equilib-
rium with this structure.

Except for that proposed by Rubinstein (1983), who discusses bargain-
ing over a pie of fixed size, these models all have one active player, who
makes offers, and one passive player, who responds. Most of these models
also use discounting to express time preference. This specification, rather
than the use of stage costs and a quit option, is justified by Fudenberg,
Levine, and Tirole (see Chapter 5 of this volume). However, casual obser-
vation does seem to indicate frequent real-world use of the quit option by
bargainers whose expected value of continuing may be low. This may be
due to real bargains being over a finite horizon (because the end of the
universe is guaranteed in finite time), or due to use of a bargaining process
different from the ones that have been modeled.

To summarize the contents of this section, the advent of noncoopera-
tive bargaining models with incomplete information has explained the
occurrence of inefficient outcomes in equilibrium, both in single-stage
games and in more realistic, multistage games. However, the presence of
incomplete information does not automatically result in all equilibria
being inefficient. In the examples discussed, this result seemed to have
something to do with the nonresponsiveness of equilibrium outcomes to
players’ types.

The finding of inefficiency for type-responsive equilibria in bargaining
runs somewhat counter to the positive results obtained by Bhattacharya
(1982) in the context of signaling environments. In these environments,
with only one-sided incomplete information, and with varying amounts
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| | [ BUYER RESERVATION PRICE

(1/3) (1/3) (1/3)
1 2.75 4
l | | SELLER RESERVATION PRICE
(1/3) (1/3) (1/3)

Figure 2.1 Example of an efficient bargaining procedure

of acommodity (rather than a fixed item of uncertain value) being traded,
it is possible to design mechanisms that guarantee full-information effi-
ciency. The role of two-sided incomplete information may therefore be
crucial.

2.4 The efficiency question

Now that we know that bargaining under incomplete information gener-
ally leads to inefficient outcomes, we might explore the question of
whether any bargaining procedure could be devised that would lead to
efficient outcomes. If the answer to that question is no, we might think of
searching for a procedure that is optimal in some sense, even though it is
not full-information efficient. To these ends, we will discuss one of my
papers (Chatterjee (1982)), and also a more general presentation by
Myerson and Satterthwaite (1983).

The notion of efficiency is a difficult one in incomplete-information
situations, especially if we conceive of a prebargaining game in which
players try to reach an agreement on the procedure to use in the actual
bargaining. Once the procedure is selected, the players could resolve the
actual bargaining by playing their equilibrium strategies, conditional on
the information received in the course of the choice of mechanism. In two
recent papers, Myerson (1983, 1984) has provided important insights into
these questions, and we shall consider them briefly.

In this section, I also mention some recent empirical work that could
have some bearing on the issues discussed.

An example based on one given in Myerson and Satterthwaite’s paper
clarifies the nature of the problem. Suppose that the seller reservation
priceis 1,2.75, or 4 with equal probabilities and that the buyer reservation
priceis 0, 2.5, or 3, also with equal probabilities (Figure 2.1). In addition,
suppose that the bargaining procedure is as follows. The seller and the
buyer announce their respective valuations simultaneously, with the
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buyer restricted to announcing at most 3 and the seller at least 1. If the
buyer’s valuation is greater than the seller’s, an agreement takes place ata
price p = 2 unless the seller’s valuation is 2.75, in which case the price pis
2.85. If there is no agreement, payoffs are zero to both.

Consider a seller with reservation price 1 who assumes a truthful reve-
lation on the part of the buyer. Does the seller have any incentive not to
announce his valuation (i.e., reservation price) truthfully? If an an-
nouncement of 1 is made, agreements are realized with buyers of reserva-
tion price 2.5 and 3 at a price of 2. The expected payoff to the seller is then

1,1 2

Any announcement up to 2.5 will give the seller the same expected payoff.
An announcement of 2.6 will lead to an expected payoff of §, because
agreement takes place only with a buyer of reservation price 3. If the seller
announces 2.75, his expected payoffis (2.85 — 1)(3), or .617, a number
less than %. It is therefore optimal to announce 1. What about a seller of
valuation 2.75? In this case, there is no reason to announce less since this
leads to a negative payoff, and announcing 2.75 gives the seller a positive
expected payoff of (2.85 — 2.75)3). A seller of reservation price 4 will
obviously never agree with any buyer.

What about a buyer who assumes a truthful seller? Would he announce
truthfully? Since the buyer’s announcement has no effect on the price but
only on the probability of agreement, there is no incentive for the buyerto
understate his reservation price. A buyer of reservation price 0 would
prefer no agreement to one at price 2 and therefore has no incentive to
overstate. A buyer of reservation price 2.5 would increase his probability
of obtaining an agreement by overstating, but the only additional agree-
ment he would get would be with the seller of reservation price 2.75,
whose announcement would cause the agreed price to go to 2.85, causing
a negative payoff. Therefore, the procedure is incentive compatible; that
is, it induces truthful revelation and is efficient in the full-information
sense - an agreement is obtained whenever it is mutually advantageous.
It is also individually rational since neither player, whatever his reserva-
tion price, would ever receive a negative expected payoff. In general, these
desirable properties are difficult to obtain simultaneously, and so it might
be worth pointing out that the probability distributions are discrete and
that the agreed price is not responsive to the announced valuations, except
for one change when the seller’s price becomes 2.75.

Now, suppose that we make the probability distributions continuous
in the following way. For the probability density of the seller reservation
price, we take the sum of three normal densities, normalized to be of mass
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1 each, and centered around 1, 2.75, and 4, respectively, with arbitrary
small standard deviation €. We perform a like construction for the buyer
reservation price. Suppose that we use a similar procedure, modified by
making the agreed price O if the seller announces a value of less than
1 — 6€ and 2.85 if the seller announces a value of more than 2.75 — 6e.

It is easy to see that the procedure is no longer incentive compatible for
the seller even if the buyer is assumed to be truthful. However, the devia-
tions from incentive compatibility take place if the seller’s valuation is far
enough away from the three mass points. Such valuations occur with very
low probability.

Thus, a procedure may be “almost” efficient in the sense of being
incentive compatible for all but a small set of types. Similarly, there could
be several different versions of individual rationality, namely, nonnega-
tive expected payoff prior to learning one’s reservation price, nonnegative
expected payoff conditional on one’s reservation price, nonnegative con-
ditional expected payoff for almost all reservation prices, and nonnega-
tive payoffs for all types.

The consensus among investigators of this issue seems to be that the
appropriate version of individual rationality is the one that generates
nonnegative conditional expected payoffs for all reservation prices. Using
a stronger version of this assumption, assuming responsiveness of the
final outcome to announcements, and considering only one-stage proce-
dures, it is easy to see (refer to Chatterjee (1982)) that a full-information-
efficient procedure is impossible. Note that the responsiveness assump-
tion is violated by the bargaining procedure in the discrete example given,
even the procedure that is almost incentive compatible under the contin-
uous distributions of types.

Myerson and Satterthwaite (1983) begin their presentation by demon-
strating that the restriction to one-stage games where players are asked to
reveal their reservation prices is not a real restriction, since, for any equi-
librium outcome of any procedure, there exists an equivalent incentive-
compatible procedure in a one-stage revelation game. This is the “revela-
tion principle” (Myerson (1979)) and is based essentially on the ability of
the system designer to mimic the game playing of bargainers through a
suitable outcome function mapping reservation prices to final payoffs (see
also Chapter 7 in this volume).

They then show that full-information efficiency and individual ratio-
nality in the sense of nonnegative conditional expected payoffs for all
values of reservation prices are incompatible provided the underlying
reservation-price distributions are absolutely continuous, with positive
densities everywhere on the respective domains. They do not need
the responsiveness assumption because they limit themselves to such
distributions.
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Incidentally, if the individual rationality requirement is imposed in an
ex ante sense prior to bargainers learning their reservation prices, and if
the reservation prices are independently distributed, the simultaneous-
offers procedure can be made full-information efficient with side pay-
ments. This result is based on the work of D’Aspremont and Gerard-Veret
(1979) on public goods and is contained in Chatterjee (1982).

Full-information efficiency may also be obtained by the following
bidding procedure, if players are naive in the sense of not taking into
account the information revealed by winning the bid. In this procedure,
the players bid for the right to make an offer. The winner then makes a
single take-it or leave-it offer.

Given this general finding of inefficiency, Myerson and Satterthwaite
proceed to the problem of characterizing efficient solutions. They show
that, subject to incentive-compatibility and individual-rationality con-
straints, the ex ante expected gains from trade are maximized (for the case
of [0,1] uniform distributions) by the simultaneous-revelation game stud-
ied in Chatterjee and Samuelson (1983). However, the mechanism that
maximizes the expected sum of payoffs before bargainers know their
private information may not seem very attractive after each player learns
his reservation price. Myerson (1983, 1984) has formulated a theory on
the choice of mechanism under such circumstances. He first restricts the
mechanisms that can be chosen to “incentive-efficient” ones, that is, to
procedures such that there is no other incentive-compatible procedure
that does at least as well for every type (value of private information) of
every player and sn/‘ictly better for at least one. Myerson then shows that
such mechanisms can be characterized as those that maximize the sum of
“virtual utilities” for the players, where virtual utilities are, broadly
speaking, actual utilities reduced by the cost of satisfying the incentive-
compatibility constraints. Using an axiomatic structure that generalizes
Nash’s, Myerson arrives at a new cooperative-solution concept, which he
calls a “neutral bargaining mechanism.”

Although I am not sure that Myerson would agree, the story here seems
to be that the players bargain cooperatively on the choice of mechanism
and perhaps arrive at a neutral bargaining mechanism that implies a
certain incentive-compatible, direct-revelation game, which the bar-
gainers then play. Their choice of strategy in this cooperatively chosen
direct-revelation game is not enforceable by any contract due to the
constraints of information availability (i.e., because each person has some
private information) and hence the requirement that the mechanism be
incentive compatible (or, equivalently, that the strategies be in equilib-
rium so that no player has an incentive to deviate from his strategy). In
other words, a player cannot be penalized for not revealing his private
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information, since this information is unobservable. It is possible, how-
ever, for the players to write down an enforceable contract prior to the
game, restricting it to one stage. (Violations of such a contract could be
observed and hence punished.)

Similarly, prior to knowing their reservation prices, the players could
cooperatively commit themselves to the Myerson - Satterthwaite mecha-
nism by writing a binding contract. It might be argued that this distinction
between cooperative games where players are permitted to make binding
contracts that can be enforced, and noncooperative games where players
make the decisions to make and obey such contracts, is not valid, since all
games are really noncooperative. If such an assertion is accepted, Cram-
ton’s (Chapter 8 in this volume) contribution to restricting the class of
allowed bargaining mechanisms to those that are “sequentially rational”
becomes relevant. Cramton contends that there could be direct-revela-
tion mechanisms in the sense of Myerson and Satterthwaite that cannot
be implemented as perfect (or sequential) equilibria of a suitably designed
bargaining game, even though they could be equilibria of such a game.
For example, the Chatterjee—Samuelson game that implements the
Myerson - Satterthwaite ex ante optimal mechanism in the uniform-
distribution example is not permissible in Cramton’s theory because bar-
gainers walk away even when it is common knowledge that gains from
trade are possible. Of course, given the one-stage extensive form, this
equilibrium is perfect, but Cramton appears to be criticizing nonsequen-
tial extensive forms. Instead of defining an outcome function as an ex-
pected payment to the seller and a probability of agreement contingenton
the revealed private information, Cramton defines a sequential bargain-
ing mechanism outcome as an expected payment and a time that the
agreement is to be reached. (This time is infinity if an agreement is never
reached.) Whereas a positive probability of disagreement is needed to
keep players honest in the Myerson - Satterthwaite game, a delayed time
of agreement performs a similar role in Cramton’s discussion. It is not
clear, however, what extensive form would implement a “‘sequential bar-
gaining mechanism.”

In concluding this section, we might pause to consider the relevance of
the discussion of inefficiency and disagreement contained in the litera-
ture. In equilibrium in incomplete-information games, such inefficiency
occurs either because of disagreement or because of delayed agreement.
How serious is the phenomenon in the real world, and what is the source
of inefficiency - incomplete information, an inability to make commit-
ments, or some less complicated mechanism?

In simulated games with student players, “good” solutions are reached
with high frequency, especially in multistage games. The inefficiency
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question is clearly an important conceptual issue in the design of better
bargaining processes. In practice, however, where nonequilibrium behav-
ior may occur or players may bring in longer-term considerations, the
actual inefficiency due to incomplete information may not be as great as
might be predicted by equilibrium behavior in simply specified games.
Perhaps future modeling activity could be based on exploring weaker
rationality requirements or a different solution concept. The efficiency
problem might also be alleviated if reservation prices were verifiable ex
post with some probability, and contingent agreements were possible.
Recent empirical work (Chatterjee and Lilien (1984)) seems to indicate
that unsophisticated bargainers, such as most people in real life, behave
less strategically and reveal more information than our equilibrium
calculations would indicate. Paradoxically, when confronted with a styl-
ized “no-tomorrow” game such as that in the Chatterjee-Samuelson
article, these bargainers react by being more aggressive than they are in
equilibrium.

2.5 Conclusions

In the last few sections, I have reviewed the recent work on bargaining
under incomplete information that seems to have potential as a beginning
of a descriptive theory. This work has explained disagreement and inefhi-
ciency as results of equilibrium behavior and has offered a rationale for
concession strategies in multistage games. It has also made clear the limits
of designing better mechanisms for bargaining, as well as provided a way
of choosing among efficient mechanisms.

Ithink that empirical work is needed to demonstrate whether or not the
theories hold up when real-world bargainers confront each other. Perhaps
attempts should be made to involve business decision makers in addition
to students in order to strengthen the experimental results.

In addition, theoretical work might concern itself with more explicit
models in an attempt to fill in Table 2.1, and to use the new theories in
applied contexts, such as wage bargaining. We might also try to see if our
negative conclusions on efficiency are sustained by alternative solution
concepts.

I also believe that the field of bargaining is sufficiently developed to
warrant an attempt at synthesizing it with other areas in the economics of
information and uncertainty. This might give us more insight into how
exactly to resolve the general problems of inefficiency caused in different
contexts by incomplete information. An example of such work, noted in
Table 2.1 but not discussed here in detail, is Wilson’s (1982) work on
double auctions. Wilson generalizes the Chatterjee - Samuelson trading
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framework to many buyers and sellers, each of whom submits a sealed
price offer. The trading rule specifies the resulting price, and it is shown
that, for large numbers of traders, such a trading rule is incentive efficient
in the sense of Myerson.
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CHAPTER 3

Reputations in games and markets

Robert Wilson
STANFORD UNIVERSITY

3.1 Introduction

The notion of reputation found in common usage represents a concept
that plays a central role in the analysis of games and markets with dy-
namic features. The purpose of this exposition is to describe how mathe-
matical constructs roughly interpretable as reputations arise naturally as
part of the specification of equilibria of sequential games and markets. In
addition, several examples will be sketched, and a few of the economic
applications surveyed.

The main theme here is that reputations account for strong intertem-
poral linkages along a sequence of otherwise independent situations.
Moreover, from examples one sees that these linkages can produce strate-
gic and market behavior quite different from that predicted from analyses
of the situations in isolation. The economic applications, for instance,
indicate that a firm’s reputation is an important asset that can be built,
maintained, or “milked,” and that reputational considerations can be
major determinants of the choices among alternative decisions.

The key idea is that one’s reputation is a state variable affecting future
opportunities; moreover, the evolution of this state variable depends on
the history of one’s actions. Hence, current decisions must optimize the
tradeoffs between short-term consequences and the longer-run effects on
one’s reputation. As the discussion proceeds, this general idea will be
shown to have a concrete formulation derived from the analysis of se-
quential games.

Semantics

In common usage, reputation is a characteristic or attribute ascribed to

one person (firm, industry, etc.) by another (e.g., “A has a reputation for
Research support for this presentation came from a Guggenheim Fellowship,
NSF grants SES-81-08226 and 83-08723, and Office of Naval Research contract
ONR-N00014-79-C-0685.
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courtesy”). Operationally, this is usually represented as a prediction about
likely future behavior (e.g., ‘A is likely to be courteous™). It is, however,
primarily an empirical statement (e.g., “A has been observed in the past to
be courteous”™). Its predictive power depends on the supposition that past
behavior is indicative of future behavior.

This semantic tangle can be unraveled by the application of game
theory. In a sequential game, a player’s strategy is a function that assigns
the action to be taken in each situation (i.e., each possible information
condition) in which he might make a choice. If the player has some private
information (e.g., his preferences), then the choices of actions may de-
pend on this information. In this case, others can interpret his past actions
(or noisy observations that embody information about his past actions) as
signals about what his private information might have been. More specifi-
cally, they can use Bayes’ rule to infer from the history of his observed
actions, and from a supposition about what his strategy is, a conditional
probability assessment about what it is that he knows. Further, if the
information concerns something that persists over time, then these infer-
ences about the private information can be used to improve predictions of
his future behavior.

In a narrow sense, the player’s reputation is the history of his previously
observed actions. The relevant summary, however, is simply the derived
probability assessment whenever this is a sufficient statistic. The opera-
tional use of this probability assessment is to predict the player’s future
actions; the probability distribution of his actions in a future circum-
stance is the one induced from his supposed strategy, regarded as a func-
tion of his private information.

The sketch just described has important ramifications for the behavior
of the player. To be optimal, the player’s strategy must take into consider-
ation the following chain of reasoning. First, his current reputation affects
others’ predictions of his current behavior and thereby affects their cur-
rent actions; so he must take account of his own current reputation to
anticipate their current actions and therefore to determine his best re-
sponse. Second, if he is likely to have choices to make in the future, then
he must realize that whatever are the immediate consequences of his
current decision, there will also be longer-term consequences due to the
effect of his current decision on his future reputation, and others’ antici-
pation that he will take these longer-term consequences into account
affects their current actions as well.

The role of reputations in the calculation of optimal strategies is rather
complex, more so than the simple language of common usage might
indicate. Moreover, the effects are subtle and, from a practical empirical
viewpoint, discouragingly ephemeral. An outside observer may have no
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way to measure a player’s reputation, since in substance it exists only as
probability assessments entertained by other participants. Without some
structure imposed on the unobserved state variable hypothesized to ex-
plain the actions observed, nearly any history of play in a game could be
interpreted as being consistent with the hypothesis that reputations have
an explanatory role. It is important, therefore, to study reputational ef-
fects within tightly specified models. We shall see that in well-specified
models, reputational effects can explain behavior that has often been
construed as inexplicable with any other hypothesis.!

Ingredients

At least four ingredients are necessary to enable a role for reputations. (1)
There must be several players in the game, and (2) at least one player has
some private information that persists over time. This player (3) is likely
totake several actions in sequence, and (4) is unable to commit in advance
to the sequence of actions he will take. The last ingredient requires expla-
nation. The essential requirement for a player’s reputation to matter for
his current choice of action is his anticipation that his later decisions will
be conditioned by his later reputation. That is, he must anticipate that
when a later choice arrives, he will look at the matter anew and take an
action that is part of an optimal strategy for the portion of the game that
remains. On that later occasion, he will, in effect, reinitialize the subgame
that remains by taking his reputation and the reputations of others as the
initializing probability assessments that complete the specification of the
subgame. It is this anticipation that brings into play the tradeoffs between
the short-term consequences and the long-term reputational effects of the
action he takes on an earlier occasion. Thus, the player’s strategy is the
solution to a dynamic programming problem in which his and the others’
reputations are among the state variables that link successive stages of the
game. This aspect of the calculation of strategies will be illustrated in the
examples that follow.

The argument just outlined has an explicit formulation that occupies a
central role in the analysis of sequential games. Game theory can be
construed as the analysis of multiperson decision problems in which the
participants share a base of common knowledge. That is, there exists a
body of information that is known to all, that each knows is known to all,
that each knows that each knows is known to all, ad infinitum. The
common knowledge comprises the “rules of the game.” The strategies
available to a participant consist of those functions that specify for each
circumstance in which he might choose an action (depending, for exam-
ple, on his private information and the observations he has made of his
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and others’ actions?), the action he will take among those available. Con-
tained in the common knowledge, since it is a logical implication of the
rules of the game, is the specification of those combinations of strategies
for the players that are Nash equilibria; that is, each player’s strategy is an
optimal response to the others’ strategies. Among the Nash equilibria,
moreover, are sequential equilibria (Kreps and Wilson (1982a)); in each
circumstance, a player’s strategy for the remainder of the game is an
optimal response to the others’ strategies, conditional on the prior history
of the game.? An assumption in the following discussion is that the players
make common suppositions about which sequential equilibrium is
selected.

Sequential equilibria invoke the criterion of sequential rationality. In
each circumstance, a player chooses an action that is part of an optimal
strategy for the remainder of the game. Thus, optimality (i.e., rationality)
is tested repeatedly as the game proceeds; or in reverse, the strategy is
computed by backward recursion using the technique of dynamic pro-
gramming. Part of this computation is the construction in each circum-
stance of a probability assessment for those events about which the player
is uncertain. One of the implications of optimality is that this probability
assessment is a conditional probability satisfying Bayes’ rule wheneverthe
conditioning event (i.€., the circumstance in which the player finds him-
self) has nonzero probability according to the supposed strategies of the
other players.

Among the sequential equilibria are the perfect equilibria (Selten
(1975)).# Say that a strategy combination is positive if each playerin every
circumstance takes each feasible action with positive probability. A par-
ticular strategy combination is a perfect equilibrium if there exists a
sequence of positive combinations converging to it such that each player’s
designated strategy is an optimal response to each member of the se-
quence. The motivation for this definition 1s the requirement that the
equilibrium strategies be robust best responses, in the sense that they
remain optimal even for some small probabilities that the others will err.
An important implication of this specification is that a perfect equilib-
rium entails well-specified probability assessments for the players in each
circumstance. (To demonstrate this, let 0 =(g,, ..., g,) represent a
combination of strategies for the » players. If this is a positive combina-
tion, then Bayes’ rule is surely applicable in each circumstance to com-
pute for the player taking an action a conditional probability assessment
over those events he does not know; let nfo] = (n,, . . ., m,) represent
these. Then, a sequence o of positive strategies convergingask — ®toa
perfect equilibrium o includes a subsequence for which n[g*] converges
to a combination n[o] of probability assessments associated with the
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perfect equilibrium o. One can verify, moreover, that the probability
assessments 77[o] justify the sequential rationality of o, in the sense that
with these probability assessments, each player’s strategy solves the asso-
ciated dynamic programming problem that confirms that it meets the
requirements for a sequential equilibrium.®)

Examples

The following examples will help to clarify the ideas presented.

Sequential bargaining. Consider a model of sequential bargaining over
price between a seller and a buyer, studied in various versions by Cramton
(19834, 19835), Fudenberg and Tirole (1983a), and Sobel and Takahashi
(1980). In its simplest form, the seller makes repeated offers until the
buyer accepts. All features are common knowledge except the buyer’s
valuation of the item offered, which he knows privately. Both players are
assumed to be impatient for a trade; payoffs are discounted according to
the time a trade is concluded. A sequential equilibrium entails a decreas-
ing sequence of offers by the seller and, for the buyer, a maximum price at
which he will accept that is an increasing function of his valuation.® Before
each offer, the buyer’s reputation, that is, the seller’s probability assess-
ment for his valuation, is conditioned on the history of past rejections.
Hence, it is obtained by truncating the original probability assessment at
the upper end at that valuation beyond which the seller anticipated ac-
ceptance from his previous offer. The buyer’s reputation affects his behav-
ior since, rather than accepting a favorable offer, he might defer and
obtain a later, lower offer that would be the seller’s optimal one to offer
given his later (perhaps false) reputation that his valuation is lower than it
is. The equilibrium offer sequence and acceptance rule are computed to
take full account of these considerations.’

The chain-store game. Consider the chain-store game studied by Selten
(1978), Easley, Masson, and Reynolds (1981), Rosenthal (1981), Kreps
and Wilson (19825), and Milgrom and Roberts (1982b). In the simplest
version, a firm (the “store”) plays in sequence against # opponents (the
“entrants”) the following stage game with simultaneous moves that are
observed by all players. The entrant chooses to be “out,” obtaining an
assured payoffof zero, or “‘in,” obtaining a payoffof | or —1 depending on
whether the store chooses to be “sofi” or “tough.” The store’s payoff is
zero if (in,soff) is played, and it costs 1 to be tough, whereas out yields a
benefit of 2. Each entrant maximizes its expected payoff; the store maxi-
mizes the sum of its expected payoffs over the n stage games. It is obviou.
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that the only equilibrium has (in,soff) played at every stage, since soft isa
dominant strategy for the store in each stage game and in is the entrant’s
best response.

Now, suppose that the entrants initially assign a probability § > 0 that
tough is the store’s only feasible action; that is, that the store is ““strong”
rather than “weak.” In this case, a sequential equilibrium is the following.
Let p, be the entrants’ probability assessment that the store is strong when ¢
stages remain; that is, p, = 6. Then, the weak store plays tough if p, =
.5=1 and otherwise it plays fough with a probability determined by the
condition that p,_, will be .5~ if the entrant plays tough (and zero if he
plays soft). Note that necessarily p,., = p, if p,= .5"!, since both the
strong and weak stores play tough in this case. The entrant plays out if
p, > .58, playsinifp, < .5, and randomizes equally if p, = .5%. (The details
of these calculations are described in Kreps and Wilson (19825).)

Of course, it is p, that one interprets as the store’s reputation. This
equilibrium will be used to illustrate how reputational considerations
affect the players’ choices of actions. An entrant prefers out if he assigns
the store’s choice of tough a probability exceeding .5; this is certainly the
caseif p, = .5"7!, since both the strong and the weak stores then play tough.
Otherwise, the marginal probability of rough is determined by the condi-
tion (from Bayes’ rule) that the ratio of p, and this probability must be the
posterior probability .5°~!; hence, the marginal probability is p,/.5*~!, and
we see that the entrant prefers out if p, > .5%, as specified in the equilib-
rium. The weak store’s expected payoff when ¢ stages remain, assuming
the preceding strategies, is 0, 1, or 2 + ¢t — 7(p,) according as p, <, =, or
> .5 where 7(p,) = inf{7 | p, > .57}, Hence, if p, > .5'"!, the entrant could
save 1 now by playing soft, but it would cost more than that in the long
run, since it would reveal that he is weak, that is, p,_, = O after soff is
observed by subsequent entrants; whereas, if p, = .5, then the savings of
1 from playing soft is offset exactly by the long-term effect, and so the
entrant is indifferent and the randomized strategy is among the optimal
ones. Note that the preceding analysis of the weak store’s decision prob-
lem amounts to a verification that the entrant’s strategy solves the asso-
ciated dynamic programming problem, given the way in which the repu-
tation evolves according to Bayes’ rule.

We observe here the gist of reputational effects. If the weak store’s
reputation for possibly being strong is sufficiently large compared to the
number of stages remaining, the weak store prefers to imitate the behavior
of the strong store so as to deter later entrants from choosing in. The
store’s reputation is an asset that it acts to maintain, even if doing so is
costly in the short term, so as to reap the benefits in subsequent stages of
the game. Indeed, if the number » of stages is very large (i.e., 7(J) is small
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compared to n), then the weak store obtains an expected payoff per stage
of nearly 1, whereas if it were to reveal itself by playing sofi, its payoff
would be O thereafter.

Another version of the chain-store game, with a more detailed model-
ing of the economic structure, is presented in Benoit (1983).

Beliefs

The preceding examples illustrate the role of reputational effects in se-
quential games with incomplete information. The key ingredient is that a
player can adopt actions that sustain the probability assessments made by
other participants that yield favorable long-term consequences. When-
ever it is feasible to imitate the behavior one would adopt if one’s private
information were different than it is, and this would affect others’ actions
favorably, there is a potential role for reputational effects.? The operative
mechanism is the process of inference by which observed actions are
taken as signals of private information. Behavior that in common usage is
interpreted as bluffing, imitation, dissembling, or the like, can all be
considered as desigried to affect others’ responses by sustaining or altering
their beliefs. Nor need this behavior have a role only in competitive
contexts; as we shall see later, it can be an important factor in cooperative
behavior.

Milgrom and Roberts (1982b) emphasize that these ingredients are
available whenever any of the players has information that is not common
knowledge among all of them. It may be, in fact, that they have the same
immediate perceptions but this fact is not common knowledge.

3.2 Concepts

This section contains a description of some of the key ideas obtained from
analyses of reputational effects in sequential games. The intention is to
indicate those concepts that have validity in circumstances more general
than the examples with which they are illustrated.

Disequilibrium

One of the strengths of game theory is the precision and completeness
with which it describes and analyzes multiperson decision problems. For
example, the rules of the game are completely specified, and a strategy
indicates what to do in every possible circumstance; in particular, an
equilibrium predicts not only what is expected to happen (i.e., those
sequences of actions and events having positive probability using the
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equilibrium strategies —~ we call these the equilibrium paths), but also the
anticipated consequences of any deviation from the optimal strategies of
the players. In the case of reputations, the game-theoretic analysis reveals
that the anticipated equilibrium behavior depends sensitively on the
players’ interpretations of the significance of disequilibrium actions (Ru-
binstein (19835)). This feature derives from the fact that after an unanti-
cipated action by one player, the other players cannot use Bayes’ rule to
obtain a conditional probability assessment for the player’s private infor-
mation. Yet, the equilibrium is sustained by the player’s expectation of
what assessments they will make and thus what responses they will be led
to choose. In the chain-store game described previously, this feature did
not arise since the action soft was conclusive evidence that the store was
weak, for the reason that the strong store was incapable of that action. The
equilibrium remains unchanged, however, if we allow that the strong
store could choose sofi but that this action is dominated by the action
tough. In this case, the equilibrium depends critically on the supposition
that the entrants interpret the action soff as conclusive evidence that the
store is weak. Other suppositions are possible, and some of these lead to
equilibria that are qualitatively different. We find, therefore, that sequen-
tial equilibria are sustained by suppositions about what beliefs(i.e., proba-
bility assessments) will be entertained off the equilibrium paths. Tech-
nically, the disequilibrium beliefs are determined by the sequence
(o*,n[0¥]) whose limit justifies the equilibrium pair (o,7) of strategies and
beliefs (compare with “Ingredients” in Section 3.1). From a practical
point of view, this amounts to saying that the beliefs are determined by a
supposition as to which types (i.e., the private information) of a player are
more likely to deviate or err. In the chain-store game, the salient supposi-
tion is that the weak store is more likely to play sof?, since in the stage game
it is dominant for the weak store and dominated for the strong store. In
general, considerations of this kind would seem to be crucial ingredients
of a fully predictive theory as to which sequential equilibrium will be
found in practice.

Imitation

In the chain-store game, the weak store chooses tough if p, = .5""!, even
though this action is costly whether the entrant chooses in or out. As was
indicated, a plausible interpretation of this strategy is that imitating the
dominant behavior of the strong store yields the future benefit of deterring
later entrants by sustaining their belief that the store might be strong.
Imitation in this case has a competitive advantage for the weak store, and
it is disadvantageous for the entrants; were there no possibility of imita-
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tion (e.g., d =0), the payoffs to the store and the entrant would be
reversed.

Imitation may, however, confer joint advantages, and indeed it can be
the foundation for mutual cooperation. The following example illustrates
this possibility.

The prisoners’ dilemma game. Consider the finitely repeated version of
the symmetric prisoners’ dilemma studied by Kreps, Milgrom, Roberts,
and Wilson (1982). In each stage, the two players move simultaneously,
choosing either to cooperate or to not cooperate, and each then observes
the other’s choice. If neither cooperates, their payoffs are zero, and each
gains 3 from the other’s cooperation but it costs the other 1 to cooperate.
Each seeks to maximize the sum of his payoffs over n repetitions of the
stage game. The only equilibrium of this game has both players choosing
not to cooperate every time, regardless of the number of repetitions. At
the final stage, cooperation is disadvantageous for both players; at the
penultimate stage, therefore, there is no chance that cooperation will be
reciprocated in the next stage and so again cooperation is disadvanta-
geous; and so on ad infinitum.

Suppose, however, that player 4 entertains a positive probability J,
possibly very small, that player B is addicted to the strategy TIT-FOR-
TAT, that is, that B will cooperate unless 4 does not, in which case his
following action will be to not cooperate.® In this case, there is a sequential
equilibrium in which they both cooperate for all but a relatively few
stages. The lengthy derivation of this result invokes the following argu-
ment, which is stated intuitively and somewhat imprecisely here.

Suppose that B is not addicted to TIT-FOR-TAT. We argue that for
most of the game, B will want to imitate TIT-FOR-TAT. The first part is
trivial: He surely must punish any noncooperative behavior by A since
this yields a short-term advantage and does not alter his reputation. The
key, therefore, is to establish that B will reciprocate 4’s cooperation if
many stages remain. The argument uses the following inequalities, in
which A(r,s) and B(r,s) represent A’s and B’s expected payofls if they use
strategies r and s, respectively. Also, let ¢ represent B’s TIT-FOR-TAT
strategy, and let (r°,s°) be a sequential equilibrium.

1. B(r°,s°) = B(r°,t), since s° is B’s optimal response to r°.

2. B(r°,t) = A(r°,t) — 4, since by using TIT-FOR-TAT, B is assured of a
payoff within 1 + 3 of A’s payoff, regardless of which strategy A uses.
Moreover, when B uses the strategy TIT-FOR-TAT, B’s expected payoff
is the same as the contingent payoff depending on B’s type, since both
types use TIT-FOR-TAT.

3. A(r°,t) = A(r°,s°), since B’s use of TIT-FOR-TAT can only benefit 4.
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This is based on the fact that s° punishes 4 for noncooperation just as
TIT-FOR-TAT does, but possibly s° does not reciprocate cooperation to
the degree that TIT-FOR-TAT does.

4. A(r°,s°) = 26(n — 1) — 2. If A previously cooperated, then by continu-
ing cooperation until B does not, 4’s payoff is at least 27 if B is addicted
to TIT-FOR-TAT, and it is at least —1 otherwise. Similarly, if 4 pre-
viously did not cooperate, then B is sure to not cooperate, and so with
this strategy 4 gets —1 immediately by cooperating plus a continuation
value that 1s at least the corresponding amounts given: 2(n — 1), or —1.
Either way, the expected payoff, using the initial probability assessment,
is at least the stated amount.

Combining these results, we see that B’s expected payoff is at least
2d(n — 1) — 6 when his reputation is é and » stages remain. Conse-
quently, when B considers whether to reciprocate cooperation, he calcu-
lates as follows. He can choose to not cooperate, yielding an immediate
payoff of at most 3 but zero thereafter (since his type is revealed, the only
equilibrium path thereafter has no cooperation). Or he can cooperate,
yielding at least —1 immediately and at least 28(» — 2) — 6 in the remain-
ing n — 1 stages (which he will begin with a reputation that is at least d if he
reciprocates cooperation). Thus, if # and J satisfy —1 + 2d(n — 2) — 6 >
3, then B’s best choice is to reciprocate cooperation.

This result can be strengthened further to provide a bound, indepen-
dent of the length of the game, on the number of noncooperative episodes.
Thus, we see that cooperative behavior (from both players) prevails for all
but a relatively few stages of a long game.

This equilibrium stems from the basic observation that each player
prefers to play with another who uses TIT-FOR-TAT, will respond in
kind if the actions taken are consistent with TIT-FOR-TAT, and will
initiate TIT-FOR-TAT if there is some chance that the other player will
play TIT-FOR-TAT and there are sufficiently many stages remaining.
What is needed to bootstrap the equilibrium is 4’s assessment that B
might be addicted to TIT-FOR-TAT, in which case 4 is willing to cooper-
ate until it is not reciprocated; in turn, B wants to maintain this belief in
A’s mind by imitating addiction and thus reaping the long-term rewards
of cooperation. The first time that B fails to follow TIT-FOR-TAT, he
ruins the prospects for further cooperation, whereas as long as there is a
chance that B is addicted, so that even if he is not addicted he will imitate
addiction, 4’s optimal response is to cooperate until it is not reciprocated.

A striking aspect of this game is that a little private information is good
for both parties. Even before Bknows his type, both players prefer that this
information not be revealed once it isknown to B. For example, 4 prefers
that B has an opportunity to imitate an addiction to TIT-FOR-TAT.
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Monopoly power. Imitation can be an intrinsic ingredient of monopoly
power. This is indicated obliquely by the chain-store game described
earlier in which the weak store’s tough actions until near the end of the
game deter entrants from entering. An example in the classical mode is
derived from studies of durable-good monopoly. Consider Picasso’s
problem as rendered by Moorthy (1980). During his lifetime, the artist
Picasso can command a price for his work that depends on the total
supply that will exist when he dies; collectors who purchase from Picasso
realize that the resale value later will be high or low depending on whether
he produces few or many paintings during his lifetime. Naturally, Picasso
would like to select an optimal quantity to produce during his lifetime,
say, to maximize his lifetime income. This strategy is not credible, how-
ever, since collectors realize that, regardless of what he produced pre-
viously, each year Picasso will reconsider the problem and again attempt
to maximize his income for the remainder of his life. In doing so, Picasso
will regard his previous production as a shift in the demand function for
his paintings. Anticipating this, collectors expect him to increase his out-
put rate as he ages until he nearly exhausts the demand before he dies;
thus, even when he is young, they are willing to pay only the low price
corresponding to his large lifetime output. Thus, Picasso’s monop-
oly power evaporates, due essentially to the ramifications of sequential
rationality.

Suppose, on the other hand, that collectors are uncertain whether
Picasso’s maximum output rate is high or low, and that initially they
assign probability J > O that it is low. In this case, there is a sequential
equilibrium rather like the one for the chain-store game: For all but the
last few years of his life, Picasso’s output rate is low. If he actually has a
high output rate, then late in life he randomizes between a high and a low
production rate, until the first time he produces at a high rate collectors
realize that this is possible, and thereafter he produces at a high rate. With
this strategy, Picasso realizes a substantial portion of his monopoly power.
Without the uncertainty about his production rate, Picasso is unable to
capture these monopoly profits if his output rate is actually high. (As it
happens, after their deaths, both Pablo Picasso and Norman Rockwell
were discovered to have numerous paintings in storage that were not
previously known to collectors.)

General theorems. The chain-store game, the finitely repeated pris-
oners’ dilemma, and Picasso’s problem as analyzed here are all examples
of a general theory of finitely repeated games with incomplete informa-
tion that has been developed by Maskin and Fudenberg (1983). In a
two-player, one-stage game, say that a vector of payoffs for the players is
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attainable if there are strategies the players could use that yield these
payoffs, and for each player the payoff exceeds what the player could
guarantee (using his max-min strategy); if there are more than two
players, require further that each player’s payoff exceeds what he gets in
some Nash equilibrium. Their theorem states that for each attainable
vector of payoffs and each € > 0, there exists an integer n and a corre-
sponding repeated game of incomplete information with the following
properties. First, each player has probability 1 — € of having the prefer-
ences specified in the stage game, and a complementary probability, €, of
having preferences that lead him to play differently, as will be specified
later. Second, there exists a sequential equilibrium such that for all but the
last n stages (or fewer), the equilibrium specifies actions that result in the
specified attainable vector of payoffs. Thus, if the number of repetitions is
large, then the attainable vector is realized for most of the history of the
game, the exceptions occurring only near the end of the game. The con-
struction that makes this result possible specifies that with probability €, a
player has preferences (not further specified) that lead him to play the
following strategy: He will use the action required to obtain the attainable
vector for as long as the other player(s) do the same, after which for the
remainder of the game he will play the max-min strategy (if there are two
players) or the Nash equilibrium strategy for the stage game. This con-
struction is somewhat different than the ones employed in the previous
examples, but the gist of the result is the same. It shows that a small dose of
incomplete information, and a long repetition of a stage game, are suffi-
cient to induce equilibrium strategies that yield any attainable vector of
payofls, except near the end of the game.

adverse selection and self-selection

Imitation is not the only mode in which reputational features operate.
This section focuses on two other possibilities. One is that other uncer-
tainties in the situation are sufficient to make imitation unnecessary, and
yet, as we shall see, the effects of reputations can continue to be substan-
tial. The other is the possibility that a player’s goal in the situation is to
make sure he is identified correctly, so that the unfortunate consequences
of a false identification do not result.

Repeated auctions. Bikhchandani (1982) has pursued a preliminary
study of the following repeated auction affected by the “winner’s curse.”
Consider a sequence of auctions in which each prize is awarded to the
bidder submitting the highest bid, at the price equal to the second highest
bid. It suffices to consider just two bidders and suppose that they submit
bids for every prize, each seeking to maximize the expectation of the sum
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of the values of the prizes he wins net of the prices paid for them. The
values of the prizes are the same to the two bidders but unobservable until
the game is over; instead, each bidder has some sample information about
the value of each prize. Assume that the values of the prizes are distributed
independently and identically, and that conditional on each prize’s value,
the two samples observed by the bidders are independently and identi-
cally distributed. It is clear that with this setup, the bidders will treat the
auctions as independent, and in each one a bidder will bid an amount that
depends on his sample observation.

A key fact here is that an optimal bid must take account of the observa-
tion that in order to win, the bid must exceed the opponent’s bid, and this
in turn implies that the opponent’s sample observation was sufficiently
small. Thatis, winning an auction is an informative event, since it tells the
winner something about the samples observed by other bidders, and
thereby it adds further information about the value of the prize.

Now, suppose that bidder A4 assigns a small probability § > 0 to the
possibility that bidder B obtains a payoff from each prize he winsthatis $1
more than its value to bidder 4. Bidder B is assumed to know whether
prizes are worth $1 more to him, and of course all of this is common
knowledge. In this case, the auctions obviously are not independent, since
A may use his observations of B’s bids to infer information about his type.
Because the sampling process adds so much noise to the inferential pro-
cess, B may have little incentive to modify his bids directly either to hide
orto advertise his type. There is, however, an indirect effect that should be
emphasized. Bidder A realizes that the implications of winning are more
severe than before: If 4 wins, his bid was sufficient to beat out the B bidder
of the ordinary type, but now there is the added possibility that it was also
sufficient to beat out the B bidder who values the prize more, which
implies that B observed an even lower sample than before. Thus, bidder 4
will select a lower bid than previously. Realizing this, bidder B of the
ordinary type sees that winning implies that bidder 4’s sample may have
been higher than previously allowed; hence, the ordinary bidder B is
inclined to raise his bid. However, this rebounds to reinforce 4’s conclu-
sion, and therefore B’s conclusion. Thus, we see that the ultimate effect of
A’s incomplete information is to lower A’s bids and to raise the ordinary
B’s bids until a new equilibrium is reached. The result of this, of course, is
that bidder B of either type is more likely to win auctions, although
obviously the high-value B will win more often than the ordinary B. If
many auctions remain, the ordinary B may be in danger of detection by 4,
which may motivate him to raise his bid further to match the bids by the
high-value bidder B. This has been verified in one numerical example
studied by Bikhchandani.

As this example illustrates, reputational effects can interact with and
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reinforce other informational effects in a sequential game. Here, B’s repu-
tation that he might value prizes more accentuates the adverse-selection
problem faced by A, and this rebounds to affect B’s bids as well.

Limit pricing. The preceding examples reflect the fact that reputational
features are associated most often with “pooling equilibria,” in which a
player’s type cannot be inferred completely from his actions. There is,
however, a related feature that arises in *““screening equilibria,” in which a
player’s actions completely reveal his type. A prime example is found in
the models of limit pricing formulated by Milgrom and Roberts (1982a),
Saloner (1982), and Matthews and Mirman (1983). A monopolist firm
operates in two periods, and in the second of these periods there is the
possibility that a potential entrant will choose to enter. Assume that the
monopolist acquieces to entry; even so, the entrant’s anticipated profits
depend on its estimate of the monopolist’s costs, since these affect the
monopolist’s price or output decisions in a duopoly. Assuming that the
entrant incurs fixed costs to enter, its decision will be influenced by its
observation of what the monopolist does in the first period, since that can
be interpreted as a signal about what the monopolist’s costs are. In some
models of this sort, there is no other source of uncertainty, and so the
entrant can determine from observable market data what price or output
decisions the monopolist selected. Then, from this and a supposition
about the monopolist’s strategy, the entrant can calculate exactly what the
monopolist’s costs are, if the strategy specifies a one-to-one relationship
between costs and first-period actions. Consequently, the entrant’s deci-
sion about whether to enter is based on a correct assessment of the mo-
nopolist’s costs. In most cases, the monopolist’s best strategy necessarily
involves actions that depend on its costs; consequently, the one-to-one
relationship is inevitable, and it follows that the entrant will act with a
perfect inference about the monopolist’s true costs.

Since the sequential-equilibrium strategy does not deter entry (the
entrant enters under precisely the circumstances it would if it had perfect
information from the beginning), it appears that the monopolist’s first-
period action is fruitless in deterringentry, and therefore that the monop-
olist should adopt ordinary monopoly practices in the first period -
revealing its costs by doing so but reaping maximum profits in the
interim. What appears to be true is not, however; in fact, the firm’s actions
in the first period imply prices lower than monopoly prices. The explana-
tion for this is that the firm must price low enough (as specified by the
equilibrium) to signal its costs correctly, so that higher prices (e.g., mo-
nopoly prices) are not interpreted as a sign that its costs are high and thus
encourage excessive entry. Itis certainly clear that the equilibrium cannot
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entail ordinary monopoly pricing in the first period, since if the prospec-
tive entrant assumed such pricing in the first period, then the monopolist
would have an incentive to set its price somewhat lower so as to realize
some of the tradeoffs between first-period profit and diminishing the
chance of subsequent entry.

It is evident from this analysis that in some cases, a player must work
hard to establish an accurate reputation, signaling his type via his actions,
in order to avoid incorrect inferences by others. As in most signaling and
“rat-race’” models (Spence (1974)), the result tends to be a heavy invest-
ment in the signal. In the present example, the investment in the signal
manifests itself as limit pricing. First-period prices are beiow the monop-
oly price, but they limit or deter entry only to the extent that they prevent
inferences that the monopolist’s costs are higher than they actually are.
Indeed, in Saloner’s (1982) multistage model with noisy observations, the
amount of entry exceeds that which would occur with complete informa-
tion, because there is the chance that entrants enter early and mistakenly
due to exceptionally optimistic observations that, in fact, reflect only
noise.

Bargaining language

A standard view of bargaining asserts that one can say anything but what
counts are the actions taken. What, then, is the language of negotiation by
which accords are reached? From the game-theoretic viewpoint, bargain-
ing is a sequential game in which the actions selected by the parties
determine the outcome. The informational content of the process, that is,
the semantic content of the negotiation, comprises the inferences each
party makes about the other’s preferences and other relevant information
from the actions taken. These inferences depend, of course, on supposi-
tions the players make about each other’s equilibrium strategy. The fol-
lowing examples are presented to illustrate this interpretation. They are
all quite simple in that the language is limited to two alternatives; either to
continue the negotiation or to stop. For this reason, a participant’s strat-
egy takes the form of a stopping rule.

Litigation. Consider the model of pretrial negotiations studied by Or-
dover and Rubinstein (1983). Parties 4 and B are negotiating a pretrial
settlement of a dispute that will be settled in favor of either one or the
other. If they fail to agree within T periods, the matter will be settled at
trial. Party 4 knows privately the information that will be revealed at trial
and therefore knows the outcome of the trial, whereas party B initially
assigns probability & that it will be settled in his favor. In each of the first 7
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periods, first 4 and then B has an opportunity to concede. Therefore, a
strategy specifies (in the case of A, depending on his private information)
at each time the probability that he will concede if the other has not done
so previously. Assume that player i’s payoff if player j wins in period ¢ is
u(j)0', where u,(j) = 0,0 < 0 < 1; u,(i) > w;(j), if i #j; and u,(A4)0T >
u4(B). In particular, the latter implies that if 4 knows that the trial will
yield a judgment in his favor (i.e., 4 is strong), then he will never concede.
Let (x,) and (y,) be the strategies of A4 if weak and of B in a sequential
equilibrium, respectively. Associated with these is the posterior probabil-
ity p, at time ¢ when B moves that A is weak if he has not previously
conceded; of course, p, = J, and according to Bayes’ rule,

p(1 — X1 1)
pt(l —xt+1)+(l _pt) -1

provided the denominator of this expression is not zero (i.e., p, X, < 1).
Let o, = p,_, X, and B, = y, be the marginal probabilities that A and B,
respectively, concede in period ¢. Ordover and Rubinstein construct a
sequential equilibrium in which these marginal probabilities are deter-
mined by the condition that in each period each player is indifferent to
whether he concedes or does not; that is, ¢, and S, are determined inde-
pendently of ¢ by the conditions that

uy(B) = Buy(A) + (1 — )uy(B)0
up(A) = o, up(B)6 + (1 — o Jup(A)0.

Thus, in each period a player’s value of continuation is the same as the
value of concession. These conditions determine the equilibrium except
in the case when d is initially so small that A does not concede and B does
concede in the first period.

A summary description of this equilibrium is that each player picks a
random stopping time at which he will concede. As periods pass without a
concession being made, the uniformed player B updates his probability
assessment that he will win in a trial, and indeed his prospects will appear
less favorable as time passes. Alternatively, one can say that 4’s reputation
that he is likely to win in trial grows the longer he refuses to concede. In
each period, he faces the choice between conceding immediately and
holding out to build his reputation further. Improving his reputation
enhances his prospects that B will concede first. B’s inferential process, or
equally A’s continued insistence on going to trial, constitutes the infor-
mational content of the negotiations.

D1 =

Attrition. The archetype for many of the studies of bargaining is the
classical war of attrition. The original context was the study of evolution-
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ary biologists of competition between animals of the same species for prey
or a mate, but of course such contests have an analog in economic com-
petition. In the simplest case, suppose that two players are battling for a
prize of value 1. Each player i incurs a cost ¢; per unit time for continuing
the fight. These costs are privately known, but it is common knowledge
that they are independently and identically distributed according to the
distribution function F having the positive density f on an interval of
positive costs. A strategy in this case is a function 7'(c) that specifies that if
the player’s cost is ¢, then he will continue to fight for at most a duration
T(c). A symmetric equilibrium in which T'is a smooth declining function
can be characterized simply in terms of the inverse function C(¢) that
identifies the cost of a player who quits when a duration ¢ has passed. Note
that F(C(2)) is the probability that a player will last for a duration exceed-
ing ¢, and that conditional on this event, the probability density that he
will expire in the next small interval dr is [1 — F(C(¢)))'/F(C(¢)) dt. This,
then, is the probability that the other player will win the prize of value 1 by
incurring the cost ¢ dt, and so he will want to stop when the marginal cost
equals the expected marginal benefit:

_ = FlC@)r
F(C@)

that is, at the time ¢ = T(c). Making this substitution yields the following
differential equation characterizing the symmetric-equilibrium strategy:

A ()

T'(c) )

together with the boundary condition that 7(c*) =0 if F(c*)= 1. For
example, if each player’s cost is uniformly distributed between zeroand 1,
then T(c) = 1/c — 1. The gist of the matter is that after a duration ¢ in
which a player has continued fighting, the other player assesses a distribu-
tion function F(c)/F(C(t)) for his cost ¢. This process of continuously
truncating the cost distribution conveniently summarizes the evolution
of the player’s reputation that he possibly has the lower cost of continuing
to fight.

In a similar vein, economic competition among firms is often implic-
itly a negotiation over prices or market shares in which the language is the
sequence of competitive actions that are taken by the participants. Typi-
cally, these actions are costly in the short run but they sustain the credibil-
ity of the players’ claims for more market share.

Consider the game between a monopolist and an entrant studied by
Kreps and Wilson (198254). This is the same as the chain-store game
described earlier, except that there is a single entrant against whom the
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monopolist plays repeatedly. As was the case before, the entrant initially
assesses probability é > 0 that the monopolist is strong, in addition, it is
assumed that the monopolist initially assesses probability y > O that the
entrant’s stage-game payoffif he enters (chooses irn) is positive whether the
monopolist plays soft or tough, that is, y is the initial probability that the
entrant is strong.

A sequential equilibrium for this game has the following features. Of
course, the strong monopolist always plays tough and the strong entrant
always plays in. If the monopolist ever plays soff, the entrant concludes
that the monopolist is weak, and thereafter the entrant (of either type)
plays in; similarly, if the entrant ever plays out, the monopolist concludes
that the entrant is weak, and thereafter the monopolist plays toughuntil (if
he is weak) the last few periods - as described previously. The weak mo-
nopolist and the weak entrant each pick (random) stopping times that
specify how long they will play tough and in, respectively, if the other has
not stopped previously. When the time remaining s ¢, the prior history of
the game is summarized by the triplet (p,,q,;t), where p, is the entrant’s
assessed probability that the monopolist is strong and g, is the monopo-
list’s assessed probability that the entrant is strong; initially, of course, this
triplet is (J,y;n). As time progresses with the players continuing to play
tough and in, p, and g, increase (following the evolution prescribed by
Bayes’ rule and the hypothesized equilibrium strategies), and either p,or g,
reaches 1 only if the corresponding player is actually strong. At each stage,
the conditional probabilities that the weak players will continue to imi-
tate strong players are functions solely of this state variable.

As in the previous example, the nature of this negotiation is that the
weak monopolist accedes to the entrant and allows a continuing duopoly,
rather than force him out of the market, only if the entrant persists for a
longer time than the monopolist persists with his aggressive response to
entry - thereby establishing the entrant’s credibility that he is likely to be
strong. Similarly, the weak entrant is increasingly likely to back out as the
monopolist’s reputation that he is likely to be strong increases with a
continuing history of rough play. Price wars, labor-management con-
tract negotiations (or strikes), and other games of attrition among
competing economic actors often seem to follow this scenario. For pur-
poses of the present discussion, the key feature is that the informational
content of the negotiation is contained in the sequence of actions
taken, which provides the language from which inferences are made
by the participants.

A similar model with a more detailed economic structure has been
studied by Fudenberg and Tirole (19835b), who consider the war of attri-
tion between two firms in a market that is a natural monopoly. Each
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firm’s fixed cost of maintaining a presence in the market is known pri-
vately. As in the previous model, each firm picks a stopping time (de-
pending on its fixed cost) after which it will exit if the other has not left
previously. The model involves continuous time and is sufficiently gen-
eral to encompass technologies and market conditions that vary with
time, such as a growing or declining industry.

All of the models addressed here allow only two actions for each player
(essentially either “in” or “out’), and this accounts for the fact that the
strategies take the form of stopping times. Generally, the passage of time
produces a truncation of each player’s probability assessment about the
other’s possible types. Models with richer languages of communication
remain to be studied in detail.

General theory. Hart (1982) has developed a complete theory of the
communication that transpires in the course of equilibrium play in infi-
nitely repeated games (without any discounting of future payoffs) with
incomplete information. His results are described here only briefly. In the
absence of discounting, a player’s long-run average payoff does not de-
pend on any finite history; consequently, during an initial finite phase of
the game, the players can use their actions solely for the purpose of
communication and bargaining over the strategies that they will use there-
after for the remaining (infinite) portion of the game. These strategies
must, of course, amount to a contract that is self-enforcing due to the
threat of reprisal from the injured party if the other fails to sustain his role
agreed to in the initial phase. Moreover, the terms of the contract depend
on the information revealed in the initial phase. Anticipating this, the
players, during the initial phase, reveal information gradually through
their choices of actions, which constitute an alphabet for communication.
Hart shows that the equilibrium strategies in the initial phase are charac-
terized by an implicit set of rules about the informational content of
actions(i.e., the relationship between the player’s private information and
the action he will choose) and the subsequent revision of probability
assessments (using Bayes’ rule) to take account of this information.

In summary, an equilibrium consists of a family of possible communi-
cation sequences, each terminating in a self-enforcing agreement that is
sustained for the remainder of the game. Each communication sequence
corresponds to a particular configuration of the players’ private informa-
tion, which is partially revealed over time as the sequence evolves. Along
the sequence, each player’s actions are optimal responses to the other’s
strategy and the information so far revealed by the history of previous
communication.

Of course, in finite-horizon games, or in games with discounting, this
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convenient separation between the communication phase and the subse-
quent agreement phase is not likely to occur. Nevertheless, the character-
ization reveals the essential role of the communication process in the early
stages of a long game with incomplete information.

Expectations. Roth and Schoumaker (1983) have devised an experi-
ment that illustrates the role of reputational effects in bargaining. The
intention is to show that if both parties have experienced, and have repu-
tations for, only one way to divide a prize, and therefore presumably
expect to divide it in this way, then in fact that will be the experimental
result. A subject is engaged in a series of negotiations with different oppo-
nents. In each negotiation, the subject and his opponent either agree on
the division of a prize or forfeit it; each first states a proposed division, and
then in a second stage each can either repeat his proposal or accept the
other’s. Unknown to the subject, the first part of the seriesis a ““training”
phase in which the subject is allowed to claim a fixed fraction of each prize
from opponents acting under the experimentors’ instructions. Following
the training phase, the subject encounters as opponents other subjects,
who have been “trained” to accept the complementary fraction of each
prize. Moreover, each subject is provided a history of the opponent’s
choices in recent bargaining sessions. The striking result is that most
subjects continue to bargain for and accept the divisions for which they
were trained.!?

This result accords well with a prediction based on reputational effects:
The histories of prior actions and observations affect expectations and
thereby influence current actions.

One can, of course, imagine a similar scenario in more complex negoti-
ations. The subject is initially uncertain whether opponents view his
arguments for a division of the prize in his favor as more or less pursuasive
(deserving, meritorious, convincing, threatening etc.); that is, he is uncer-
tain about the effectiveness of his skills as a negotiator or about the appeal
of his claims. After a history of bargains concluded in his favor, he assesses
a high probability that he is extraordinarily effective, and the reverse if he
consistently fails to get more than a small share. In subsequent negotia-
tions, if he encounters an opponent with a reputation that confirms his
own, then he bargains for and accepts the share he expects.

Credibility

Direct information transmission (e.g., via natural language) from one
individual to another is especially susceptible to the hazard of deception if
their motivations differ. What, then, determines the reliability that the
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receiver assigns to the message from the sender? Since ultimately the role
of information is encompassed entirely by its effect on decisions, thisissue
must be studied in the context of the game between the sender and the
receiver. First, an important result for the static case is considered.

The sender-receiver game. Consider the game studied by Crawford
and Sobel (1982) in which the sender first receives superior information (a
real-valued signal s € [0,1] having a positive density) and then sends a
message (5) to the receiver, who in turn takes an action (a real number x)
that affects the payoffs to both players. Assume that each player’s pre-
ferred choice of x is a continuous increasing function of s, but that their
preferred choices differ. In all of the sequential equilibria of this game, the
receiver takes only a finite number of different actions. One interpretation
of these equilibria is that the sender selects among a finite set of messages,
which have the effect of informing the receiver as to which element of a
finite partition of the domain [0, 1] of signals contains the signal observed
by the sender. Alternatively, the equilibria can allow randomization, in
which case the sender can be construed as randomizing as to which
message in the same element of the partition as the signal he will send.
Interestingly, these equilibria are ordered by the Pareto-criterion: The
finest partition admitting an equilibrium is the one that is best for both
players. It is clear that this finest partition cannot induce a continuum of
responses by the receiver, since if that were true, the sender could induce
his preferred action, whereas it isassumed that their preferences differ. We
see from this analysis that the reliability of an information channel is
endogenously determined by the sequential equilibrium of the game be-
tween the sender and the receiver if their preferences differ. This conclu-
sion has obvious implications for bargaining processes in which informa-
tion is transmitted verbally.

The George Smiley game. A dynamic version of the sender-receiver
game has been studied by Sobel (1982). A spymaster (George) and his spy
repeatedly play a stage game in which the spy observes a signal and then
transmits a message to George, who in turn takes one of two actions. After
making his decision, George observes the signal originally observed by his
spy. The players’ stage-game payoffs depend on the signal, the action, and
another variable (the “importance” of the decision) that scales the payoffs
(not necessarily proportionately) and is observed by both players. Each
player seeks to maximize the expectation of the sum of his stage-game
payoffs over n repetitions in which the signal and the scaling variable are
independently and identically distributed. Assume that George initially
assigns a probability 1 — & that the spy shares his preferences, that is, that
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they are a team; and a probability d > 0 that the spy’s preferences are
diametrically opposed (as in a zero-sum game), that is, that the spy is a
double agent. A sequential equilibrium of this game has the feature thatif
George ever discovers that the spy has lied to him, then he concludes that
their interests are opposed and thereafter adopts his minimax strategy in
the zero-sum game - in effect, ignoring any further messages from the
double agent. Until that happens, the spy of either type sends truthful
messages, and so (according to Bayes’ rule) George continues to assess
probability at most J that the spy is a double agent, and this affects
George’s selection of his action. If the spy is a double agent, then the spy
waits until the importance of the decision is large enough (declining as the
number of stages remaining declines, and depending on the signal) to
execute his double cross, deceiving George by sending a false message that
leads him to take the wrong action. Because the equilibrium may in some
circumstances entail the double agent randomizing between double
crossing or not, his reputation that he might be loyal may in fact increase
as episodes pass in which there was some chance that a double agent
would have lied. This example illustrates in stark form the importance to
the double agent of maintaining his reputation that he is likely to be loyal,
so that he can wait for an opportune time to deceive George.

Auditing. In Wilson (1983), I have discussed informally the application
of these ideas to the study of the auditing industry. A public accounting
firm charges fees that reflect its reputation for accuracy (as well as fairness,
independence, etc.) in verifying client firms’ financial statements distrib-
uted to potential investors. The firm whose statements are verified is the
auditor’s client, but the auditor’s reputation resides with investors. In
effect, the firm “rents” the reputation of the auditor to lend credibility to
the statements of assets, liabilities, and earnings. Credibility might be
lacking in the judgments of potential investors if the firm were to offer
unverified statements (due to the ‘““moral hazard” that present investors
might stand to gain from deceptive statements). Because an auditor can
rent its reputation frequently, there are economies of specialization real-
ized by an auditor that can not be obtained by a firm that is new or that
issues financial instruments infrequently. The auditor’s strategic problem
can be viewed as the choice of a balance between acceding to the interests
of the client (either to acquire the account or to keep it) and the long-term
maintenance of its reputation among investors. The auditor that caters to
clients to acquire business in the short term is likely to find that, as
investors subsequently discover favoritism in the statements it has certi-
fied, the rental value of its reputation will decline among future clients.
We see here that a reputation for veracity in the reporting of information
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has an asset value (the capitalized value of the auditor’s goodwill) that
reflects past actions and that influences the selection of subsequent strat-
egy. The strategy can build or maintain the reputation, or the reputation
can be “milked” for short-term gains. This scenario does not seem to
depend greatly on what the auditor’s reputation is about. One possibility
is that the investors assess the likelihood that the auditor has enough
clients, sufficient financial resources of its own, and sufficient foresight
and patience to be uninterested in catering to clients; another is that they
assess the probability that the auditor is addicted to scrupulously ethical
conduct. In any case, one can conjecture that in a well-formulated se-
quential equilibrium, even an unscrupulous auditor will find it in his best
interest to imitate ethical behavior.

The auditing context has a nearly exact parallel in the case of legal firms
that prepare legal opinions. Somewhat different is the physician — patient
relationship studied by Dranove (1983). The purpose of the analysis is to
elucidate the factors that temper the physician’s opportunities to “in-
duce” demand. That is, the physician’s superior information about the
significance of symptoms observed by the patient enables the physician to
recommend more or fewer procedures (e.g., surgery), which the physician
then supplies. The argument is that the physician’s ability to recommend
excessive procedures is limited by the fact that the patient’s choice of
physician and willingness to follow a prescription for treatment depend
on the physician’s reputation ~ the history of his other recommendations
and their ultimate consequences as observed by the community generally.
Consequently, the physician’s optimal strategy if his motives were to
maximize revenues would balance the short-term gains from induced
demand and the long-term effects on his reputation. This scenario fits a
small community better than a metropolis, but it has implications for the
latter as well when one considers the medical profession’s standards for
treatment and the maintenance of norms of conduct.

Beliefs and expectations

Reputations in the customary sense reflect the evolution of players’ prob-
ability assessments as a game progresses. Even at the beginning of a game,
however, players’ expectations are important determinants of the initial
choices. In some cases, these initial assessments are subject to the same
kinds of considerations examined earlier, to the extent that it is plausible
to interpret any game as a subgame of some larger game. In such cases,
expectations play a key role in the selection among equilibria of the
subgame, and in the attainment of coordination between the players.
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Presumptive reputations. Some one-shot situations are affected by repu-
tations the parties bring to the encounter. For example, an economist
might favor the simplistic definition of predatory practices (by a monopo-
list against an entrant) that accepts as sufficient evidence that the monop-
olist could have adopted other practices that would be more profitable in
the long run ifthe entrant stays in the market. Thus, in a trial the prosecu-
tion must offer evidence that it could have done a better job than the
firm’s management. If jurors presume that management is more likely
than are outside lawyers to know what actions are optimal in the long run,
then convictions may be difficult to obtain. In this case, the professional
histories of the disputants support the presumption that one is better
informed or has better managerial skills than the other.

A somewhat different presumption is applicable in other instances
noted by Kreps and Wilson (1982a) and studied by Kohlberg and Mertens
(1982). In these cases, there is a presumption about the connection be-
tween a player’s past and future equilibrium actions. Abstracting away
from other features, suppose that 4 and B are playing a (sub)game that has
multiple equilibria, only one of which gives a positive payoff to 4. If B
knows that 4 entered this game voluntarily, forsaking a zero payoff
elsewhere, shouldn’t B presume that 4 will play the strategy that is part of
the equilibrium in which he can expect a positive payoff ? A presumption
of this kind is tied closely to reputational features since it identifies the
probability assessments that each player must make to sustain the distin-
guished equilibrium. A typical example is the following.

Firm B reads in a trade journal that firm A4 has formed a subsid-
iary, obviously preparing to enter the market for a certain low-
volume technical product. Firm B, which is already in the mar-
ket, awaits A’s entry but is unsure whether A4’s intent is to
move quickly or slowly to bring out an advanced design that
has recently become technologically feasible. B knows that
whichever firm is first to market the new design will profit and the
other will lose, and that they will both fail to recover their in-
vestments if they split the market at the same time. B wonders
whether to initiate an accelerated research program.

In an example such as this, one presumes that 4’s reputation, namely
B’s probability assessment as to the chances that 4 has already initiated an
accelerated program, is that indeed such a program is already underway
(and B should plan to bow out, having missed its chance to be first).
Otherwise, 4 would never have wanted to enter the market. Similarly, one
presumes that B’s reputation is that it is not considering an accelerated
program and that it will exit the market when A4 enters it.
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We see here that reputations about actions undertaken privately with-
out the opportunity for observation by other players may be formed
presumptively on the basis of intertemporal consistency with prior ac-
tions that were observable. A firm’s reputation for the quality of the
product offered currently (observable by a buyer after some delay or
experience using the product) may be assessed presumptively by cus-
tomers on the grounds that it is consistent with the quality the firm has
provided previously. That is, for example, the firm would not previously
have incurred the cost of providing high quality if it did not intend to
recoup those costs in the future, enjoying high prices for as long as it
continues to provide high-quality products. A model that incorporates
these features will be examined later in the Chapter, when market models
of product quality are considered.

Expectations and coordination. An alternative view of Roth and Schou-
maker’s experimental results, and of bargaining in general, is that the
game ordinarily has multiple equilibria and therefore the players face an
initial task of focusing on one equilibrium. Experience with one equilib-
rium could be the basis for a player’s expectation that it will be repeated in
subsequent encounters.

A formal development of this view is given by Rosenthal and Landau
(1979).! These investigators consider the steady state associated with the
infinitely repeated version of a stage game played among randomly
matched players from a large population. The stage game allows each pair
of players to divide a prize if at least one “yields” to the other (if only one
yields, he gets less than the other), and otherwise they get nothing. The key
feature is that each player is identified to his opponent by his reputation,
which in this case is a finite-valued integer label that reflects his past
actions. In one variant, the label is (approximately) the player’s percentile
ranking in the population with respect to how frequently he has refused to
yield to opponents. Different equilibrium steady states are associated with
different specifications of the reputations, and with how these are used by
the players to coordinate their play of a particular stage-game equilib-
rium. One such coordinating custom is: A player is expected to yield to
another player with a higher reputation, and not to one with a lower
reputation (C1). Another is: A player is expected to yield to another player
with a lower reputation, and not to one with a higher reputation (C2). For
both of these customs, players with equal reputations adopt randomized
strategies, and therefore there is a chance of no agreement, as there is in
the corresponding symmetric randomized equilibrium of the stage game
corresponding to: Ignore the reputations (C3). In the example studied,
these customs all sustain equilibrium steady states. Moreover, the coordi-
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nation is successful to the extent that the frequency of impassesisless with
C1 and C2 than with C3; somewhat surprising is the fact that C2 has fewer
impasses than C1.

These results illustrate the general principle that reputations, or any
labels or identifiers from the past, can be used to coordinate selections of
equilibria, and in particular to favor those that are more efficient. There is
also the possibility that reputations will allow behavior to be sustained in
equilibrium steady states that cannot otherwise be expected.

This view is developed in more general terms by Rosenthal (1979). As
before, members of a large population of players are randomly matched
on each of many occasions to play a stage game. Each player knows his
own reputation and observes the reputation of his current opponent. In
this case, the player’s reputation is a history (of fixed finite length) of his
recent moves. An equilibrium steady state is specified by the probability
distribution of reputations that will exist, and by the probability distribu-
tion of the actions taken by each reputational class (possibly depending on
private information of the individuals); and to be in equilibrium, these
specifications must be confirmed by the players’ optimal responses to
these hypotheses. Refer to Chapter 4 in this volume for more information
on this approach.

3.3 Market models

We turn now to an examination of the role of reputations in markets.
Necessarily, the opportunity for such a role depends on the market being
imperfectly competitive or lacking complete contingent contracts, and it
arises most clearly when these features stem from informational asym-
metries. Of the many possible applications, the focus here is on product
and factor markets with unobserved quality attributes and on implicit
contracts that are sustained by reputational effects. Unfortunately, most
of the work on these topics does not make explicit the source of the
reputational effects; rather, it simply presumes that they are present.

Product quality

A firm’s reputation for the quality of its product is an important determi-
nant of demand whenever quality is unobservable at the time of purchase
(although observable later) and contingent contracts (warranties, service
contracts, etc.) are not offered, presumably because of the moral hazard
that defects and careless usage cannot be distinguished. The central issue
in the theory of this topic is to account for the higher quality that higher-
priced products provide; the resolution is found in the seller’s incentive to
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maintain or build its reputation. In particular, a seller earns a rent on its
reputation, which repays the cost of building and maintaining it.

A simple model. The following is the model developed by Shapiro
(1985). Consider a market with free entry and exit by firms that at each
time can offer one unit of the product with any quality ¢ = 0 at a cost c(q)
that is an increasing and strictly convex function of the actual quality g,
which is observed by consumers after a lag of one period. Assume the
existence of a price schedule p(§) anticipated by consumers. It suffices to
suppose here that at time z, consumers anticipate g, = g,_, if the firm sold
in the previous period. Any market equilibrium in which firms maintain
quality must have the property that

T (@) = ct@) = (@) = cO)

where p < 1 is the factor by which firms discount future profits, since
otherwise the present value of the profits from maintaining quality would
be less than the immediate profit from offering the least quality, zero, at
the price p(q) and then exiting the market. This must be an equality at
g = 0, and therefore p(0) = ¢(0), since firms insist on p(0) = ¢(0), and if
this inequality were strict, then an entrant could make a positive profit by
offering quality 0. On the other hand, if an entrant initially obtains a price
Do, then the equilibrium condition that no entry be profitable yields the
condition that

7= @+ T (pl9) — cla) =0,

since otherwise it would be profitable to enter and supply quality g there-
after. The equilibrium must entail p, = ¢(0), since if p, > ¢(0), then an
entrant could profitably enter for one period, and the reverse inequality
implies that a firm offering quality O takes an initial loss that cannot be
recovered. Combining these results yields p(q) = c(q) + r(c(q) — c(0)),
where r = (1/p) — 1 is the interest rate. To show that this equilibrium
price schedule sustains quality maintenance by firms, observe that a
firm’s problem of choosing its sequence of qualities g, to maximize its
discounted profit,

max g PUP(G) — c@)),

subject to the constraint §, = g,_,, has the necessary condition p’(q,) =
(1 + r)c’(g,). Because this condition is satisfied identically for the equilib-
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rium price schedule, the firm’s optimal strategy is to maintain the reputa-
tion g, it starts with. The value of the maximand is computed to be
(c(d,) — ¢(0))/p, which is precisely the capitalized value of the extra cost
the firm incurred to establish the reputation §,. Similarly, the price sched-
ule allows the firm a premium of r(c(g, ) — ¢(0)) over the actual cost c(d,),
which is the return on this capitalized value of the reputation at the
interest rate r. We see from this example that a firm can build and main-
tain a reputation for product quality, and charge prices sufficient to earn
the required return on its investment in its reputation that it incurred
when initially it offered high quality at the entrant’s price p, = ¢(0) corre-
sponding to the lowest quality. A dynamic version of Shapiro’s model is
studied by Salant (1983). A model in which consumers have imperfect
information initially and make imperfect observations about product
quality is developed by Rogerson (19825); in this case, reputation effects
derive from probability assessments.

Labor effort

Labor inputs to production are especially subject to reputational effects.
An employer may be unable to observe the quantity or quality of work
provided, or to monitor an individual’s output exactly. In such instances,
long-term employment relationships enable better monitoring and per-
mit intertemporal incentives that sustain more efficient production. The
incentives can take the form of remuneration that depends in each period
on the history of observations the employer has made; thus, the worker in
each period takes account of the effect of his actions on his current wage
and its effect on his subsequent wages. This is the kind of system that will
be considered shortly. A somewhat different form is one in which a wage is
paid until evidence accumulates that the required work has not been
performed; see Radner (1981) for a study of this.

Managers’ careers. Holmstrom (1982) studies a model in which a man-
ager’s measurable effect on output in each period is the sum of three
effects: a fixed component, a component chosen by the manager, and a
random noise term. Interpreting the fixed component as talent, ability, or
skill pertinent to the managerial task in the firm, and the second as a
measure of the intensity of effort or work, assume that the manager incurs
disutility from effort (and, of course, utility from consumption out of
wages). The fixed component is assumed to move over time as a random
walk. At all times, the manager knows his effort contribution to output,
whereas the owner of the firm cannot distinguish between effort and
talent from his (noisy) observations of output. Assume that the manager
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does not know his talent except as he infers it from his observations of
output and the effort he supplies. In a competitive market, neutral to risk,
the manager’s wage is equal to his expected contribution to output. In this
case, it is the sum of his expected contributions from ability and effort,
where ability is the mean of the owner’s current probability assessment for
the fixed component conditional on past observations of output (i.e., the
manager’s reputation), and effort is the manager’s optimal effort given his
reputation. A market equilibrium requires fulfilled expectations; the wage
is based on a supposed effort contribution that is, in fact, the optimal one
for the manager to provide, taking account of both the immediate disutil-
ity and the subsequent effect on his reputation. The situation is again
rather like a “rat race,” in that the manager must provide sufficient effort
to prevent the owner from inferring that his ability contribution is low.
For a class of models, Holmstrom shows that a stationary equilibrium
induces a supply of effort that is close to the efficient one to the degree that
the manager’s interest rate is near zero, and the variance of ability’s
random walk is large relative to the variance of the noise term.

This model illustrates a general feature about the role of reputations in
providing incentives in labor markets. To the extent that quality, quan-
tity, and output are substitutes and unobservable, long-term contracts
with remuneration contingent on the history of measured performance
provide incentives for workers to invest effort (quantity) in building a
reputation for quality that will sustain wages and productivity near opti-
mal levels.

An empirical study by Wolfson (1983) measures the returns to reputa-
tion earned by general partners of oil-drilling ventures. Provisions in the
tax code create an incentive for general partners to complete fewer wells
than the limited partners prefer. In addition, the skill of a general partner
is an important factor of production that is not directly observed and is
inferred only imperfectly from the record of past performance. New part-
nerships are formed repeatedly, and with each new venture, investors
judge the skill of the general partner from the disclosures in the prospec-
tus, including the general partner’s record in previous ventures. (Prospec-
tuses discuss incentive problems with candor and often include explicit
promises that the general partner will not take certain actions that benefit
the general partner at the expense of the limited partners who invest in the
venture.) To build and maintain a reputation as a skillful operator, the
general partner can complete more wells than he would choose based on
his private information and personal incentives were he not dependent on
obtaining funds from investors in subsequent ventures. This strategy
improves performance from the perspective of the investors, but at a
considerable private expense to the general partner. The general partner’s



56 Robert Wilson

motivation to follow this strategy is the prospect that his current “invest-
ment” can be recovered in subsequent partnerships through better profit-
sharing arrangements that he can command if he has a reputation as a
skillful operator. Wolfson finds statistically significant evidence that a
general partner’s reputation is effectively priced in the market. He also
finds statistically significant evidence, however, that residual incentive
problems remain and that these also are priced by the market for limited
partners’ shares.

Repeated contracting. Rogerson (1982a) studies a model of repeated
contracting with a supplier who has superior information about the
buyer’s benefits from each project and recommends its purchase to the
buyer. The buyer and supplier face a known sequence of projects, each of
which may either succeed or fail, and the supplier has superior informa-
tion about the chances of failure. The strategies studied have the form that
the buyer contracts for those projects recommended by the supplier,
paying a cost plus fixed fee, so long as the number of failures experienced
previously is less than a fixed bound. The key result is that the supplier
reveals truthfully his private information about the chances for success
only if he has no more than a certain critical number of failures left in his
quota. If the supplier is initially given a larger quota than this critical
number, then he will distort his recommendations in order to be hired
more often, until he exhausts his excess opportunities for failure and then
returns to truthful reports. Thus, the relationship must surely end even if
the supplier is being truthful; the buyer can induce truthful revelation
only by limiting the supplier’s number of chances for projects to fail.

This model does not invoke reputational effects of the sort discussed
previously, since the supplier has no private information that persists
from one project to another. Nevertheless, the supplier’s reputation in
another sense - his history of failed projects that were recommended -
plays the key role. The supplier entertains the hypothesis that the sup-
plier’s recommendation is truthful only if the residual quota does not
exceed the critical number that ensures a sufficient incentive to recom-
mend accurately.

Implicit contracts

A legal enforceable contract between two parties modifies the sequential
game they play by altering the payoffs. That is, noncompliance (i.e.,
failure to take the actions prescribed by the contract) results in penalties
sufficiently severe to make compliance the best strategy. It is also useful,
however, to interpret a contract as altering the requirements for sequen-
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tial rationality in the choice of actions. In other words, if a contract is in
force, then in each circumstance in which the contract specifies a pre-
scribed action for one party, that party chooses that action if for either
party it is part of an optimal strategy for the remainder of the game. In
particular, one party takes the prescribed action if the other party finds it
in his interest to enforce the terms of the contract.

In the case of an implicit contract, penalties based on restitution or
damages are not explicitly available. Nevertheless, if noncompliance
would result in responses that are sufficient to deter offenders, then the
contract is effectively enforceable. The theory of this subject typically
omits an explicit description of the responses that deter noncompliance.
Nevertheless, in some cases it is fairly clear that the operative effect is that
the offender loses the reputation that is necessary in the future to reap
gains from such agreements. Market models with this feature characteris-
tically require that there be multiple equilibria in order that noncom-
pliance can be punished compared to compliance.

Firing shirkers. A typical example of this genre is the model of a labor
market studied by Shapiro and Stiglitz (1981). There are many identical
workers, each of whom has an exogenously specified quit rate. There is
also an exogenous rate at which new jobs open up, so at all times there isa
pool of unemployed workers. Employed workers can work or shirk, and
shirking is detected by employers with a specified probability. The em-
ployment contract calls for firing a worker caught shirking. If a fired
worker’s expected time in the pool of unemployed is long enough and the
unemployment benefits, if any, are sufficiently less than the wage, then
this contract deters shirking.

Such a contract is presumably implicit. Moreover, its enforcement is
problematic, since neither the worker nor the employer has an immediate
incentive to carry it out; knowing that the workers are identical, the
employer gains nothing by replacing the worker. To understand this
equilibrium, it is helpful to consider an equilibrium in which there are two
kinds of firms: those that workers expect to enforce the no-shirking provi-
sion and those that offer a lower wage in anticipation of shirking. Such an
equilibrium is sustained by its disequilibrium features. A firm that fails to
enforce the no-shirking rule loses its credibility, perhaps only temporarily;
to first establish or subsequently regain credibility, the firm must pay high
wages to workers who expect to be allowed to shirk. This cost of establish-
ing a reputation for enforcement is an investment (as in Shapiro’s (1985)
product-quality model, examined in Section 3.3) that ultimately the firms
recover through the wage. Once a reputation is established, the firm’s
incentive is to maintain it. Apparently, any proportion of the firms might
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have reputations in an equilibrium; the one in the previous paragraph is
simply the extreme case where the proportion is 100 percent.

Credit markets. A complex example of implicit contractsis the model of
credit markets studied by Stiglitzand Weiss (1983). These authors assume
overlapping generations of identical borrowers, each of whom lives two
periods. Borrowers seek money from banks to invest in risky projects,
although the banks cannot observe the riskiness of the projects selected.
The key feature is aloan contract that specifies that borrowers who default
in the first half of life are denied loans in the second half, whereas those
who repay are given loans at less than the market rate of interest. Thus, a
project that succeeds enables a borrower to obtain a prize in the form of a
profitable loan to finance another project in the second half of life. The
prize for repayment is sufficient to deter young borrowers from investing
in excessively risky projects (which otherwise they would do since the
bank bears the risk of default). Of course, this two-period loan contract is
not the only one possible, and another equilibrium exists in which all loan
contracts are for one period only. In this second equilibrium, credit is not
rationed, and borrowers, except lucky old ones, undertake projects that
are more risky than before. Because this risk is borne by the lenders, who
compete for the funds of savers, the end result is that the second equilib-
rium transfers income from savers to borrowers.

The features of the second equilibrium explain why banks enforce the
terms of the two-period contract in the first equilibrium. The banks have
no immediate incentive to deny credit to the unlucky old and award
prizes to the lucky (although the lucky ones have an incentive to claim
their prizes). However, if they were to fail to maintain a reputation for
carrying through the original understanding, then the contractual rela-
tionship with borrowers would degenerate to that associated with the
equilibrium of one-period contracts. A bank cannot afford to do this,
since it competes for loanable funds, and it can offer the highest rate to
savers only if it uses the two-period contract form.

One could, of course, imagine an alternative setup in which banks
compete mainly for loans rather than deposits; in this case, it would be
more plausible that the equilibrium involves only one-period contracts.

This result is not unique to market models. Whenever the stage game
for a repeated game has multiple equilibria, a player may aim to develop a
reputation for playing the equilibrium he prefers.

3.4 Conclusion

The purpose of this survey has been to illustrate the many ways that
reputational considerations arise in games and markets with dynamic
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features and informational differences among the participants. More-
over, several examples have been offered in which reputational features
account for behavior that is precluded in static- or complete-information
versions of the same model.

The key idea has been that differences in the information available to
participants make their strategies acutely sensitive to their beliefs and
expectations. This in turn affects the behavior not only of the uninformed
person, but also of the informed one, who realizes that his current actions
affect others’ later beliefs, their expectations about his subsequent behav-
ior, and ultimately their choice of actions. Knowing that this chain of
events will occur, the informed person has an incentive to trade off the
immediate consequences of his current decision against the long-term
effects on his reputation.

The examples provided emphasized mainly the role of one’s private
information about preferences, feasible actions, or environmental condi-
tions; however, in some cases the private information is simply that one
knows one’s recent action and others do not. Reputational features were
said to appear most clearly in models admitting pooling equilibria (so that
imitation is possible), but that screening equilibria (in which self-selection
is the dominant motive) include such features implicitly. In negotiations,
the informational content of the actions taken comprises the inferences
drawn from these actions about the motives of the parties; thus, in a sense
negotiations are the evolution of the parties’ reputations. In the case of
direct information transmission, the imputed reliability of the informa-
tion channel from one person to another is determined endogenously
within the sequential game they play, and depends on the degree to which,
or the likelihood that, their preferences are aligned. Cooperative behavior
in the finitely repeated prisoners’ dilemma game depends in a fragile way
on the small chance that one player is committed to cooperation, in which
case he will imitate this behavior even if he is not committed, and the
other player will reciprocate. The same kind of reasoning, however, im-
plies aggressively competitive behavior in the chain-store game and its
many variants, including the hiding of productive capacity as in the
Picasso scenario. All told, there are myriad sorts of behavior that reputa-
tional considerations can make into optimal behavior as part of a sequen-
tial equilibrium.

The discussion of the market models emphasized that reputations are
assets that, like any other asset, are subject to economic analysis, and that
in some cases (e.g. auditing, product quality) they account for the promi-
nent features observed in practice. In the case of implicit contracts, repu-
tational considerations are likely the glue that sustains the incentives for
compliance.

The final words of this chapter are ones of encouragement and caution.
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Reputations can explain many behaviors - perhaps too many. It is too
easy to suppose that there is an unobserved state variable called reputation
that explains all that happens. The better approach is to develop a well-
specified model in which the effects of reputations are delineated, and that
circumscribes the observations that an outside observer might make.

NOTES

1. References are provided for the formulations and analyses of models that are
described here only briefly.

2. It is sufficient to assume that each player’s information, whether private or
not, includes his preferences. The game is assumed to have perfect recall; that
is, no player ever forgets what he knew or did previously. Randomized actions
are interpreted as depending on the private observation of an independent
random variable.

. The discussion will subsequently clarify what this conditioning entails.

. Actually, the perfect equilibria are generically the same as the sequential
equilibria; compare Kreps and Wilson (1982a).

5. Inthe general case, one specifies that (o,7) is a sequential equilibrium if it isin
the closure of the set of pairs (¢/,#[¢’]) for which ¢ is positive, and using 7 the
dynamic programming problems for the players are solved by o.

6. This description applies along the equilibrium path, that is, as long as the
seller adheres to the equilibrium sequence of offers. If the seller deviates, the
buyer’s acceptance price may depend on the history of the seller’s offers.

. See Chapters 5 and 8 in this volume.

. Reputations need not be sustained via a “pooling” equilibrium in which
one’s actions are independent of one’s private information. So long as one’s
action does not fully reveal one’s information, reputational effects are possi-
ble. Moreover, the role of reputational features even in screening equilibria
will be considered later on.

9. That is, using TIT-FOR-TAT, B initially cooperates and thereafter plays
whatever 4 played on the previous round.

10. This experiment is conducted by using lottery tickets as the prize; moreover,
there are two kinds of subjects, each of which gets a different monetary prize
from the lottery. This scheme makes it possible to train the subjects either to
divide the tickets equally or to divide the expected monetary value equally.

11. See also Chapter 4 in this volume.
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CHAPTER 4

An approach to some noncooperative game
situations with special attention
to bargaining

Robert W. Rosenthal
STATE UNIVERSITY OF NEW YORK AT STONY BROOK

4.1 Introduction

In this paper, I consider an approach to modeling certain kinds of game
situations that is somewhat different from the standard noncooperative-
game approach. Roughly speaking, the situations have the following fea-
tures in common: (1) a large number of players; (2) repeated partitioning
of the player set over time into small, randomly selected groups; (3)
gamelike interaction of the members of each group over a brief span of
time; and (4) extensive knowledge by each player about the past history of
actions taken by aggregates from the population, but limited information
about the past history of actions taken by identifiable individuals in the
populations. I have already applied this approach to an election model
(Rosenthal (1982)) and, jointly with Henry Landau, to two bargaining
models (Rosenthal and Landau (1979, 1981)). (In addition, Shefrin
(1981) has worked on a related approach, with a view toward economic
applications. An early version of this paper antedated and stimulated my
work in this general area.) My goals in this chapter are to describe the
approach (first spelled out in Rosenthal (1979)), its applicability, its ad-
vantages and disadvantages relative to alternative approaches, and also to
discuss some side issues. In keeping with the spirit of this volume, how-
ever, I concentrate on the bargaining models.

Because the actions of individuals in the situations under considera-
tion have little influence on the population aggregates, the approach
assumes implicitly that individuals neglect this influence in making their

I am greatly indebted to Henry Landau, who collaborated on much of what is
described here, but who should not necessarily be presumed to agree with all of
the opinions expressed. This presumption extends to Bell Laboratories, which
provided financial support.
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decisions. And, because individuals in these situations are usually anony-
mous as well, the approach similarly assumes that individuals do not
admit the possibility that their present actions can affect the way others
perceive and interact with them in the future, except insofar as their
actions move them from one aggregated class within the population to
another. In these two respects, the approach deviates from the pervasive
rationality normally assumed in game-thoretic modeling. However, these
two behavioral assumptions, together with an assumed stationary struc-
ture in the partitioning process, permit use of a model of a stationary
stochastic process in which calculations are greatly simplified. The bene-
fits of simplicity to the user of any model are obvious; in the present case,
these benefits also accrue to the individuals being modeled, whose (less
than completely rational) simple calculations might be interpreted as
having been discovered (in some unspecified, transient part of the pro-
cess) even when the underlying structure of the situation might not be
known by the individuals. The approach is therefore responsive to the
criticism of game-theoretic modeling that holds that assuming excessive
rationality limits the applicability of models, since real-world players may
have neither the abilities nor the resources to do the required calculations.
On the other hand, the assumptions underlying the models directly limit
the situations to which the models may usefully be applied.

In the next two sections, I describe informally the models and results
from Rosenthal and Landau (1979, 1981). Following that will be a more
general discussion of bargaining and other potential applications. With
the two bargaining models having served as illustrations of the approach, 1
return in the final section to a discussion of the general philosophy under-
lying the approach, and contrast it with the philosophies underlying more
conventional approaches.

4.2 A model of bargaining with reputations

In this section, I summarize the model and results of Rosenthal and
Landau (1979). The motivation for that paper is that individuals are faced
repeatedly with bargaining games over time. In such games, the oppo-
nents are not always the same, and information about the opponents’ past
behaviors may be fragmentary. It seems desirable, therefore, to expose the
temporal linkages between the games in some simple way.

For purposes of the present discussion, a particularly simplistic view of
the one-shot bargaining gamesis taken: They are all two-person noncoop-
erative games, as pictured here.
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Y Y
Y2213
Y|31100

Each player in each of these games either yields (Y ) or does not yield (Y').
If at least one player yields, a total of four units of von Neumann-
Morgenstern utility is divided as indicated, if neither yields, the outcome
is (0,0). (Think of the situation where neither yields as being the noncoop-
erative analog of the disagreement outcome in the Nash bargaining
model.) The one-shot game depicted here has three Nash equilibria: the
two off-diagonal, pure-strategy combinations and the mixed-strategy
combination in which both individuals play 4 — 4 and receive  in expec-
tation.

Let us suppose that each individual expects to play this game repeat-
edly against a succession of randomly drawn opponents, about each of
whose pasts the individual will have only a single piece of information,
which represents the opponent’s reputation. Let us also assume: that the
individual discounts the future with the factor ¢ (0 = ¢ < 1); that both his
and the opponents’ reputations are always elements from the finite set
{1, ..., n); that these reputations change in the same known, but not
necessarily deterministic, way at each time as a function of current-period
reputations and actions of the population; and that the population of
players is in a steady state with reputation frequency vector 7=
(7y, ..., m,) and with action frequencies p; and (1 — p;;), denoting the
probabilities with which a randomly drawn player chooses Y and Y,
respectively, whenever he has reputation i and his opponent has reputa-
tion j. (Let p denote {p;: 1 = i,j = n}).) With such a view, the individual
does not consider himself to be a player in a game in the usual sense;
rather, he considers himself to be facing a Markovian decision problem
(e.g., Derman (1970)) in which the state space is a pair of reputations (the
individual’s and his current opponent’s), the discount factor is g, the
single-period rewards are expected payoffs from the bargaining game (if
the state s (i, j), the reward for Yis 2p; + (1 — p;;) and the reward for Y is
3p;;), and the transition probabilities are the relevant functions of , p, and
the individual’s own action. A steady-state equilibrium consists of partic-
ular values for the vectors 7 and p such that p is itself an optimal solution
to the Markovian decision problem (i.e., an individual cannot increase his
expected payoff beyond what he gets by randomizing with probabilities
(py,1 — p;) whenever he has reputation 7 and his opponent has reputation
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/) and such that z is an invariant distribution for the Markov chain
describing an individual’s reputation when the individual behaves ac-
cording to p and the rest of the population’s (including his opponents’)
reputations and actions from i.1.d. sequences generated by x and p.

In Rosenthal and Landau (1979), two variants of this model are ex-
plored corresponding to two particular examples of rules whereby reputa-
tions are updated. Essentially, both of these rules admit the interpretation
that plays of Y tend to lower reputation and plays of Y tend to raise
reputation. Three classes of possible steady-state equilibria are considered
for each of the two rules. The first class, Cl1, arises from what might be
called the social custom that if two players with unequal reputations are
matched, then the player with the higher reputation plays Y and the
player with the lower reputation plays Y; that is, the class C1 is the set of
(m,p) satisfying the restrictions that

p; = 0 whenever i > j and p; = 1 whenever i <}

A steady-state equilibrium from class C1 would seem to agree with the
intuition that individuals with relatively weak reputations yield and indi-
viduals with relatively strong reputations do not yield. If the population
adopts reputation as a coordinating device to reduce the frequency of
conflict, a C1 steady-state equilibrium seems to be an intuitively plausible
way for the society to organize itself (albeit noncooperatively). On the
other hand, if some (7,p) from C1 can be a steady-state equilibrium, why
not also some (z,p) from the (counterintuitive?) class C2, for which

p; = 1 whenever i > j and p; = 0 whenever i <j?

Finally, we also consider the class C3, which admits only one value for p,
namely,

py =% forall i, j.

In class C3, all individuals ignore reputations and always play the mixed
equilibrium for the one-shot game. It is obvious that there is always a
steady-state equilibrium from C3 no matter what ¢ or the rules for updat-
ing reputation are.

So much for a general description of the setup in Rosenthal and Lan-
dau (1979). We had initially hoped that results about the nature of steady-
state equilibria would not be sensitive to variations in the reputation-
update rules so long as the theme was maintained that plays of Y tend to
increase reputation whereas plays of ¥ tend to decrease it. Furthermore,
we were interested in evaluating steady-state equilibria from the various
classes to see whether one class or another would be best for the popula-
tion as a whole, in the sense that in the steady state, the incidence of the
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conflict outcome (Y,Y ) would be minimized. In particular, we specu-
lated that the intuitive appeal of C1 might be related, in some social-
Darwinian sense, to the evolutionary success of societies in the real world
with C1 steady-state equilibria. However, we found that the results gener-
ally were sensitive to the exact nature of the reputation-update rule. For
one of the rules, we were able to show only that with ¢ fixed, both C1 and
C2 steady-state equilibria exist when # is sufficiently large (unboundedly
large as o approaches 1). For the other rule, the size of n played no role in
the existence results, and we could prove existence of both C1 and C2
steady-state equilibria only when ¢ < 1. For the latter rule and n = 6, the
C1 equilibrium dominates the C2 equilibrium, which in turn dominates
the C3 equilibrium, in the sense of minimizing the incidence of conflict
(as our intuition suggested). For the former rule, however, the social
preference between C1 and C2 is reversed.

Although the results from this study are far from significant in either a
normative or a positive sense, the fact that it was possible for us to generate
detailed comparisons encourages me that further explorations into the
particular questions addressed about bargaining in the presence of reputa-
tions using this general approach may prove to be fruitful,

4.3 Repeated bargaining with opportunities
for learning

In this section, I summarize the model and results of Rosenthal and
Landau (1981). Our intention in this paper was to incorporate into a
model of bargaining what seems to be a significant feature of many bar-
gaining situations - the possibility of information acquisition. In this pre-
sentation, individuals are repeatedly matched to play a bargaining game
similar to the one considered in the preceding section, except that there is
some uncertainty about the stength of individual preferences regarding
the conflict outcome (Y,Y ). The game that is played by any pair at any
time may be described as

Y Y
Y22 1,3

Y | 3,1 Xz Xc

where Xz is a number characteristic of the specific row player and x is
specific to the column player. No player ever knows his opponent’s value
of x; and each player initially is ignorant of his own number as well,
learning it only after the outcome (Y,Y ) occurs in one of his bargaining
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games for the first time (after which he continues to remember it.) It is
common knowledge among the members of the population that the x’s
are all drawn from some common distribution with probability density f°
(the support of fis assumed to lie within (—,1) to rule out uninteresting
complications), and each player assumes that his draw and that of each of
his opponents form an independent sequence. So that ignorance will be a
recurring feature of this model, it 1s assumed that a fixed proportion
(1 — B) of the population (randomly chosen) dies after each period and is
replaced by an equal-sized cohort of ignorant individuals. The condi-
tional survival probability S(< 1) is taken to be also the discount factor in
the individual Markovian decision problems. In this model, individuals
receive no information about their opponents. A state of the individual’s
Markovian decision problem is here simply a possible value of his infor-
mation about himself; that is, the state space is the support of ftogether
with the state of ignorance. If individuals believe that their opponents’
actions are independent draws from some distribution (4,1 — 4) on
{Y,Y ), then a steady-state equilibrium is such an /4 and a stationary
Markovian decision rule (function from the state space to distributions on
{Y,Y }), which, if used by the entire population, reproduces A.

It is easy to see that any optimal stationary Markovian decision rule
may be characterized by a probability p that Y is played in the state of
ignorance and a value X € (supp /) above which the individual plays Y
and below which the individual plays Y.

The main result of this work by Rosenthal and Landau is that for any
given fand f, there exists a unique steady-state equilibrium. This steady-
state equilibrium is characterized fairly extensively. In particular, the
characterization enables us to examine the effect of changes in § on the
steady-state equilibrium that are not apparent a priori.

The results indicate that it is possible to generate detailed testable
hypotheses from our general approach. Furthermore, the analysis dem-
onstrates that our approach can deal (at least in one example) with the
important bargaining issue of information acquisition, even though the
approach is essentially a picture of a stationary game-playing process. The
information-acquisition possibilities modeled are, of course, quite spe-
cific and serve only to illustrate an application of the general approach.

4.4 General discussion of applications

Despite the enormous body of literature based on Nash’s fixed-threat
bargaining model and its extensions (e.g., Roth (1979) and references
therein), and despite the increasing popularity of Nash’s model in recent
applied work (e.g., McDonald and Solow (1981) and Crawford (1982)), I
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believe that this model contains too little detail to be of much practical use
for either positive or normative purposes. Instead of the considerations
represented by the axioms typical of that literature as being what deter-
mine the choice of outcomes in bargaining situations, I suggest that in the
real world, it is certain other factors in bargaining situations (e.g., socio-
logical and psychological factors), not accounted for in Nash’s model, that
turn out to be decisive. (I would interpet some of the experimental results
in Roth and Malouf (1979), for example, as supporting this view.) The
models I have described illustrate one way of incorporating such factors.
In Rosenthal and Landau (1979), it is the availability of reputations that
allows individuals in a population to reduce the incidence of bargaining
impasse. In Rosenthal and Landau (1981), the presence of uncertainty
about utilities and the possibility that individuals may learn through
experience are explicitly accounted for, again in a model of self-interested
bargaining. Of course, the approach of those papersis limited to situations
in which the bargaining games arise from independent matchings in a
large population; hence, the sociological and psychological factors must
themselves be well modeled by some stationary process. Nevertheiess, it
seems to me that some such large-population factors are to some extent
present in some interesting bargaining situations. (The motivations be-
hind this approach should not be confused with those of other recent
noncooperative bargaining models [e.g., Harsanyi and Selten (1972) and
Rubinstein (1982)], which aim more at exposing how bargaining out-
comes are affected by the specific dynamic features present in individual
bargaining situations.)

The results about bargaining presented in the papers described in the
preceding sections are not definitive for any purpose; rather, these papers
are intended as illustrations of the types of questions that might be ad-
dressed with the approach being advocated. It seems to me that if some-
one wanted to study, say, the long-run relationship between a firm and a
labor union in which periodic negotiations over short-run contracts were
the interesting points of interaction between the two organizations, the
approach described in the present paper might generally be inappropriate
for viewing the overall situation; but it might be effective as a way of
focusing on specific aspects of the relationship (e.g., informational asym-
metries between the firm and the union or between the union’s leadership
and its membership; the role of reputations of the negotiators, the firm’s
executives, and the union’s leaders; the effect of the availability or impo-
sition of third-party mediation or arbitration; and the motivations result-
ing from the procedures used by the firm to select its executives and the
union to elect its leaders).

Turning briefly to the question of the applicability of this approach
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outside the specific context of bargaining, it seems to me that the ap-
proach is potentially useful in economic situations in which questions
about the effects of institutional and informational details on individual
market transactions are of interest. In such situations, however, the ran-
dom matching of players seems a limiting feature (although random-
matching assumptions already play key roles in some of this literature
(e.g., see Butters (n.d.) and Diamond and Maskin (1979)); for instance,
shoppers typically choose stores for specific reasons, such as: reputation
for quality, proximity, exposure to advertising, and knowledge about
prices. (On the other hand, the random-matching assumption in a simple
model may not be especially unrealistic as a description of how a shopper
limits the set from which further nonrandom selection is to be made.)
As noted earlier, I have also worked on an application of the approach
in an election model (Rosenthal (1982)). There, politicians are randomly
matched in sequences of elections. The link between the elections arises
from the assumptions that the outcome of a specific election is influenced
by the relative positions of the specific candidates on issues and that an
individual cannot make a major change in his position in any single
election campaign. Although this work may not by itself be of major
interest to political scientists, I hope it indicates how certain dynamic
questions resulting from spatial political models can be addressed.

4.5 General remarks about the approach

The approach of this paper is related to that of stochastic games, in which
much of the interest focuses on equilibria composed of stationary, Mar-
kovian strategies. In such an equilibrium, each player chooses optimally
in some Markovian decision problem, just as here, but the way in which
the different players’ decision problems tie together in equilibrium is quite
different. There are also connections between the approach of this paper
and that of rational expectations, which has been popular in recent years
among economists (e.g., Grossman (1981)). Roughly speaking, the ap-
proach of rational expectations is that the individual actors in a model
develop hypotheses about their environment that turn out to be consis-
tent with their experiences (compare with the present approach of sta-
tionary processes of opponents’ states and actions, which in steady-state
equilibria are consistent with individual optimizing actions for the entire
population).

One interesting question is whether the steady-state equilibria of the
approach presented here bear some relationship to ordinary Nash equilib-
ria of the associated dynamic game played by a large player set in which
the roles of the matching process and information restrictions about
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opponents are appropriate analogs. It might be expected, for example,
that as the player set in that game becomes large, some subset of the Nash
equilibria converges in some sense to the steady-state equilibria of the
present approach. Although I have not explored that particular question,
there is a related result in Rosenthal (1979), which, roughly speaking, is
(for the model of that paper): As the player set becomes large, if each
individual plays his part of the steady-state equilibrium, then the error
that each individual makes by solving the Markovian decision problem,
instead of the non-Markovian problem resulting when the individual
includes the extra information acquired through his past interactions,
becomes vanishingly small.

Existence results for steady-state equilibria in the approach of this
chapter are routine (e.g., theorem 1 in Rosenthal (1979)); the usual fixed-
point approach is applicable. Questions about stability and non-steady-
state behavior are intriguing, however. How might individuals learn
about population averages? How important is it that an individual under-
stand the stochastic matching process? Shefrin (1979) has made a start on
answering some such questions in a related model.
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5.1 Introduction

Bargaining occurs whenever two or more parties can share a surplus if an
agreement can be reached on how the surplus should be shared, with a
status-quo point that will prevail in the event of disagreement. Until
recently, bargaining has been analyzed using the cooperative approach,
which typically consists of specifying a set of axioms that the bargaining
outcome should satisfy, and then proving that a solution satisfying these
axioms exists and is unique. More recently, a second approach has
emerged, which relies on the theory of noncooperative games. The typical
paper of this type specifies a particular extensive form for the bargaining
process, and solves for the noncooperative equilibria. Thus, the noncoop-
erative approach replaces the axioms of the cooperative approach with the
need to specify a particular extensive form.

Although this chapter is based on the noncooperative approach, which
we believe has considerable power, we should point out that the reliance
of the noncooperative approach on particular extensive forms poses two
problems. First, because the results depend on the extensive form, one
needs to argue that the chosen specification is reasonable — that it is a
good approximation to the extensive forms actually played. Second, even
if one particular extensive form were used in almost all bargaining, the
analysisis incomplete because it has not, at least to-date, begun to address
the question of why that extensive form is used. This chapter will consider

We thank Peter Cramton for his helpful comments. Research support from NSF
grant SES 82-07925 is gratefully acknowledged.
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the first point of extending the class of bargaining games for which we
have solutions. The second and harder problem, we will leave unresolved.

Fudenberg and Tirole (1983) analyzed the simplest model of noncoop-
erative bargaining that captures bargaining’s two key aspects: Bargaining
involves a succession of steps, and the bargainers do not know the value to
others of reaching an agreement. Their model had only two periods, and
only two possible valuations for each player. In each period, one player
(the “‘seller”’) makes an offer, which the other player (the “buyer”) can
either accept or reject. Each player is impatient and prefers an agreement
today to the same agreement tomorrow. The simplicity of the model
permitted a complete characterization of the equilibria. Several common
perceptions about the effects of parameter changes on bargaining out-
comes were found to be suspect.

However, finite-horizon models are inevitably contrived: Why should
negotiations be constrained to end after a fixed number of periods? More-
over, the specification of two-point distributions for the valuations of the
bargainers is special. Finally, the assumption that the seller makes all the
offers can also be questioned. The present chapter investigates the effect of
relaxing the first two assumptions, and discusses relaxing the third, in the
case of one-sided incomplete information. The seller’s valuation is com-
mon knowledge, and only the buyer’s valuation is private information.

We find that, as long as the seller makes all of the offers, the conclusions
of Fudenberg and Tirole for the one-sided case are essentially unchanged
by allowing an infinite bargaining horizon and general distributions: An
equilibrium exists and is essentially unique, and the offers decline over
time. Although many infinite-horizon games have multiple equilibria,
this uniqueness result should not be surprising, since (1) if an agreement
occurs, it occurs in finite time; and (2) the seller’s offers convey no infor-
mation because the seller’s valuation is common knowledge. *“Super-
game”-type “punishment strategies” are not equilibria in bargaining
games, because a bargainer cannot be punished for accepting the “wrong”
offer. Once an offer is accepted, the game ends. The fact that offers
decrease over time is similarly intuitive. The seller becomes increasingly
pessimistic as each offer is refused. However, neither uniqueness nor
decreasing offers holds with two-sided incomplete information, as Fu-
denberg and Tirole demonstrated in a two-period model. With two-sided
incomplete information, the buyer’s beliefs about the seller depend on the
seller’s offers. In particular, we must specify what the buyer infers from an
offer to which the equilibrium strategies assign zero probability. In such
circumstances, Bayes’ rule is inapplicable, and many different inferences
can be specified. This leeway in choosing the buyer’s “conjectures’ gener-
ates many equilibria.
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The conclusions of noncooperative models of bargaining depend not
only on the extensive form chosen but also, of course, on the specification
of the payoffs. In particular, models of sequential bargaining assume some
sort of impatience on the part of the players. Although most work has
modeled these costs as arising from discounting future payoffs, a few
studies have modeled impatience as fixed per-period bargaining costs. We
examine the fixed per-period cost specification, and explain why that
specification may lead to implausible equilibria.

The chapter is organized in the following manner. Section 5.2 reviews
some previous work on infinite-horizon bargaining with incomplete in-
formation. Section 5.3 proves that if the seller makes all of the offers, an
equilibrium exists, and is unique if it is common knowledge that the
buyer’s valuation strictly exceeds the seller’s. This section also investigates
the existence of differentiable equilibria. Section 5.4 discusses the case in
which the buyer and the seller alternate making offers, and Section 5.5
discusses the specification of the costs of bargaining. Sections 6 and 7 offer
some briefthoughts about the choice of the extensive form and the specifi-
cation of uncertainty.

5.2 Infinite-horizon bargaining under
incomplete information: The state of the art

Here, we review briefly the models of Cramton (1983a), Sobel and Taka-
hashi (1983), and Rubinstein (1985). (Perry (1982a) will be discussed in
Section 5.5.) Very schematically, we can distinguish the following steps
involved in building these models.

Specification of an extensive form. Cramton (1983a) and Sobel and
Takahashi (1983) assume that the seller makes all of the offers, at the rate
of one per period. Bargaining stops only when the buyer accepts the
current offer, then trade takes place at the agreed-upon price. Rubinstein
(1985), on the other hand, assumes that the traders take turns making
offers. These two representations have a number of features in common.
First, the extensive form is given from the outside. Asindicated earlier, we
have little to say about this assumption. Second, traders are not allowed to
bargain with other traders; or, equivalently, bargaining with a given trader
is not affected by the potential of bargaining with another trader. Actually,
in the three contributions mentioned, traders will never quit the bargain-
ing process. Not only are they prevented from bargaining with other
parties, but their costs of bargaining take the form of discounting, and so
they have no incentive to stop bargaining with their (unique) partner.
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Specification of the payoff structure. 'We just mentioned that in the three
models, the cost of disagreement comes from discounting. Let d and dg
denote the buyer’s and the seller’s discount factors, respectively. Typi-
cally, if the buyer has valuation b for the object and the seller has valuation
or production cost s, agreement at price p at time ¢ yields utilities
d%(b — p) to the buyer and 65(p — s) to the seller (Cramton). This frame-
work is rich enough to include two interesting cases: (1) the production
cost is already incurred (the seller owns the object before bargaining, that
is, s = 0 (Sobel and Takahashi)); and (2) the traders bargain on how to
divide a pie of a given size (Rubinstein). However, it does not formalize
the cases in which bargaining may stop because of disagreement; for
example, if V(t,s) denotes time-f valuation of a seller with cost s when he
quits the bargaining process at time (¢ — 1) to start bargaining with some-
one else at time ¢, the seller’s payoff is 65 V(4,s).

Specification of the prior information structure. Sobel and Takahashi
assume that the asymmetric information concerns the buyer’s valuation,
which is known only to the buyer. All the rest is common knowledge.
Rubinstein assumes instead that one of the traders’ discount factors is
unknown. Cramton considers two-sided incomplete information: Both
the buyer and the seller have incomplete information about the other
party’s valuation (or production cost).

Solution. The three papers look for special types of equilibria instead of
characterizing the equilibrium set. We give only a very brief description of
the restrictions used because these are clearly detailed by the authors and
they differ greatly. Sobel and Takahashi look for an equilibrium that is the
limit of finite-horizon equilibria.

To this purpose, they compute explicitly a sequence of finite-horizon
equilibria in a simple case, and derive a limit. Rubinstein imposes some
monotonicity conditions on off-the-equilibrium-path conjectures; he
also rules out mixed strategies despite using a two-point distribution for
the private information. And Cramton looks for equilibria in which the
seller at some point of time reveals his information so that the bargaining
game becomes a one-sided incomplete-information game, for which he
takes the Sobel - Takahashi solution.

5.3 Seller makes the offers

We now consider a model in which the seller makes all of the offers and
has incomplete information about the buyer’s valuation. The seller has
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production cost s = 0 (the object has already been produced and the seller
is not allowed to bargain with any other buyer). He has discount factor J,
which is common knowledge. The buyer’s valuation, b, is known only to
him. The seller has a smooth prior cumulative-distribution function F(b),
with bounded density f(b), with 0 < =< f(b) < f, concentrated on the
interval [b,b], where b = 0. The buyer’s discount factor, d;, is common
knowledge. A perfect Bayesian equilibrium is a history-contingent se-
quence of the seller’s offers ( p,), of the buyer’s acceptances or refusals of
the offers, and of updated beliefs about the buyer’s valuation satisfying the
usual consistency conditions (i.e., the actions must be optimal given the
beliefs, and the beliefs must be derived from the actions by Bayes’ rule).

The general case

We will show that an equilibrium exists and that it is unique if b strictly
exceeds 5. We begin with two lemmas that hold in either case.

Lemma 1 (Successive skimming). Inequilibrium and atany instant, the
seller’s posterior about the buyer’s valuation is the prior truncated at some
value b F(b)/F(b¢) for b= be, 1 for b= be.

Proof. Lemma 1 follows from the fact that for any time 7 less than or
equal to £, if a buyer with valuation b is willing to accept an offer p,, then a
buyer with valuation b’ > b accepts the offer with probability 1. To prove
the latter fact, notice that since b accepts p,,

b - p-,; = 53 VB(biHT)a

where Vy(b,H,) is the time-(7 + 1) valuation of a buyer with valuation b
when the history of the game up to and including 7 is H,. Let us show that

b/ — D: > 53 VB(b/aHT)a

so that a buyer with valuation b accepts p, with probability 1. Since from
time (1 + 1) on, buyer b can always adopt the optimal strategy of buyer b’,
that is, accept exactly when buyer b’ accepts, then

VB(b/’H‘t) - VB(b’H‘r) = 2 5gat+l+u(b/aHT )(b/ - b)a

u=0

where u is the index of time pertods and &, . ,(b’,H,) is the probability
conditional on H, that agreement is reached at time (7 + 1 + «) and the
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buyer uses buyer b’’s optimal strategy from time (7 + 1) on. Therefore,
VB(b,5H1) - VB(b9H1) = b, - b5

and the conclusion follows by a simple computation.

Lemma 1 implies that the seller’s posterior at any instant can be char-
acterized by a unique number, the buyer’s highest possible valuation b®,
By abuse of terminology, we will call b¢ the posterior.

Lemma 2. Theseller never (i.e., in no subgame) charges a price below b.

Proof.  We know that the seller’s equilibrium valuation must be nonneg-
ative, and that expected equilibrium surplus cannot exceed b, so that the
expectation over all possible types of the buyer’s equilibrium valuation
cannot exceed b. Moreover, following the proof of lemma 1, we can show
that the buyer’s equilibrium valuation is nondecreasing and has modulus
of continuity no greater than 1; that is, if b’ > b, then

Va(b')= Vg(b)+ b’ — b

(because the buyer of type b can always play as though he were type b”).
Since the buyer’s equilibrium valuation is nondecreasing and does not
exceed b in expected value, it must be that V(b) < b, and so V(b) < 2b —
b. This implies that all buyers accept any price below (b — b), and there-
fore the seller would never charge such prices. Knowing that the lowest
possible price is (b — b), all buyers accept prices such that b—p=
6p[b — (b — b)], or p = b — dgb. Proceeding as before, this implies that
for every positive n, all prices below b — §%b are accepted by all buyers,
and thus the seller never charges less than b.

Now we specialize to the case b > 0. The next lemma shows that if the
posterior is sufficiently low the seller charges b, and uses this fact to
establish that the rate at which the seller’s posterior decreases is uniformly
bounded below over all subgames.

Lemma3. Ifb > 0,there exists N* such that in all equilibria with proba-
bility 1, an offer is accepted in or before period (NV* + 1).

Proof.  First, we show that there exists a b* such that if the seller’s poste-
rior is below b *, he charges b. We do this by demonstrating that such a b*
exists if the buyer plays myopically and accepts all prices less than his
valuation. If a seller chooses to jump down to b against a myopic buyer, he
will do so against a nonmyopic one, since nonmyopic buyers are lesslikely
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to accept prices above b but just as likely to accept b (because no lower
price is ever charged).

Thus, we consider the maximization problem of a seller facing a myo-
pic buyer, when the seller’s posterior is b¢. The seller’s return to charging
price p is at most

p
M(p) = [(F(be) — F(p)p + 65 f sf(s) dS]/F(be)-
b

Taking the derivative with respect to p, we have
M'(p) = F(b¢) = F(p) + pf(p)(ds — 1).

As f(p) is bounded below, for b€ sufficiently near b, M’(p) is negative for
all p between b€ and b. Quantity M(p) overstates the “continuation”
payoff if p is refused, and so when b¢ is sufficiently small, a seller with
posterior b€ would charge b if the buyer was myopic, and a fortiori would
do so against nonmyopic buyers. This establishes the existence of the
desired b*.

Next, we show that there exists N* such that all equilibria end in
(N* + 1) periods. We do this by showing that in N* periods, the seller’s
posterior drops below b*. We claim that there are constants k and w such
that for all initial beliefs b¢ > b*, the seller’s posterior is no higher than
max{b,b¢— w} after k additional periods. Assume not — then

I .
=<
Ve=<b [F(b*)] + 6%b,
where V5 is the seller’s valuation and the term in brackets is an upper
bound on the probability that an offer is accepted in the first & periods. But
for w sufficiently small and k sufficiently large, the right-hand side of this
equation is less than b. Thus, we can define N* as

[52],1]
w int ’

and all equilibria must end in (V* + 1) periods.

The proof of lemma 3 makes clear the importance of our assumption
that b > 0. With b > 0, the potential surplus the seller might hope to
extract eventually becomes insignificant compared to the “sure thing” of
b, and thus when the posterior is less than b*, the seller settles for . The
second part of the lemma in turn relies crucially on the first: Without the
“termination condition’ at b*, the rate at which the seller’s posterior fell
would not be uniformly bounded below, but would instead decrease with
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the seller’s posterior. When b is zero, the equilibria will clearly not be of
bounded length, because the seller will never charge zero. This explains
why we prove uniqueness only for b > 0; existence will not be a problem.

Now, we can characterize the unique equilibrium when b > 0. Let
B(p,,H,_,) be the least (inf) value of any buyer to buy in period 7. An
equilibrium is called “weak-Markov” if f(p,,H,_,) depends only on p,
(which implies that V(b,H,_, ) depends only on b). Let o(b¢,H,_, ) be the
seller’s probability distribution over prices in period ¢. An equilibrium will
be called “strong-Markov” if it is weak-Markov and in addition o depends
only on b® In a strong-Markov equilibrium, players’ actions depend
solely on the “relevant” part of the history, namely, the seller’s beliefs and
the current offer.

Strong-Markov equilibria do not necessarily exist, as was discovered by
Fudenberg and Tirole (1983) in a two-period model with a discrete distri-
bution over the buyer’s valuation, and by Kreps and Wilson (19824) in
their treatment of the chain-store paradox. The same forces lead to non-
existence here. Strong-Markov equilibria fail to existin general, because it
may be necessary for the probability of acceptance, S(p), to be constant
over some interval. The seller’s posterior will be the same after any offer in
such an interval is refused, but in order for A( p) to be constant, the seller’s
next price will have to depend on the current one. As this discussion
suggests, a necessary and sufficient condition for a weak-Markov equilib-
rium to be strong-Markov is that f be strictly increasing.

We will show that if b > 0, the unique equilibrium is weak-Markov.
The weak-Markov property is unsurprising given that the game ends in
finite time and that the seller’s offers convey no information. When b = 0,
bargaining can continue indefinitely and we have not been able to show
that equilibria must be weak-Markov.

Our proof of uniqueness proceeds inductively. We start by solving
what we will call the “‘one-period”” game, in which we impose the con-
straint that the seller charge b. Recall from the proof of lemma 3 that if the
seller’s posterior is sufficiently low (less than &%), then this constraint is
not binding because the seller chooses b when he is sufficiently pessimis-
tic. In fact, there exists b2 that is the largest value of b° such that the seller
charges b when his posterior falls below b2. We then proceed to “work
backward” on both the number of “periods remaining” and the seller’s
posterior simultaneously. Let p, be the highest price that buyer b2 will
accept if he expects the price to be b next period. In the “two-period”
game, the seller is constrained not to charge prices above p,, and thus the
game indeed ends in two periods. Then, we solve for the seller’s optimal
action in the two-period game. The key to the proofis that if b¢ < b2, the
seller will choose to charge b in the two-period game, and indeed in any
equilibrium the seller must charge bwhen b¢ = b2. We then proceed to the
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“three-period” game, and so on. Because we know that all equilibria end
with probability 1 bytime (N * + 1), weneed only work backward (N* + 1)
steps. At that point, we will have worked out unique strategies such that
(1) the buyer’s decisions are best responses to the strategy of the seller, (2)
the seller’s strategy is an optimal response under the constraint that
the seller’s first-period price be less than p?*, and (3) the game ends by
(N* + 1). This immediately implies that at most one equilibrium exists.
We claim that it also establishes existence. The only way that the com-
puted strategies could fail to be an equilibrium would be if the first-period
constraint on the seller’s action were binding. Holding the buyer’s strategy
fixed, let us consider the seller’s optimization. The seller’s choice set is
compact (in the product topology) and his expected payoff is continuous;
therefore, an optimal choice exists. The argument of lemma 3 shows that
the seller’s optimal choice must terminate the game by (NV* + 1), and so
the first-period constraint cannot bind.

After this lengthy overview, we now state and prove our main result.
The statement is only generic, since the seller may have several optimal
first-period offers.

Proposition 1. If b > 0, an equilibrium exists and is generically unique.
The equilibrium is weak-Markov; it is strong-Markov if and only if the
buyer’s reservation function S(p) is strictly increasing.

Proof. See Appendix 1.

We now assume that there is “‘enough concavity” in the problem that
the seller’s optimal action at each instant is unique, in order to give a
simpler proof of uniqueness. Moreover, we can show that the equilibrium
is (strong-)Markov. The single-valuedness assumption permits us to use a
simple dominance argument to show that when the seller’s posterior is
below b”, his price is low enough that next period his posterior will be
below b"~1.,

To state the single-valuedness assumption, (5), we need the following
notation:

p—0gb

BHp) = T=s,

Wi(b) = mfx{[F (b¢) — F(BHp)]p + 6sF(BA )b},

where $2(p) is the value of the buyer who is indifferent between paying p
now or paying b next period, and W%(b®) is the seller’s maximal payoff
when he is constrained to change b next period multiplied by the probabil-
ity that the seller’s posterior is below b¢. In other words, we work with
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“unconditional probabilities” rather than conditional ones. This is a re-
normalization and does not change the seller’s behavior.

Let 0(b¢) denote the arg max, which we assume to be unique. Note
that 62 increases with b¢, and let b2 be uniquely defined by

b2 = max{be =< b|Wi(b*) = F(b)b).

Quantity b? is the highest posterior for which the seller would choose to
charge b now, given that b will be charged next period.
Let 8"(p) be such that
B™(p) — p = 5[ B™(p) — a" " (B(D)]
B™(p) is well defined and unique if 67! is an increasing function. Con-
sider

Wibe) = mfx{[F(be) — F(B"(p)]p + s W5 (B"(p))).

Let o™(b°) denote the arg max, which we assume to be unique. This is
assumption (S').

Assumption (S). For all n, a”(b®) is single valued.

We have verified that assumption (S) is satisfied for a uniform distri-
bution. The assumption is quite strong; we use it only to be able to provide
a simpler proof of our result.

Under (S), 6"(b®) is an increasing function of b¢. Then, b" is uniquely
defined by

"= max{be = b|Wi(b?) = Wi (b9).

Proposition I’. Under (S), the equilibrium is generically unique and is
(strong-)Markov.

Proof. Lemma 3 proved that there exists b* close to b such that if the
posterior b belongs to [ b,b*], the seller charges b whatever the history.
We now proceed by upward induction on b¢.

Lemma 4. 1fbge [b,b?), then o,(H,) = b.

Proof. Choose €, sufficiently small such that for every b € [b*,b?],
(F(b+e)— FO)b+ €)+ 6sF(b)b < F(b + €)b

and
b*+e < b2

We claim that if at time ¢, for some history, b¢ belongs to (b*,b* + €, ], the
seller charges b. He can guarantee himself b by offering b.
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Assume that b¢,, belongs to (b,0*]. Then, p,,, = b, and the buyer
accepts p, if and only if his valuation exceeds S%(p,). Since the seller will
change to b next period and b¢ < b?, the seller charges b this period from
the definition of b2 More generally, the seller will never offer a price
leadingto b¢, . in (b,b*]. Alternatively, by offering prices leading to poste-
riors in (b*,b* + €, ], he obtains at most

(F(b* + €,) — F(b*))(b* + €,) + 5 F(b*)b < F(b* + €,)b.

Therefore, for any history at time ¢ such that b¢€ (b,b* + €,], p,= b,
B =p? and Wg(b¢) = Wi(b?). The same is true by induction for any
b€ [b,b?).

Lemma 5. 1f bee (b%,b%, then 0,(H,) = d*(b?).

Proof. Assume that b¢€ (b2,b3), and define €, > 0 sufficiently small
that for every b € (b2,b%],

(F(b+ €)= Fb))(b+ &)+ s Wib+ €,) < Wi(b+e,)
and
b*+ e, < b3

We claim that if at time ¢z, for some history, b¢ belongs to (b2%,b% + €,],
the seller charges o%(b¢). The seller can guarantee himself Wi(b¢), as
buyers with valuation exceeding $%( p,) accept p, since they will never face
a better offer than b. Can the seller do better? If he charges p, such that
be,, < b?, then only buyers with valuations exceeding S2(p,) accept the
offer since they expect b at time (¢ + 1).

More generally, if p,. . is accepted by buyers with a valuation less than
b2, the seller obtains at most W%(b¢, ). Therefore, an upper bound on
what he obtains when his offer leads to a posterior b¢,, = b? is (F(b¢) —
F(b?)be+ 63 Wi(b?), and hence the seller will not make an offer such
that b¢,, = b2 We conclude that if b¢ € (b3,b2 + €,], p, = o¥(b?), b1t =
BA(p,), and W(b?) = W2(b¢) on the equilibrium path. The same reason-
ing applies for b¢ € (b? + €,, b2 + 2¢,], and so on, until b¢= b3,

Let us now choose €, such that for every b € (b3,b%],

(Fb+e)—FD)b+e&)+ Wi+ e)< Wib+e,)
and
b3+ e, < bA.

The proof that the seller charges o3(b¢) when b¢ € (b3,b*] is the same as
the previous one. That the seller can guarantee himself W 3(b¢) is slightly



84 Fudenberg, Levine, and Tirole

more complicated to demonstrate. It suffices to show that when the seller
charges p, = a3(b?¢), a buyer with valuation #3(p,) accepts it. Imagine that
this buyer refuses. Then, b¢,, > f3(p,), which implies that p,., =
o(be,,) > 0*(f3(p,)). Hence, buyer f3(p,) will not buy at time (¢ + 1),
since B3(p,) — p, < d5(B3(p,) — pi+1) would contradict the definition of
B3. Similarly, he would not buy later on, and hence he accepts p, now.

The rest of the proofis by induction on #. Lemma 3 guarantees that this
induction takes at most (N* + 1) steps. Finally, the equilibrium is
(strong)-Markov since, by construction, p, depends only on the posterior
be.

We would prefer not to invoke the restriction that 4> 0 = 5. One
might expect that the buyer’s valuation could sometimes be less than s
and that such buyers would not enter the bargaining game, but any buyer
whose valuation exceeds s would enter, and thus effectively b = s. For this
case, we can prove that an equilibrium exists by considering a sequence of
games with b" — s, showing that there is a limit point of the associated
equilibria, and further that this limit is an equilibrium. With 4 = s, the
seller will never choose to offer price b, and so bargaining can continue
indefinitely. This lack of an “endpoint” has prevented us from establish-
ing uniqueness for this case.

Proposition 2. When b = 0, a weak-Markov equilibrium exists.

Proof. See Appendix 2.

Smooth-Markov equilibria

Another approach to solving infinite-horizon bargaining games is to as-
sume that a smooth, (strong)-Markov equilibrium exists, and to try to
compute it from the differential equation resulting from the first-order
conditions for the seller’s maximization.

Let W (b®) be the seller’s valuation when his posterior is ¢, multiplied
by F(b¢). Define

J(p,beB(- ), Ws(+)) = [F(b*) — F(B(p)]p + 05 Ws(B(P))-

Then, o(b¢) must be an arg max of J, and W(b°) the maximized value. As
in our previous discussion, we see that ¢ is strictly increasing if £ is strictly
increasing. When f# has “flat spots,” the induced ¢ will not be strictly
increasing and a smooth-Markov equilibrium need not exist.
Differentiating J with respect to £¢ and using the envelope theorem, we
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find that

AW
dbe

Maximizing J with respect to p, we then find the first-order condition

F(b®) — F[B(a(b*))]
— B (a(O)f1Blo(b)a(b®) — b50[ Ba (b)) = 0. (5.1)

In case the second-order condition is also satisfied, (5.1) and its asso-
ciated B(p) characterize a Markov equilibrium. One such instance occurs
when F(b) = (b/b)" for 0 = b =< band m > 0. In this case, F(8)/F(b) has
the same functional form as F, and we can find a smooth-Markov equilib-
rium, with the linear form S(b) = Bp and o(b) = gb. It can be verified that
the second-order condition corresponding to (5.1) is satisfied, and the
constants ¢ and £ may then be computed to be the unique solution of

(Boy ™+ dgm(fo)y=1+m

- 1 — 65(Ba)
/3——1_(58 ,

=f(6)a(b).

5.2)

from which it follows that # > 1 and fo < 1. Thisis the solution obtained
as a limit of finite-horizon games by Sobel and Takahashi (1983), which
was known to be an equilibrium from Fudenberg and Levine (1983). We
have just provided a simpler derivation.

We now comment on a number of features of equilibrium in this
model. First, in all cases o( - ) is nondecreasing so that equilibrium in-
volves gradual concessions. How general a result this is remains to be seen.
Fudenberg and Tirole (1983) show that in a finite-horizon model with
two-sided incomplete information, prices may rise over time. Whether
this can occur in infinite-horizon models is as yet unknown but seems
likely.

It can be shown that when the buyer’s and the seller’s discount factors
converge to 1, the seller’s payoff converges to zero. In other words, the
seller loses all ability to price discriminate when the time period goes to
zero (since then both d5 and d5 approach 1). This result was obtained by
Sobel and Takahashi and is similar to results of Kreps and Wilson (19824)
in the chain-store paradox and of Bulow (1982) and Stokey (1980) in work
on durable-goods monopoly. Let us give a rough intuition. The incentive
to bargain is due to the destruction of the pie by discounting. By making
offers, the seller makes the buyer responsible for destroying the pie if he
rejects the offer. The seller uses this leverage to extort the buyer’s surplus
and, when there is incomplete information, price discriminate. With
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short time periods, higher-valuation buyers are more willing to free ride
on lower-valuation buyers. The seller consequently loses his ability to
price discriminate.
Finally, note that if Vg(b¢) = W(b*)/F(b?),

lim lim Vgb)=0< lim lim Vy(b)=b.

m—>x 35,35—.1 35,35_.1 m—»o©
Here, m — o means that the seller is nearly certain that the buyer has
valuation b. Thus, in the infinite horizon, it makes a difference what order
we pass to the limit.

5.4 Alternating offers

Thus far, we have assumed that the seller makes all of the offers, that is,
that the buyer is not allowed to make counter offers but can only accept or
reject offers of the seller. This assumption is far from innocuous, espe-
cially coupled with our assumption that only the buyer’s valuation is
private information, which as we suggested seems a good approximation
if the seller owns the object before the bargaining starts, and values the
object only for its eventual sale. If the seller makes all of the offers and the
seller’s valuation is known, the offers reveal no information. If the buyer is
allowed to make counteroffers, in equilibrium the seller must update his
posterior to reflect the information thereby transferred. In particular, we
must specify how the seller revises his beliefs if the buyer makes an offer
that according to the equilibrium strategies is not made by any type of
buyer. Bayes’ rule places no restrictions on such inferences, nor does
Kreps and Wilson’s (1982b) more restrictive concept of a sequential equi-
librium. This leeway can be used to support a multiplicity of equilibria. If
only the seller can make offers, the only zero-probability event that does
not terminate the game immediately is if the buyer refuses a price below b;
however, aslemma 2 illustrated, the seller would never charge such a price
in any equilibrium, and thus what the seller infers from this event is
irrelevant. In contrast, when the buyer can make counteroffers, the seller’s
inferences can change the set of actions that occur in equilibria.

Let us illustrate this point with an example, which has the additional
virtue of providing a form of justification for our seller-makes-the-offers
specification. Specifically, we will describe an equilibrium in which, al-
though the buyer does make counteroffers, these counteroffers are always
rejected by the seller, so that the equilibrium is “observationally equiva-
lent” to one in which the seller makes all of the offers but the time period is
twice as long.

Before we present this equilibrium, recall that Rubinstein (1982)
proved that for the corresponding complete-information game, there
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exists a unique equilibrium. The seller always offers &(1 — 85)/(1 —
d505), the buyer offers d5[b(1 — 85)/(1 — 8505)], and these offers are
accepted.

Our example is a “pooling equilibrium,” in that all types of the buyer
make the same offers, so that the buyer’s offer conveys no information.
All types of the buyer always offer price zero, which the seller always
refuses. Were the buyer to offer a price other than zero, the seller would
believe that the buyer has type Kb, where K is some large number (such
beliefs are not consistent with the spirit of sequential equilibrium, because
they put weight on types outside the initial support of the buyer’s valua-
tion. Such beliefs can be understood as resulting from trembles by nature
as opposed to the trembles by players which are considered in sequential
equilibrium.) The seller’s offers are made as with one-sided offers, dis-
cussed in Section 5.3, except that the discount factors are %2 and 6%. The
periods in which the buyer makes offers do not count, and play evolves as
though the seller made all of the offers and the period length is equal to
twice that of the alternating-offers game.

For this to be an equilibrium, it is necessary and sufficient that no type
of buyer wish to charge a price other than zero. However, any unexpected
price causes the seller to believe that the buyer’s valuation is Kb, and thus
the seller refuses p unless p = [Kb(1 — 63)/(1 — d505)]. Clearly, for K
sufficiently large, this will require p = b, which no buyer would offer.

There certainly are many other equilibria. Grossman-Perry (1985)
have shown how to embed the one-sided offer equilibrium into the two-
sided offer structure using beliefs which assign weight only to types in the
interval support of the buyer’s calculation.

5.5 Specification of the costs of bargaining

The models that we have discussed so far have modeled the costs of
prolonged negotiations as the discounting of future outcomes. This sec-
tion contrasts that form of the costs with two others; fixed per-period
bargaining costs and costs of changing offers.

The assumption of fixed per-period costs is that agreement at price p in
period ¢ yields utilities (b — p — cgf) and (p — 5 — cst), respectively. Fixed
per-period costs were included in Rubinstein’s (1982) complete-informa-
tion bargaining model; in equilibrium, the player with lower cost captured
the entire surplus. However, as pointed out in Fishburn and Rubinstein
(1982), per-period costs are inconsistent with the existence of a “zero
agreement,” for which the trader has no impatience. Fishburn and Ru-
binstein show that any preferences at bargaining outcomes that are
monotonic, impatient, continuous, and stationary can be represented by
discounting if such a zero agreement is possible. Thus, the existence of a
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zero agreement is of primary importance in choosing a functional form
for time preference.

In the absence of a zero agreement, there are outcomes that are inferior
to “leaving the game,” even when there are known to be gains from trade.
Thus, to avoid violating (ex ante) individual rationality, an *“‘exit option”
must be included in the specification of the extensive form. With dis-
counting, the exit option is superfluous in a model with only two traders:
The value of the outside opportunity is normalized to be zero (and,
therefore, even a greatly postponed agreement is preferred to none at all).
Rubinstein’s (1982) paper did not allow an exit option, so that the lower-
cost trader could inflict “infinite damage” on his opponent “relatively”
cheaply. This may partially explain his troublesome conclusions in the
fixed-cost case. Perry’s (1982a) model of bargaining with many sellers
similarly assumes that the buyer cannot leave the game; and thus its
conclusions may be similarly misleading.

The obvious alternative to requiring the players to potentially suffer
arbitrarily large bargaining costs is to allow for the possibility of exit,
which ensures the (current) reservation value. Although such an option
can sensibly be added to bargaining models with complete information,
with incomplete information the possibility of exit combined with fixed
costs of continuing yields a trivial equilibrium, as was pointed out in
Fudenberg and Tirole (1983). The equilibrium is trivial because, when an
agent chooses not to exit, he signals that his expected value to continuing,
and in particular his valuation, exceeds the sum of the per-period cost and
his surplus in the eventual agreement. Consider, for example, the model
of Fudenberg and Tirole (1983), with the addition that the buyer decides
at the end of the first period whether or not to exit. Let b(cy) denote the
type of buyer that is just indifferent between exiting and paying cost ¢z to
continue. Clearly, the seller will never offer a price below b(cy) in the
second period, and so there is no equilibrium in which buyers choose to
continue, Perry (1982b) analyzes an infinite-horizon, alternating-offers
model, and obtains the same result. The only equilibrium in any subgame
that begins with the buyer making an exit decision is the trivial one that all
buyers leave immediately. Thus, if the seller makes the first move, the
equilibrium is simply that of the one-period game, because everyone
knows thatall valuations of buyer will leave at the end of the first period. If
the buyer pays a fee in order to play, the seller will charge a high enough
price that the buyer who had been indifferent about staying in will regret
having done so. Thus, in the presence of incomplete information, the
specification of fixed bargaining costs results in a trivial outcome in which
no bargaining in fact occurs. This is highly reminiscent of Diamond’s
(1971) observation about the effect of fixed search costs, which allowed
firms to charge the monopoly price and thus precluded search.
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Fixed bargaining costs are formally similar to entry fees to participate;
yet entry fees have been shown to be optimal in the theory of optimal
auctions (Maskin and Riley (1980)). The difference is that in auction
theory, unlike bargaining, the seller is allowed to precommit to future
actions, and thus to “promise” a nonnegative expected return to those
who choose to pay the fee. Note that one way out of the dilemma in
bargaining may be to modify the extensive form to allow such payments,
so that the seller can pay the continuation fee.

The second alternative specification of bargaining costs that we wish to
discuss is one in which it is costly to change offers. Such costs were
introduced to the bargaining literature by Crawford (1981), who assumed
that having made initial demands, bargainers could ‘“‘back down’ at a
cost. More recently, Anderson (1983) studied repeated games with costs
of adjustment. Although costs of adjustment may seem artificial and ad
hoc in the context of bargaining between individuals, they are perhaps
more plausible if the bargainers are agents for others, as in union-
management negotiations.

These are the main alternatives to the discounting formulation that we
have employed. Still other formulations may emerge with the continued
development of the empirical literature on sequential bargaining.

5.6 Why should we study sequential processes?
The thorny question of the extensive form

Here, we offer a few thoughts on the nature of the extensive form. It
should be clear that these thoughts are incomplete. Their only purpose is
to raise some questions we deem important for bargaining theory.

Myerson and Satterthwaite (1983) have studied the optimal negotia-
tion mechanisms between a buyer and a seller. This work has been ex-
tended to situations with multiple buyers and sellers (double auctions) by
Wilson (1982). According to the revelation principle, the optimal negotia-
tion is a revelation game in which the buyer(s) and the seller(s) announce
their characteristics simultaneously. Therefore, it seems that one could as
well restrict attention to static revelation games and never be interested in
sequential bargaining. A number of considerations actually go against this
first intuition.

For one thing, real-world bargaining is almost always sequential.
Myerson - Satterthwaite-type revelation games are not played. Thus, it
seems that there is scope for sequential bargaining theory. Students of
bargaining theory cannot content themselves with this proof-of-the-
pudding argument. One must ask why such revelation games are
not played, and when the Myerson - Satterthwaite model is internally
consistent.
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Imagine that two parties meet and want to discuss freely the possibility
of a trade that might be advantageous. Their using the Myerson-
Satterthwaite mechanism requires two fundamental assumptions: (1) the
traders agree to bargain this way, and (2) the traders can commit them-
selves to not ever reopen the bargaining process in case of disagreement. It
is immediately evident that these two conditions are likely not to be
satisfied in real-world conditions, for the following reasons.

1. Most of the time, the traders have at least some of their private informa-
tion before meeting. Depending on his information, a trader may want
to use a bargaining mechanism that differs from the revelation game.
One could object to this reasoning by noticing that, because the revela-
tion game is the most efficient game, there could be transfers inducing
the traders to play that game. However, this neglects the fact that choos-
ing a bargaining mechanism itself conveys information and changes the
outcome of the subsequent bargaining game. In particular, accepting the
revelation game is not neutral: It says something about the trader. We
are aware that we are raising a deep question without bringing any
element of answer.

2. It is well known that any bargaining mechanism under asymmetric
information and individual rationality constraints implies inefficiency.
Traders may quit without realizing gains from trade. This is especially
characteristic of the Myerson - Satterthwaite mechanism. Thus, there is
anincentive to renegotiate later. This point is addressed in greater detail
in Cramton (19835).

What, then, is left of the Myerson —Satterthwaite analysis? We think
that this mechanism is of interest for two reasons:

1. From a normative point of view, it gives a lower bound on the ineff-
ciency associated with voluntary bargaining.

2. From a positive point of view, it may be applied to some special cases.
Imagine, for example, that the parties meet when they have symmetric
information. They know that later on they will acquire private informa-
tion (value of a project, its cost), and that they will have to make a
decision (production) on this basis. In this case, they decide to bargain
according to the Myerson-Satterthwaite mechanism if they have a
means of enforcing the absence of renegotiation in case of disagreement.
One could think of reputation as an incentive not to renegotiate.

5.7 Specification of the information structure

The literature on sequential bargaining has up to now assumed that the
random variables on which there is asymmetric information are uncorre-
lated. This may be a reasonable assumption in a number of cases. For
example, the seller’s production cost and the buyer’s valuation for the
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object can be assumed to be independant. Similarly, costs of bargaining
are likely to be uncorrelated between them and with the previous vari-
ables. However, there are two channels through which a trader can learn
about his own valuation.

1. Correlated values. Imagine, for example, that the seller owns a used car,
and knows its quality. His willingness to sell the car depends on this
quality. In addition, the buyer’s willingness to buy the car would depend
on this parameter if he knew it. In this case, the valuations are correlated
and the buyer is eager to learn about the seller’s information not only to
discover his bargaining power but also to assess the value of a deal.

2. Learning from an unknown distribution. Imagine that there are several
sellers, whose production costs are drawn from a probability distribution
that is unknown to the buyer. Imagine further that the buyer can switch
sellers. When the buyer bargains with a given seller, he learns not only
the specific characteristics of this seller (and therefore about his bargain-
ing power), but also about the other sellers’ characteristics. Therefore,
the buyer learns about his expected profit if he switches to another seller.
Even though the buyer and the seller’s characteristics may be uncorre-
lated, the buyer learns about more than his bargaining power. Another
possibility leading to the same effect is the correlation of production
costs between sellers. Indeed, the case of independent draws from a
distribution that is unknown to the buyer is processed like that of corre-
lated draws by the buyer.

An interesting example that combines items (1) and (2) can be found in
the work of Ordover and Rubinstein (1983) on litigation. In their paper,
one of the bargaining parties knows who will win if the dispute is resolved
in court, that is, if disagreement occurs. On the one hand, the parties are
interested in their valuations after disagreement, and they can learn some-
thing about them before disagreement as outlined in item (2). On the
other hand, the valuations after disagreement are correlated.

Whereas in the independent-draws model, the only purpose of learning
is to discover one’s bargaining power, when draws are correlated between
traders the parties learn about their positions affer bargaining with the
current partner whether there is agreement or disagreement. Conse-
quently, during the bargaining process the parties must take into account
two kinds of “curses”:

1. Thecelebrated winner’s curse in case of agreement. For example, the fact
that the seller of the used car accepts the buyer’s offer may be a bad signal
about the quality of the car.

2. The “bargaining curse.” The seller’s making a low offer may not be good
news to the buyer if the seller knows the quality of the car. In the un-
known-distribution framework, the seller’s making a high offer may
signal that the production costs of the other potential sellers are likely to
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be high as well. On the other hand, such learning may not be a curse, but
good news. For instance, in the used car example the seller’s turning
down the buyer’s offer may signal a high quality. Such transmission of
information can easily be embodied in bargaining models. Although we
will not pursue this topic here, it is clear that some new insight can be
gained from it.

5.8 Conclusion

As we stated in Section 5.3, the outcome of bargaining with one-sided
information is fairly easy to characterize if the player whose valuation is
known makes all of the offers. In this case, the price must decrease over
time, and things are generally “well behaved.” With alternating offers,
however, there are multiple equilibria, which are qualitatively very dis-
similar. Thus, the problem of the choice of extensive form is fairly severe,
even when only one-sided incomplete information is being considered. If
both player’s valuations are private information, the situation is even
more complex. We fear that in this case, few generalizations will be
possible, and that even for convenient specifications of the functional
form of the distributions over the valuations, the problem of characteriz-
ing the equilibria will be quite difficult. Cramton (19834) is a start in this
direction.

Throughout this paper, because the bargaining costs took the form of
discounting and players had no other opportunities to trade, players had
no incentive to stop bargaining. If traders have alternative bargaining
partners, we would expect them to switch to a new partner whenever they
become sufficiently pessimistic about the valuation of the party with
whom they are currently negotiating. Thus, the length of bargaining be-
tween any pair of traders could be endogeneously determined by the
outside opportunities. Shaked and Sutton (1984) have modeled bargain-
ing with several sellers under complete information. Because the sellers
are known to have the same valuation in equilibrium, traders never quit
bargaining without an agreement if there exist gains from trade. Thus, the
Shaked - Sutton model again predicts that traders will never stop nego-
tiating. In a forthcoming paper, we analyze bargaining with many traders
and incomplete information to study the effect of outside opportunities
on equilibrium prices and on the length of negotiations.

The noncooperative approach to bargaining theory is still in its in-
fancy. Although much remains to be done, substantial progress has been
made in the past few years. Solving a wider variety of extensive forms may
permit some generalizations to emerge. The problem of the choice of
extensive forms by the players remains open.
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APPENDIX 1
Proof of Proposition 1

We proceed by induction on n. For each n, we construct p”, the highest
price the seller is allowed to charge. The index n will keep track of the
number of periods remaining: When p < p”, the game will be shown to

end in at most » periods. For n = 1, set

Wi =Foo,  pn= L2282,

1 =
p'=b —

=

ol(b9)=0c'(b?|p) = b, and b'=ph

=2

Here, p' = b is the price the seller is required to charge to guarantee that
the game ends immediately, and W }(b¢)is the seller’s payoffto charging b
multiplied by the probability that the posterior is below b¢. In other words,
we work with “‘unconditional probabilities™ instead of conditional ones;
the conditional probability of a sale at b is 1, but the unconditional
probabilities prove simpler to work with. Note that this renormalization
does not affect the seller’s optimal behavior. Quantity 8% p) is the reserva-
tion value of the buyer who is just indifferent between p in this period and
b in the next one. Because the seller’s offers will be nonincreasing and no
less than b, if the seller charges b in this period, buyers must expect b in
subsequent periods. The term 7! (p) will be the lowest reservation value
of a buyer who accepts p when there will be n subsequent periods, thatis, in
the (n + 1)-period game. Observe that ¥} and §! are continuous and
nondecreasing. If p < p!, the game is over; if p > p!, it (with some proba-
bility) lasts at least one more period. Value ¢”(b¢) is the correspondence
that yields the seller’s optimal choices in the n-period game when he is
constrained to charge no more than p” (when n = 1, this constraint forces
o' to be single valued). Quantity ¢(b¢| p) is the expected value of the
seller’s price if the last price was p. And &' is a dummy, which will not be
used; for larger n, b” will be a bound on b¢ that guarantees that the seller
charges no more than p”~! in the next period.

In the n-period game, the seller is constrained to not charge more than
p", where p” is chosen such that if p” is charged, the buyer’s reservation
value is at most 47 so the next period’s price is below p”*~! and, by
inductive hypothesis, the game ends in (» — 1) additional periods.

We will now define WZ%(b®), B+ (p), p", a"(b®), and a”(b®,p) recur-
sively, and prove by induction that

I. WZ%and **! are continuous and nondecreasing, and that £” is the
unique solution of p € (1 — 85)B"(p) + S50 (S(p)), where 6" is the
convexification of 67



94 Fudenberg, Levine, and Tirole

2. When aprice p = p”ischarged, the game lasts # or fewer periods, and
so for p < p”, B"*Y(p) = B*(p);

3. When b€ < b*, the seller charges a price less than p”~!;

4. o"(b°) < b¢, where ¢” is nonempty, nondecreasing, and has a com-
pact graph;

5. In the (n + 1)-period game, the buyer with valuation 87*!(p) is just
indifferent between paying p now and waiting one period, and strictly
prefers buying next period to waiting longer;

6. The expected price that the seller charges in period #n, 6*(b¢|p), is
uniquely determined, given b€ and the price p charged in previous
period;

7. In any equilibrium, the buyer must play according to " *!, and the
seller’s initial price belongs to o™ *1(b).

Having by inductive hypothesis proved claims (1) through (5) for the
(n — 1)-period game, let us extend them to the n-period game. First, we
solve for WZ%and a”. Let ¢ = b be a given constant. Define the maximiza-
tion problem, denoted J(p,be,8,Wy,c), as follows:

m;»x{p[F (b) — F(B(p)] + 65 W (B(p)))

subject to b < p < min{b*c}.

Since, by inductive hypothesis, f and W will be continuous, and the
constraint set is compact, the arg max correspondence has a nonempty
image and a compact graph. Moreover, the correspondence is nonde-
creasing, since increasing b strictly increases the gradient of the objective
function. (The correspondence is strictly increasing whenever the objec-
tive is continuously differentiable, but it may be flat if not.)

Let o denote the arg max correspondence, g the expected price charged
by the seller, and ¢ the correspondence whose image is the convex hull of
the image o. Note that & is continuous, is convex valued, and contains o.
Finally, note that ¢(b) = b, whereas for b > b, a(b) < b. _

Now, we can find W%, p”, and g**!. Consider first J(p,be,5", Wi~ 1.b).
Associated with this are o”(b¢,b) and 6”(be,b). Define b” to be the largest
value of b¢ for which p”~! € ¢”. The key is that when b¢ =< b”, we can
without loss restrict the seller to not charge more than p”~!; that is,
J(p,be,fr Wil by= J(p,be Wi ! pr1), However, by inductive hy-
pothesis, when p = p"~! the game ends in (n — 1) periods, and so
B p)= B Y(p)and B*"(p) = b* ! (from the definition of b*~!), imply-
ing that Wi Y{(B7%(p)) = Wi (" p)). Thus, when be=<b", the n-
period game in fact ends in at most (» — 1) periods, and the behavior we
previously aetermined for the (n — 1)-stage game must still apply. We
conclude that for b¢ = b”, o(be,b) = o"(be,b) = 0"~ '(b®). This argu-
ment holds only for # > 2; for n = 2, p"~! = b, and the result is trivial.
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Next, we must define p”, the bound on the seller’s price that ensures
that next period’s price is less than p”"~! and therefore that the game ends
in n periods. Thissituation is complicated slightly by the possible disconti-
nuity of g. Let p"~! be the largest value in ¢”~'(b") less than or equal to
p"~!, and define p” = (1 — 6)b" + dp"~!. We claim that if p < p”in the
n-period game, then the next-period price will be less than p”~! and the
game in fact ends in 7 periods. Assume not — then the seller’s posterior
next period, 87( p), must exceed b”. From the definition of p*, this implies
that (1 — d3)B"(p) > p" — dpp™~". Since B*(p) <p=p”, a" " (p"(p)) =
o’ Y (p™) = " Y(b™) = p*~!. Yet, by inductive hypothesis, 8” satisfies
PE (1 —65)B™(p) + 356" (B™(p)), and so (1 — 95)B"(p) = p — dpp™~ ',
which is a contradiction. This means that imposing the constraint p < p”
guarantees that the n-period game in fact ends in # periods. Later, we will
show that if p = p”, the (n + 1)-stage game ends in n periods as well.

Given p", we consider the optimization problem J(p,b¢,8", W% p”).
The solution to this problem is 6”(b¢), with convex null 3*%(b¢). As shown
above, we know that for bé =< b" Wi(b®) = Wi~ }(b®), and a”(be,b) =
o(b€) = 0"~ (b®); therefore, behavior below b” is not changed by in-
creasing the number of periods.

Next, we work backward one period to show that 87*!( p) is uniquely
defined by the assumed equation. The valuation of the buyer who is just
indifferent between paying p in period (# + 1) and waiting must satisfy

(B™*(p) — ) € 5[ 8"+ (p) — G"(B"* ()]

or
pE(1 =3B (p) + 653" (B"(p)). (A1)

The right-hand side of (A.1) is a continuous, convex-valued, strictly in-
creasing correspondence, and thus has a unique inverse function 8"+!(p),
which is nondecreasing and has modulus of continuity smaller than
1/(1 = 35). .

Note that since max{a”(8"*'(p))} <p"*!(p), the choice of buyer
B"*1( p) whether to accept p in period (n + 1) or to wait one period and
then buy is unaffected if we replace the anticipated next-period probabil-
ity distribution over elements of ¢”(8"*!(p)) by its expected value ",
Because ¢” must lie in 6%, equation (A.1) defining 7*! ensures that the
buyer of valuation f7*!(p) is indifferent between paying p in period
(n + 1) and waiting to face 6" next period. If buyer f7+( p) were willing to
wait more than one period, then all buyers with lower valuations would
strictly prefer to wait, and there would be no sales in period #. This would
contradict the behavior that we derived for the n-period game.

Thus, we have verified the inductive hypotheses for k = n. Because we
know that all equilibria end in at most (V* + 1) periods, we know that
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after (N* + 1) steps, we will have b¥**+! = b, and the induction is com-
plete. Thus, the first price charged must (1) be an element of eV *!(b) and,
moreover, (2) be less than or equal to p¥**!, and that thereafter equilib-
rium play is uniquely determined. Thus, if an equilibrium exists, it is
unique up to the seller’s choice of an initial price (or any probability
distribution over g¥**!(b)). The argument given before the statement of
proposition 1 shows that an equilibrium does in fact exist, because given
the functions 87(p), the seller will choose to end the game in no more than
(N* + 1) periods.

APPENDIX 2
Proof of Proposition 2

To proceed, we need the following lemma.

Lemma 6. The functions B(p) and W(b¢) derived in the proof of propo-
sition 1 are equicontinuous.

Proof. We observed earlier that the modulus of continuity of 8(p) is no
greater than 1/(1 — Jg). Recall the definition of W(b¢):

W(be)= mgx{[F (b9) = F(B(p)]p + oW(B(p))}.

Now, consider W(b¢) — W(b%), where b§ > b§. Let p, and p, be the
respective maximizing prices. We claim that
W(bs) — W(bs) = (F(b5) — F(b$ )y,

because the seller could always choose to offer price p; when his beliefs
were b$, and so we have used alower bound on W(b%). However, since the
density, f(b), is bounded by f, we have

W(b$) — W(bg) < bf|b — b3).

Proofof proposition 2. Consider the sequence of games with buyer valu-
ation densities

G e n o b
fpy=4{ 11— F&" o=
0 ifb< b,

where b” — 0 as n — . Each of these games has a unique weak-Markov
equilibrium (8", W",0"). Since the family of functions (8”,W") is equi-
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continuous, it has a uniformly convergent subsequence converging to
continuous (nondecreasing) functions (8, ). For notational simplicity,
assume that (8", W) actually converge to (§,W). There are now two
distinct concepts of the limiting o. First, there is o, which is the arg max
correspondence for the seller’s optimization problem J( p,b,8, W,b); this is
monotonic and piecewise continuous, as always. Furthermore, since each
J" is Lipschitz continuous in #” and W” (in the uniform topology), J"
converges uniformly to J, and from the theorem of the maximum, the
limit points of g” are contained in o. Thus, at continuity points of g, g”
converges to .

Second, there is the 6 correspondence, defined uniquely as the solution
of

“iB) — (1 = dp)b
Op ’

where equality is the equality of sets.

Let us show that limit points of ¢” are in ¢. Suppose, in fact, that for
some b, s” € g"(b) — p. This is true if and only if g" = dz(s”+ (1 —
0g)b) — 65(p + (1 — 85)b) = g. From the definition of & given pre-
viously, p € 6(b) if and only if g € ~'(b). Consider the sequence S(g").
Since b = "(g") and the #” converge uniformly, then f(g") converges to
b. Since g" — g and p is continuous, #(g"”) — B(g), and so b = B(g), or
g € B~1(b). Thus, we can conclude that at continuity points of &, 6"
converges to ¢, and since ¢” is the convex hull of o”, that ¢ and o agree
wherever they are continuous. Finally, since ¢ and & are monotonic, they
are continuous except at countably many points, and thus ¢ is the convex
hull of 6. Therefore, the optimal seller behavior given # and W (i.e., 0) is
consistent with playing the mixed strategies in ¢, which in turn induce the
desired behavior from the buyer, and we indeed have an equilibrium.

sy =2
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CHAPTER 6

Choice of conjectures in a bargaining game
with incomplete information

Ariel Rubinstein
THE HEBREW UNIVERSITY, JERUSALEM

6.1 Introduction

The axiomatic approach to bargaining may be viewed as an attempt to
predict the outcome of a bargaining situation solely on the basis of the set
of pairs of utilities that corresponds to the set of possible agreements and
to the nonagreement point.

The strategic approach extends the description of a bargaining situa-
tion. The rules of bargaining are assumed to be exogenous, and the solu-
tion is a function not only of the possible agreements but also of the
procedural rules and the parties’ time preferences.

The aim of this chapter is to show that in the case of incomplete
information about the time preferences of the parties, the bargaining
solution depends on additional elements, namely, the players’ methods of
making inferences when they reach a node in the extensive form of the
game that is off the equilibrium path.

The solution concept commonly used in the literature on sequential
bargaining models with incomplete information is one of sequential equi-
librium (see Kreps and Wilson (1982)). Essentially, this concept requires
that the players’ strategies remain best responses at every node of decision
in the extensive form of the game, including nodes that are not expected to
be reached. The test of whether a player’s strategy is a best response
depends on his updated estimation of the likelihood of the uncertain
elements in the model. For nodes of the game tree that are reachable, it is
plausible to assume that the players use the Bayesian formula. Off the
equilibrium path, the Bayesian formula is not applicable. The formula-
tion of a game with incomplete information does not provide the descrip-
tion of how the players modify their beliefs when a “‘zero-probability”’

I would like to thank Al Roth and Asher Wolinsky for valuable comments, and
Margret Eisenstaedt, who drew the diagrams.
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event has occurred. (A zero-probability event occurs when the players
reach a node in the extensive form of the game that is off the equilibrium
path.) The concept of sequential equilibrium requires that the solution
specifies the players’ new beliefs after a zero-probability event occurs. The
new beliefs that a player adopts after a zero-probability event is called a
conjecture. The sequential-equilibrium concept also requires that a con-
jecture be the basis for continuing the updating of the player’s beliefs
unless another zero-probability event occurs, in which case the player
must choose another conjecture.

Although we have great freedom to select conjectures to support strate-
gies to be best responses, ideally the sequential-equilibrium concept
should enable selection of a unique outcome out of the set of sequential-
equilibrium outcomes. Indeed, several sequential bargaining models
reach uniqueness of the sequential equilibrium (see Sobel and Takahashi
(1983), Ordover and Rubinstein (1983), and Perry (1985)). The unique-
ness of sequential-equilibrium outcomes in sequential bargaining models
is not robust to changes in the procedural bargaining rules or the informa-
tional structure. Even in simple models such as Fudenberg and Tirole’s
(1983) two-period seller—buyer bargaining game, where only the seller
makes offers, the incomplete information about the seller’s reservation
price makes a multiplicity of equilibria possible.

In the current paper, I argue that the multiplicity of equilibria is not a
drawback either of the model or of the solution concept, but rather an
outcome of the arbitrariness of the choice of conjectures. Specification of
rulesthat the players use to choose conjectures enables us to restrict the set
of outcomes of the sequential equilibria. A comparison between the set of
sequential-equilibrium outcomes under various assumptions about the
properties of the choice of conjectures, clarifies the connection between
the choice of conjectures and the outcome of the game.

To present a more concrete discussion of the conjectures problem, I
analyze a special case of the model for bargaining over a partition of a
dollar that I presented earlier (Rubinstein (1982)). In the present version
of the model, each bargainer bears a constant cost per period of negotia-
tion. One of the players has incomplete information about the bargaining
cost of his opponent, which may be higher or lower than his own. The
inferences that the player with the incomplete information makes about
his opponent’s bargaining cost lie at the center of the following discussion.

6.2 The model

The basic model used here is a subcase of the model analyzed in Rubin-
stein (1982). Two players, 1 and 2, are bargaining on the partition of one
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dollar. Each player in turn makes an offer; his opponent may agree to the
offer (Y') or reject it (N). Acceptance of an offer terminates the game.
Rejection ends a period, and the rejecting player makes a counteroffer,
and so on without any given time limit.

LetS = [0,1]. A partition of the dollar isidentified witha number sin S
by interpreting s as the proportion of the dollar that player 1 receives.

A strategy specifies the offer that a player makes whenever it is his turn
to do so, and his reaction to any offer made by his opponent. Let F be the
set of all strategies available to a player who starts the bargaining. For-
mally, F is the set of all sequences of functions f= {f "}, where

Fortodd, f= S —§,
Forteven, f: S'*— (YN},

where S’ is the set of all sequences of length ¢ of elements of S. (In what
follows, G is the set of all strategies for a player whose first move is a
response to the other player’s offer.)

A typical outcome of the game is a pair (s,7), which is interpreted as
agreement on partition sin period . Perpetual disagreement is denoted by
(0,%).

The outcome function of the game P(f,g) takes the value (s,¢) if two
players who adopt strategies fand g reach an agreement s at period ¢, and
the value (0,) if they do not reach an agreement. The players are assumed
to bear a fixed cost per period. Player 1’s utility of the outcome (s,?) is
s — ¢t, and player 2’s utility of the outcome (s,¢) is 1 —s— c,t. The
number ¢; is player i’s bargaining cost per period. The outcome (0,%) is
assumed to be the worst outcome (utility —o). It is assumed that the
players maximize their expected utility.

Assume one-sided incomplete information. Player 1’s cost, ¢; = ¢, is
common knowledge. Player 2’s cost might be either c,, or ¢,, where c,, >
¢ > ¢, > 0. Assume that @y, is player 1’s subjective probability that player
2’scost is ¢,,, and that 1 — w, is his probability that player 2’s cost is ¢;. If
player 2’s cost is ¢,,, it is said that he is of type 2, or the “weaker” type;
if player 2’s cost is ¢, it is said that he is of type 2, or the ““stronger” type.
Consider these numbers to be small; specifically, assume that
l>c,+c+ec,.

It was shown in Rubinstein (1982) that if it is common knowledge that
player 2 is of type 2,,, then the only perfect equilibrium is for player 1 to
demand and receive the entire one dollar in the first period. If player 1
knows he is playing against 2, the only perfect equilibrium is for him to
demand and receive ¢, in the first period.

The game just described is one with incomplete information. Let



102 Ariel Rubinstein

(f.g.,h) € FX G X G be a triple of strategies for player 1, player 2,,, and
player 2., respectively. The outcome of the play of ( f,g,4) is

P(f,g,h) = (P(f.8).P(f,h)),

that s, a pair of outcomes for the cases of player 2 actually being type 2,, or
2.

The set of Nash equilibria in this model is very large. In particular, for
every partition s, the pair {(s,1),(s,1)) is an outcome of a Nash equilib-
rium (see Rubinstein (1985)).

We turn now to the definition of sequential equilibrium. Define a
belief system to be a sequence @ = (w*),—g 2.4, , Such that w® = wyand w":
S*—[0,1]. The term w'(s!, . . . , s%) is player 1’s subjective probability
that player 2 is 2,, after the sequence of offers and rejections s!, . . . ,
571, after player 2 has made the offer s? and just before player 1 has to
react to the offer s°.

A sequential equilibrium is a four-tuple {f,g,h,w) satisfying the re-
quirement that after any history, a player’s residual strategy is a best
response against his opponent’s residual strategy. The belief system is
required to satisfy several conditions: It has to be consistent with the
Bayesian formula; a deviation by player 1 does not change his own belief;
after an unexpected move by player 2, player 1 chooses a new conjecture
regarding player 2’s type, which he holds and updates at least until player
2 makes another unexpected move.

So far, the choice of new conjectures is arbitrary. In Section 6.4, several
possible restrictions on the choice of new conjectures are presented. The
study of these restrictions is the central issue of the present paper.

6.3 Review of the complete-information model

In this section, the characterization of the perfect-equilibrium outcomes
in the complete-information model (where the bargaining costs are com-
mon knowledge) is reviewed.

Proposition 1 (Conclusion 1 in Rubinstein (1982)). Assumethatc, andc,
are common knowledge. If ¢, < c,, the outcome (1,1) (i.e., player 1 gets
the whole dollar in the first period) is the only perfect-equilibrium out-
come, and if ¢; > ¢,, the outcome (¢;,1) (i.e., player 2 gets 1 — ¢, in the
first period) is the only perfect-equilibrium outcome.

Remark. Theasymmetry is due to the procedure of the bargaining. If the
size of the costs is “small,” the dependence of the bargaining outcome on
the bargaining order is negligible.
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Figure 6.1

Proof.

ASSERTION 1A. If¢, <c,, the outcome (1,1) is a perfect-equilibrium
outcome.

PROOF. Define a pair of strategies (£,3), such that
Fortodd, f'=1and §' =Y,
Forteven, 2'=1—¢,
and

f,E Y ifst=1—¢,
N otherwise.

The procedure for checking that ( £;3) is a perfect equilibrium is straight-
forward and is illustrated diagrammatically in Figure 6.1. The circled
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numbers in the diagram are the ‘“‘names” of the players who must move at
the corresponding node of the game. The edges correspond to moves in
the game. Heavy edges correspond to moves planned by the pair of strate-
gies (f,2). Light edges are deviations. Whenever the continuation of the
strategies is the same for a range of moves, one of two types of notation is
used. A light edge with a formulalike s < 1 — ¢, means that the continua-
tion is the same for every offer s satisfying the formulas < 1 — ¢,. Anarch
with a formulalike 0 < s = 1 means that the continuation of the strategies
is the same for every offer s satisfying the formula 0 = s = 1. The heavy
edge of the segment corresponds to the only offer in the range that is the
planned offer. The small solid squares designate terminal points of the
game.

ASSERTION 1B. If ¢, <¢,, the outcome (1,1) is the only perfect-equi-
librium outcome.

PROOF. Let U! be the set of all u=s—¢,(r — 1), where (s,7) is a
perfect-equilibrium outcome in a subgame starting with player 1’s offer.
Let U? be the set of all u = s — ¢,(t — 1), where (s,¢) is a perfect-equilib-
rium outcome of a subgame starting with player 2’s offer. By assertion 1A,
1eU' and 1 —¢, € U? Since player 1 always accepts an offer
s=1-¢,then 1 — ¢, = max U2

Next, it is proved that inf U?2=inf U'—c¢;. Assume that
inf U' — ¢, > inf U2 Pick u € U? suchthatu <inf U! — ¢,,and selecta
perfect equilibrium that corresponds to this w. It must be that player 2’s
first offer in this perfect equilibrium is u and that player 1 accepts it;
otherwise, u — ¢, € U'. However, player | gains if he deviates and rejects
this offer, since then he receives at least inf U!, and inf U! — ¢, > u.

Assume thatinf U' < 1. Let u € U!, u < 1, and € > 0. Pick a perfect
equilibrium that corresponds to this u. Player 2 must reject a demand by
player 1 of u + €. Thus, for every € > 0, inf U%? < u + € — ¢,, and there-
fore inf U? < inf U! — ¢,, which contradicts inf U? = inf U! — ¢,. Con-
sequently, in U' =1 and U! = {1)}.

The rest of proposition 1 is proved in similar fashion.

The players’ dilemma is now clearer. If it is common knowledge that
player 2 is type 2,,, then player 1 gets the entire dollar. If it is common
knowledge that player 2 is type 2,, then player 1 gets only c,. These are the
two extreme possible outcomes of the bargaining. Here, player 1 does not
know player 2’s identity, and the solution is likely to depend on w,. In the
rest of the chapter, we study possible ways in which the bargaining out-
come depends on player 1’s initial beliefs.
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6.4 Conjectures

The sequential-equilibrium concept allows the free choice of an arbitrary
new conjecture when a zero-probability event occurs. It seems reasonable
that adopting new conjectures is not an arbitrary process. In this section,
several possible consistency requirements for the choice of conjectures are
described.

(C-1) Optimistic conjectures

The conjectures of {f.g,h,w) are said to be optimistic conjectures if,
whenever a zero-probability event occurs, player I concludes that he is
playing against type 2, (i.e., the weaker type). Thus, a player whose con-
jectures are optimistic has the prejudgment that a deviator is type 2,,.
Such conjectures serve as a threat to player 2. Any deviation by player 2
will make player 1 “play tough.” It is shown in Section 6.6 that optimistic
conjectures support many sequential-equilibrium outcomes. In the com-
plete-information game, the (subgame) perfectness notion eliminates
many unreasonable threats. In the incomplete-information game, many
of these threats are possible, being supported by the optimistic conjec-
tures. Optimistic conjectures have often been used in bargaining literature
(see Cramton (1982), Fudenberg and Tirole (1983), and Perry (1985)).
They are very useful in supporting equilibrium outcomes because they
serve as the best deterring conjectures.

(C-2) Pessimistic conjectures

The conjectures of (f,g,h,w) are said to be pessimistic conjectures fif,
whenever a zero-probability event occurs, player 1 concludes that he is
playing against type 2, (i.e., the stronger type).

In what follows, denote by =, =,,, and =, the preferences of players 1,
2., and 2 on the set of all lotteries of outcomes.

(C-3) Rationalizing conjectures
The conjectures of { f,g,h,w) are said to be rationalizing conjectures if

1. Whenever w*~%(s*"2) # 1, (s%,1) =, (s*"1,0), and (s*,0) >, (s%,1), then
w(s") =0, and,
2. In any other zero-probability event, w/(s*) = w'=2(s'72).

In order to understard condition (1), imagine that player 1 makes the
offer s*~!, and player 2 rejects it and offers s?, which satisfies that
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(s%1) =, (s*"1,0) and (s71,0) >, (s%,1). That is, player 2 presents a coun-
teroffer that is better for type 2, and worse for type 2,, than the original
offer, s*~1. Then, player 1 concludes that he is playing against type 2,.

The rationalizing conjectures enable player 2, to sort himself out by
rejecting s*~! and demanding an additional sum of money that is greater
than ¢, but less than c,,.

The underlying assumption here is that a player makes an offer hoping
that his opponent will accept it. Thus, making an offer s‘, where
(s*7L,0) >, (s,1) and (s%,1) =, (s*~1,0), is not rational for type 2,,, and is
rational for type 2,. Therefore, player 1 adopts a new conjecture that
rationalizes player 2’s behavior.

By condition (2), in the case of any other unexpected move made by
player 2, player 1 does not change his prior.

The analysis of a weaker version of the rationalizing requirement for a
more general framework of the bargaining game with incomplete infor-
mation is the issue of a previous paper (Rubinstein (1985)).

There are many reasonable requirements on conjectures that are not
discussed here. Let me briefly mention three other requirements found in
the literature.

(C-4) Passive conjectures

The conjectures of { f,g,h,w) are passive if w'(s’) = w'~*(s~?) whenever
neither type 2,, nor type 2, plans to reject s7! and to offer s* after the
history s/~2 and after player | offered the partition s¢~!. In other words,
unless the Bayesian formula is applicable, player 1 does not change his
beliefs.

It should be noted that in complete-information game-theoretic
models, 1t is usually assumed that players react passively about the basic
conjecture, that 1s, that all of the players behave rationally. Even when a
player makes a move that is strongly dominated by another move, all of
the other players continue to believe that he is a rational player.

(C-5) Monotonic conjectures

The conjectures of (f,g,hw) are said to be monotonic if, for every
st .., s tand x < y(teven), w'(sl, ..., s Ly = wi(s!, ..., s LX)
In other words, the lower player 2’s offer, the greater player 1’°s probability
that he is playing against type 2,.
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(C-6) Continuous conjectures

The belief system  is said to be continuous if, for every t, w'(s !, . . . , s9)is
a continuous function,

Note that although the preceding consistency requirements are defined
in terms of the present bargaining game, the definitions may be naturally
extended to a wider class of games. In particular, it is easy to define the
analogs of these properties for seller —buyer games in which the buyer’s or
the seller’s reservation price is unknown.

6.5 Several properties of sequential equilibrium
in this model

The following several properties of sequential equilibrium in this model
are valid without further assumptions about the choice of conjectures.

Proposition 2. In any sequential equilibrium,

1. Whenever it is player 2’s turn to make an offer, players 2,, and 2, make
the same offer (although they might respond differently to player 1’s
previous offer);

2. If player | makes an offer and player 2, accepts it, then player 2,, also
accepts the offer;

3. If player 1 makes an offer, x, that player 2,, accepts and player 2, rejects,
then player 2, makes a counteroffer, y, which is accepted by player 1
where x—¢=zy=x—c,.

Outline of the proof (For a full proof, see Rubinstein (1985)).

1. Assume that there is a history after which players 2,, and 2, make two
different offers, y and z, respectively. After player 2 makes the offer,
player 1 identifies player 2’stype. Player | accepts z because otherwise he
gets only ¢, in the next period. If in the sequential equilibrium player 1
rejects the offer y, then he would get the whole dollar in the next period
and player 2,, does better by offering z. If player 1 accepts both offers, y
and z, the type that is supposed to make the higher offer (the worst for
player 2) deviates to the lower offer and gains.

2. Note that if player 2, accepts player 1’s offer and player 2, rejectsit, then
player 2, reveals his identity and player 1 receives the whole dollar in the
next period. Player 2,, gains by accepting player 1’s offer.

3. If player 2,, accepts x and player 2, offers y, player 1 identifies player 2
and accepts y. Thus, if y < x — ¢,,, player 2,, does better by rejecting x;
and if y > x — ¢, player 2, does better by accepting x.
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6.6 Pessimistic and optimistic conjectures
The following two propositions show how dramatically the equilibrium
outcomes vary under different methods of choosing conjectures.

Proposition 3. In any sequential equilibrium with pessimistic conjec-
tures, the outcome is

. ¢ te

(e 1)(e551)) if o < r e
2C e, +c¢
{e,»1)40,2)) lfC TCT 00> e

Proof. Figure 6.2 illustrates sequential equilibrium with pessimistic
conjectures in both cases. By proposition 2, both types of player 2, 2,,and
2,, always make the same offer. In sequential equilibrium with pessimistic
conjectures, the offer must be 0 and has to be accepted by player 1;
otherwise, player 2 would deviate, offering some small positive €. This
persuades player 1 that player 2 is type 2,, and player 1 accepts the offer,
Since player 1 accepts the offer of O in the second round, the only two
possible outcomes of a sequential equilibrium are ((c,,1),(0,2)) and
{(cg,1),(c,1)). The exact outcome is determined by the relationship be-
tween w, and (¢, + ¢)/(c,, + ¢).

Proposition 4.

1. If wg = 2¢/(c + ¢,), then, for every 1 — ¢ + ¢, = x* = ¢, {(x*,1),(x*,1)}
is a sequential-equilibrium outcome with optimistic conjectures.

2.1 @y>(c,+ )f(c, ), then for every 1—c+e=x*=¢,,
{(x*,1),(x* = ¢,,2)) is a sequential-equilibrium outcome with optimis-
tic conjectures.

Proof.

1. Figure 6.3 is a diagrammatic description of a sequential equilibrium
with optimistic conjectures whose outcome is ((x*,1),(x*,1)>. The sym-
bol 1 < 2, stands for the continuation of the equilibrium as in the
complete-information game with players 1 and 2,,. Note that adeviation
by player I, by demanding more than x*, is not profitable since the most
that he can hope for from a deviation is

Wox* — ¢+ ¢,) + (1 — @p)(x* — 2¢) = x* + wye,, — (2 — W) = x*.

The restriction x* < 1 — ¢ + ¢, is needed for assuming that player 2, will
not prefer to reject the offer x*.
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1<—>2w \ /

Figure 6.3

2. Figure 6.4 is an illustration of a sequential equilibrium with opti-
mistic conjectures whose outcome is ((x*,1),(x* — ¢,,.2)). Note that if
player 1 demands only x* —c,+ ¢,, he does not gain, since if
(c+c)(c+c,) <y,

x*—c¢,t+c, <wex*+ (1 — wdx*—c,— o).

We have shown that optimistic conjectures turn almost every outcome
into a sequential-equilibrium outcome. A very small @, is sufficient to
support a sequential equilibrium in which player 1 receives almost as
much of the dollar as he would receive had he known with certainty that
he was playing against player 2,,. On the other hand, pessimistic conjec-
tures shrink the set of sequential equilibrium outcomes such that player 1
receives virtually nothing, since player 2 is always able to persuade him
that he is type 2;.



Choice of conjectures in a bargaining game 111

/ 1+ 2,

Figure 6.4

The sharp differences between the set of sequential-equilibrium out-
comes under pessimistic and optimistic conjectures is no coincidence. It
points to a sensible connection between conjectures and the bargaining
outcome: Optimism strengthens player 1’s position by limiting player 2’s
prospects of deviation.

6.7 Rationalizing conjectures

The next proposition states that for almost all w,, there is a unique (C-3)
sequential-equilibrium outcome. If @, is small enough (under a certain
cutting point, @*), player 1 receives almost nothing. If e, is high enough
(above w*), player 1 receives almost the entire dollar.
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Figure 6.5

Proposition 5. For any sequential equilibrium with rationalizing con-
jectures,

L. If g > 2¢/(c + ¢,), its outcome is {(1,1),(1 —¢,,2);
2. If 2¢/(c + ¢,) > @y > (¢ + ¢)/(c + ¢,), its outcome is {(c,,,1),(0,2));
3. If (¢ + ¢)/(c + ¢,) > @y, its outcome is {(c,,1),(c;, 1)),

The proof of this proposition follows the basic logic of the main theorem
in Rubinstein (1985). Here, many simplifications are possible because the
time preferences are very simple. In this review, I will settle for presenting
a sequential equilibrium with the outcome ((1,1),(1 — ¢,,,2)) for the case
where w, > 2¢/(c + ¢,,). Figure 6.5 describes this sequential equilibrium.

Player 1 offers the partition 1, player 2,, accepts the offer, and player 2,
rejects it and offers 1 — ¢,,. The offer 1 — ¢, persuades player 1 that he is
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playing against type 2,, and he accepts the offer. Even if player 1 demands
x <1, player 2, rejects the offer x (unless x = ¢;) and makes the offer
max{0,x — ¢}, which persuades player 1 that player 2 is type 2, . If player 2
offers player 1 less than x — ¢,,, then player 1 rejects it without chang-
ing his subjective probability, w,. The rejection is optimal for player 1
because wyo(l —¢)+ (1 —we)l —2c—¢,)>1—¢,, since wy>
2c/(c + c,).

Remark. The characterization of sequential equilibrium remains valid
when we replace (C-3,b) with a weaker condition, (C-3,b*).

(C-3,b* Monotonicity with respect to insistence

The conjectures of ( f,g,h,w) are said to be monotonic with respect to
insistence if, whenever @'~%(s*~2) # 1, and player 2 rejects an offer s'~!
and offers the partition s* satisfying that for both types, (s’,1) is better than
(s*71,0) (ie., st = st~ 1 —¢,), then w'(s") = w'~(s'72).

The role of condition (C-3,b*) is to prevent player 1 from “threaten-
ing” player 2 that insistence will increase player 1’s probability that he is
playing against player 2,,.

Remark: 1 have little to say about sequential equilibrium with passive
conjectures. However, the following partial observations indicate a
strengthening in player 1’s position relative to sequential equilibrium
with rationalizing conjectures. This occurs because, with rationalizing
conjectures, player 2, could identify himself only by rejecting an offer x
and making a new offer x — ¢,,. With passive conjectures, it might also be
that in equilibrium, player 2, identifies himself by rejecting x and offering
a certain y, satisfying x — ¢, > 3, > x — ¢,

Proposition 6. The following are possible outcomes of sequential equi-
librium with passive conjectures:

1. If wg = ¢/c,,, {(1,1),(1 — €2)) is a sequential-equilibrium outcome for
/g = €=c,.

2. fwy = 2¢/(c + ¢,,), either {(c,,, 1),(0,2)) or {(c,1),(c;, 1)) is a sequential-
equilibrium outcome.

The proofis omitted since it repeats ideas that appear in the construction
of equilibria in previous proofs.
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6.8 Final remarks

The results in Sections 6.6 and 6.7 reveal systematic differences between
bargaining outcomes due to systematic differences in the choice of con-
jectures. What has been done here is partial in many ways:

1. The informational structure is very special: one-sided uncertainty and
only two possible types.

2. A special class of time preferences (fixed bargaining costs) is used.

3. A special bargaining problem is studied: partition of a dollar.

4. Only three sets of conjectures are analyzed.

However, I believe that the results indicate the spirit of more general
results pertaining to the influence of the choice of conjectures on the
bargaining outcome.

It seems that the next important task in extending the analysis is a
systematic study of the choice of conjectures. Interesting partial orderings
on conjectures—choice methods are likely to derive interesting compara-
tive static results.
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CHAPTER 7

Analysis of two bargaining problems with
incomplete information

Roger B. Myerson
NORTHWESTERN UNIVERSITY

7.1 Introduction

In analyzing a cooperative game with incomplete information, three
kinds of solution concepts should be considered. First, we should charac-
terize the set of coordination mechanisms or decision rules that are feasi-
ble for the players when they cooperate, taking account of the incentive
constraints that arise because the players cannot always trust each other.
Second, we should characterize the mechanisms that are efficient within
this feasible set. Efficiency criteria for games with incomplete information
have been discussed in detail by Holmstrém and Myerson (1983). Third,
we should try to identify equitable mechanisms on the efficient frontier
that are likely to actually be implemented by the players if they are
sophisticated negotiators with equal bargaining ability. (We might also
want to consider cases where one player has more bargaining ability than
the others, as in principal - agent problems.) For this analysis, a concept of
neutral bargaining solution has been axiomatically derived by Myerson
(1983, 1984).

In this chapter, two bilateral trading problems with incomplete infor-
mation are analyzed in terms of these three solution concepts. Sections
7.2 through 7.4 consider the symmetric uniform trading problem, a sim-
ple problem in which the buyer and seller each have private information
about how much the object being traded is worth to him. This problem
was first studied by Chatterjee and Samuelson (1983), and was also con-
sidered by Myerson and Satterthwaite (1983). Sections 7.5 and 7.6 con-
tain a discussion of the lemon problem, in which only the seller has private
information, but the value of the object to the buyer may depend on this
information. Akerlof (1970) first studied a version of the lemon problem,
in a market context, and Samuelson (1984) characterized the seller’s ex
ante optimal mechanisms. Section 7.7 contains the more technical proofs
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relating to the neutral bargaining solutions. Readers who are not familiar
with the earlier papers on this subject may prefer to omit this final section.

7.2 The symmetric uniform trading problem:
Feasibility

In this section and the next two, a bargaining problem is considered in
which there is only one seller (trader 1) and one potential buyer (trader 2)
for a single indivisible object. Both buyer and seller have risk-neutral
utlllty for money. We let V denote the value of the object tothe seller and
V2 denote the value to the buyer. We assume that V and V are indepen-
dent random variables, and that each is unlformly dlstnbuted over the
interval from 0 to 1 (in some monetary scale). Thus, the bargaining
situation may be termed the symmetric uniform trading problem.

We assume that each trader i knows his own valuation 7, at the time of
bargaining, but that he considers the other’s valuation as a random vari-
able. Furthermore, neither trader can observe directly the other’s valua-
tion. The traders can communicate with each other, but each would be
free to lie about the value of the object to him, if he expected to get a better
price by doing so.

A direct trading mechanism is one in which each trader simultaneously
reports his valuation to a mediator or broker, who then determines
whether the object is transferred from seller to buyer and how much the
buyer must pay the seller. A direct mechanism is thus characterized by
two outcome functions, denoted by p( -, )and x( -, - ), where p(v,,0,) is
the probability that the object is transferred to the buyer and x(v, ,v,)is the
expected payment to the seller, if v, and v, are the reported valuations of
the seller and buyer, respectively. A direct mechanism is (Bayesian) in-
centive compatible if honest reporting forms a Bayesian/Nash equilib-
rium. That is, in an incentive-compatible mechanism, each trader can
maximize his expected utility by reporting his true valuation, given that
the other trader is expected to report honestly.

We can, without loss of generality, restrict our attention to incentive-
compatible direct mechanisms. This is possible because, for any Bayesian
equilibrium of any bargaining game, there is an equivalent incentive-
compatible direct mechanism that always yields the same outcomes
(when the honest equilibrium is played). This result, which is well known
and very general, is called the revelation principle. The essential idea is
that, given any equilibrium of any bargaining game, we can construct an
equivalent incentive-compatible direct mechanism as follows. First, we
ask the buyer and seller each to confidentially report his valuation. Then,
we compute what each would have done in the given equilibrium strate-
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gies with these valuations. Finally, we implement the outcome (i.e.,
transfers of money and the object) as in the given game for this computed
behavior. If either individual had any incentive to lie to us in this direct
mechanism, then he would have had an incentive to lie to himself in the
original game, which is a contradiction of the premise that he was in
equilibrium in the original game. (For more on this revelation principle,
see Myerson (1979).)

Given a direct mechanism with outcome functions( p,x), we define the
following quantities:

1 1

x(v) = f x(vy,t,) dty, X(v) = f x(t,,v) dt,
0

1 1

pi(v) = f p(v,t) dty, Dovy) = fp(tl,vz) de,,
0 0

U(v,,p,x) = x(v,) — v, p\(vy), Up(v,,p,x) = 0y Do(0,) — X5(1y).

Thus, U,(v,, p,x) represents the expected profits or gains from trade for
the seller if his valuation is v,, since x,(v,) is his expected revenue and
Di(v) is his probability of losing the object given ¥, = v,. Similarly,
U,(v,, p,x) 1s the expected gains from trade for the buyer, x,(v,) is the
buyer’s expected payment, and p,(v,) is the buyer’s probability of getting
the object, if his valuation is v,.

In this formal notation, (p,x) is incentive compatible if and only if

Ui(v,, px) = x,(t;) — v, py(t) and Uy(vy, p.X) 2 v, py(t,) — X(ty)

for every v, v,, t,, and t, between 0 and 1. These two inequalities assert
that neither trader should expect to gain in the mechanism by reporting
valuation ¢; when v, is his true valuation.

We say that a mechanism (p,x) is individually rational if and only if
each trader gets nonnegative expected gains from trade given any valua-
tion, that is,

Uf,px)=0 and  Uyv,,p,x) =0

for every v, and v, between 0 and 1. Since each individual already knows
his valuation when he enters the bargaining process and neither individ-
ual can be forced to trade, a feasible mechanism should be individually
rational in this sense, as well as incentive compatible. We say that a
mechanism is feasible if and only if it is both individually rational and
incentive compatible.
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Many bargaining games satisfy a stronger individual-rationality condi-
tion: that neither individual ever consents to a trade that leaves him worse
off ex post. Formally, this condition is given as

X(,0) =0 p(v,0) =0 and v p(0y,02) — X(v,0) =0
for every v, and v,. If (p,x) satisfies this condition, then we must have
U(l,px)=0 and  U,(0,p,x)=0.

That is, the seller expects no gains from trade if ¥, = 1, since he knows
that the buyer’s valuation is lower; and, similarly, the buyer expects no
gains from trade if 7, = 0. We may say that a feasible mechanism (p,x) is
normal if and only if U,(1,p,x) = 0 = U,(0, p,x).

The following proposition characterizes completely the set of feasible
mechanisms for the symmetric uniform trading problem.

Proposition 1. Given any function p: [0,1]X[0,1] — [0,1], there exists
some function x( -, - ) such that (p,x) is a feasible mechanism for the
symmetric uniform trading problem if and only if p;(-) is a weakly
decreasing function, p,( - ) is a weakly increasing function, and

1 1

0= f (v; — v, — .5)p(v, ,v,) dv, dv,. (7.1)
0 0

Furthermore, x can be constructed so that (p,x) is normal if and only if
(7.1) is satisfied with equality. In general, for any incentive-compatible
mechanism (p,x),

1 1
Ul(l’p’x) + UZ(O’p’x) = 2 f f (UZ - Ul - 5)p(vl ’UZ) dvl dUZ (7'2)
0 0

and, for every v, and v,,
1

Uy(vy,px) = Uy(1,px) + f pi(sy) ds,, (7.3)

U

v2

U,(v;,0.x) = Uy(0,p,x) + f D(sy) ds,. (7.4)
0

Proof. This proposition is a special case of theorem | of Myerson and
Satterthwaite (1983).
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It is straightforward to check that

1 vy
J‘J‘(Dz—vl_%) dvl dvz=0.
0 o

Thus, conditional on the event that ¥, = ¥, (so that the individuals have
something to gain from trading), the expected value of (¥, — ¥,) equals 4.
However, condition (7.1) asserts that, condigional~on the event that a
trade actually occurs, the expected value of (7, — V) must be at least 4,
for any feasible mechanism. Thus, it is not p0551b1e to construct a feasible
mechanism in which trade occurs if and only if ¥, = ¥,.

Condition (7.1) has experimentally testable implications. If we observe
many instances of the symmetric uniform trading problem, with V; and
172 chosen independently each time, and with each buyer and seller facing
each other at most once (to avoid the complications of a repeated game),
then the average difference (¥, — 7)) in those instances where trade
occurs should be close to 4. This prediction holds no matter what social
conventions regulate the negotiation process. We need to assume only
that buyer and seller in each instance are playing some Bayesian/Nash
equilibrium of some bargaining game in which neither individual ever has
to trade at a loss.

To interpret proposition 1 geometrically, consider Figure 7.1. The
dashed line represents the set of points where v, = v, + 4. If we draw any
increasing curve in the unit square such that the center of gravity of the
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region above the curve lies on or above the dashed line, then there exists
some feasible mechanism such that trade occurs if and only if (V, 1) lies
above the curve. For a normal mechanism, the center of gravity must be
on the dashed line.

7.3 The symmetric uniform trading problem:
Efficient mechanisms

If two individuals can communicate effectively in a bargaining problem,
then we may expect them to use a trading mechanism that is efficient, in
the sense that there 1s no other incentive-compatible mechanism that they
both would surely prefer. That is, we may say that an incentive-compati-
ble mechanism ( p,x) is efficient if and only if there does not exist any other
incentive-compatible mechanism (5,£) such that

U,,p) > Uyv,,px) and  Uxv,,p,%) > Uy(v,,p,x)

for every v, and v, between O and 1. In the terminology of Holmstrém and
Myerson (1983), this concept of efficiency corresponds to a weak form of
interim incentive efficiency.

Using a standard separation argument, we can show that this definition
is equivalent to the following, more tractable characterization. A given
incentive-compatible mechanism is efficient if and only if there exist two
weakly increasing functions L,: [0,1] — [0,1] and L,: [0,1] — [0,1], with
L,(0) = L,0)=0and L,(1)= L,(1) = 1, such that the given mechanism
maximizes

1 1

f U\(v,,p,x) dL(v,) +f Uy(v2,p,x) dLy(v,) (7.5)

0 0

over all incentive-compatible mechanisms (p,x). (It can be easily shown
that L,(1) — L,(0) must equal L,(1) — L,(0), because otherwise a lump-
sum transfer of money could make (7.5) arbitrarily large.) If L, and L, are
differentiable, with L] = ¢,, then the Riemann - Stieltjes integrals in (7.5)
may be rewritten as

1 1

f U\(v,,p,x)€,(v)) dv, +f U\(vy,p,x)€,(v,) dv,.
0 0

The following proposition gives us a direct computational procedure for
verifying efficiency of a mechanism.
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Proposition 2. Suppose that (p,x) is an incentive-compatible mecha-
nism for the symmetric uniform trading problem and that L,(*) and
L,(-) are weakly increasing functions such that L,(0) = L,(0) =0 and
L,(1)= L,(1) = 1. Suppose also that, for every v, and v, between 0 and 1,

oo 0y = |1 1200 Li(0) < 20, = Ly(o),
Y2 =10 if 20, — Li(v) > 20, — Lyvy).

Then, (p,x) is efficient.

Proof: By proposition 1, if (p,x) is incentive compatible, then
1 1

f Ui(v,,p,x) dL\(v,) + f U\(v,p,x) dLy(v;)

0

11
=U(1,p.x) + f fﬁl(sl)dsl dL,(v)) + U0, p.x)
0 p

1 v
+ f fﬁz(sz) ds, dLy(v,)
0 o
1 1

= Ui(1,p.x) + Uy(0,p,x) + le(Sl)ﬁz(Sl)dsl + f (1 = Ly(5,))(s;) dis;
0

0

= f f (2v, = 2v, — )p(v,,v,) dv, dv, + f f (Ly(sy)
0 o

’ ‘1(') 1 — Ly(s))p(s,,5,) ds, ds;
= f f (v, — Ly(vy)) — 2v, — L(v\ )] p(v,,0,) dv,, dv,.
0 o

The conditions in proposition 2 imply that p maximizes this double
integral over all functions from [0,1}X[0,1] to [0,1].

Let us now consider three specific mechanisms that were studied by
Chatterjee and Samuelson (1983). The first mechanism corresponds to a
game in which the seller has the authority to demand any price for his
object, and then the buyer can either take it or leave it. The seller’s optimal
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price in thisgameisq, = (1 + ¥,)/2, which maximizes his expected profit
(1 — g,)(g, — V). Thus, this mechanism is represented by (p',x!), where

,

1 if0221+vl,
171(1)1,1)2)=4
. 1+
0 ify, < v‘;
L 2
l-I2-vl ifvzzl-;vl,
x(vy,0)) =
0 ifvz<l+vl;
L 2

It is straightforward to verify that (p',x!) is efficient, using proposition 2
with

Ley=u  ad  Lea={0 HEZ0
Figure 7.2 shows the trading region for this mechanism (p',x!).

The second mechanism corresponds to a game in which the buyer can
commit himself to any offer price for the object, and then the seller can
only accept it or reject it. The buyer’s optimal price in this game is

=TV >/2, which maximizes his expected profit g,( V2 g,). Thus, this
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mechanism is represented by (p2,x?%), where

.
1 if% =,
Poo)={
0 ifZ<u;
. 2 7
322 if%Z =0,
xl(vl 902) = v
0 if2<y,.
L 2 7
To verify that (p2,x?) is efficient, use proposition 2 with

0 ifo, <1,
1 ifo, = 1.

Figure 7.3 shows the trading region for (p%,x2).

The third mechanism corresponds to a game in which the seller and
buyer announce a bid price simultaneously. If the seller’s bid islower than
the buyer’s bid, then the buyer gets the object for the average of the two
bids. On the other hand, if the seller’s bid is higher than the buyer’s bid,
then there is no trade. Chatterjee and Samuelson (1983) have shown that
the equilibrium bids for this game are g, =4V, + 4 and g, =4V, + f5.

Ly(v)=v, and Ll(vl)={



124 Roger B. Myerson
Note that ¢, = ¢, if and only if ¥, = ¥, + 4. Thus, this mechanism is
represented by (p3,x3), where
1 ifv,zo +4
3 = 2 1 H
P(v102) {0 if v, < v, + 4,

v, t+ov,+4
xX3vy,0,) = 3
0 ifv,<v,+4.

ifv,=v +14,

To verify that (p3,x?) is efficient, use proposition 2 with

v, ifo, <1,

L) = {% l if vi =1,
_fo if v, = 0,
Ly(vy) = {§v2 +4 ifu,>0

Figure 7.4 shows the trading region for (p3,x3).

Myerson and Satterthwaite (1983) showed that ( p3,x3) maximizes the
expected sum of the two traders’ profits over all feasible mechanisms. To
verify this, let L, and L, be as in the preceding paragraph, and observe that

1 1

f U,(v,,p.x) dL(v;) +f Uy(v,,p,x) dLy(v;)

0 0
1 1

2
= 3 f Ul(vl 9p9x) dvl + f UZ(DZ 9p9x) dv2

0 0

1 1
+ —é_ U1(19p9x) + 5 U2(09p9x)

The expression in brackets may be interpreted as the Lagrangian function
for the problem of maximizing the expected sum of the traders’ profits,
when we give a shadow price of 4 to each of the individual-rationality
constraints U;(1,p,x) =0 and U,(0,p,x) = 0. Since (p3,x?) maximizes
this expression over all incentive-compatible mechanisms (by the proofof
proposition 2) and satisfies these two individual-rationality constraints
with equality, it maximizes the expected sum of profits over all feasible
mechanisms.
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7.4 The symmetric uniform trading problem:
Neutral solutions

Let us suppose now that the seller and buyer in the symmetric uniform
trading problem can negotiate face to face (perhaps with some time limit)
to try to determine a mutually acceptable price for the object. In a real-
world setting, such negotiations would be much more complicated than
the three simple games discussed in the preceding section. In real negotia-
tions, each trader’s strategy is a plan for making a sequence of demands,
offers, and arguments, which may be chosen from the infinite richness of
human language. Obviously, we have no simple mathematical model of
the traders’ strategy sets in such face-to-face negotiations. However, if one
could construct a realistic model of face-to-face negotiations as a nonco-
operative game in strategic form, any equilibrium of the model would still
correspond to some feasible mechanism, by the revelation principle.
Thus, instead of trying to model the negotiation process as a game in
strategic form, we may try to model it as a direct mechanism. That is, by
analyzing the various incentive-compatible mechanisms, we may find
one that is a realistic description of face-to-face negotiations.

A concept of neutral bargaining solutions has been defined by Myerson
(1984) for general bargaining problems with incomplete information.
This solution concept generalizes Nash’s (1950) bargaining solution, and
is based on axioms of equity, efficiency, and independence of irrelevant
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alternatives. For the symmetric uniform trading problem, this solution
concept identifies a new efficient mechanism, different from the three
mechanisms that were discussed in the preceding section. However, be-
fore we consider this mechanism and argue why it may be a good model of
face-to-face negotiations for this symmetric uniform trading problem, let
us reconsider the mechanism (p3,x3) discussed in the preceding section.

At first glance, (p3,x3) seems to have many good properties to recom-
mend it as a bargaining solution for symmetric uniform trading. As we
have seen, (p3,x?)is efficient. It treats the two traders symmetrically. It is
also ex ante efficient, in the sense that, among all feasible mechanisms for
the symmetric uniform problem, (p3,x3) maximizes the sum of the two
traders’ ex ante expected gains from trade. Thus, if the traders could
commit themselves to a mechanism before either learns his own valuation
Vi, then the best symmetric mechanism for both would be (p: 3 x3).

However, each trader already knows his actual valuation V; when he
negotiates, and this is not assumed to be a repeated game. Therefore, each
trader cares only about his conditionally expected gains given his actual
valuation. Ex ante expected gains are not relevant to the actual traders
during negotiations, so ex ante efficiency should be irrelevant to our
theory of negotiations. In fact, if the seller’s valuation is higher than .75,
then the mechanism (p3,x?3) is among the seller’s least preferred mecha-
nisms, since U,(v,,p3x3%) = 0 for all v, =2 .75.

Suppose, for example, that the seller’s valuation is 171 = 8, and that he
is negotiating with a buyer who wants to play the simultaneous-bid split-
the-difference game with the equilibrium that is equivalent to (p3,x3).
The seller knows that he has nothing to gain by playing this game, since
the buyer will never bid above .75. Thus, the seller has nothing to lose by
refusing to play by its rules, and instead trying to make a nonnegotiable
first-and-final offer to sell at price .9. The buyer may be antagonized by
such an arrogant “Boulware’ strategy, but if V, = .9, there should be at
least some positive probability that the buyer would accept. Thus, the
seller would be strictly better off than in the mechanism (p3,x3).

Similarly, Uy(v,,p3x3) = 0 if v, = .25, and so the buyer would have
nothing to lose by refusing to participate in the (p3x3) mechanism and
instead trying to make a nonnegotiable first-and-final offer to buy at some
low price. Thus, the mechanism that accurately describes the real negotia-
tion process should have more trade occurring when ¥, = .75 or ¥, < .25
than in the (p3,x%) mechanism. To satisfy the “‘center-of-gravity” condi-
tion (7.1) of proposition 1, the mechanism must also have less trade than
(p3,x%) under some other circumstances, when V, and V, are in the
middle of their range.

The following mechanism (p*,x*) satisfies the conditions for a neutral
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bargaining solution from Myerson (1984), and it differs qualitatively
from (p3,x3) exactly as described previously:

4 — 1 ifl)223l)|0r3l)2—2201,
pv1,0) {0 if v, < 3v; and 3v, — 2 < v,

4
p (01’02)02 if v, =1- vy,
x4, ,0,) = 2
12Y2 4
p (01,02;(1 +v) ifo,>1—0,.

Figure 7.5 shows the trading region for (p*,x*). (The kink in the boundary
of the trading region is at (.25,.75).)

It is straightforward to check that this neutral mechanism (p*x*) is
incentive compatible and individually rational. To verify that (p4,x*) is
efficient, use proposition 2 with

_fo ifo, <3,

L"”"‘{gv.—% if o, = &
v, ifv,=<3
Lz("z):{%z ifv, > 2.

We say that the seller is in a strong bargaining position if V,iscloseto 1,
since he has very little to lose by not trading. Similarly, we say that the
buyer is in a strong bargaining position if V, is close to 0. The formula for

(7.6)
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x*can then be interpreted as follows. If I, < 1 — I7.l ,then thebuyerisina
stronger bargaining position than the seller (since ¥, is closer to O than 171
isto 1). In this case, if trade occurs, then it takes place at price 172 /2, which
is the buyer’s optimal first-and-final offer, as in (p2,x2). If ¥, > 1 — V|,
then the selleris in a stronger bargaining position than the buyer, and any
trade is at the seller’s optimal first-and-final offer (1 + ¥,)/2, asin (p!,x!).
Thus, if the seller is stronger than the buyer, the neutral bargaining solu-
tion (p*,x*) resembles the mechanism (p',x!), in which the seller controls
the price, except that the trading region is slightly smaller (compare the
upper wedge in Figure 7.5 with the form of Figure 7.2). Similarly, if the
buyer is stronger than the seller, the neutral bargaining solution (p*,x*)
resembles the mechanism (p2,x2), in which the buyer controls the price,
except that the trading region is again slightly smaller (compare the lower
wedge in Figure 7.5 with the form of Figure 7.3).

The neutral bargaining-solution concept of Myerson (1984) is meant
to be applied to two-person bargaining problems with incomplete infor-
mation in which the two players have equal bargaining ability. Here,
bargaining ability means the ability to argue articulately and persuasively
in the negotiation process. Myerson (1983) defined a theory of solutions
for cooperative games with incomplete information in which one individ-
ual has all of the bargaining ability. In the terminology of that paper, if the
seller had all of the bargaining ability, then (p',x!) would be the seller’s
neutral optimum (because it is undominated for the seller and is safe, in
the sense that it would be incentive compatible and individually rational
even if the buyer knew the seller’s valuation). Similarly, (p2,x2) would be
the buyer’s neutral optimum if he had all of the bargaining ability.

Thus, the neutral bargaining solution (p*,x*)is a first illustration of the
following important property, which we may call arrogance of strength. If
two individuals of symmetric bargaining ability negotiate with each other,
but one individual has a surprisingly strong bargaining position (i.e., the
range of agreements that would be better for him than the disagreement
outcome is smaller than the other individual expects), then the outcome
of the neutral bargaining solution tends to be similar to what would have
been the outcome if the strong individual had had all of the bargaining
ability, except that the probability of disagreement (no trade) is higher.

The proofthat (p*,x*) is a neutral bargaining solution for the symmet-
ric uniform trading problem is given in Section 7.7. However, it may be
helpful to discuss here the essential properties of (p#,x*) that identify it as
a bargaining solution. The neutral bargaining solutions were defined by
Myerson (1984) using axioms that generalize the axioms of Nash’s (1950)
bargaining solution. Then, in a theorem, it was shown that these neutral
bargaining solutions can also be characterized by two properties: effi-
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ciency and virtual equity. The efficiency property has already been dis-
cussed, but the virtual-equity property needs more explanation.

Given any L, and L, as in proposition 2, we define functions W, and
W,, respectively, by

Wi(v) = 2v, — L\(v)) and Wy(v;) = 2v, — Ly(vy).

We call Wi(v;) the virtual valuation of the object to trader i if v; is his true
valuation. For L, and L, as in (7.6), the virtual valuations are

2, if v, <4,
Wi(v,) =
! ! M‘—l lf vl => *,
3 7.7)

_ 13 ifv, =4,
Wiva) {21)2 1 if,>3

By proposition 1, for any feasible mechanism there must be a positive
probability of negotiations ending without a trade when the object is
worth more to the buyer than to the seller. Such a conclusion may seem
paradoxical if the traders have the option to continue negotiating. Why
should they stop negotiating when they know that there is still a possibility
of mutual gains from trade? One possible explanation is that each trader i
deliberately distorts his preferences in bargaining, in response to the
other’s distrust, and acts as if the object were worth the virtual valuation
WLV, to him, instead of the actual valuation V. (In (7.7), W,(v,) = v,
and W,(v,) = v,, and so the seller is overstating and the buyer is under-
stating the object’s value.) The mechanism (p*,x*) has trade occurring if
and only if W,(V,) = W,(V,); thus, there is no possibility of further virtual
gains from trade after (p4,x*).

Of course, any efficient mechanism that satisfies proposition 2 would
satisfy a similar property (which we may call virtual ex-post efficiency) in
terms of some other virtual valuation function. However, (p4,x?) is also
virtually equitable, in terms of the same virtual valuations (7.7) that make
it virtually ex post efficient. To see this, consider any v, = 4. If the seller’s
true valuation is v,, then his conditionally expected virtual gains in
(p*x*) are

1

1

1+ 2v, + 1
f (x4(v1,0,) = Wi (0)p*(vy,0)) dv, = f ( P o - vl3 ) dv,
0

(01+2)/3
= (1 —vy)?
18 °
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which is equal to his conditional expectation of the buyer’s virtual gains in
(p*x%):

1

2v,— 1) —
f (Wa0a)p*(01,02) — X%(01,0,)) dv, = f <( : )2 - vl) dv,
0

(r1+2)/3
— (1 =)
18

Similarly, if ¥, = v, < %, then the buyer’s conditional expectation of his
own virtual gains in (p*,x*4),
02/3

20, v, _ ()
f<3 2)d”' 18

0

is equal to his conditional expectation of the seller’s virtual gains,
02/3

U _ ()
f(Z v,)dvl— TR

0

For v, = 4 orv, = 4, these equalities do not hold, but L, and L, from (7.6)
are constant over these intervals, so that the corresponding objective
function (7.5) puts no weight on these valuations. Thus, with respect to
the virtual valuationsin (7.7), ( p*,x*)is both virtually ex post efficient and
virtually equitable, except for some weak types that get no weight in the
corresponding objective function. These are necessary conditions for a
neutral bargaining solution derived in Myerson (1984). However, more
important, they demonstrate that (p*,x*) can be justified as both efficient
and equitable, in a newly recognized sense.

7.5 The lemon problem: Feasibility
and efficiency

Let us now consider some trading problems in which the seller has private
information related to the quality of the object being sold, so that the
value of the object to the buyer is a function of the seller’s valuation. To
keep the problem tractable, let us assume that the seller knows this func-
tion and the buyer has no private information. We may call this the lemon
problem, after Akerlof’s (1970) seminal paper “The Market for
Lemons,” which studied a special case of this problem, in a market con-
text. (In colloquial American, a bad used car is a “lemon.”)
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Again, let trader 1 be the only seller and trader 2 be the only potential
buyer of a single indivisible object. Both have risk-neutral utility for
money. The quality of the object, yvhich is known only to the seller, is
measured by the random variable V;, which is the value of the object to
the seller. The buyer has a probability distribution for 171 with cumulative
distribution F(v,) = Prob(V; = v,;), and with a continuous density
Slvy) = F'(v,) that is positive over a bounded interval 0 < p, = M. The
value of the object to the buyer is g( ¥,), where g: [0,A/] = R is a continu-
ous function.

A direct trading mechanism for the lemon problem is characterized by
two outcome functions, p: [0,M] — [0,1] and x: [0,M] — R, where p(v,)
is the probability of trade occurring and x(v,) is the expected revenue to
the seller, if the seller’s valuation equals v, . The expected gain to the buyer
from (p,x) is

M
Ufp.x)= ] (g(v))p(vy) — x(vy)) dF(v,).
0

The expected gain to the seller from (p,x) if his valuation equals v, is
Uy(v,,p,x) = x(v;) — v, p(vy)-

In this context, mechanism ( p,x) is incentive compatible if and only if, for
every v, and ¢, in [0,M],

U(v,,p,x) = x(t,) — v, p(4y).

Mechanism (p,x) is individually rational if and only if Uy p,x) = 0 and,
forevery v, in [0,M ], U,(v,,p,x) = 0. As before, a mechanism is feasible if
and only if it is incentive compatible and individually rational.

(In this formulation, we are assuming that the terms of trade cannot be
made conditional on the actual quality of the object, only on the seller’s
report of it. Presumably, the buyer will eventually learn the quality of the
object if he buys it, but too late to renegotiate the price.)

The following proposition characterizes the set of feasible
mechanisms.

Proposition 3. Given any function p: [0,AM] — [0,1], there exists some
function x( -) such that (p,x) is a feasible mechanism for the lemon
problem if and only if p( - ) is a weakly decreasing function and

M

f (g(l’l) 2 5{;11;>P(01)f(01) dv, = 0.

0
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In general, for any incentive-compatible mechanism ( p,x), p( * ) is weakly

decreasing,
M

UI(M’prx) + Uz(p,X) = f (g(vl) -\~

0

F(v,)
S(w)

)P(Ul)f(vl) dv,

and, for every v, in [0,M],
M

Ul(vl ,p,X) = Ul(M, ,X) + fp(S) ds.

v

Proof. The proof of the equation for U,(v,,p,x) and of p decreasing is
exactly as in the proof of theorem 1 of Myerson and Satterthwaite (1983).
The equation for U, (M,p,x) + U, p,x)is derived from the following chain
of equalities:

M

M
f (g(vy) — v)p(v)f(v) dv, = f Uy(v,,0,)f(v,) dv, + Uy(p,x)
0

0

M M
= f f p(s) ds f(vy) dv, + UM, p,x) + Uy(p,x)

0 v
M

= f F(v)p(v,) dv, + U(M,p,x) + Upp.x).
0
Finally, if p is weakly decreasing and satisfies the inequality in proposition

3, then we can construct a feasible mechanism by using
M

x(v)) = v,p(v)) + f p(s) ds,

b

which is straightforward to check.

As in the symmetric uniform example, our next task is to characterize
the efficient mechanisms for the lemon problem. Again, we use the term
efficient in the sense of weak interim incentive efficiency; that is, (p,x) is
efficient if and only if there exists no other incentive-compatible mecha-
nism (5,X) such that Uy 5,X) > U,(p,x) and, for every v,, U,(v,5,X) >
Ul(vl 9p,x)'
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For any number s between 0 and M, let (p¥,x¥) denote the
mechanism

1 ifo, =s,
p“)(”')={0 ifo, > s

5 s ify, =5,
x()(v,)={0 ifv:>s.

We may refer to any such mechanism (x©,p) as a simple mechanism,
since there are only two possible outcomes: Either the object is sold for s
dollars (if V', = s) or it is not sold at all. These simple mechanisms are
important because they represent the extreme points of the set of incen-
tive-compatible mechanisms for the lemon problem, up to addition of a
lump-sum transfer between buyer and seller. To understand why, note
that any incentive-compatible mechanism differs by a lump-sum transfer
(i.e., a constant added to x( - )) from an incentive-compatible mechanism
with U,(M,p,x) = 0. By proposition 3, any such mechanism is then char-
acterized completely by the weakly decreasing function p; and both U,(v,)
and U, arelinear functions of p. However, any weakly decreasing function
from [0,M] into [0,1] can be approximated arbitrarily closely (except
possibly on a countable set) by a convex combination of the step functions
{ p“). Since we are assuming that Fis a continuous distribution, changing
p on a countable set would not change any of the expected payoffs in
proposition 3. (Without this continuity assumption, we would have to
distinguish (p®@,x®) from the mechanism in which the object is sold for s
dollars if and only if 17, < s, and we also would add such mechanisms to
the list of extreme points.)

A mechanism is efficient for the lemon problem if and only if it maxi-
mizes some linear functional of the form

M

f Uy (v, 0,x) dLy(v)) + Uy(p,x) (7.8)
0

over the set of all incentive-compatible mechanisms, where L,(-) is
weakly increasing, L,(0) = 0, and L,(M) = 1. However, the maximum of
any such linear functional must be attained at some simple mechanism
(p¥9,x9), because these are the extreme points. (Similarly, the maximum
of any linear functional subject to one linear constraint can always be
attained at a simple mechanism or a linear combination of two simple
mechanisms. Thus, as Samuelson [1984] has shown, the seller’s ex ante
optimum, subject to nonnegative expected utility for the buyer, can
always be attained at a mechanism with a one-step or two-step p function.)
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To characterize the set of efficient mechanisms for the lemon problem,
we need some additional definitions. Let Y(s) denote the expected gain to
the buyer from mechanism (p©,x®); that is,

Y(s) = Uy(p¥,x¥) = f (&) — 8)f(v) dv,.
0

Let Y: [0,M] — R be the lowest concave function that is greater than or
equal to Y( -) and has a slope between 0 and — 1 everywhere. That is, Y
differs from the concave hull of Y only in that Y is constant over the
interval where the concave hull is increasing, and Y has slope — 1 over
any interval where the concave hull is decreasing at a steeper slope than
— 1. Finally, let L¥}: [0,AM] — [0,1] be defined such that L¥(0)=0,
L¥M)=1, and
L¥v)=-Y'(v,)

at every v, in (0,A) where the derivative Y’ is defined. (Define L} by left
continuity when Y’ jumps.) Notice that L¥ is an increasing function,
since Y is concave. Note also that Y (0) = maxco s Y(5).

The set of efficient mechanisms for the lemon problem has a remark-
ably simple structure: It is a flat set contained in a hyperplane. That is,
given any two efficient mechanisms, their convex combination is also

efficient. The function L¥ gives us the normal to this flat efficient set, as is
shown in the following proposition.

Proposition4. Let(p,x)be any incentive-compatible mechanism for the
lemon problem. Then, (p,x) is efficient if and only if
M

f Uy(v},p,x) dL¥(,) + Uy(p,x) = Y (0). (7.9)
0

Equivalently, (p,x) is efficient if and only if p satisfies the following three
conditions: p(0)=1if Y(0) > 0, p(M)=0if Y(M) > Y(M), and

M
f ()_/(Ul) — Y(v,)) dp(v,) =0,
o

so that p must be constant over any interval in which Y > Y.

Proof. Notice first that, from the definition of Y,
Y0)=0 and  Y'(v)) =(g(v,) — v)f(v)) — F(vy).
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Now, using proposition 3, for any incentive-compatible mechanism
(p.x),

U,(v,,p.x) dLY(v,) + Uy(p,x)

otY—xX

N

M

f J p(s) ds dL¥(v,) + U,(M,p,x) + Uy(p,x)
0

v

M
L¥(w)p(v) dv, + | ((&(v)) — v)f(v)) — F(v)) p(vy) dv,
0

ot

M
= f (Y’'(v) = Y "(v))p(v,) dv,
0

M
=Y (0)p(0) — (Y (M) — Y(M))p(1) + f (Y (v,) — Y(v) dp(v)).
0

Since Y (v,) = Y(v,) for all v, the decreasing function p that maximizes
the last expression must have p(0)=1 if Y(0)>0, p(M)=0 if
Y (M) > Y(M), and must be constant over any interval in which Y > Y.
(Note that the integral is not positive, because p is decreasing.) Such a
function p does exist and gives the maximum value Y (0). Thus, p is
efficient if it satisfies (7.9). _

Let r, be the lowest number in [0,A/] such that Y (r,) = Y(r,),and letr,
be the highest such number (see Figure 7.6). Now, consider any simple
mechanism ( p2,x') that does not satisfy (7.9). Then,

M

Y0 > f Uy(v,,09,x9) dL¥(v,) + Uy(p,x®@) = ¥ (0) — (Y (s) — Y(s)),
0

and so Y (s) > Y{(s). We will show that (p'2,x) is not efficient. There are
three cases to consider: §<r,, s> r,,and r; < s<r,.

If s <r,,then Y(s) < Y(r,) = Y (0). Therefore, the buyer would strictly
prefer (p0 x ) to (p©@,x ). The seller also prefers (p,x) to (p9,x9),
since

Uy(v,,09,x) = max{0,s — v,}

is increasing in s. Thus, (p®,x*) is not efficient.
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If s > r,, then Y(s) < Y(ry) + (r, — 5), since the slope of Y i1s — 1 for all
v, > r,. Thus, the buyer would strictly prefer to pay s — r, as a lump-sum
transfer and then implement (p2 x2). It is easy to see that the seller
would also prefer this change, and so (p®,x®) is not efficient.

If r,<s<r,, then there exist numbers s;, §,, and A such that
s=As;+ (1 —As,,0=1= 1, and Y(s) <AY(s)) + (1 — D) Y(s,). There-
fore, the buyer would strictly prefer to randomize between ( p©,x¢0) with
probability A and (p“?,x¢?) with probability 1 — A, rather than use
(p™,x9). Since U,(v,,p®,x®) is a convex function of s, the seller would
also prefer this randomization. Thus, (p2,x®) is not efficient if it violates
(7.9).

Any efficient mechanism must be equal to some convex combination
of efficient simple mechanisms plus a lump-sum transfer. Thus, any
efficient mechanism must satisfy condition (7.9) of proposition 4.

Furthermore, if g(v,) = v, for every v, between 0 and M, then
L¥(v,) = F(v,) forevery v, between 0 and M. That is, if the object is always
worth more to the buyer than to the seller, then L ¥ puts more weight on
the higher valuations of the seller than F does, in the sense of first-order
stochastic dominance. To verify this fact, observe that if L ¥(v,) > 0, then
there exists some w; such that w, < v, and

L) == Y'(v) == Y'(w)) = F(w) — (g(w;) — w) = F(w) < F(1).

To illustrate these results, consider first the example studied by Akerlof
(1970), in which M =2, F(v,)=.5v,, and g(v,) = 1.5v,. That is, the
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seller’s valuation is uniformly distributed over [0,2], and the object would
always be worth 50 percent more to the buyer, if he knew the seller’s
valuation. For this example,

g — v, — F(v)/f(v)) = —.5v, <0.

So, by proposition 3, there does not exist for Akerlof’s example any
feasible mechanism with a positive probability of trade.

Forasecond example, let M = 1, F(v,) = v;,and g(v,) = v, + «, where
0 < @ < 1. We may call this the uniform additive lemon problem. For this
example, there are many feasible mechanisms (e.g., (p¥,x¥) for every
s = 2a). To apply proposition 4,

Y(s)=f(vl+a—s) dv, = as — .55,
0

and so

T Jas—552=Y(s) fa=ss=],
Y () {.5a2> Y(s) ifs <a.

Thus, an incentive-compatible mechanism (p,x) is efficient if and only if
p(v) =1 for every v, such that 0 = v, < c.

7.6 The uniform additive lemon problem:
Neutral solutions

As in Section 7.4, let us now try to make some prediction as to which
efficient mechanism may actually be implemented by the seller and buyer
in the lemon problem if they negotiate face to face. To simplify the
analysis, we will consider only one specific case: the uniform additive case
with « = .4. That is, the seller knows his valuation V;, which is a uniform
random variable on [0,1], and if the buyer gets the object, then it will be
ultimately worth V', + .4 to him. The seller is free to make statements to
the buyer about V', but there is no way for the buyer to verify whether
these claims are true or false until after the negotiations end and the terms
of trade are fixed.

For simplicity, let us begin with the assumption that the buyer has all of
the bargaining ability, perhaps because he is much more articulate and
persuasive in negotiations than the seller. The best feasible mechanism for
the buyer is the simple mechanism (p¥,x¢¥). That is, if the buyer can
control the negotiations, he wants to make a nonnegotiable first-and-final
offer to buy the object for a price of .4. To verify that this mechanism is
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optimal, note that
5
Y(s)= f (v, + 4—5)dv, = .45 — 552,
0

which is maximized at s = .4. The buyer’s expected gain from his optimal
mechanism is Y(.4) = .08.

Now, let us assume that the seller has all of the bargaining ability. The
problem of determining which mechanism he should implement is a
problem of mechanism design by an informed principal, as studied in
Myerson (1983).

Among the simple mechanisms, U,(v,,p,x¥) is increasing in s, and
U,(p¥.x®) = 0 if and only if s = .8. That is, for any price s that is higher
than .8, the expected value of the object to the buyer conditional on ¥, < s
is.5s + .4, whichisless than s, and so the buyer expects tolose. Thus, if the
seller were to implement a simple mechanism, his best choice would be
(p'®,x{®), (Even though the object is always worth more to the buyer than
to the seller, there is no feasible mechanism in which the buyer always gets
the object, because the inequality in proposition 3 would fail if p(v,) = 1
for all v,.)

The mechanism ( p*®,x¢®) maximizes both the probability of trade and
the seller’s ex ante expected gains (f§ U,(v,,p,x) dv,) over all feasible
mechanisms for this example. Thus, if the seller could have selected any
feasible mechanism before he learned ¥,, he would certainly have se-
lected (p*®,x(®). However, this argument is not necessarily relevant to
our analysis of negotiations, because we are assuming that the seller
knows ¥, when the negotiations begin, and this is not a repeated game.

There exist other mechanisms that the seller would prefer to ( p*®,x¢®)
if 7, were relatively high. (Observe that U,(v, ,p*® x®) = 0if v, = .8.) For
example, consider (§,X) defined by

Bvy) = e /4 and X)) = (v, +.4)p(vy).

That is, the seller demands that the buyer pay the full value g = ¥, + 4,
and the buyer accepts with probability e=@~4/4 1t is straightforward to
check that (/,£) is individually rational and incentive compatible. If the
seller demanded a higher price, the decrease in probability of acceptance
would be just enough to prevent him from gaining more. Among all of the
mechanisms in which the buyer never loses ex post (safe mechanisms, in
the terminology of Myerson (1983)), (5,X) is the best for the seller. If
¥V, = .74, then the seller would prefer (5,£) over (p®,x®) (.4e=744 >
.8 —.74).



Analysis of two bargaining problems 139

One theory of negotiations that cannot be valid is to suggest that the
seller would implement (p¢®,x®)if V/; < .74 and would implement ( 5,%)
if ¥, = .74. The buyer would refuse to buy the object for .8 if he believed
that the seller would make this demand only when ¥, < .74, because the
conditionally expected value of the object to him would be only
.74/2 + .4 = .77. On the other hand, the buyer would never expect losses
in (p,%), even if he inferred that V| = .74. Therefore, (p*®,x®) is blocked
for the seller by (f,X), since the buyer knows that (p¢® x¢®) would be
implemented by the seller only if V, were in [0,.74], where the buyer
expects to lose on average.

However, (p,X) is not an efficient mechanism, because any efficient
mechanism must have p(v;) =1 for all v, in the interval [0,.4) (where
Y (v,) > Y(v,)), as was shown at the end of Section 7.5. For example, ( ,X)
is dominated by the mechanism (p*,x*) defined by

1 ifv, < .4,
Prw) = {.5e“”1‘~“)/~“ i, = 4;

X*v,) = 6 ifv, < 4,
! (v, + . 4)p(v,) ifv, = 4.

It is straightforward to verify that (p* x*) is incentive compatible, that
U,(p*,x*) = U,(p,X) =0, and that U (v,,p*x*) > U(v,,p,X) for all v,.
Also, (p*,x*)is efficient because a sale will always occur if 0 = V; < .4.1f
V), = .4, then the seller insists on getting the buyer’s reservation price
¥V, + .4, and the buyer’s probability of acceptance decreases in the price in
such a way as to keep the seller honest. It can be shown (see Section 7.7)
that this mechanism (p* x*) is a neutral optimum for the seller, in the
sense of Myerson (1983).

Thus, we predict that the outcome of negotiations would be as in
(P, x) if the buyer had all of the bargaining ability, and would be as in
(p*,x*) if the seller had all of the bargaining ability.

Let us now assume that the buyer and seller have equal bargaining
ability. In this case, the solution theory of Myerson (1984) identifies the
average of these mechanisms, (p°,x°) = .5(p"Yx) + 5(p*x*), as a
neutral bargaining solution. That is, the neutral bargaining solution is

or v )1 ifv, < .4,
PY(0) =1 o5p-wave i v, =4
X°(v)) = 5 ifv, < .4,
! (v, +.Hp°(v)) ifv, = 4.

Notice that if 171 = 4, the seller fully exploits the buyer in (p°,x °) by
charging him V| + .4 when trade occurs, just as in (p*,x*). However, the
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probability of trade occurring when ¥, = .4 in (p°,x °) is half of what it is
in (p*,x*). Thus, the neutral bargaining solution (p°,x °) has the property
of arrogance of strength, defined in Section 7.4. That is, if the traders have
equal bargaining ability but the seller is in a surprisingly strong bargaining
position, then the outcome is the same as when the seller has all of the
bargaining ability, except that the probability of disagreement is higher.

The mechanism (p °,x °) may seem more equitable when we look at
virtual-utility payoffs. For this example, the function L ¥, which supports
all efficient mechanisms (as stated in proposition 4), is

_ 0 if v, < 4,
L¥v)=—Y'(v)=4v,— 4 ifd=syp <],
1 ifo,=1.

Because the seller’s valuation is uniformly distributed over [0,1], his vir-
tual valuation is 2/, — L¥(V,) (as in the symmetric uniform trading
problem), which equals V| + .4 if 171 = .4 (except at the endpoint V', = 1,
which has zero probability). Thus, when ¥, = .4, the seller’s virtual valua-
tion equals the buyer’s valuation, and so V, + .4 is the only virtually
equitable price. (Since the buyer has no private information in this exam-
ple, his virtual and real valuations are equal.) When V| is in the interval
[0,.4), the seller’s average virtual valuation (i.e., 2 7,)is .4, and the buyer’s
average valuation (i.e., V; + .4) is .6; thus, the price .5 in (p°,x°) is
virtually equitable on average.

7.7 Derivation of the neutral solutions

To show how the solution concepts of Myerson (1983, 1984) are applied
to the examples of this chapter, let us first consider a discrete approxima-
tion to the lemon problem. That is, let § be a small number, and let
T, ={0, 6,26, 36, ..., M}bethesetof possible seller’s valuations for the
object. Let f(v,)é = F(v,) — F(v, — &) be the probability that ¥, = v, for
any v, that is a multiple of 6. Given an increasing function L, asin (7.8), let
€(v,) = (L,(v,) — L(v; — 8))/d. Thus, the discrete analog of (7.8) is

ZT ((x(vy) — v, p())€(V,)0 + (g(v))p(v) — X(v,))f(v))d). (7.10)
nen

It can be shown that, for the discrete lemon problem, local incentive
compatibility implies global incentive compatibility. (That is, if for every
v,, the seller with valuation v, could not gain by reporting v, + é for
v, — 4, then the seller cannot gain by any lie.) Furthermore, in most cases
the binding incentive constraint for the seller is the one in the upward
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direction, that is, that the seller should not gain by reporting v, + J when
his valuation is v, . So, let A(v,) denote the shadow price of this incentive
constraint in the problem of maximizing(7.10) among all incentive-com-
patible mechanisms. Then, the Lagrangian function for this problem can
be written

> ((x(v) — v, p(0))E(v)d + (g(v)p(v) — x(V ) f(v,)d

neT
+ A(v, X(x(vy) — v, p(v,)) — (x(v, + 6) — v, p(v, + 5))))
= Y ([(€@)d + A@w))x(v,) — v, p(v))) — A(v, — I} x(v,)

v ET

= (v, = )p(,))] + (g(w)p(v,) — x(v,))f(v,)9). (7.11)

The coefficient of x(v,) in this Lagrangian formula must be zero, since
x(v,) is an unconstrained variable. Thus, we must have, for all v,,

A(v)) — A(v, — 8) = f(v,)d — £(v)d,
and so
A(v)) = F(v,) — Ly(v,).

Thesseller’s virtual utility is defined in Myerson (1984) as the bracketed
expression in (7.11) divided by the probability f(v,)d. That is, if the seller’s
valuationis v, , if hisexpected revenue is y = x(v,), and if his probability of
sale is ¢ = p(v,), then his virtual-utility payoff z,(v,) is defined as

(€(v))0 + ANy — v,9) — AW, — O}y — (v, — J)q)

zi(v) = fw)d
_ F(vl_(s)—Ll(vl_(s))
v+ <vl * S(v)

Equivalently, if we let u,(v,) = y — v, ¢ denote the seller’s actual-utility
payoff when his valuation is v, (and let u(v, — ) = y — (v, — §)q), then
the seller’s virtual-utility payoff can be rewritten

F(v, —6)— Ly(v, — 6))(”1(01) — Uy (0; — 6))
Sf(v) 0 '
At the maximum of (7.10), the product of incentive constraint times

shadow price is always zero, by complementary slackness, and so (7.11)
implies that

Y (x(v) — o p))e@)d= 3 z,(v)f(v)d.

v‘ET| v‘ETl

zy(v) = uy(v,) + <
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Now, letting J go to zero, let us return to the continuous version of the
lemon problem. The immediately preceding three equations become

24(0) = x(v,) + [vl + (M)] P, (112)

f(vl)
220D = 1(0) + (F(”—)f(_lj—("_)) wi(w,), (7.13)
M M
f u,(v)) dL,(v))= f Zl(vl)f(vl) dvl s (7.14)
0 0

respectively, where

L,(v7)y= lim L(v, — 6).
5—0+
The seller’s virtual valuation for the object is, from (7.12),

F(v)) — L,(v7)
Sfw)

In the uniform case with F(v,) = v, on [0,1], when L, is continuous this
virtual valuation is simply W,(v,) = 2v, — L,(v,), as in Section 7.4.

Since the buyer has no private information in the lemon problem and
gets a weight of 1 in the objective functions (7.8) and (7.10), the buyer’s
virtual utility is the same as his real utility.

We are now ready to verify that (p°,x°) is the neutral bargaining
solution for the uniform additive lemon problem with g(v,) = v, + 4. To
prove this, we must apply theorem 4 of Myerson (1984), which gives
necessary and sufficient conditions for a neutral bargaining solution. This
theorem requires us to consider a sequence of virtual-utility scales, each of
which is generated by an objective function that puts positive weight on all
types of all players. (For the lemon problem, this means that L, must be
strictly increasing over the whole range of possible valuations.) For each
virtual-utility scale, we must first compute the virtually equitable alloca-
tions, in which the traders plan to divide the available virtual gains equally
among themselves in every state. Then, we must solve equations (7.13)
and (7.14) to find which allocations of real utility would correspond to the
equitable allocations of virtual utility. The corresponding allocations of
real utility are called the warranted claims of the seller and the buyer. If the

Wiw)=uov + (7.15)
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limit of these warranted claims (over the sequence of virtual-utility scales)

does not exceed the actual expected utility generated by our mechanism

for any type, then that mechanism is a neutral bargaining solution.
The sequence of objectives that supports (p°,x °) is

4
ifo0=p, <——
€, if0=y, —¢

Liv)=}v,— 4 |if =y, <1,

1 ifo, =1,

where the index € is positive and converging to zero. Notice that each L$is
strictly increasing over [0,1] and converges to L ¥ of Section 7.6 as € goes to
Zero.

With respect to L, = L, if the seller’s actual valuation is v,, then his
virtual valuation (from (7.13)) is

2—ew, if05v1<—'4——,
1—e€

Wiv,) =

=y =1,

.. .4
v, + .4 1f1_

and so the total available virtual gains from trade are

4 —(1—¢€y, ifOSvl<l'—j€,

gv) — Wi(v) =
.. .4
0 if—=vop =<1
1—e

The virtually equitable allocation with respect to L€ would give the seller
half of these virtual gains; that is, he would get

2—=51—-¢€p, if0=yp, <l.—j€’

zy(v) =

in virtual utility when his valuation is v,. The seller’s warranted claims
with respect to L§ are the values of u,(v,) that satisfy (7.13) and (7.14) for
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this z; function. That is, u, must satisfy

2—=.5(1 — €)v, = u,(v,) + (1 — evui(v,)
if0=v, < .4/(1 —e),

1 4/(1—¢€)

f (2—.5(1—¢€w) dv,= f u,(v,)e dv,
0 0

+ f u(v)) dv; + .4u,(1).
4/(1—e€)

(The term .4u,(1) comes from the jump in L$ at v; = 1.) The unique
solution to these equations is

1—- . .
.2—.5( e)vl ifo=sy < 4 ,
(0) = 2—¢€ 1—e€
u =
2—¢€ l1—e€
As € goes to zero, these warranted claims converge to

2-4 fo=y <4

u(v)=19" 4 e

dem@=di4 f 4 =p =1,
The seller’s actual payoff from the mechanism (p°,x°) is

ooy _ )] 5= if0=yp, < 4,
Uilvpx )"{.1e—<vnl-~4>/-4 ifa<v =1,

and so U,(v,,p°.x"°) = u,(v,) for all v, in [0,1].

Since the buyer has only one possible type in this problem, his war-
ranted claim with respect to L¢is simply half of the expected virtual gains
from trade:

4
u = f (:2—-.5(1 — €)v,) dv, = .04(1 + ¢).
0

As € goes to zero, this expression converges to .04 = U,(p°,x°).

So the mechanism (p°,x °) fulfills all of the limiting warranted claims,
and therefore is a neutral bargaining solution, by theorem 4 of Myerson
(1984).
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If the seller had all of the bargaining ability, then his warranted claims
for each type would be computed in the same way, except that he would
get all of the virtual gains from trade, instead of half. This would simply
double the values of z, and u, throughout the preceding derivation. Since
U(v,,p*x*)=2U,(v,,p°x°) for all v,, (p*,x*) satisfies the conditions
for a seller’s neutral optimum, given in theorem 7 of Myerson (1983).

Let us now consider the symmetric uniform trading problem and show
that (p*,x?)is a neutral bargaining solution, as was claimed in Section 7.5.
The formulas for the seller’s virtual utility, (7.12) through (7.15), can be
derived for the symmetric uniform trading problem exactly as in the
lemon problem. (Now, M = 1, F(v,) = v,, and f(v,) = 1.) Analogous for-
mulas define virtual utility for the buyer, who now also has private infor-
mation.

For any small € > 0, we let
(
€v, if0=p <——

4 — 3¢ l1—e . 1
\(3_2€) v - if =y, =1;

((4— 3¢ . 3—2€
(3—25)"2 H0=0= %

L5(v,) =]

Ly =) -

4—-2
Notice that each L¢is strictly increasing over [0,1], and converges to L, of
equation (7.6) as € goes to zero.
The seller’s warranted claims with respect to L$ and L$§are determined
by the following equations:
w(vy) + (v, — L§v))ui(v) = z,(vy),
1

1

e, +(1—e if :<%5L
\

f u,(v,) dL(v)) = f zy(vy) dvy,
0 0

where
1

zi(v) = .5 f max{0, Wy(v,) — Wy(v))) dv,,
0
Wi(v)) = 2v; — L§(v)),
Wi(v,) = 2v, — LY(v,).
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It can be shown (somewhat tediously) that the unique solution to these
equations is

3—¢€ 2—¢€ , . 1

16— 8¢ Sv, +( 2 )(v,) if0 =y, <4_2€,
u(vy) = I—¢ 1
— )2 i =p <
(12—86)(1 %) ity —ge=u=t
As € converges to zero, these warranted claims converge to

—_ 2
38”‘1% if0 =<, < .25,
T‘ if 25=<0p =<1.

If the seller’s valuation is v,, then his actual expected utility from the
mechanism (p*,x*4) is

6 - 150} + 12(01)2
32

(I —v)
6

if 0= v, < .25,
Ul(vl ,p4,x4) =
if25=<p =1

It is straightforward to check that U,(v, ,p*,x*) = u,(v,) for every v, , and
thus ( p4,x4) fulfills all of the seller’s limiting warranted claims. A symmet-
ric argument shows that ( p4,x*) satisfies the buyer’s limiting warranted
claims for every v, as well. Thus, (p*x*) satisfies the conditions for a
neutral bargaining solution.

A final remark about the uniqueness of these solutions is in order. The
general conditions for a neutral bargaining solution are well determined,
in the sense of giving us as many equations as unknowns (see theorem 5 of
Myerson (1984)), but there is no general uniqueness theorem. For the
symmetric uniform trading problem, some inessential nonuniqueness is
known. There exist other functions x such that ( p4,x) is a feasible mecha-
nism, and all of these mechanisms are neutral bargaining solutions giving
the same expected utility allocations as (p*,x4). Apart from this non-
uniqueness in x, it is my unproven belief that (p4,x*) is probably the
unique neutral bargaining solution for the symmetric uniform trading
problem, and that (p°,x °) is the unique neutral bargaining solution for
the uniform additive lemon problem considered in Section 7.6.
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CHAPTER 8§

Sequential bargaining mechanisms

Peter C. Cramton
YALE UNIVERSITY

8.1 Introduction

A fundamental problem in economics is determining how agreements are
reached in situations where the parties have some market power. Of
particular interest are questions of efficiency and distribution:

¢ How efficient is the agreement?
¢ How can efficiency be improved?
® How are the gains from agreement divided among the parties?

Here, I explore these questions in the context of bilateral monopoly, in
which a buyer and a seller are bargaining over the price of an object.
Two features of my analysis, which are important in any bargaining
setting, are information and impatience. The bargainers typically have
private information about their preferences and will suffer some delay
costs if agreement is postponed. Information asymmetries between bar-
gainers will often lead to inefficiencies: The bargainers will be forced to
delay agreement in order to communicate their preferences. Impatience
will tend to encourage an early agreement and will make the parties’
communication meaningful. Bargainers with high delay costs will accept
inferior terms of trade in order to conclude agreement early, whereas
patient bargainers will choose to wait for more appealing terms of trade.
Some authors have examined the bargaining problem in a static con-
text, focusing solely on the role of incomplete information and ignoring
the sequential aspects of bargaining. Myerson and Satterthwaite (1983)
analyze bargaining as a direct revelation game. In this game, the players
agree to a pair of outcome functions: one that maps the players’ state-
ments of their types into an expected payment from buyer to seller, and
one that maps the players’ statements into a probability of trade. These
outcome functions are chosen in such a way that truthful reporting is an

I am indebted to Robert Wilson for his encouragement and inspiration. My
thanks to Drew Fudenberg for his helpful comments.
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equilibrium strategy for the players. An important feature of this game is
that it is static: Outcome functions are selected, the players report their
true types, and then dice are rolled to determine the payment and whether
or not trade occurs. To ensure that the players have the proper incentives
for truthful reporting, the game will end with positive probability in
disagreement even when there are substantial gains from trade. Thus, in
the event that the randomization device calls for disagreement, the
players may find themselves in a situation in which it is common knowl-
edge that there are gains from trade.

Chatterjee and Samuelson (1983) analyze a strategic game in which
both players make offers simultaneously, and trade occurs at a price
between the two offers if the seller’s offer is less than the buyer’s offer. This
game is closely related to the direct revelation game, in that it is static.
Moreover, it can be shown that for a particular class of examples, the
simultaneous-offers game implements the direct revelation game in
which the outcome functions are chosen to maximize the players’ ex ante
utility. As in the direct revelation game, this game ends with positive
probability in a state in which both bargainers know that gains are possible
(since their respective reservation prices have been revealed), and yet they
are forced to walk away from the bargaining table. Thus, the bargaining
game assumes implicitly that the players are able to commit to walking
away without trading, after it has been revealed that substantial gains
from trade exist.

In situations where the bargainers are unable to make binding agree-
ments, it is unrealistic to use a bargaining mechanism that forces them to
walk away from known positive gains from trade. Such mechanisms
violate a broad interpretation of sequential rationality as discussed by
Selten (1976) (in terms of subgame perfection), and later by Kreps and
Wilson (1982), if one applies sequential rationality not only to the hy-
pothesized game, but to the game form as well. In particular, one should
restrict attention to mechanisms that satisfy sequential rationality: It
must never be common knowledge that the mechanism induced at any
point in time is dominated by an alternative mechanism.

When there is uncertainty about whether or not gains from trade exist,
any static game will violate sequential rationality. The players must have
time to learn through each other’s actions whether gains are possible. In a
sequential game, the players communicate their preferences by exhibiting
their willingness to delay agreement. Bargainers who anticipate large
gains from trade (low-cost sellers and high-valuation buyers) will be un-
willing to delay agreement, and so will propose attractive terms of trade
that the other is likely to accept early in the bargaining process. On the
other hand, high-cost sellers and low-valuation buyers will prefer to wait
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for better terms of trade. Static games must use a positive probability of
disagreement to ensure incentive compatibility, where the probability of
disagreement increases as the gains from trade shrink. The advantage of
delaying agreement rather than forbidding agreement is that mechanisms
can be constructed in which negotiations continue so long as each bar-
gainer expects positive gains. Thus, the bargaining will notendin a state in
which it is common knowledge that the players want to renege on their
agreed-upon outcome.

Two approaches can be taken in the analysis of perfect bargaining
games. The first approach is to examine specific extensive-form games,
which determine the set of actions available to the players over time.
Intrinsic to any bargaining process is the notion of offers and replies:
Bargaining consists of a sequence of offers and decisions to accept or reject
these offers. Who makes the offers; the time between offers, responses,
and counteroffers; and the possibilities for commitment are determined
by the underlying communication technology present in the bargaining
setting. This communication technology will imply, in part, a particular
bargaining game in extensive form. Cramton (1984), Sobel and Takaha-
shi(1983), and Fudenberg, Levine, and Tirole (Chapter 5 in this volume)
illustrate the analysis of particular extensive forms that are perfect bar-
gaining games.

The second approach, and the one adopted in this chapter, is to analyze
a general direct revelation game, which maps the players’ beliefs into
bargaining outcomes. Animportant distinction between direct revelation
games and strategic games is that the direct revelation game does not
explicitly model the process of bargaining. The sequence of offers and
replies that eventually leads to an outcome is not studied in the direct
revelation game as it is in strategic games. However, embedded in each
sequential bargaining mechanism is a particular form of learning behav-
ior, which can be analyzed. In addition, much can be learned about how
information and impatience influence the efficiency of the bargaining
outcome and the allocation of gains between players. Thus, even though
bargainers will not play direct revelation games in practice, analysis of
these games is a useful tool to determine how well the bargainers can hope
to do by adopting an appropriate strategic game.

The difference between the static direct revelation game analyzed by
Myerson and Satterthwaite (1983) and the sequential direct revelation
game considered here is that in the sequential game, the outcome func-
tions not only determine the probability and terms of trade, but also
dictate when trade is to take place. In the static game trade may occur only
at time zero whereas in the sequential game trade may occur at different
times depending on the players’ reports of their private information.
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Thus, by analyzing sequential bargaining mechanisms, one is able to infer
what the players’ learning processis over time. Furthermore, by analyzing
mechanisms that are sequentially rational, one can study what bargaining
outcomes are possible when the bargainers are unable to make binding
agreements.

The introductory discussion presented in this chapter considers the
simplest type of sequential bargaining games in which the players’ time
preferences are described by known and fixed discount rates. I begin by
characterizing the class of perfect bargaining mechanisms, which satisfy
the desirable properties of incentive compatibility (i.e., each player re-
ports his type truthfully), individual rationality (i.e., every potential
player wishes to play the game), and sequential rationality (i.e., it is never
common knowledge that the mechanism induced over time is dominated
by an alternative mechanism). It is shown that ex post efficiency is unob-
tainable by any incentive-compatible and individually rational mecha-
nism when the bargainers are uncertain about whether or not they should
trade immediately. I conclude by finding those mechanisms that maxi-
mize the players’ ex ante utility, and show that such mechanisms violate
sequential rationality. Thus, the bargainers would be better off ex ante if
they could commit to a mechanism before they knew their private infor-
mation. In terms of their ex ante payoffs, if the seller’s delay costs are
higher than those of the buyer, then the bargainers are better off adopting
a sequential bargaining game rather than a static mechanism; however,
when the buyer’s delay costs are higher, then a static mechanism is op-
timal.

The methodology of this paper is based on Myerson and Satterthwaite
(1983). I have freely borrowed from their insightful work in much of my
analysis. Complete proofs for each proposition, even though many are
only slightly different from the proofs found in Myerson and Satter-
thwaite, are given as an aid to the reader.

8.2 Formulation

Two parties, a buyer and a seller, are bargaining over the price of an object
that can be produced by the seller at a cost s and is worth b to the buyer.
The seller’s cost s and the buyer’s valuation b are also called their reserva-
tion prices, since they represent, respectively, the minimum and maxi-
mum price at which each party would agree to trade. Both the buyer and
the seller have costs of delaying the bargaining process. Specifically, the
value of the object is discounted in the future according to the positive
discount rates p for the seller and o for the buyer. Thus, the payofTs, if the
bargainers agree to trade at the discounted price x at time ¢, are x — se—#
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for the seller and be™* — x for the buyer. Should the players fail to reach
agreement, both of their payoffs are zero. Implicit in this formulation is
the assumption that the bargainers discount future money at the same
rate, so that at any time ¢ the discounted payment by the buyer equals the
discounted revenue to the seller. Without this assumption, it would be
possible for the players to achieve an infinite payoff by having the player
with the lower discount rate lend an arbitrarily large amount of money to
the other player.

The buyer, although aware of his own valuation b, does not know the
seller’s cost of production s, but assesses this cost to be distributed accord-
ing to the distribution F(s), with a positive density f(s) on [s,5 ]. Similarly,
the seller knows his cost s, but only assess the buyer’s valuation to be
distributed according to the distribution G(b), with a positive density g()
on [ b,b}. Their discount rates and the distributions of the potential buyers
and sellers are common knowledge. In addition, it is assumed that both
the buyer and the seller are interested solely in maximizing their expected
monetary gain.

To summarize, let (F,G,p,0) be a sequential direct revelation game,
where

F = the distribution of the seller’s cost s on [s,5], _
G = the distribution of the buyer’s valuation b on [b,b],
p = the seller’s discount rate for the object,

o = the buyer’s discount rate for the object.

In the revelation game, the players’ actions consist of reports of their
types, which are mapped into the bargaining outcome by the bargaining
mechanism. Thus, the seller s reports that his cost is s* € [s,5], and the
buyer b reports that his valuation is b’ € [b,b]. The revelation game is
said to be direct if the equilibrium strategies of the players involve truthful
reporting, that is, (s",b’) = (s,b). The important role of direct revelation
games stems from the fact that one can, without loss of generality, restrict
attention to direct mechanisms. For any Nash equilibrium of any bar-
gaining game, there is an equivalent direct mechanism that always yields
the same outcomes. This well-known result is called the revelation princi-
ple. Given any mechanism M that maps reports into outcomes, and a set
of equilibrium strategies x that maps true types into reported types, then
the composition M = M - x is a direct mechanism that achieves the same
outcomes as the mechanism M.

For the revelation game (F,G,p,0), a sequential bargaining mechanism
is the pair of outcome functions 7 (- |+, - Yand x( -, * ), where 7 (¢]5,b) is
the probability distribution that the object will be transferred to the buyer
attime ¢, and x(s,b) is the discounted expected payment from the buyer to
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the seller, given that the seller and buyer report the reservation prices s and
b, respectively.

Typically, randomization of the outcomes over time is not necessary.
Without randomization, the outcome function 7 can be replaced by the
function ¢( +, - ), which determines the time of trade given the players’
reports. A sequential bargaining mechanism, then, is the set of outcome
functions (#,x) where (s, b) is the time of trade and x(s,b) is the discounted
expected payment, given that the seller reports s and the buyer reports b.
Most bargaining mechanisms seen in practice require that the exchange of
money and goods take place at the same time. Such a requirement is not
restrictive in this model, because there is no benefit to be gained by
exchanging money at a different time from the exchange ofthe good, since
both players have identical time preferences for money. For reasons of
tractability, I will frequently restrict attention to the simplified mecha-
nism {,x).

8.3 Perfect bargaining mechanisms

The weakest requirements one would wish to impose on the bargaining
mechanism (7 ,x) in the direct revelation game are (1) individual ratio-
nality, that is, that everyone wishes to play the game, and (2) incentive
compatibility, that is, that the mechanism induces truth telling. In addi-
tion, when the bargainers are unable to make binding commitments, one
needs the further restriction of sequential rationality: It must never be
common knowledge that the mechanism induced over time is dominated
by an alternative mechanism. Bargaining schemes that satisfy incentive
compatibility, individual rationality, and sequential rationality are called
perfect bargaining mechanisms. The adjective perfect is adopted because
of the close relationship between perfect bargaining mechanisms in the
direct revelation game and perfect (or sequential) equilibria in an infinite-
horizon extensive-form game. It remains to be proven that a sequential
bargaining mechanism is perfect if and only if it is a perfect equilibrium
for some infinite-horizon extensive-form game. This issue will be ad-
dressed in future research.

In this section, I derive necessary and sufficient conditions for the
sequential bargaining mechanism to be perfect. The incentive-compati-
bility and individual-rationality conditions were first established in
Myerson and Satterthwaite (1983), and later extended to the case of
multiple buyers and sellers by Wilson (1982) and Gresik and Satter-
thwaite (1983). It is important to realize that these properties are actually
necessary and sufficient conditions for any Nash equilibrium of any bar-
gaining game, since every Nash equilibrium induces a direct revelation
mechanism, as mentioned in Section 8.2.
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Incentive compatibility

In order to define and determine the implications of incentive compatibil-
ity on the sequential bargaining mechanism (7 ,x), it is convenient to
divide each player’s expected payoff into two components as follows. Let

b b o

S(s) = f x(s,b)g(b) db, P(s) = e dJ(t)s,b) g(b) db,
0

o

B(b)= | x(sb)f(s)ds,  Qb)= f e~ dT (t|s,b) f(s) dbs,
s 0

m%hl o

where S(s) is the discounted expected revenue and P(s) the discounted
probability of agreement for seller s, and B(b) is the discounted expected
payment and Q(b) the discounted probability of agreement for buyer b.
Thus, the seller’s and buyer’s discounted expected payoffs are given by

U(s) = S(s) — sP(s) and W(b) = bQ(b) — B(b),

respectively.

Formally, the sequential bargaining mechanism (7 ,x) is incentive
compatible if every type of player wants to report truthfully his type; that
is, for all s and s’ in {5,5] and for all » and b’ in [b,b],

Us) = S(s’) — sP(s’)  and V(b) = bQ(b’) — B(b").

Lemma 1. If the sequential bargaining mechanism (7 ,x) is incentive
compatible, then the seller’s expected payoff U is convex and decreasing,
with derivative dU/ds = — P almost everywhere on [s,5 ]; his discounted
probability of agreement P is decreasing; and

5 5

Us)— Us)= f P(uydu and  S(s)—SG)= f —udP(u). (S)

s s

Similarly, the buyer’s expected payoff V is convex and increasing, with
derivative dV/db = Q almost everywhere on [5,b]; his discounted proba-
bility of agreement Q is increasing; and

b

b
by — o) = f Qu)du and  B(b)— B(b)= f udQ(u). (B)
b

[4



156 Peter C. Cramton

Proof. By definition, seller s achieves the payoff U(s) = S(s) — sP(s).
Alternatively, seller s can pretend to be seller s’, in which case his payoffis
S(s’) — sP(s’). In the direct revelation game, the seller s must not want to
pretend to be seller s’, and so we have U(s) = S(s’) — sP(s’) for all 5,5’ €
[s,5], or

U(s) = U(s") — (s — s")P(s"),

implying that U has a supporting hyperplane at s’ with slope —P(s’) =< 0.
Thus, U is convex and decreasing with derivative (dU/ds)(s) = — P(s)
almost everywhere, and P must be decreasing, which implies the first
integral in (S) (I will use the Stieltjes integral throughout, so that any
discontinuities in the probability of agreement are accounted for in the
integral.) From integration by parts,

B 5

j P(u) du = sP(5) — sP(s) — f u dP(u),

which, together with the definition of U, yields the second integral in (S).
The proof for the buyer is identical.

Lemma 1 indicates the stringent requirements that incentive compati-
bility imposes on the players’ utilities. In particular, it suggests how one
can construct an incentive-compatible payment schedule x, given a prob-
ability of agreement distribution 7 for which the seller’s discounted prob-
ability of agreement P(s) is decreasing in s and the buyer’s discounted
probability of agreement Q(b) is increasing in b.

Lemma 2. Given the sequential bargaining mechanism (7 ,x) such that
Pisdecreasing, Qisincreasing, and Sand Bsatisfy (S)and (B)oflemmal 1,
then (7 ,x) is incentive compatible.

Proof. A mechanism is incentive compatible for the seller if for all
55 €s5),
S(s) — sP(s) = S(s’) — sP(s’).

Rearranging terms yields the following condition for incentive compati-
bility:
S(P(s’)y— P(s)) + S(s) — S(s") = 0. )

From (S), we have

S(s) — S(s7)= j —u dP(u),

s
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and from the fundamental theorem of integral calculus,

s

S(P(s’)— P(s))=s f dP(u).

s

Adding the last two equations results in
S(P(s’)y — P(s)) + S(s) — S(s7) = f (s — u) dP(u) = 0,

where the inequality follows because the integrand (s — u) dP(u) is non-
negative for all s,u € [s,5 ], since Pis decreasing. Hence, (7 ,x) satisfies the
incentive-compatibility condition (S’ ). An identical argument follows for
the buyer.

Individual rationality

The sequential bargaining mechanism (7 ,x) is individually rational if
every type of player wants to play the game; that is, forall sin [ 5,s ]Jand bin
[6.b],

Us)=0 and V(b) = 0.

In light of the monotonicity of U and V proven in lemma 1, any incen-
tive-compatible mechanism (7 ,x) will satisfy individual rationality if the
extreme high-cost seller and low-valuation buyer receive a nonnegative
payoff; that is, an incentive-compatible mechanism (7 ,x) is individually
rational if and only if U(s) = 0 and (b)) = 0.

The following lemma describes how one can check whether or not a
sequential bargaining mechanism is individually rational. It is convenient
to state the lemma in terms of the simplified bargaining mechanism (z,x)
rather than in terms of (7,x). Recall that for the sequential bargaining
mechanism {¢,x), we have

b b

S(s) = f x(s,b)g(bydb,  P(s)= f e~/0g(b) db,

&

L) o

B(b) = f x(s,b)f(s) ds, QW)= f e~ oD (s) ds.

S S
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Lemma 3. If the sequential bargaining mechanism (t,x) is incentive
compatible and individually rational, then

UG)+ Nb) =% {(b _ 1‘_G(b)) R

gb)
pu— _@ —pus, >
(s+ f(s)) e—PH b)} =0, (IR)

where the expectation is taken with respect to s and b.

Proof. First note that from lemma 1, for (#,x) to be individually rational,
it must be that U(s) = 0 and V() = 0. For the seller, we have

s

fU(s)f(s) ds=U(s')+ij(u) du f(s) ds

s

=U(is)+ | F(s)P(s) ds

o> m'\t—u T

s

=Uis)+ f f F(s)e=Psbg(b) ds db, Us)
b s

where the first equality follows from lemma 1 and the second equality
results from changing the order of integration. Similarly, for the buyer we
have

b b

j V(b)g(b) db = V(b) + f f (1 — G(b))e=7Df(s) ds db. (UB)
b s

Rearranging terms in (US) and (UB) and substituting the definitions for
U(s) and V(b), result in the desired expression (IR) for U(s) + V(b).

Lemma 4. If the function ¢( -, - ) is such that P is decreasing, Q is in-
creasing, and (/R) is satisfied, then there exists a function x( -, - ) such that
(t,x) is incentive compatible and individually rational.

Proof. The proof is by construction. Let
& K]

x(s,b)=fudQ(u)+fudP(u)+c,

b s
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where cis a constant chosen such that V(b) = 0. To compute ¢, notice that

5

V(b) = bQ(b) — j x(s,0)f(s) ds

s

=bQ(b)—c—jfudP(u)f(S) ds

14

LT

=bQ(b)—c+ j s(1 — F(s)) dP(s) = 0.

Thus,

5

c=bQ(b) + j s(1 — F(s)) dP(s).

s

Incentive compatibility for the seller is verified by showing that the
seller s is better off reporting s than s’ # s: For all s,s" € [s,51],

s’ s’

S(P(s’) — P(s)) + S(s)— S(s")= s j dP(u) — j u dP(u)

5 5
s

= j (s —u) dP(u) =0,

5

since P is decreasing. An identical argument holds for the buyer.

Since V(b) = 0 and (z,x) is incentive compatible and satisfies (/R), it
follows from lemma 3 that U(s) = 0. Thus, the bargaining mechanism
(t,5) is incentive compatible and individually rational.

Sequential rationality

To understand how learning takes place in a sequential bargaining mech-
anism, it is best to interpret the direct revelation game as follows. At time
zero (but after the players know their private information), the players
agree to adopt a particular sequential bargaining mechanism (z,x) that is
interim efficient. (Note that any interim-efficient mechanism can be cho-
sen as a Nash equilibrium in an appropriately defined ‘“‘choice-of-
mechanism” game.) The players then report their private information in
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sealed envelopes to a mediator, who will then implement the mechanism
{t,x). (Actually, a third party is not necessary, since the role of the media-
tor can be carried out by a computer programmed by the bargainers to
execute the mechanism.) After opening the envelopes, the mediator does
not announce the outcome immediately by saying something like, “Trade
shall occur two months from now at the price of one thousand dollars,”
but instead waits until two months have passed and then announces,
“Trade shall occur now at the price of one thousand dollars.”” The media-
tor must wait until the time of trade in order that the mechanism be
sequentially rational, since otherwise the bargainers would have an in-
centive to ignore the mediator’s announcement and trade immediately.

As time passes, the players are able to refine their inferences about the
other player’s private information based on the information that the
mediator has not yet made an announcement about. Initially, it is com-
mon knowledge that the players’ valuations are distributed according to
the probability distributions F and G, but after 7 units of time the
common-knowledge beliefs become the distributions F and G condi-
tioned on the fact that an announcement has not yet been made; that is,

F(s)=F(s|t(s,)>1) and  G(b) = G(b|t(s,b) > 7).

Thus, at any time 7 > 0, the mechanism {¢,x) induces an outcome func-
tion #(s,b) = t(s,b| F,,G.) for all s and b. A mechanism {¢,x) is sequen-
tially rational if at every time 7 = 0, the induced outcome function
t(s,b| F,,G,) s interim efficient, that is, there does not exist a mechanism
(t',x" ) preferable to (¢,x) at some time 7 = 0 for all remaining traders and
strictly preferred by at least one trader.

The following lemma relates the definition of sequentially rational to
common-knowledge dominance.

Lemma 5. A sequential bargaining mechanism {¢,x) is sequentially
rational if and only if it is never common knowledge that the mechanism
t(+, | F,,G;) that it induces over time is dominated by an alternative
mechanism.

Proof. From theorem 1 of Holmstrém and Myerson (1983), we know
that a mechanism is interim efficient if and only if it is not common
knowledge dominated by any other incentive-compatible and individu-
ally rational mechanism.

A necessary condition for a mechanism to be sequentially rational is
that the bargainers continue negotiations so long as each expects positive
gains from continuing. For the model here, since there are no transaction
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costs (only delay costs), this means that negotiations cannot end if there
exists a pair of players that have not yet come to an agreement, but for
which agreement is beneficial at some point in the future. Formally, for
the bargaining mechanism (#,x) to be sequentially rational, it must be
that for all potential players, a failure to reach agreement implies that
there is some point beyond which agreement is never beneficial; that is,
for all s and b,

t(s,b) = © == there exists T = 0 such that for every 1 > 1,5 = be'?~9r,

The condition s = be»~97 is simply a statement that trade is not benefi-
cial at time 1, since

X—se 7+ bem —x =2 ()= se P = he” T &= 5 = pelr~ ",

Notice that the strength of this requirement depends on the relative mag-
nitudes of the players’ discount rates. When p > g, then e»~9* — « as
T — o, and so for all potential pairs of players it is always the case that
there exists a time at which trade is beneficial. Thus, when p > g, the
mechanism {#,x) is sequentially rational only if trade always occurs; that
is, #(s,b) < = for all s and b. Likewise, when p < g, then e~ 9* — 0 as
T — %, and so for every pair of players there is always a point at which
trade becomes undesirable for all times in the future. Finally, if p = g,
then the necessary condition for sequential rationality becomes #(s,b) =
© = 5 = p; that is, trade must occur whenever the gains from trade are
initially positive.

To state this necessary condition in a lemma, it will be useful to define
A as the set of potential traders for which trade is always beneficial at some
time in the future; that is,

B = {(s,b) | p>0 or (p=0 and s<b)).

Lemma 6. Any mechanism {#,x) that excludes trade over a nonempty
subset of & violates sequential rationality.

Proof. Let N C @ be the set for which trade never occurs. Then, at some
point in time 7, the induced mechanism has t(s,b | F,,G,) = « for all
remaining traders, which includes .. However, this mechanism is not
interim efficient, since it is dominated by a mechanism that results in a
positive probability of trade for some traders in & (a partially pooling
equilibrium with this property will always exist).

I claim that sequential rationality is a necessary condition for rational-
ity in games with incomplete information in which commitment is not
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possible. Ifa mechanism is not sequentially rational, then at some pointin
time it is common knowledge that a// potential agents would prefer an
alternative mechanism and hence this alternative mechanism will be
adopted by the agents at that point in time. Thus, it would be inconsistent
for the players to believe that the original mechanism would be carried out
faithfully.

Necessary and sufficient conditions for perfection

Lemmas 1 through 5 are summarized in the following theorem, which
gives necessary and sufficient conditions for the sequential bargaining
mechanism {Z,x) to be perfect.

Theorem 1. A sequential bargaining mechanism {z,x) is incentive com-
patible if and only if the functions

b b

S(s) = j x(s,b)g(b) db, P(s)= j e P sbg(h) db,

[

x(s5,0)f(s) ds, o) = j e sDf(s) ds

s

B(b) =

Ih\ “y o

are such that P is decreasing, Q is increasing, and

5 b
S(s) — S(s)= f —u dP(u) and B(b) — B(b) = f udQ(u). (IC)
s b

Furthermore, for ¢ such that P is decreasing and Q is increasing, there
exists an x such that (z,x) is incentive compatible and individually ratio-
nal if and only if

5 = — 1_—G(b)> —ot(s,b) — ( @) - t(s,b)} -
Us)+ Mb)=¢ {(b 20) e S+f(s) e =0,
(IR)

Finally, the mechanism (z,x) is sequentially rational if and only if it is
never common knowledge that the mechanism it induces over time is
dominated by an alternative mechanism.
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8.4 Efficiency

The set of perfect bargaining mechanisms is typically quite large, which
means that there are many extensive-form games with equilibria satisfy-
ing incentive compatibility, individual rationality, and sequential ratio-
nality. To narrow down this set, it is natural to assume additional effi-
ciency properties. Three notions of efficiency, described at length by
Holmstrom and Myerson (1983), are ex post, interim, and ex ante effi-
ciency. The difference between these concepts centers on what informa-
tion is available at the time of evaluation: Ex ante efficiency assumes that
comparisons are made before the players know their private information,
interim efficiency assumes that the players know only their private infor-
mation, and ex post efficiency assumes that all information is known.

Ex post efficiency

Ideally, one would like to find perfect bargaining mechanisms that are ex
post efficient. The mechanism (¢,x) is ex post efficient if there does not
exist an alternative mechanism that can make both players better off in
terms of their ex post utilities (after all of the information is revealed).
(This is often called full-information efficiency in the literature. Holm-
strom and Myerson (1983) term this “ex post classical efficiency” to
distinguish it from their concept of ex post incentive-efficiency, in which
incentive constraints are recognized.) Equivalently, for a mechanism to
be ex post efficient, it must maximize a weighted sum o, (s,b)u(s) +
a(s,b)v(b) of the players’ ex post utilities for all s and b, where a;( « , *),
a,(+, ) =0 and the ex post utilities of seller s and buyer b are

w(s,b) = x(s,b) — se—rtsb) and v(s,b) = be™ 76D — x(s,b).

Since the payoff functions are additively separable in money and goods,
and thus utility is transferable between players, we can assume equal
weights (i.e., &,(s,0) = a,(s,b) = 1 for every s,b) without loss of generality.
To simplify notation, define p(s,b) = e~*5®  so that p(s,b)” is the dis-
counted probability of agreement for seller s given that the buyer has
valuation b, and p(s,b)° is the discounted probability of agreement for
buyer b given that the seller has cost s. With this change, a sequential
bargaining_mechanism becomes the pair of functions (p,x) where p:
[5,5] X [b,] = [0,1]. The bargaining mechanism {p,x), then, is ex post
efficient if for all s € [s,5] and b € [b,b], the function p(s,b) is chosen to
solve the program

max 7(p) = bp° — sp*.
PEl0.1]
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The first-order condition is

dan
_— = o—1 — 1 =
& obp PSP 0

<ab)1/(f"”)
r=\>s :

Checking the boundary conditions and assuming that s,b = 0 yields

or

1 if s< b, ps = ab,
ob\V—a)
p¥(s,b) = E if p > g, ps > ob, (EP)
0 ifp=<o,s=b.

The following theorem demonstrates that it is impossible to find ex
post-efficient mechanisms if the bargainers are uncertain whether or not
trade should occur immediately. This result is shown in an example in
Cramton (1984).

Theorem 2. There exists an incentive-compatible, individually rational
bargaining mechanism that is ex post efficient if it is common knowledge
that trade should occur immediately. However, an ex post-efficient mech-
anism does not exist if the buyer’s delay cost is at least as great as the
seller’s and it is not common knowledge that gains from trade exist.

Proof. Suppose that it is common knowledge that trade should occur
immediately. Then, three cases are possible: (1)p < gands < b,(2)p> ¢
and ps < gb, and (3) p = © and ¢ < . What needs to be shown is that
D¥(s,b) = 1 for all s,b satisfies (/R). For cases (1) and (2),

UG)+ Nb)=¢ {(b_l—_G(b))_<S+_@)}

g(b) f(s)
—glpy_ 1760 G(b)} _ { E(i)}
¢ {b @ U T
b 5

= f (bg(b) — 1 + G(b)) db — f (sf(s) + F(s)) ds
b s

=bG(b)|§—b+b—sF(s)[

=b—5=0,
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where the integration is done by parts. In case (3),

< = _1_—G(b)}= >
Uis)+ Hb) %’{b 2(5) b=0.

Then, by lemma 4, there exists an x such that { p,x) is incentive compati-
ble and individually rational.

Now, assume that it is not common knowledge that gains from trade
exist and the buyer’s delay cost is at least as great as the seller’s (i.e., p < o).
Notice that when p < g, we find that {p,x) is ex post efficient if trade
occurs without delay whenever there are positive gains from trade:

1 ifs<p,

* =
pr(s,b) {o if s = b.

Substituting this function for p into (IR) yields

Us) + 1)

b min{b,5}

= j j (bg(b) + G(b) — 1)f(s) ds db
[

b min{b,5)
_ j j (5/(5) + F(s)) ds g(b) db
b s

b

5
=j(bg(b)+G(b)-— 1)F(b) db—jmin{bF(b),s_}g(b) db
b

[

b b
=—j(1—G(b))F(b) db+j(b—§)g(b) db

SIS
X

=—j(1 —G(b))F(b)db+j(1—G(b)) db

5

(1 — Gw)F(u) du.

19— u I
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Thus, any incentive-compatible mechanism that is ex post efficient must
have

Uis)+ Vb)=— f (1 —Gu)F(u) du <0,
b

and so it cannot be individually rational.

When the seller’s delay cost is greater than the buyer’s and it is not
common knowledge that trade should occur immediately, a general proof
that ex post efficiency is not achievable cannot be given due to the com-
plicated expression for p*(s,b) in this case. However, analysis of examples
(see Section 8.5) suggests that ex post efficiency-is typically unobtainable.

Ex ante efficiency

The strongest concept of efficiency, other than ex post efficiency (which is
generally unobtainable), that can be applied to games of incomplete in-
formation is ex ante efficiency. A player’s ex ante utility is his expected
utility before he knows his type. Thus, given the sequential bargaining
mechanism { p,x), the seller’s and buyer’s ex ante utilities are

5 5

3
U= f U(s)f(s) ds = f f (x(s,b) — sp(s,b)*)g(b) db f(s) ds,
b

s

V= | Wb)gb)db= f f (bp(s,b)° — x(s,b))f(s) ds g(b) db.

b

m—\‘ D N

The mechanism { p,x) is ex ante efficient if there does not exist an alterna-
tive mechanism that can make both players better off in terms of their ex
ante utilities. Thus, for a mechanism to be ex ante efficient, it must
maximize a weighted sum o, % + «, 7" of the players’ ex ante utilities,
where «;,a, = 0. For tractability and reasons of equity, I will assume
equal weights (i.e., &, = &, = 1). (One might think that the assumption of
equal weights is made without loss of generality, because the payoff func-
tions here are additively separable in money and goods, and thus utility is
transferable between players. Although this intuition is correct in a setting
of complete information, it is false when there is incomplete information,
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because an ex ante transfer of utility will violate individual rationality for
some players.) The use of unequal weights would not significantly change
the results, but would greatly complicate the analysis.

If the bargainers were to choose a bargaining mechanism before they
knew their types, it would seem reasonable that they would agree to a
scheme that was ex ante efficient. It is generally the case, however, that the
players know their private information before they begin negotiations,
and therefore would be unable to agree on an ex ante-efficient mecha-
nism, since the players are concerned with their interim utilities U(s) and
V(b) rather than their ex ante utilities % and ¥". Nevertheless, it may be
that the sequential bargaining mechanism is chosen by an uninformed
social planner or arbitrator, in which case the selection of an ex ante-effi-
cient mechanism would be justified. Alternatively, one might suppose
that the choice of a bargaining mechanism is based on established norms
of behavior and that these norms have evolved over time in such a way as
to produce ex ante-efficient mechanisms. In situations where the choice of
a bargaining mechanism does not occur before the players know their
types or is not handled by an uninformed third party, ex ante efficiency
is too strong a requirement. The weaker requirement of interim effi-
ciency—that there does not exist a dominating mechanism in terms of
the players’ interim utilities U(s) and V(b)-is more appropriate.

The sum of the players’ ex ante utilities for the bargaining mechanism
{p,x) is given by

55
U+ V= f (bp(s,b) — sp(s,b)*)f(s)g(b) ds db.

b s

A bargaining mechanism, then, is ex ante efficient if it maximizes this sum
subject to incentive compatibility and individual rationality:

rPax) €{bp(s,b)” — sp(s,b)*}
pas

such that (P

_1—G<b>) ,_< &) }>
%’{(b 20) p(s,b) S+f(s) p(s,by? ¢ =0,

where p is chosen such that P is decreasing and Q is increasing. Multiply-
ing the constraint by A = 0 and adding it to the objective function yields
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the Lagrangian
Lo =¢ {((1 + A2 (G(b)) (s.b)°

b)
(s)) }
A
((1+ )§ +'1f() p(s,b)?

_ (A \(1=Gw) .
_“”)g{[b (HA)( 20) )]”(S’b)

_ A F(s)
[” (1 H)(f(s))]”( b }
For any & = 0, define the functions

F(s) 1 — G(b)
S(s) gy -
Then, the Lagrangian (ignoring the constant (1 + 4)) becomes

Z(p.A) = &{d(b,o)p(s,by — c(s,a)p(s,b)"},

which is easily maximized by pointwise optimization. The first-order
condition is
a¥

= o—1 p—1
& o dp pep

(gd)l(ﬂ_ﬂ)
r= E .

Establishing the boundary conditions and noticing that ¢( - , - ) = 0 yields
the optimal solution

1 if e(s,0) < d(b,@), pc(s,a) = od(b,),

_ | {od(b,a)
Pu(s,b0) = (—p 5.00)
0 if (p = o, c(s,0) = d(b,@)) or d(b,&) = 0.

The following theorem determines how to find an ex ante-efficient
mechanism for any sequential bargaining game.

(s, ) =s+ o ——- and dibe)=1>

or

1/(p—0)
) if p > a, pc(s,) > od(b,o) > 0,

Theorem 3. If there exists an incentive-compatible mechanism {p,x)
such that p = p, forsome a¢in [0,1] and U(s) = V() = 0, then this mech-
anism is ex ante efficient. Moreover, if ¢(+,1) and d( -,1) are increasing
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functions on [s,5] and [b,b], respectively, and ex post efficiency is unob-
tainable, then such a mechanism must exist.

Proof. The first statement in this theorem follows from the fact that the
Lagrangian #(p,A) is maximized by the function p, with a = A/(1 + A).
Hence, p, yields an ex ante-eficient mechanism provided that the indi-
vidual-rationality constraint is binding.

To prove the existence part of the theorem, suppose that ¢(-,1) and
d(-,1) are increasing, and that the players are uncertain whether or not
trade should occur immediately. Then, for every a € [0,1], ¢( - ,&) and
d( - ,) are increasing, which implies that p,(s,b) is increasing in s and
decreasing in b. Thus, Pis decreasing and Q is increasing, as required by
incentive compatibility.

It remains to be shown that there is a unique « € [0, 1], for which the
individual-rationality constraint is binding. Define

R(a) = &{d(b,1)(pa(s,0))” — c(5,1)(pals,0))7)

so that R(c) is the value of the integral in the individual-rationality con-
straint as a function of c. First, notice that R(1) = 0, since the term in the
expectation is nonnegative for all s and b. Furthermore, R(0) < 0, since
there does not exist an ex post-efficient mechanism. Therefore, if R(a) is
continuous and strictly increasing in «, then there is a unique & € [0,1]
for which R(a) = 0.

The continuity and monotonicity of R( - ) are most easily verified by
considering two cases.

CcAsSE 1 (p=0). When p = g, then

1 ife(s,o) < d(ba),
Pals:0) = {O if ¢(s,a) = d(b,x).

Thus, p,(s,b) is decreasing in a, since

1-G) E(s_))
gb)y  f(s)

is decreasing in «. Thus, for a < g8, R(f) differs from R(«) only because
0 = pp(s,b) < py(s,b) =1 for some (s,b) where d(b,8) < c(s,8), and so
d(b,1) < ¢(s,1). Therefore, R( - ) is strictly increasing.

To prove that R( - ) is continuous, observe that if ¢(s,1) and d(b,1) are
increasingin sand b, then ¢( - ,&) and d( - ,«) are strictly increasing forany
a < 1. So, given b and «, the equation c¢(s,a) = d(b,a) has at most one
solution in s, and this solution varies continuously in b and . Hence, we

db,e) — c(s,0)=(b—s)—« (
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may write
b r(b,o)

R(a) = f f (d(b,1) — c(s,1))f(s)g(b) ds ab,
b s
where r(b,a) is continuous in b and «. Thus, R(«) is continuous in a.

CASE 2 (p> o). When p > ¢, then

1 if oc(s,a) = od(b,o),
_ ad(b,a))l/(p—”) .
Da(5,0) (pc 5.0) if pc(s,0) > ad(b,a) > 0,
0 if d(b,o) = 0.

Since

B L 1 — G(b) F(s)
od(b,o) — pc(s,o) = ob — ps a(" g(b) o f(S))’

od(b®) _ o (b —of(1 = G(b))/g(b)])
pc(s,o)  p S+ o F(s)/f(5)] ’

and d(b,a) are decreasing in «, p,,(s,b) is decreasing in «. Thus, fora < 3,
R(p) differs from R(a) only because py(s,b) < p,(s,b) for some (s,b) where
od(b,a) < pc(s,00). Therefore, R( + ) is strictly increasing.

Since ¢( + ,o) and d( - ,&) are strictly increasing for any a < 1, the equa-
tion d(b,a) = 0 has at most one solution in b and the equation pc(s,a) =
od(b,o) has at most one solution in s, and the solutions vary continuously
in b and o. Hence, we may write

b r(b,o)
R(a) = f (f (d(b,1) — c(b,1))f(s) ds
q(a) s

5

+ f [d(B,1)X(Pa(5,0))” — c(5,1)X(Da(5,0))71 f(5) dS) g(b) ab,

r(b,c)

where g(a) and r(b,a) are continuous in b and «. Therefore, R() is
continuous in q.

Since R( -) is continuous and strictly increasing, with R(0) < 0 and
R(1) = 0, there must be a unique & € [0,1] such that R(«) = 0 and p,, (s,b)
is ex ante efficient.
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It is worthwhile to point out that the requirement in the existence part
of theorem 3 that ¢( - ,1)and d( - ,1) be increasing functions is satisfied by
a large range of distribution functions. A sufficient condition for ¢( -,1)
and d(-,1) to be increasing is for the ratio of the distribution and the
density to be increasing. This is a local characterization of the monotone
likelihood ratio property and is satisfied by many distributions, such as
the uniform, exponential, normal, chi-square, and Poisson distributions.

I now prove that the ex ante-efficient mechanism typically violates
sequential rationality, and hence show that bargainers who are unable to
make binding commitments are worse off (in an ex ante sense) than
bargainers who are able to commit to particular strategies.

Corollary 1. 1f ex post efficiency is unobtainable, ¢( - ,1) and d( - ,1) are
increasing functions, and d(b,1) <0 if p > o, then the ex ante-efficient
mechanism violates sequential rationality.

Proof. By theorem 3, the ex ante-efficient mechanism exists and is given
by p, for some a > 0. Consider the set of traders who never trade under
Do, but for whom trade is always beneficial at some point in the future:

N ={(5,0) | po(5,6)=0 and [p>0 or (p=0 and s=b)]}.

By our hypothesis, this set is nonempty. Thus, from lemma 6, the mecha-
nism p, violates sequential rationality.

8.5 The case of uniform symmetric exchange:
An example

To illustrate the theory presented in the earlier sections, it will be useful to
look at an example. In particular, consider the case of uniform symmetric
exchange in which both the seller’s cost and the buyer’s valuation are
uniformly distributed on [0,1]. Then, c(s,&) = (1 + a)s and d(b,a) =
(1 + a)b — a, which are strictly increasing when a =1, and so by
theorem 3 we know that, for some & € [0,1], the mechanism p = p, is ex
ante efficient. The desired « is found by setting R(«) to zero, so that
U(s) = V(b) = 0. Again, it will be useful to consider two cases depending
on whetherp=cgorp>og.

CASE | (p=0). Whenp =g, then

) «a
B 1 1fs<b—1+a,
pa(ssb)_ a
0 ifs=pH—

l+a’
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Define 1 = a/(1 + ¢). Then, we wish to find u € [0,4] such that

1 b—u

R(a)=ff(2(b—s)—l)dsdb=0.
u 0

Performing the integration yields

1
(#—Z>(#+ 12 =0,

which has a root in [0,4] at 4 = 4. Thus, @« =4 and

1 ifs<b—%,
p(s,b) = I
0 lfSZb—Z.

When p < g, ex ante efficiency is obtained by a mechanism that transfers
the object without delay if and only if the buyer’s valuation exceeds the
seller’s by at least 4. Perhaps somewhat surprisingly, the ex ante-efficient
mechanism in this case does not depend on p or a. Since the value of the
object is declining more rapidly for the buyer than for the seller, it is
always better to transfer the item immediately, if at all. Hence, even
though the players can reveal information by delaying agreement, in the
ex ante-efficient mechanism they choose to trade immediately or not at
all, so that a static mechanism ex ante dominates any sequential bargain-
ing mechanism. This static mechanism, however, is not sequentially ra-
tional, which illustrates corollary 1.

An extensive-form game that implements the ex ante-efficient mecha-
nism when p < ¢ has been studied by Chatterjee and Samuelson (1983).
They consider the simultaneous-offers game, in which the players simul-
taneously announce prices and the object is traded if the buyer’s bid
exceeds the seller’s offer. For this example, the seller’s optimal strategy is
to offer the price 4s + 4, and the buyer’s best response is to bid 3b + 3,
which implies that trade occurs provided that 4s +4 <%b + {5 or s <
b —1, as in the ex ante-efficient mechanism. For this equilibrium, the
price at which the object is sold is

1 1 . 1
§(b+5)+€ ifs<b Z,

0 ifszb—%.

x(s,b) =
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The sum of the players’ ex ante utilities is
1 b-1/4

9
%+‘V——f f (b s)dsdb—6—4,
174 0

whereas the total utility from the ex post-efficient mechanism is

1 b
ff(b—s)dsdb=é.
0 0

Thus, 15.6 percent of the gains from trade are lost when p = g, due to
delays in agreement.

CASE 2 (p > ). When p > o, then

,
1 s=Z (b )
p
(b o ) H(p—0)
alb—
Pals,b) = § [+o . g( )
ps p
o
0 ifb=s— T a
\
Making the substitution z = «/(1 + ), we wish to find u € [0,4] such that
1 (a/p)b—w) 1
of(p—o)
f[ f (2b—1—2s)ds+ f [(Zb )(“(bps ”))
u 0 (o/pXb—u)

— /(p—0)
-2 (M)p ? ] ds] db = 0.
s

Letd=a/pand y = a/(p — 0), so that | + y = p/(p — o). After this sub-
stitution, we have
1 &b—p)

ff(Zb—l-—Zs)ds
0

u
1

+ f [(26 — Db — W) — 2[&b — w))*7]s~7 ds] db = 0.
ab—p)
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Performing the inner integration (assuming y # 1) yields

[[s0-sne-om+ a1
u
47 1201 = 66+ 260 = 118 ~ WI(1 86 —m]'-y}] b
= f [5{(2 — $)B — (2u(1 — &) + 11 + u(1 — du))
u
#2090+ 230 = 1~ ) = 46— ) | b

- f li_y [[6 — W2 = OB — (1 + 2u(1 — )] — 28)b
u

+ ou? — yu(l — du) + [2(1 — )b + 20u — 116~ 1(b —,u)7:| db=0.

Since
1

— 1+
f(b—u)vdb=(ll—f)yy and

u
1

gy L 1—p
jb(b Wy db =" (1 2+y),

u

after integration we have

s [1 1
— [3(1 —uNe— 2=+ 5 — 1Ayl + 2u(1 — J)] — 26w}
_ o] — o
+ (1= wlée? — yu(l — ol + —— Ty

_ _ _1=py ]2
[2@ 1+ 2(1 5)(1 2+y)]] 0.

Dividing by (1 — p)/(1 — ), yields
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|
%(1 Fut e =2 =+ 5 1+ WO+ 2u(1 — )] - 20)

oA —py
1+

- — _lomy o
[25;; 1+2(1 5)(1 2+y>] 0.

Given é = o/p, a root u € [0,4] to (R) is easily found numerically.
The sum of the players’ ex ante utilities is computed as follows:

1 Hb—u) 1

ver=[[ [ - |

U Ho—p)

(P2 o) ]
s s
1
1 1
= f [6(b—u)((l -—5(5> b+§(5u>
H

|
+ =5 [(1 = 6)b + ou)(6(b — w1 — [6(b — #)]‘“7}] db

+ du? — yu(1l — du) + (R)

1

5 1
=f1—_y[<56(1 +y)—y>b2+[w—6u(l + »)1b

H
+%6u2(1 + )+ 671 — )b+ Su)(b— u)y] db
s1—wl1 1
=A== [5 () (300 40 -0)
1
+5(1 + Wy — ou(1 + )]

1., 6?“(1—u)y< B 1+u+y>]
+26u(1+y)+—1+y ou+ (1 (5)—2+y .

The value of ¢ and the efficiency of the ex ante-efficient mechanism
relative to the first-best (full-information) solution are shown in Figure
8.1 and Figure 8.2, respectively, as the ratio of the players’ discount rates is



0.25

0.2}

0.15 -

0.1}

0.05 +

0 o

1 1 1
0 0.2 0.4 0.6 0.8 1
Ratio of the Players’ Discount Rates (§ = ";)

Figure 8.1 Value of 4 as a function of the ratio of the players’ discount
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varied from O to 1. Bargaining efficiency improves as the seller’s discount
rate is increased relative to the buyer’s. When the players’ discount rates
are equal, 15.6 percent of the gains from trade are lost due to delays in
agreement. This inefficiency decreases to zero as p — o, illustrating
theorem 2.

8.6 Conclusion

Two important features of any bargaining setting are information and
time. Bargainers typically have incomplete information about each
other’s preferences, and therefore must communicate some of their pri-
vate information in order to determine whether or not gains from trade
exist. One means of communication is for the agents to signal their private
information through their willingness to delay -agreement: Bargainers
who anticipate large gains from trade will be unwilling to delay agreement
and so will propose attractive terms of trade that the other is likely to
accept early in the bargaining process, whereas bargainers expecting small
gains will prefer to wait for better offers from their opponent. In this
chapter, I have described the properties of such a bargaining model, by
analyzing a sequential direct revelation game.

Modeling the bargaining process as a sequential game, where the agents
communicate their private information over time, has two main advan-
tages. First, from the point of view of realism, one commonly observes
bargaining taking place over time. Second, any static bargaining mecha-
nism, because it does not permit the agents to learn about their oppo-
nent’s preferences, must end with positive probability in a situation where
gains from trade are possible and yet no agreement is reached. If both
bargainers know that gains from trade exist, what prevents them from
continuing negotiations until an agreement is reached? By introducing
the time dimension, and hence allowing the bargainers to communicate
through their actions over time, one is able to construct perfect bargaining
mechanisms, in which the bargainers continue to negotiate so long as they
expect positive gains from continuing.

When the bargainers discount future gains according to known and
fixed discount rates, it was found that the bargainers may be better off (in
terms of their ex ante utilities) using a sequential bargaining mechanism
than a static scheme. This is the result of the time dimension introducing
an additional asymmetry into the problem, which may be exploited to
construct sequential bargaining mechanisms that ex ante dominate the
most efficient static mechanisms. Even in situations where a static mecha-
nism is ex ante efficient, it is unlikely that such a mechanism would be
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adopted by the bargainers, since it necessarily would violate sequential
rationality.

The analysis presented here represents an early step toward under-
standing how agreements are reached in conflict situations under uncer-
tainty. Several simplifying assumptions have been made in order to keep
the analysis manageable. First, modeling the agents’ time preferences with
constant discount rates is an appealing example, but not an accurate
description of all bargaining settings. (Fishburn and Rubinstein (1982)
derive under which circumstances the discounting assumption is valid. In
particular, they prove that any preferences over bargaining outcomes that
are monotonic, continuous, and stationary can be represented by dis-
counting provided the bargainers exhibit.impatience over all outcomes
except that of no agreement.) Second, the agents have been assumed to be
risk neutral, but in many bargaining situations the agents’ willingness to
take risks is an important bargaining factor. Third, I have restricted atten-
tion to rational agents who can calculate (at no cost) their optimal strate-
gies. Certainly, few agents are so consistent and calculating. With less-
than-rational agents, an agent’s capacity to mislead his opponent
becomes an important variable in determining how the gains from trade
are divided. Finally, I have assumed that the players’ valuations are inde-
pendent. However, in many settings the bargainers’ valuations will be
correlated, and so, for example, the seller’s willingness to trade may be a
signal of the valuation of the object to the buyer.

Although it would be useful in future research to weaken the simplify-
ing assumptions made here, perhaps the most fruitful avenue for further
study is the analysis of specific extensive-form bargaining games. The
advantage of looking at specific extensive-form games is that the bargain-
ing rules are independent of the probabilistic beliefs that the players have
about each other’s preferences. In a direct revelation game, on the other
hand, the bargaining rule depends in a complicated way on these probabi-
listic beliefs. Because of this dependence, direct revelation games are not
played in practice.

Can one find a strategic game that comes close to implementing the ex
ante-efficient bargaining mechanism over a wide range of bargaining
situations? Initial studies along these lines have been conducted by Cram-
ton (1984), Fudenberg and Tirole (1983), and Sobel and Takahashi
(1983). All three papers consider a model in which only one of the bar-
gainers makes offers. When the players’ reservation prices are uniformly
distributed on [0,1] and their discount rates are equal, it was found that
this model results in 32 percent of the gains from trade being lost, as
opposed to 16 percent being lost when the ex ante-efficient bargaining
mechanism is adopted (Cramton (1984)). Thus, the players’ inability to
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commit to ending negotiations results in a bargaining outcome that is
significantly less efficient than if commitment were possible.

Perhaps a better candidate for a strategic bargaining game that is nearly
ex ante efficient is the game in which the bargainers alternate offers. This
game was analyzed by Rubinstein (1982) in a setting of complete infor-
mation, but an analysis with incomplete information has yet to be done.
Of particular interest is the alternating-offers game as the time between
offers goes to zero, because this strategic game represents a very general
bargaining rule: At any time, a bargainer may make a new offer or accept
the most recent offer of his opponent. It would be a pleasant surprise if
such a reasonable bargaining game was nearly ex ante efficient over a
variety of circumstances.

A second promising area for research is further study on the implica-
tions of sequential rationality to bargaining and to more general games of
incomplete information. I intend to address this issue in depth in future
research.
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CHAPTER 9

The role of risk aversion in a simple
bargaining model

Martin J. Osborne
COLUMBIA UNIVERSITY

The purpose of this paper is to study the effect of a change in an individ-
ual’s degree of risk aversion on the perfect Bayesian Nash equilibriumin a
simple model of bargaining. I find that, contrary to the results in the
axiomatic model with riskless outcomes due to Nash, an opponent may
be made worse off by such a change. Further, an individual may want to
take an action that identifies him as more, rather than less, risk averse
than he really is. In the course of the analysis, I fully characterize the
equilibria of a class of “wars of attrition” with incomplete information,
and single out one as “perfect” in a certain sense; this result may be of
independent interest.

9.1 Introduction

The role of risk aversion in bargaining has been widely studied within the
axiomatic framework of Nash (1950) (see, for example, Roth (1979),
Perles and Maschler (1981)). It has been found that if the negotiation
concerns riskless outcomes, then the more risk averse an individual is, the
higher the payoff of his opponent. Related results show that in this case it
is to the advantage of an individual to “pretend” to be less risk averse than

1 am grateful to Vincent Crawford, Vijay Krishna, Carolyn Pitchik, John Riley,
Alvin Roth, Ariel Rubinstein, Charles Wilson, Allan Young, and two anonymous
referees for very helpful discussions and comments. A number of participants in
the Conference on Game-Theoretic Models of Bargaining at the University of
Pittsburgh, June 1983, also made valuable comments. I first worked on the issue
considered in this paper during a most enjoyable visit to the Institute for Ad-
vanced Studies, Hebrew University of Jerusalem, in Spring 1980; I am grateful to
the Institute for its hospitality and for partial financial support. This work was
also partially supported by grants from the Council for Research in the Social
Sciences at Columbia University in the summers of 1981-83, and from the
National Science Foundation (SES-8318978).
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he really is (Kurz (1977, 1980), Thomson (1979), Sobel (1981)). These
results have some intuitive appeal: Given any ( probabilistic) beliefs about
the behavior of his opponent, it seems that an individual should behave
more cautiously, the more risk averse he is. However, this fact influences
his opponent’s behavior, and without a more detailed specification of the
information possessed by both parties and of the precise structure of the
negotiation, it is not clear how the equilibrium behavior changes. (In the
case where the potential agreements involve lotteries, the axiomatic
model predicts that an increase in an individual’s risk aversion may
reduce the payoff of his opponent (see Roth and Rothblum (1982)). Here,
I restrict attention to the case in which agreements concern riskless
outcomes.)

It is natural to investigate these issues by modeling the process of
negotiation as a (noncooperative) strategic game, and by studying the
effect of changes in the players’ risk aversions on the characteristics of the
Nash equilibria. For such a comparative static exercise to make sense, the
game must have a unique equilibrium. It is clear that if the equilibrium
strategies are pure, then a change in a player’s risk aversion that preserves
his preferences over certain outcomes has no effect on his opponent’s
payoff. (This is the case, for example, in Rubinstein’s (1982) model.!)
Thus, for the degree of risk aversion to influence the outcome, the equilib-
rium strategies must involve randomization.

The model that I analyze is designed with these facts in mind. It is a
simple version of those formulated by Hicks (1932), Bishop (1964), and
Cross (1965). At each time in [0,1], two individuals can produce a flow of
one unit of some good desirable to them both. Before production can
begin, a contract must be negotiated that specifies how the flow of output
will be divided between the two parties. At time 0, each party begins by
demanding some fraction of the flow - say individual  demands d;(0). So
long as the demands are incompatible (i.e., sum to more than the output
available), no production takes place. In the most general version of the
model, at each time, each individual may adjust his demand. If ¢is the first
time at which the demands are compatible, and in fact d,(¢) + d,(¢) = 1,
then at each time in [t,1] each individual i receives the flow d,(¢). This
most general form of the model is unwieldy; in order to get some rather
specific results, I assume that the allowable concession patterns are very
special.

In the simplest case (considered in Sections 9.2 and 9.3), the demands
of both individuals at time O are fixed, incompatible, and the same. At
each time, each individual may leave his demand the same, or concede to
that of his opponent. I model the interaction between the individuals as a
strategic game? in which a pure strategy of an individual is an element ¢ of



The role of risk aversion 183

[0,1], with the interpretation that the individual will concede at ¢ if his
opponent has not done so by then. (Once his opponent has conceded,
there is no cause for further action on his part.) In a slightly richer version
of the model (considered in Section 9.4), each individual may choose how
much to demand at time zero, but may subsequently only stand firm or
concede. Though there are clearly many aspects of negotiation not in-
cluded in this model, it does capture the tradeoff involved in the intuitive
arguments concerning the effects of changes in risk aversion. That is, by
delaying concession, an individual sacrifices payoff now in return for the
chance that his opponent will concede in the future.

Asregards the informational structure of the negotiation, [ assume that
each individual may be one of many types, which differ in their degrees of
risk aversion. The solution is that of Bayesian Nash equilibrium, modified
by “perfection” of a certain sort (see Section 9.3). This standard solution
captures the idea that each player is uncertain of the type of his opponent.
However, it may also be given a more concrete interpretation. Thus,
suppose that there are two populations, each consisting of a continuum of
individuals of different types. In any play of the game, each member of
one population is randomly matched with a member of the other popula-
tion. A Bayesian Nash equilibrium has the property that if each individ-
ual’s beliefs about the distribution of concession times in the opponent
population is correct, then his equilibrium strategy is optimal. Given this
interpretation, it is natural to consider also the case where members of a
single population are matched with each other. From the point of view of
the Bayesian Nash equilibrium, this is, of course, simply a special case of
the two-population model, in which the characteristics of both popula-
tions are the same, and attention is restricted to symmetric equilibria (i.e.,
equilibria in which the strategies used in both populations are the same).
However, the comparative static question, which is my main focus, re-
quires separate analysis in the two cases. Viewed as a special case of the
two-population model, a change in risk aversion of a potential opponent
in the one-population case is a change not only in the characteristics of the
opponent population, but also in the characteristics of the player’s own
population. Given this, I analyze the two cases separately.

First, consider the case in which initial demands are fixed. In the
one-population model, there is a unique equilibrium distribution of con-
cession times®; in the two-population model, there is a set of equilibria
(characterized in theorem 3), but only one is perfect in a certain sense (see
proposition 5). In both cases, more risk averse individuals concede earlier
in the (perfect) equilibrium. The comparative static results are as follows.

In the one-population case, an individual is made better off by an
increase in the risk aversion of his potential opponents, whereas in the
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two-population case, the opposite is true. Thus, in the two-population
model, the prediction of Nash’s model is not supported. Unless one argues
that the model does not capture some essential aspect of bargaining, or
that Nash equilibrium is an inappropriate solution concept, the conclu-
sion is that the effect of a change in an opponent’s risk aversion on an
individual’s negotiated payoff can go in either direction, depending on the
precise structure of the negotiation.

To address the issue of “distortion” of preferences in this simple model,
I consider how an individual’s payoff changes as the fraction of his own
population that is less risk averse than him increases. This change causes
his opponents to believe with smaller probability that he is risk averse, and
so gives him an opportunity to “pretend’’ that he is not. However, such a
change does not affect his equilibrium payoff, although it does reduce the
payoff of his less risk averse colleagues.

Although the simple version of the model does not fit into Nash’s
framework (the set of payoffs to possible agreements may not be convex),
it is clear that the solution does not obey appropriately modified versions
of his axioms. Most conspicuously, the (perfect) equilibrium is not
Pareto-efficient. This lack of efficiency does not derive from uncertainty
about opponents’ payoffs - even if everyone is identical, the solution is
not efficient. Rather, it is the (inevitable) uncertainty about opponents’
actions that prevents agreement at time zero. It seems that the continuous
nature of the model contributes to this outcome: If disagreement is once-
and-for-all (as in Nash’s (1953) “demand game”’), then it seems less likely
that it will be the outcome of negotiation. If, on the other hand, demands
may be adjusted continuously (or, in the simple case here, a concession
can be made at any time), then it seems quite unlikely that an equilibrium
will involve agreement from the very beginning.

My analysis of the case in which initial demands may be chosen is
limited. I show that when there are two types in each population and two
possible initial demands, there is no separating equilibrium in which all
members of a given type choose the same demand and the two types in
each population choose different demands. The reason for this is that the
less risk averse individuals can benefit from pretending to be more risk
averse (see Section 9.4). There is thus another sense in which the model
works differently from the axiomatic one of Nash. I also show that there is
a continuum of pooling equilibria, in which a positive fraction of each
type in each population makes each initial demand. Given this non-
uniqueness, it is not possible to perform the comparative static exercises
discussed previously; it is an open question whether the model can be
modified to produce a unique equilibrium. However, the analysis does
show that the basic model does not degenerate when choice of initial
demand is allowed.
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Recently, a number of authors (e.g., Samuelson (1980), McLennan
(1981), Crawford (1982), Rubinstein (1982), Chatterjee and Samuelson
(1983), Fudenberg and Tirole (1983a), and Sobel and Takahashi (1983))
have modeled bargaining as a noncooperative strategic game. None of
these focuses specifically on the role of risk aversion. In most cases, the
bargaining parties are assumed to be risk neutral (although Samuelson
{(1980) and Chatterjee and Samuelson (1983) do contain some analysis of
the effect of changes in the players’ risk aversions). The model here,
designed specifically to address the role of risk aversion, differs in several
respects from these models. Most significantly, time runs continuously,
so that the players have great flexibility in choosing their time of action. A
player can always wait a short time (thereby losing at most a very small
amount of payoff) in case his opponent will concede; if time is discrete,
this is not possible. Note, however, that because the possibility for chang-
ing demands is so limited, players’ actions (or lack thereof) transmit no
useful information during the course of play (except for their choice of
initial demand, when this is allowed), whereas this information transmis-
sion is central to some of the models just cited. Young (1983) analyzes a
model that is in some respects similar to the simple model considered
here. However, the structure of the payoffs in his model is not quite the
same, and time is discrete; he does not consider the effect of changes in
risk aversion.

The game associated with the simple version of my model is what is
known in the literature as a “war of attrition” (see, for example, Riley
(1980)). Nalebuff and Riley (1984) have (independently) found a class of
equilibria in a model that is different in some respects from mine (e.g., the
time horizon is infinite, and there is a continuum of types), but is similar
in general structure. However, they do not show that they have found all
of the equilibria; nor do they consider the issue of perfection, or the effect
of a change in an individual’s risk aversion. Also related is the work of
Fudenberg and Tirole (19834), who have (independently) shown that, in
another version of a war of attrition, there is a unique Bayesian Nash
equilibrium that is perfect in a certain sense.

9.2 Bargaining within a single population

The model

The population consists of a continuum of individuals. The environment
of the negotiation between any two individuals is as follows. Time runs
continuously in [0,1]. At each point in time, a flow of one unit of output
can be produced, if the individuals can agree how to split it between them.
The rules of negotiation are simple. At time 0, each individual demands
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3 < a <1 units of output. At any subsequent time in [0,1], each may
concede to the demand of the other. The outcome of negotiation for each
individual is an output stream x: [0,1] — [0,1] of the form

(S)_{O if0=<s<,
X x ift=s=1,

where0 < 1= 1and 0 = x = 1. Such an output stream is characterized by
the pair (x,?) € [0,1]2. If an individual is first to concede, and does so at ¢,
he receives the output stream (1 — a,t); his opponent receives (a,t). If the
individuals concede simultaneously at ¢, the equilibrium of the game that
I study isindependent of the output stream received by each individual, so
long as that stream is of the form (c,?), where 1 — a < ¢ < a; for notational
convenience, | assume that itis (4,¢). There are m types of individuals. The
fraction y; > 0 of the population is of type i(= 1, . .., m). The prefer-
ences over lotteries on output streams of individuals of type i are repre-
sented by a von Neumann-Morgenstern utility function u;: [0,1]*— R,
with the following properties:

(P.1) For each (x,?), u,(x,1) = u,(0,t) = 0;

(P.2) For each ¢ < 1, u; is increasing in Xx;

(P.3) Foreachx > 0, u;is continuous in ¢, and continuously differentiable and
decreasing in ¢ whenever ¢ < 1.

In order to isolate the role of risk aversion, I assume that all of the types
have the same preferences over sure outcomes; they differ only in their
degrees of risk aversion, type i being more risk averse than type i + 1.
Precisely, a utility function vis more risk averse than a utility function u if
thereisastrictly concave function f: R, — R, suchthat v = f° u. I assume
the following:

(P.4) Foreachi=1,..., m— I, u; is more risk averse than u,,,.

It is easy to check that an example of a collection {1;} of utility func-
tions that satisfies (P.1) through (P.4) is that for which wu,(x,f) =
(1 —tpxs with0<o <o, < -+ - <g,<1.

The only choice an individual has is the time at which to concede.
Thus, a (mixed) strategy of an individual is simply a cumulative probabil-
ity distribution on [0,1]. Only the average strategy of individuals of type
is determined in equilibrium, not the strategy of any particular individual.
Irefer to this average strategy as the strategy of i, and denote it E;. For each
0=t=<1,let

6 =S 1E), ©.1)

i=1
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so that G(¢) is the probability that a randomly selected individual con-
cedesat or before ¢. I refer to G as the distribution of concession times in the
population. The distribution of concession times relevant to an individ-
ual’s choice is the one generated by all of the other individuals’ strategies.
However, since the population is nonatomic, this is the same as G. If an
individual of type i uses the pure strategy ¢, his expected payoffin negotia-
tions with a randomly selected opponent is

Pi(t,G) = f ui(a,s) dG(s) + u;(3,0)J6() + u;(1 —a,0)(1 = G(1),  (9:2)
(0.0

where Jg(t) is the size of the atom in G at ¢. The payoff to the mixed

strategy E; is P(E;,G)= [0,y Pi(t,G) dE(t), and (E,, ..., E,) is a

(Bayesian Nash) equilibrium if for i=1, ..., m we have

P(E,,G)= P,(E,G) for all strategies F,
where G is defined in (9.1).

Equilibrium

There is a unique equilibrium (E,, . .., E,,), defined as follows. There
exist numbers 0 =p, < - - - <p,= - - - p, =1 such that the support
of E;(denoted supp E;)isequal to [p,_,.p;} fori =1, ..., m. Thestrate-
gies E; are nonatomic on [0,1), and such that G causes the payoff P;(¢,G) of
an individual of type i to be constant on [p;_,,p;]. A distribution G with
this property can be found by solving the differential equations obtained
by setting equal to zero the derivative with respect to ¢ of each P,(¢,G). We
find that, for some 4 > 0, for p,_, =t <p,,

4

Gty=1—4 exp(f Ula,a,s) ds),
(1]

where, forany4 <a<1,4<b<1,and 0 = s < 1, and any utility func-
tion u: [0,1? — R, the function U is defined by

—D,u(l — a,s)
u(b,s) — w(1 — a,s)’

(I have made the definition of U more general than necessary for the
present purposes; it will be used also later.) Now, the fact that G is gener-
ated by the E,’s means that the equilibrium is as follows. For notational
convenience, let '(0) =0 and I'(k) = Z_,, y,fork=1,...,m. Thep/s

Ua,b,s) = 9.3)
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are defined iteratively. First, p, = 0. Now, given p,_; < 1, suppose that
there exists p < 1 such that

p
1-TG) (_ )

—TG-1 exp Ulaas)ds). 4

Pi—)
Then, let p; = p, and continue the process. If there is no such p, set i = y
and let p,=p,,, = -+ - =p,=1. Fori=1,..., y, the equilibrium

strategy E, of type i has support [p;_,.p;],
t

[1 —exp(—f Uia,a,s) ds)]

Pi-1

E@0=[—-T{—-1)]

” ifp_,=t<p,

9.5)

andE,(t)=lifp,=t.Fori=y+ 1, ..., m,theequilibrium strategy E;is
purely atomic, with mass at =1 (i.e., E;(t) =0 if t < 1 and E;(1) = 1).

The fact that this defines an equilibrium, and that there is no other,
follows from the results of Section 9.3 (see corollary 4). However, it is easy
to check that each E, is a strategy and that P,(¢,G) is constant on [p;_, ,p;]
(= supp E)).

Note that if all individuals are identical, the equilibrium does not
degenerate - in fact, all individuals then use mixed strategies with support
[0,1]. The only efficient outcome is for all to concede at time 0, but this is
not an equilibrium. If all individualsin a set .S of positive measure concede
at time 0, the distribution of concession times in the population contains
an atom at 0. Hence, every individual, including those in S, can benefit
from waiting a short period, and so it is not optimal for them to concede at
time 0.

The effect of a change in risk aversion

Let & be such that p, < 1 (i.e., in the unique equilibrium, individuals of
type k concede with probability 1 before time 1). Now, suppose that
individuals of type k become more risk averse, but not more so than
individuals of type k — 1. Thatis, consider a new game in which the utility
function of type k is #l,, which is more risk averse than u,, and less risk
averse than #,_ . (Throughout, I use a circumflex to denote the new value
of an object.) This means that the order in which the types concede in
equilibrium is preserved (since the ordering of risk aversions is preserved,
and the unique equilibrium has the property that the most risk averse
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types concede first). In particular, the support of E, lies between those
of E,_,and E,,.

I first argue that this change has no effect on the equilibrium payoffs of
types 1, ..., k— 1. To see this, note that from the definition of p, (see
(9.4)),wehavep,=p,fori=1, ... ,Ak — 1, and hence from (9.5) we have
E;=Efori=1,...,k—1.Thus, G¢)= G(t)forall0 <t =< p,_,.Now,
P,(t,G) is constant on supp E;, and so the equilibrium payoff of type i is
equal to P;(p,_, ,G), which depends on the form of G only on [0,p,_, ] (see
(9.2)). Hence, the equilibrium payoffof types 1, . . ., k — 1 is unaffected
by the change.

To analyze the changes in the payoffs of the remaining types, I need the
following result (see (9.3) for the definition of U). (The result is more
general than necessary for the present analysis; it will be used also in the
next section.)

Lemma 1. Suppose that the utility function # is more risk averse than
the utility function . Then, for any $ <a <1 and } <b <1, we have
Ula,b,s) > Ua,b,s) forall 0 = s < 1.

Proof. Let @i = f°u. The result follows from the fact that, since f is
strictly concave and 1 —a <4< b, if 0 = s < 1, then

S (1 = a,s))(u(b,s) — (1 — a,5)) > f(u(b,5)) — f(1(1 — as)).

This result implies that Uk(a,a,s) > Uila,a,s) for all 0 =5 <1, and
thus from (9.4) we have p, < p, and from (9.5) we have E, (1) > E,(¢) for
all po_; = pr—; <t =p,. Thus, G(t) > G(t) on (p,_, P ] (see Figure 9.1).
Now, ii,=u,fori=k+ 1, ..., m,sothat U,.= U,;; but since j, < p,, we
have fy., < P4y, withstrictinequality if p, , < 1 (see(9.4)), and so from
(9.5), we have Eyy (1) > Ep,(?) for all p, <t < py,. Thus, G(¢) > G(2)
also on (py,Pr+)- Continuing this argument, we see that G(¢) > G(f) on
(pk+1 ’ 1 )

Now, as noted previously, the equilibrium payoff of type i is equal to
P,(p;—,,G). If we integrate by parts in the expression for P;(p,_;,G) (see
(9.2)), using the fact that G is nonatomic on [0,1) and u;(x,1) = O for all x
(see (P.1)), then, given that each u; is decregsing in ¢ (see (P.3)) and
G(t) > G(t) on (py_;,1), we see that P(p,_,,G) > P(p,_,,G) for all i =
k+1,..., m That is, the equilibrium payoffs of types k+ 1,..., m
increase. We can summarize these results as follows.

Proposition 2. Let k be a type that in equilibrium concedes with proba-
bility 1 before time 1. Then, if individuals of type k become more risk
averse (but not more so than those of type k — 1), the equilibrium payoffs
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Figure 9.1 Change in the equilibrium distribution of concession times
caused by an increase in the risk aversion of individuals of type k in the
one-population model

of less risk averse individuals increase, whereas those of more risk averse
individuals are unaffected.

9.3 The case of two populations

The model

There are two populations like that described in the previous section.
Each individual in population 1 bargains with an individual in population
2. The name of an object in population 2 is the alphabetic successor of the
name of the corresponding object in population 1. Thus, in population 2
there are n types. I refer to type i in population € as “type €i”’. The fraction
g;of population 2 isof type j(= 1, . . ., n); the sum TX_, d;isdenoted A(k).
At time 0, individuals in population 2 demand 4 < 5 < [ units of output.
Individuals of type 2j have a utility function v;: [0,1]> — R satisfying (P.1)
through (P.3). The function v;is more risk averse than v, ,, as in (P.4). A
strategy of type 2j is denoted F), and the distribution of concession times
in population 2 is H. If an individual of type 1i uses the pure strategy ¢,
then his payoff is

P(tH)= f u(a,s) dH(s) + u;(3,0)J4(t) + u,(1 — b,t)(1 — H(1)); (9.6)

0.0,
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if an individual of type 2j uses the pure strategy ¢, then his payoff is

Q;t,G)= f v;(b,s) dG(s) + v;(3,0)J6 () + v;,(1 — a,0)(1 — G(2)). (9.7)
[0,0)

(Once again, for convenience I assume that simultaneous concessions
give a payoff of { to each individual.)

Equilibrium

In this model, there are many equilibria; they are fully characterized in
theorem 3, to be given later. However, I will argue (in the next subsection)
that only one equilibrium is perfectin a certain sense. It is this equilibrium
that I describe first. Although the details of its definition are somewhat
complex, its structure is easy to outline. Within each population, the
pattern of concessions is similar to the equilibrium pattern in the one-
population model. That is, there exist numbers 0 =p, < * - - <p,=
cr-=p,=land 0=¢g,< - - - <g,= - - =g,=1 such that the
support of the equilibrium strategy E; of type 1iis [p;_,,p;] and that of the
equilibrium strategy F; of type 2j is [g;_,,q;]. Informally, the p;’s and g;’s
can be defined as follows. First, find the distributions of concession times
G, and H, that make types 11 and 21, respectively, indifferent between
conceding atany pointin [0,1]. Now, the equilibrium distributions G and
H have to be generated by the actions of the individuals in the two
populations. Since type 11 constitutes the fraction y, of population 1, this
means that only that part of G, up to the point s, where G,(s,) = y, can be
generated by the actions of individuals of type 11. After that point, the
actions of type-12 individuals have to generate G,. However, in order for
the strategy of type-12 individuals to have support commencing at s, ,
from this point A has to be such that these individuals, not those of type
11, are indifferent. Similarly, if we try to generate H, by the actions of
individuals in population 2, we run out of individuals of type 21 at the
point ¢, where H(¢,) = J,. After this point, G has to be such that type-22
individuals are indifferent. Thus, the equilibrium distributions G and H
can be constructed as follows. Start at ¢ = 0 with G'= G, and H=H,.
Increase ¢ to the point where either G, (¢) = y, or H,(¢) = 6, (i.e., 5, or t, in
the preceding discussion), whichever comes first. Suppose that s, comes
first. Then, starting from s, , H has to be modified so that type-12 individ-
uals are indifferent. Then, H no longer reaches 4§, at ¢;, but at some other
point, say ¢1. After ¢], G must be modified so that type-22 individuals are
indifferent; a new point, s,, for which G(s,) = y, + 7, (=I(2)), is defined,
and the process of building G and H can continue.
Formally, G and H, and hence the equilibrium strategies F,, . . . , E,,



192 Martin J. Osborne

and Fy, ..., F,, can be defined iteratively. The iterative procedure that I
describe 1is slightly more general than necessary to define the present
equilibrium, because I will use it later to define other equilibria. For any
0=a<1and 0= g <1, the procedure Il(c,f) is as follows.

Procedure II(a,f). Let w and x be such that '(w) = o < T'(w+ 1) and
Alx)= B<A(x+ 1) (possibly w=0 and/or x=0), and let 0 = p, =

---=p,and 0=¢g,= - - - =gq,. Suppose that the numbers 0 <
D1 < - <pp<l and 0< gy < -+ <g, <1, where 0=k =
m—1,0=<¢=<n—1,and, say, g, < p,, satisfy the following properties.
First, let G(0) = , and define G on (¢;-,,¢ ] forj=w+1,...,fandon
(gj—1-Px] forj=¢+1by .
Gy=1—(1— G(q,-_l))exp<— f Vi(a,b,s) dS>; 98
gi—1
let H(0) = $, and define Hon (p,_,; ,p;]fori=x+1,...,kby
t
Hn=1-( —H(p,-_,))exp<—f U;(b,a,s) ds). 9.9

Pi-1
Now, assume that the p;’s and g;’s are such that G(p;) =T{(i) for i=
wt1,...,kHg)=A()forj=x+1,...,¢,and H(p,) <A + 1).
(Refer to Figure 9.2.) Note that G and H are continuous and increasing,
and G(¢) < 1 and H(¢) < 1 forall 0 = ¢ = p,. Now, as noted before, forany
H the payoff P;(¢,H ) of type 1i depends on the form of H only on [0,¢] (see
(9.6)), and similarly for Q;(¢,G). Thus, even though G and H are not yet
defined on the whole of [0,1], we can calculate P;(t,H) on [p,_,,p;] for
i=w+1,...,k(e., P(t,H) is independent of the way in which H is
extended to [0,1]); it is easy to check that it is constant there. Similarly,
G is designed so that Q;(2,G) (see (9.7)) is constant on [g;_,,g;] for j =

x+1,...,¢andon [g_,,p]forj=¢+ 1.
We now extend G and H to the next p; or g;, whichever comes first. To

doso,forp,=t=<1,let .

G (=1—(1— F(k))eXp<_f Verr1(a,b,s) dS)

Pi

and let

t

Hy(y=1-(1 —H(pk))exp<— f Up+1(b,a,5) dS)-

qe
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Figure 9.2 Construction of the functions G and H in procedure I(c, )

Let G())=G(t) for 0=t =p, and G(t) = G, (¢) for p,<t=<1, and
define H similarly. Then, P.,,(t,H ) and Q,,,(¢+,G) are constant on
[Px,1]. Now, define numbers p and q as follows. If G(1) = T'(k + 1), let
p = 1; otherwise, let p be the unique number in (p,1) such that G(p) =
I'tk+1). If H(1) < A(¢ + 1), let g = 1; otherwise, let g be the unique
number in (p,,1) such that H(g) = A(¢ + 1). (Such numbers exist since
G and H are continuous and increasing.) Now, if min(p,g) =1, let
Deri=' - =pp=1land g, = - =¢g,=1;if min(pg)=p<]|,
let pyy, = p;if min(p,q) = g < 1,let g,,, = g. In each case, extend G and
Hto[0,min(p,q)] by letting G(r) = G()and H(t) = H(¢)if0 =t < 1,and
G(ly=H(1)=1.

If min(p,q) = 1, then the process ends and G and H are defined on the
whole of [0,1]. If this is not so, then either the collection of p;’s or the
collection of g;'s has been augmented and G and H have been extended in
a way that satisfies the conditions necessary to repeat the process. Thus,
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this procedure defines uniquely numbers 0 =p,= - - - =p, < - - - <
py=-"'=p,=1 and O=gy= - =¢, < - <g=: =
¢, = 1 and continuous and increasing functions G and H on [0,1) with
Gp)=T@() for i=w+1,...,y, Hg)=A@) for j=x+1,...,z
and G(1)=H(1)=1.

Define strategies E,, ..., E,, and F,, ..., F, as follows:
(0 if0=t<p,_,,
E(t)y={ L—y]‘(z—_l) ifp_, =t<p, (9.10)
1 ' ifp=t=1;
(0 if0=tr<gq._,,
Fi(t) = 1 L‘?(J—_l) ifg_,=t<g, (9.11)
L1 J ifg=t=1
(Note that this means, for example, that E, . . ., E,, are pure strategies

involving concession at =0, E,,, may have an atom at 7= 1, and
E,,,, ... E, are pure strategies involving concession at ¢ = 1.) This
completes the description of the procedure I1(c,).

Now, I claim that the strategies defined by I1(0,0) constitute an equilib-
rium of the game. Note that all of the strategies thus defined are non-
atomic on [0,1). As noted in the construction, G and H are such that
Q(t,G) is constant on [g;_,,g;] forj=1, .. ., n, and P;(t,H) is constant
on[p,_.p;lfori=1, ..., m Toshow thatthe E’sand F}’s constitute an
equilibrium, it suffices to show that Q;(¢,G) is increasing on (0,g;—,) and
decreasing on (g;,1), and similarly for P,(¢,H ) (since the nonatomicity of
G and H on [0,1) implies that P; and Q; are continuous in ¢).

Consider Q;(¢,G) on(g;—,,g), with 1 < j — 1. Using the definition of G
(see (9.8)), the derivative of Q;(¢,G) with respect to f on (g—;,g5) is

(1 = GOXvib,t) — v;(1 — a,))(Vi(a,b,t) —V(a,b,t)).

However, from lemma 1 we have V,(a,b,t) > V(a,b,t) (since A is more
risk averse than j), so that the derivative is positive, as required. A similar
argument establishes that the derivative on (g;,1) is negative, and a like
argument can be made for P;. Hence, the E/’s and F;'s defined by I1(0,0)
constitute an equilibrium.

The remaining equilibria are of two types. One type is closely related to
the equilibrium just defined. In fact, it should be clear (by arguments
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similar to the preceding) that for any 0 < a <1 and any 0 < 8 < 1, the
strategies defined by I'l(«,0) and those defined by I1(0,8) are equilibria of
the game.

The final type of equilibria involves all individuals in one population
conceding with probability 1 at time 0. The members of the other popula-
tion use any strategies that generate a distribution of concession times that
puts enough weight near 1 = 1 to make the members of the first popula-
tion concede at 1 = 0. (Such strategies clearly exist —~ for example, all
individuals can concede at = 1 with probability 1.) This defines an
equilibrium: Since all members of the first population concede at time 0,
all members of the second population are indifferent between all conces-
sion times in (0,1] (they always receive a payoff stream equal to their
demand from time 0).

It is much more difficult to argue that every equilibrium of the game is
of one of these types; a proof'is given in the Appendix. We can summarize
the results as follows.

Theorem 3. (E,,..., E,;F,,...,F,)is an equilibrium of the two-
population model if and only if it is one of the following:

L. E(i=1,...,m)and F;(j=1, ..., n) are defined by I1(0,0).

2. For some 0<a<1 and 0<g<1, E(i=1,...,m) and F;(j=
1, ..., n)are defined by either I1(c,0) or I(0,5).

3. Either (a) E;(¢))=1 for all O0=¢=<1, for all i=1,...,m, and
F,, ..., F, are any strategies that generate a distribution H of conces-
sion times for which P,(0,H)= P,(¢t,H) for any 0 =¢=< 1, for /=
l,..., m; or (b) the equilibrium is similar to this, with the roles of
populations 1 and 2 reversed.

An immediate consequence of this result is the following.

Corollary 4. If the characteristics of populations 1 and 2 are the same,
then the only symmetric equilibrium is the one defined by I1(0,0). That is,
the only equilibrium in the one-population model is the one defined in the
previous section.

Perfect equilibrium

Selten (1975) argues that equilibria in games with finite pure strategy sets
should possess a certain robustness. Suppose that a game is perturbed by
insisting that each player devote at least some small probability to some
completely mixed strategy. An equilibrium is perfect if it is close to an
equilibrium of such a perturbed game. Okada (1981) suggests that one
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should insist that the equilibrium be close to an equilibrium of every such
perturbed game; he calls such an equilibrium strictly perfect. Kohlberg
and Mertens (1982) study arelated notion (a strictly perfect equilibrium is
a stable component in their sense), and show that the equilibria it gener-
ates have a number of attractive properties.

In the game here, each player has a continuum of pure strategies. In
such a game, it is not clear how to formulate these notions of perfection. I
do not attack this problem. Rather, I consider a small collection of per-
turbed games, in which the perturbing strategy is concession at time 0 with
probability 1. (Note that this is an equilibrium strategy — of type (3)). The
following result shows that the only equilibrium that is robust with respect
to small perturbations of the strategy sets in the direction of this strategy is
the one of type (1). That is, in the game in which each individual thinks
that there is a positive probability that his opponent will concede at time 0,
the only equilibrium is close to the one of type (1). It seems likely that this
equilibrium is the only one that satisfies an appropriately modified ver-
sion of strict perfection - that is, it is robust with respect to a// small
perturbations of the strategy sets. However, a precise argument to this
effect is beyond the scope of this paper.

Proposition5. For eache > 0,let I'¢ be the perturbed game in which the
strategy space of each player is the set of cumulative probability distribu-
tions Fon [0,1] such that F(0) = €. Then, foreache > 0, thegameI'<hasa
unique equilibrium, which converges to the one defined in (1) of theorem
3ase—0.

Proof. LetE(i=1,...,m)and F;(j=1,...,n) be the equilibrium
strategies given in (1) of theorem 3, and let G and H be the corresponding
distributions of concession times in the two populations. For each € > 0,
letES(t)=€+ (1 —€)E;(t)and F5(1) =€ + (1 —e)F;(r)forall0=¢=1,
i=1,...,mandj=1,...,n Now, (ES,..., E¢;F5,..., F¢)isan
equilibrium of I'¢, because the derivative with respect to ¢ on (0,1) of the
payoff P;(t,H¢), where H¥(t) = 2/, §,F5(t) =€+ (1 —€)H(z) forall 0 =
t = 1,is precisely (1 — €) times the derivative of P;(¢,H ). Hence, P;(¢,H¢)
is increasing on (0,p;_, ), constant on (p,_, ,p;), and decreasing on (p;,1).
Also, P,(0,H¢)is less than P;(n,H ¢) for some n > 0, since H ¢ has an atom
at 0 (compare lemma A3 of the Appendix). Similar arguments can ob-
viously be made for the payoffs of individuals in population 2. Further,
since there is no other nonatomic equilibrium of the original game (I"?),
and no equilibrium in which the strategies of players in both populations
have atoms at 0, it is clear that this is the only equilibrium of I'¢. In
addition, the E¢’s and F§’s converge (pointwise) to the E;’s and F’s.
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The effect of a change in risk aversion

Here, I investigate the effect of an increase in the risk aversion of individ-
uals of type 2¢ on the equilibrium singled out as perfect by the preceding
arguments. Suppose that the utility function &, is more risk averse thanv,,
and less risk averse than v,_, (so that the ordering of risk aversions in
population 2 is preserved).

Suppose that g, < 1 and ¢,_,; € supp Ek Then, as in the one-popula-

tion case, p; = p, for i = 1, yk—=1,g=gqforj= ,¢—1,and
G(t) = ((t) and H(t) = H(t) for O0=t=gq,_, so that the equ111br1um
payoffs of types 11, , 1k and 21, , 2(¢ — 1) are unaffected.

Now, consider the changes nG and Hon (g¢—1,1]. From lemma t, we
have 7, e(a,b,s) > V,(a,b,s)forall0 = s < 1,s0that from (9.8) (withj = ¢),
we have G(t) > G(t) on (ge 1»-min(d,,4,)] (since on this interval, both G
and G have to keep type 2¢ indifferent). (Refer to Figure 9.3.) This means
thatg,—; < By < pr.On(g,_,.P;), Hisunchanged (since u; is unchanged).
However, on [p,,min(p,.fe+,)], H has to keep type k + 1 indifferent,
whereas H keeps type k indifferent. Since H(p,)= H( Pr) and, from
lemma 1, Uk+1(b a,s) < Uy (b,a,s) for all 0 = 5 < 1, we have, from (9.9),
H(t) < H(t) for D <t =< min(p,,Pr+, ). Now, there are several cases to
consider, but the arguments are very similar. Suppose that D <¢g,and
G(‘I{) <T'(k + 1),so0thatg, < f,. Then, on [pr,min(Pes,Pe+1)); Hhas
to keep type 1(k + 1) indifferent, as H did. However, since H( D) <
H(p,), we deduce, frpm (9.9), that H(¢) < H(t) on [pr,min(Prey e 1 M-
Now, suppose that H(py4,) > A(€). Then, §,> ¢,, and we can consider
the behavior of G on [¢,,4,]. Now, G has to keep type 2¢ indifferent
whereas G keeps type 2(¢ + 1) indifferent; also, G(g,) < G(q,) and so
from (9.8), G() > G() on [9¢.4c]. On [§,,gc+, ], both G and G keep type
2(¢ + 1) indifferent; since G(§,) > G(§,), we have G(t) > ((t) on‘this
interval. Continuing in the same way, we see that G(t) > G(t) for all
Go—y <t <1and H(t) < H(t) for all p, <t < 1.

Then, arguing exactly as in the one-population case (integrating by
parts in the expressions for P,(p;—,,H) and Q;(¢;-,,G) for i=k+
l,...,mandj=¢ + 1, ..., n), we find that the equilibrium payoffs of
types 1(k + 1), ..., lm decrease and those of types 2(¢ + 1), . .., n in-
crease. That is, an increase in risk aversion in population 2 causes those
individuals in population 1 who in (perfect) equilibrium concede later to
be made worse off, whereas the members of population 2 who concede
later are better off. Summarizing, we have the following.*

Proposition 6. Suppose that individuals of type ¢ in population 2 be-
come more risk averse (but not more so than those of type € — 1). Suppose
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Figure 9.3 Changes in the perfect equilibrium distributions of conces-
sion times caused by an increase in the risk aversion of individuals of
type ¢ in population 2 in the two-population model

also that in the old (perfect) equilibrium, type 2¢ concedes with probabil-
ity 1 before time 1, and the smallest point in the support of the strategy of
type 2¢ is a member of the support of the strategy of type 1k. Then, the
(perfect) equilibrium payoffs of the types at least as risk averse as type k in
population 1 are unaffected, whereas those of the less risk averse types
decrease; the equilibrium payoffs of the types more risk averse than type ¢
in population 2 are unaffected, whereas those of the less risk averse types
increase.

Thus, in the two-population model the effect of a change in risk aver-
sion is exactly the opposite of that predicted by the axiomatic models. The
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reason is that in equilibrium, the concession pattern in population 1 must
make the actions of the individuals in population 2 optimal, and vice
versa. Thus, if some members of population 2 become more risk averse,
the individuals in population 1 have to concede on average earlier in order
to keep the members of population 2 indifferent over some interval of
concession times. However, if concessions in population 1 are on average
earlier, the optimal concessions in population 2 are later; hence, the
payoffs of individuals in population 1 decrease. (This type of argument is
a standard one concerning mixed-strategy Nash equilibria; it is not made
possible by some peculiar feature of the model.)

The effect of a change in the size of a type

Finally, I consider the effect of a change in the fraction of a population
that is of a given type. I do so to see if any meaning can be given to the
claim that in equilibrium, individuals will pretend to be less risk averse
than they really are. Suppose that the fraction of the population taken up
by relatively risk neutral individuals increases. Then, one might imagine
that since this causes an opponent to ascribe a lower probability to an
individual being risk averse, those who are risk averse can do better - they
can “hide” among the mass of relatively risk neutral individuals. It turns
out that this is not the case, although it is true that the ratio of the payoffs
of the more risk averse to those of the less risk averse increases; the former
are constant, whereas the latter decrease.

To see why this is true, we can use the previous result concerning a
change in the degree of risk aversion. Suppose that the fraction of popula-
tion 2 occupied by individuals of type ¢ increases from J, to J, = J, + €,
and the fraction of type ¢ — 1 decreases from d,_,;t0 d,_, = J,_, — € (s0
that the population becomes on average less risk averse). This change is
equivalent to one of the types considered in the previous subsection.
Thus, break types € — 1 and ¢ into three types, which constitute the
fractions J,_, — €, €, and J, of the population (the first two types having
the same utility function before the change,® and the second two having
the same utility function after the change). Then, the change defined
previously is a decrease in the risk aversion of the middle type. Hence, by
proposition 6 the equilibrium payoffs of the types more risk averse than €
are unaffected, whereas those of type ¢ and the less risk averse types
decrease. That is, we have the following.

Corollary 7. Suppose that the fraction of individuals of type € in some
population increases, whereas the fraction of those of type € — 1 decreases
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by the same amount, and those of type € — 1 concede with probability 1
before time 1. Then, the equilibrium payoff of every individual more risk
averse than type € in that population is unaffected, whereas the equilib-
rium payoff of every individual at most as risk averse as type € decreases.

9.4 The case in which there is a choice of
initial demand

Here, I elaborate on the previous model by allowingindividuals to choose
a “demand” at time 0. I assume that there are only two possible demands,
aand b (0 = g < b < 1). Istudy the perfect (Bayesian Nash) equilibria of
the two-population model in which each individual simultaneously first
chooses a demand, and then negotiates as in the previous model (i.e.,
subsequently simply chooses a time at which to concede). Throughout, I
consider only the perfect equilibrium described in the previous section.
To keep the analysis relatively simple, I assume that there are only two
types in each population (m = n == 2). Note that in this model, the actions
of an individual do, in general, convey useful information to his oppo-
nent. Unless the same fraction of each type demands a, the demand that
an individual makes at time O allows his opponent to revise the probabil-
ity that the individual is of a given type. Note, however, that an individ-
ual’s subsequent behavior does not convey any additional useful infor-
mation to his opponent.

Ishow that if @ > 1, there is no separating equilibrium in which the two
typesin each population choose different demands. I also show that in this
case there is a continuum of pooling equilibria, in which a positive frac-
tion of each type in each population chooses each possible demand.

Given the results in the axiomatic models that an individual can bene-
fit from pretending to be less risk averse than he really is, one might
imagine that the reason no separating equilibrium exists is that a more
risk averse individual can benefit from changing his demand to that of a
less risk averse individual. However, given the result of the previous
section (proposition 6), it should come as no surprise that the opposite is
true. That is, the less risk averse can benefit from pretending to be more
risk averse (see the arguments that follow). Thus, there is another sense (in
addition to the one considered in the previous subsection) in which the
result derived in the axiomatic framework does not hold in my model.

If a < 4, then there is no equilibrium of either type. Later, under the
heading “Discussion” I consider briefly what may happen when there are
more than two types in each population. However, I do not consider
another natural extension, in which there are many, even a continuum, of
possible demands. My analysis is not comprehensive, but is simply in-
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tended to establish that the basic model considered in the previous sec-
tions does not degenerate when at least some choice of initial demand is
allowed.

Nonexistence of separating equilibrium

Suppose that a > 4. Consider a situation in which all individuals of type 1
in each population demand a, whereas all those of type 2 demand . When
two individuals meet and reveal their demands, they know immediately
each other’s type, and the only perfect equilibrium distributions of con-
cession times are given by the two-population model described previously
in which each population contains one type. For example, if two type 1’s
meet, then their perfect equilibrium concession strategies are given by
t

E.=1- exp(—f Vi (a,a,s) ds)
0

and
t

F,=1- exp(—f U, (a,a,s) ds)
0

for0 = r < 1(see(9.10)and (9.11)).(That s, F,, keeps type 11 indifferent
over all points in [0,1], and E,, keeps type 21 indifferent over all such
points.) The payofls to these strategies are u,(1 — 4,0) and v,(1 — a,0)
(i.e., the payoffs obtained by immediate concession).

Next, consider the consequence of an individual of type 2 in popula-
tion | demanding a rather than b. If he demands b, then his expected
payoffis §,u,(1 — a,0) + J,u,(1 — b,0) (since with probability J;, he en-
counters an individual of type 2i, who correctly infers that he is of type 2,
and uses a strategy that makes such individuals indifferent over [0,1]). If
he demands a, then any opponent incorrectly identifies him as being of
type 11, so that the opponent uses a strategy that makes such individuals
indifferent over [0,1]. That is, if his opponent is of type 21, his payoffif he
concedes at ¢ is

Py(t,F,,) = f uy(a,5)F (5) + uy(1 — a,1)(1 — F (1)), 9.12)
1)
whereas if his opponent is of type 22, it is

Py(t,F ) = f u(a,5)Fp (s) + (1 = b)Yl — Fpy (1)),  (9.13)

()]
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where
t

F(nH=1- exp(—f U,(b,a,s) ds)
0
for all 0 = ¢ < 1. Differentiating with respect to ¢ in (9.12), we obtain

(1 = Fy () (uala,t) — u(1 — a,n))(U (a,a,t) — Uya,a,t)).

From lemma 1, this is positive if < 1, so that an optimal action for the
individual in this case is to concede at time 1. His payoffis then P,(1,F|,),
which, since P,(¢,F,,) is increasing in ¢, exceeds P,(0,F,,) = u,(1 — a,0),
the payoff he obtains when he demands a in this case. Similarly, differen-
tiating in (9.13), we obtain

(1 = Fy(O)ua,r) — (1 = b,0))U(b,a,t) — Uy(b,a,1)).

So by the same argument as before, the individual can obtain Py(1,F,, ),
which exceeds P,(0,F,,) = u,(1 — b,0), the payoff when he demands a in
this case. Thus, his expected payoff against a random opponent exceeds
0, (1 —a,0) + 5, u,(1 — b,0), and therefore he is better off demanding
a, pretending to be more risk averse than he really is.

Thus, no separating equilibrium of this type exists. It is easy to see that
the same argument also rules out any separating equilibrium in which all
individuals of type 1 in one population demand b, whereas all individuals
of type 2 in that population demand a, and the members of the other
population act either similarly, or as they did before. So there is no
separating equilibrium in which within each population the two types
choose different demands.

If @ <4, then when two individuals who demand a meet, they can
reach agreement immediately; if ¢ + b < 1, this is also true if individuals
demanding a and b meet. It matters precisely what the payoffs are in these
cases. | assume that if individual /demands d;,i =1, 2,andd, + 4, < 1,
then individual i receives the output stream ((1 + 4; — 4;)/2,0) (i.e., the
individuals split equally the amount left over after their demands are
satisfied; the precise method of splitting the excess does not matter for my
argument, so long as the amount that i receives increases with d;). First,
consider the possibility of a separating equilibrium when ¢ < 4 and a +
b = 1. In such an equilibrium, there are individuals in both populations
who demand a. If the opponent of such an individual demands a, then the
individual receives the output stream (4,0), whereas if the opponent de-
mands b, the equilibrium payoff of this individual is the utility of the
output stream (1 — b,0). If the individual switches to a demand of b, the
output stream he receives if his opponent demands ais ((1 + b — a)/2,0),
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and if his opponent demands b, he again receives the utility of (1 — 5,0).
Since (1 + b — a)/2 > 4, the individual will switch from a to b. A similar
argument can obviously be made if @ + b < 1. Thus, no separating equi-
librium exists for any values of a and b.

Pooling equilibria

Now, consider the possibility of an equilibrium in which the fractions
0 <m, <1loftype liand0 < p; < 1 of type 2j demand a, whereas all other
individuals in both populations demand b. Then, if for example a type-11
individual demands a and bargains with a type-21 individual who de-
mands a, the equilibrium concession times are those given by the two-
population model in which the fractions of the types in population 1 are
n, /(r, + ;) and &, /(n, + m,) and those in population 2 are g, /(p, + p,)
and p,/(p, + p,). For (n,,n,,p,,p,) to constitute an equilibrium, each
individual in each population must be indifferent between demanding a
and b.

First, consider the case a > 4. Note than an individual of type ! in
either population is always indifferent between demanding a and b. This
is the case because 0 isalways an element of the support of the equilibrium
strategy of such an individual, whoever is his opponent (since type 1 isthe
most risk averse). Thus, the equilibrium payoff when the opponent de-
mands a is #,(1 — a,0) (or v,(1 — a,0)), and when the opponent demands
bitisu,(1 — b,0) (or v,(1 — b,0)), independent of (n,,7,,0,,p, )

Consider the behavior of individuals of type 2 in population 1. Fix
0<nm,<1land0<p, <1, and let P,(c;n,,p,) be the equilibrium payoff
of an individual of type i/ in population ! who demands ¢ when the
fractions of those who demand @ among types 11 and 21 are =, and p,;
similarly define Q;(¢;7, ,p, ) for type jin population 2. Suppose that 71, = 1
(i.e., that all type-11 individuals demand a). Then, if a type-12 individual
demands b, he identifies himself to be of type 2, and the equilibrium
reached is the one in a two-population model where there is only one type
int population 1. Hence, the support of the individual’s strategy is [0,1],
and his equilibrium payoffis u#,(1 — a,0) or u,(1 — ,0), depending on the
demand of his opponent. Thus, foreach0 =p, =1,

Py(b;1,p,) = (p; + p)uy(1 — a,0) + (1 — p, — py)uy(1 — b,0). 9.14)

Now, fix 0 = p, = 1 and reduce n,. As 7, falls, the fraction of type 2’s
among those demanding b in population 1 decreases. Hence, by corollary
7, the equilibrium payoff of type 2, whether the opponent demands a or b,
increases. That is, foreach 0 = p, = 1,

P,(b;m,,p,) is decreasing in 7, . 9.15)
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Py(asm )

0 1

Figure 9.4 Functions Py(a; - ,p;) and Py(b; - ,p,)

Next, consider what happens when a type-12 individual demands a. If
7, = 1, then the equilibrium distributions of concession times are those
for a two-population model in which the fraction 0 < 1/(1 + x,) < 1 of
population 1 is of type 1, and the fraction 0 < 7, /(1 + 7,) < l isof type 2
(since 7, = 1 and 0 < &, < 1). Hence, whether the opponent demands a
or b, the smallest element in the support of the equilibrium strategy of the
type-12 individual exceeds zero, and hence his equilibrium payoff ex-
ceeds u,(1 — a,0) if his opponent demands a, and exceeds u,(1 — b,0) if
his opponent demands b. That s, foreach 0 < p, = 1, P)(a;1,p,) > (p, +
P:)ux(1 — a,0) + (1 — p; — py)u(1 — b,0), and so by (9.14) we have, for
eachO=p =1,

PZ(a;l’pl) > P2(b’1’pl ) (9'16)

(see Figure 9.4). Now, suppose that n; decreases. This means that the
fraction of type 2’s among those demanding a in population | increases.
Hence, again by corollary 7, foreach 0 < p, < 1,

P,(a;m,,p,) is increasing in 7, . 9.17)

Finally, suppose that 7, = 0. Then, a symmetric argument establishes
that forall0 = p, = 1,

P,(a;0,0,) <Py(b;0,p,). (9.18)

It is also clear that for each 0 < p; < 1, the equilibrium payoffs are contin-
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uous in 7, . (For example, if 7, is close to zero, so that almost all type-11
individuals demand b, then the equilibrium payoffofa type-12 individual
who demands a is close to u,(1 — a,0) or u,(1 — b,0) [depending on the
opponent’s demand], since the fraction of type 11’s in the concession
game after the demands are revealed is close to zero, so that the smallest
element in the support of the equilibrium strategy of type 12 is close to
Zero.)

Combining (9.15) through (9.18), we conclude that for each 0 < p, <
1, there exists a unique 7, such that Py(a;7, ,p,) = P,(b;7, ,p, ). Denote this
7, by Y(p,). Since all of the functions involved are continuous, so is Y.
Symmetric arguments can obviously be made for population 2. That is,
for each 0 =, = 1, there exists a unique p, such that Q,(a;m,,p,) =
Q,(b;m, ,p;). Denote this p, by ®(x,); ® is continuous.

Now, the function ® - Y: [0,1] — [0,1] is continuous and hence has a
fixed point, say p*. lLet n¥=Y(p¥). Then, (n¥p¥) is such that
Py(a;n} pf) = Py(b;nt p}) and Qy(a;nt,p}) = Qu(bin} p¥). By (9.16) and
(9.18), wehave 0 < ¥ < 1and 0 < p¥ < 1. Thatis, given the fixed (n,,p, ),
and the fact that type 1 is indifferent between a and b for any (7, 73,0, .05 ),
(n¥,m,,p%,p,) is a pooling equilibrium.

Proposition8. 1f a > 1, then for each (1,,p,) € (0,1)?, there exists a pool-
ing equilibrium in which a positive fraction of each type in each popula-
tion make each demand.

When a < 1, it is easy to show that there is no pooling equilibrium. The
reason is that, exactly as in the case of a separating equilibrium, an indi-
vidual of type 1 in each population can increase his payoft by demand-
ing b.

Discussion

Given the continuum of pooling equilibria in proposition 8, we cannot
perform the comparative static exercises of Section 9.3. It is not clear
whether there are assumptions under which a unique equilibrium is se-
lected. One possibility is to increase the number of types in each popula-
tion. The arguments presented establish that the most risk averse individ-
uals in both populations are always indifferent between demanding a and
b. All other types are indifferent only in particular cases. This suggests that
however many types there are, there is always a one-dimensional contin-
uum of equilibria; as the size of the most risk averse type shrinks, the range
of the equilibria may contract. Thus, in the limit, when there is a contin-
uum of types, there is a possibility that an essentially determinate equilib-
rium is defined.
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APPENDIX
The Characterization of All Equilibria in the Two-Population Model

I repeatedly use the following expression for the difference between the
payoffs of conceding at 7 and at ¢. If r < ¢, then

P(t,H)— P(r,H) = Jg(ru,(a,r) — u;(3,1)

+ f (u(a,8) — u(1 — b,n)) dH(s) + Ju(t)(1;3,1) — w;,(1 = b,r)) (A1)
)

+ (1 — H(O))w;(1 — b,t) — u;(1 — b,r)).

Throughout, E; (i =1, ..., m) is an equilibrium strategy of 1, and F;

(j=1, ..., n)is an equilibrium strategy of 2j; G and H are the equilib-

rium distributions of concession times in populations 1 and 2, respec-

tively. Let J(G) and J(H') be the set of atoms (jumps) of G and H, respec-
tively. Note that

Ift ¢ J(H) and ¢ € supp E,, then P,(t,H) = P,(E; H). (A2)
The following gives conditions on a distribution of concession times
under which more risk averse individuals concede earlier.

Lemma Al. If [0,5,] C supp H, H is atomless on (0,5,] N (0,1), re
[0,5,]), t € [0,5,], rEsupp E;, and t €E supp E,_,, thent=<r.

Proof. If r = 5, = 1, the result is immediate. So suppose that r < 1. Let
r € supp E; and suppose that 0 = r <¢=s,. Then, P,(t, H) — P(r,.H) <
0. Now, u,_, = f°u;, where f'is strictly concave, so that f(w) — f(z) <
S'(zX(w — 2), with strict inequality if w # z. Hence,

tim1(a,8) = ui (1 = byr) <f"(u;(1 — b,))u;(a,8) — u(1 ~ b,1))

unless s is such that u;(a,s) = u;(1 — b,r); by (P.2) and (P.3), there is only
one such s. Hence, given that [0,s,] C supp H,

f (Ui-1(@,8) — u;y(1 — b,r)) dH(s) <
0
S (1 = b,r)) f (ui(a,5) — u(1 — b,r)) dH(s).

)
Also,

ui—l(l - b’t) - ui—l(l - bar) <f,(ui(1 - bar))(ui(l - bat) - ui(l - b’r))-
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However, since t € supp H, then either H(t) — H(r) > 0 or H(t) < 1.
Hence, given that ris not an atom of H, and either ¢ is not an atom of H, or
t = s, = 1and hence u,(4,t) = 0 = y;,(1 — b,¢), the preceding inequalities
imply, using (A.1), that

P (t,H)— P (r,H) <[f"(u;(1 — bn)P(t,H)— P(r,H)) < 0.
Hence, t ¢ supp E;_,.So ift Esupp E,_,, then t < r.

Corollary A2. 1f [0,s5,] C supp G, [0,5,] C supp H, G is atomless on
(0,5,] N (0,1), and H is atomless on [0,5,] N (0,1), then there exist 0 =
Do=D1= """ =P¢ <Per1 < " <1 <8 and 0=g,<g, <
« - < gy <5y such that

[0,s]Nsupp E; = {0} fori=1,...,¢;

[O’SO] N supp Ei= [pi—l’pi] for l=€+ 1’ vy k_ 1,
and [0,50] N supp E; = [pr_1,5];

[O’SO] N Supp}:}= [qj—l’qj] forj= 1’ vty h - 1’
and [O’SO] N supp Fh = [ph-l’SO]‘

Proof. Immediate from lemma A1 (using (9.1), and the analogous rela-
tion between H and the F}’s).

Now, I show that G and H cannot have atoms at the same point, except
possibly at 1. The reason is simple: If, for example, G has an atom at ¢,
then all members of population 2 obtain a higher payoff by conceding just
after ¢,, rather than at #;.

Lemma A3. Ift,€ J(G)and t, < 1, then t, & J(H ).

Proof. Lett, € J(H),t, < 1.Then, for each § > 0 there exists0 < e <
such that f, + € & J(H ). Next, consider P(ty+ €, H)— P(t,,H) (see
(A.1)). The first term is positive, independent of €; the second term is
nonnegative for small €; the third is zero; and the fourth can be made as
small as necessary for choosing € small enough. Hence, for € small
enough, we have P;(t, + €, H) > P,(t,,H ).

The following is a very useful result, which says that if G has an atom at
to € (0,1), then no member of population 2 concedes in some open inter-
val before ¢, (when ¢, is imminent, it is better to wait until afterward, since
there is a positive probability of a concession occurring at f, ).
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LemmaA4. Ift, € J(G)andO < ¢, < 1,thenthere exists € > O such that
(to — €,t,) Nsupp H=0.

Proof. Letdé>0.Foranyj=1,...,n, we have
Qj(lo,G) - Qj(to —0,G)=Jg(to — 6)(Uj(b’t0 —0)— vy(Lt — 3))

+ f (v;(b,8) — v,(1 — a,t, — 3)) dG(s)

(to=3,%0)
+ Ja(to Xv(d,8) — (1 —aty — d)) +
(1 = Gt ) (1 — aty) — v(1 —aty — 3))
(see (A.1)). However, v;(b,t, — 6) — v;(3,t, — 6) = 0 and, since f, < 1, we
can find €, > 0 and « > 0 such that for all 0 < J <€,, we have

vi(ht) > v(l —at,—9d)+a,
and for all t, — d < s < t,, we have

0;(b,s) > v(b,ty) > v;(3,t5) > v;(1 — a,ty — 6).
Hence, for all 0 < § <€,

Qj(to,G) - Qj(to —06,G) = aJs(ty)
+ (1 = Gt v(1 — a,ty) — v;(1 — a,ty — 9)).

However, there also exists €, > 0 such that for all 6 <'¢,, we have v;(1 —
a,to) = v;(1 — aty — 6) > —aJs(t)/2. But then for all 0<d<e=
min(€, ,€, ), we have
Jo(t
0t0.6) — 0ty — 6.6)> 2120 > o,
and so Q,(t,G) < Q;(t,,G) for all t € (t, — €,t,). Hence, (f, — €,t,) N
supp H = 0.

The following states that if there is an interval not in the support of H,
at the endpoints of which G does not have atoms, then the largest point in
the interval can be in the support of G only if H is already 1 at that point.
The reason is that the payoff to any member of population 1 is decreasing
in the interval whenever there is a positive probability of a future conces-
sion by an opponent.

Lemma A5. IfH(r)=H@),0<r<t=<1,ré¢ JH) té¢ JH) and t €
supp G, then H(t) = 1.
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Proof Foralli=1,...,m,
P(t,H)— P(r,H)= (1 — H®) u;(1 — b,t) — u,(1 — b,r))

(using (A.1)). Hence, P,(t,H) < P,(r,H ) unless H(t) = 1. Since t & J(H ),
this means (from (A.2)) that ¢ & supp G.

We can now restrict quite substantially the nature of the supports of the
equilibrium distributions of concession times.

Lemma A6. 1Ifty € J(G)and 0 < ¢, < 1, then there exists 5, € [0,4,) such
that supp H = [0,5,], [0,5,] C supp G, and G and H are atomless on
(O’SO]'

Proof. From lemma A4, there exists € >0 such that (f, — €,,) N
supp H=0. Now, let r =1, — €/2 and t =1, in lemma AS5. Since ¢, €
J(G), t, & J(H) by lemma A3, and so H(r) = H(t). Hence, by lemma AS,
H(t,) = 1. Let s, = max supp H. Then, s, < t,. Now, if there is an atom of
G in (0,s5], say at ¢,, the same argument establishes that H(z,) = 1 for
some ¢, < ¢,, contradicting the fact that s, € supp H. Similarly, H can
have no atom in (0,s,].

Now, suppose that there exists ¥ € supp H, and 0 < x < y such that
H(x)= H(y). Then, y <s,,and so H(y) < 1, and x € J(H ), y & J(H ) by
the preceding argument, and thus by lemma A5 we know that
y ¢ supp G. But then we know that there exists w < y such that G(w) =
G(y) < 1; reversing the roles of G and H in lemma AS5, and letting r = w
and 1=y, we conclude that y ¢ supp H, a contradiction. Hence,
supp H = [0,5,] and, similarly, supp G D [0,s,].

Now, we can conclude that if one distribution of concession times has
an atom in the interior of its support, then all individuals in the opponent
population must concede at time O with probability 1.

Lemma A7. If ty € J(G)and 0 <¢, < 1, then supp H = {0).

Proof. Bylemma A3, G and H cannot both have atoms at 0. Let s, come
from lemma A6, and assume that s, > 0. Then, from corollary A2 and
lemma A6, we know that there exist £ and 0 = p,_, <, such that
[0,5,] N supp E, = [pr—1,5,]. Hence, H is such that P,(¢,H ) is constant,
equal to P (E,,H ), for all t € (py_,,S,])- That is,

f w(a,s) dH(s) + (1 — H@)w (1 — b,t) = P (E H)

[0.]
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(since H is atomless on (p,_,,5 1) for all p,_,; <t = s,. Because the inte-
gral is (as a function of ¢) absolutely continuous, H is absolutely continu-
ous. But then we can integrate by parts to obtain

u(a,0)H(t) — u,(a,0)H(0) — f H(s) D,u.(a,s) ds
[0,¢]
+ (1 — H)Yu(1 — bt)= P (E . H).

Since D,u, is continuousin s, and H is atomless on (0,5, ], this shows that
H is differentiable. Differentiating, we find that every solution of the
resulting differential equation is of the form

t

H=1—4 exp(——f U.(b,a,s) ds) (A3)
0

for some 4 > 0. Now, we need H(s,) = 1. Since s, < ¢, < 1, the integral
with ¢ =15, is always finite, and so we must have 4 =0. But then
H(u_,) = 1, and thus s, ¢ supp H. So the only possibility is s, = 0.

As noted in the text, there exists an equilibrium of this type. For
example, if supp E;= (1} for i=1,..., m, and supp F;= (0} for j =
l,...,n,then(E,,..., E,;F,,..., F,)isan equilibrium.

We can now use lemma AS to restrict the nature of the supports of G
and H when G and H are atomless on (0,1).

Lemma A8. 1f G and H are atomless on (0,1) and there exists 0 < ¢t < 1
such that G(¢) < 1 and H(t) < I, then [0,¢] C supp H.

Proof. Suppose, to the contrary, that 0 < x < ¢ and x ¢ supp H. Let
¥ = min{z = x: z € supp G} and define y,, similarly. Since x & supp H,
we have y, > x. Also, y; > x (since if y; = x, then there exists y > X,
¥ € supp G such that H(x) = H(y) and H(y) < 1, contradicting lemma
AS). Let y = min{ys,yy} > x. First, suppose that y < 1. If y = y, then
GxX)=G() <1, x¢ JG) and y¢ J(G), and so by lemma AS,
y ¢ supp H. Hence, there exists w < y such that H(w) = H(y), w & J(H),
y ¢ J(H),and H(y) < 1, and so by lemma A5 again, y ¢ supp G, contra-
dicting the definition of y (=y;). If y = yy, a similar argument can be
made. Hence, the only possibility is y = 1. But then

Py(y,H) — P(x,H) = Ju(¥)u;(3,) — u,(1 = b,x)).

However, u,(1,y) = 0if y = 1, and so this is negative unless J5(y) = 0. But
this is impossible, since we assumed that G(t) = G(y) — Jg() =1 —
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Ju(¥) < 1. Hence, [0,t] C supp H. A symmetric argument implies that
[0,t] C supp G.

Lemma A9. If neither supp G = (0} nor supp H = {0}, then neither
supp G = {1} nor supp H = {1}.

Proof. If, for example, supp G = (1}, then clearly Q,(0,G) > Q;(1,G) for
all t > 0, so that supp H = (0).

Corollary A10. I neither supp G = {0} nor supp H = {0}, then there
exists 0 <t < 1 such that G(¢) < 1 and H(t) < 1.

Lemma All. 1f G and H are atomless on (0,1)and neither supp G = {0}
nor supp H = {0}, then there exists s, > O such that either supp G = [0,s,]
and supp H D [0,s,], or supp H = [0,s,] and supp G D [0,s,].

Proof. Let z;= max supp G > 0 and z, = max supp H > 0, and let
So = min{z;,z5} > 0. The result then follows by letting = s, — € for any
€ > 0 in lemma A8, and using corollary A10.

Lemma Al12. 1If Gand H are atomless on (0,1) and neither supp G = {0)
nor supp H = {0}, then there exist 0 =« < 1 and 0 = # < 1 such that G
and H are as specified either by the procedure I'l(a,0) or by the procedure

I1(0,5).

Proof. Suppose that supp H = [0,s,] (see lemma A11). Then, from cor-
ollary A2, there exist k and p,_, <s, such that [0,s,] N supp E, =
[ Pr—1,50]- But then we can argue, as in the proof of lemma A7, that H has
the form given in (A.3) on [ pr—_,,80 ). Now, if 5, < 1, then by assumption,
Sois not an atom of H, and so we need H(s,) = 1;but thisis possible only if
A = 0, in which case s, = 0, contradicting the assumption that supp H #
{0}. Hence, s, = 1, and so supp G = supp H =[0,1]. By lemma A3, at
most one of G and H have an atom at 0. But then using corollary A2, and
solving the differential equation on each [ p,_, ,p;] and [g;_, ,4;], as before,
we find that the only solutions are those defined in the procedure I'(c,0)
or I'l(0,8) by (9.8) and (9.9).

We have now proved that the only equilibria are those characterized in
theorem 3. Lemma A12 states that the only equilibria in which G and H
are atomless on (0,1) and neither supp G = {0} nor supp H = {0} are
those described in (1) and (2) of theorem 3; lemma A7 states that when-
ever G or H has an atom in (0,1), then either supp G = {0} or supp H =
{0}, when the equilibrium is of the type specified in (3) of theorem 3.
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NOTES

1. The change in risk aversion considered in Roth (1985) does not preserve a
player’s preferences over certain outcomes.

2. A continuous extensive game fits more directly with the preceding description.
By analogy with discrete extensive games, a pure strategy in such a game
specifies, for each time ¢, whether or not to concede. That is, it is a function
from [0,1] to {C(oncede),S(tand firm)}. However, for each such strategy of an
opponent, every strategy of an individual that has the same time of first con-
cession yields the same outcome. Thus, there is a reduced strategic form for the
game in which the pure strategies of each individual are those functions ffrom
[0,11t0{C,S)suchthatf(z) = Sif0 =t < fyand f(t) = Cifty =<t < 1, forsome
to. This reduced strategic form is isomorphic to the strategic form specified in
the text, and its Nash equilibria are of course outcome equivalent to the Nash
equilibria of the extensive form.

3. Given the discussion of the previous paragraph, this is the same as saying that
there isa unique symmetricequilibrium in the two-population model when the
characteristics of the two populations are identical.

4. If a type that, in equilibrium, concedes with probability 1 at time 1 becomes
more risk averse, then no individual’s equilibrium payoff is affected.

5. This violates (P.4) (the function relating the utility functions of the two identi-
cal types is not strictly concave), but it should be clear that this assumption
affects only some of the finer details of the results.
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Risk sensitivity and related properties for
bargaining solutions

Stef Tijs
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UNIVERSITY OF NIJMEGEN, THE NETHERLANDS

10.1 Introduction

In this chapter, we consider n-person bargaining games (n = 2), that is,
pairs (S,d) where

(G.1) The space S of feasible utility payoffs is a compact and convex subset of
R,
(G.2) The disagreement outcome d is an element of S.

Furthermore, for mathematical convenience, we will also assume that

(G.3) x=dforallxe€ S,
(G.4) Thereisan £ € Swith £;,> d,foreachie N={1,2,...,n},
(G.5) Forall y e R* with d = y < x for some x € S, we have yE€ S.

Such a game (S,d) corresponds to a situation involving # bargainers
(players) 1, 2, ..., n, who may cooperate and agree upon choosing a
point s € S, which has utility s; for player i, or who may not cooperate. In
the latter case, the outcome is the point ¢, which has utility d; for player
[ € N. The family of all such bargaining games, satisfying (G.1) through
(G.5), is denoted by G

For a bargaining game (S,d) € G*, the Pareto-set P(S) is defined by

P(S):={x€ SV,eslyzx==y=1x])

The authors are indebted to Ehud Kalai for drawing their attention to the twist
property of bargaining solutions and for some helpful discussions, and to Al Roth
for numerous valuable comments. The paper has benefitted also from the com-
ments of two anonymous referees.
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and the utopia point K(S) = (h,(S), ..., h(S)) € R" by
h(S): = max{x;;(x;, .. ., X;,- .., X,) €S} foralliEN.

(The letter A is the first letter of heaven.)

We call a map ¢: G*— R" an n-person bargaining solution. If, addi-
tionally, the following two properties hold, we call ¢ a classical bargain-
ing solution:

PO: For each (S,d) € G*, we have ¢(S,d) € P(S) (Pareto-optimality).

IEUR: For each (S,d) € G™ and each transformation 4: R — R" of the form

AX X, oo Xy) = (ayx, T by, ayx, + by, ..., a,x, + b,) for all x € R7,
where b,, b, . . ., b, are real numbers and a,, 4, . . ., a, are positive

real numbers, we have @(A(S),A(d)) = A(D(S,d)) (independence of
equivalent utility representations).

The PO property can be considered a basic property (see also our
remark with regard to this pointin Section 10.6). One of the arguments for
taking the IEUR property as basic is a theorem in Kihlstrom, Roth, and
Schmeidler (1981), which states that every (2-person) bargaining solution
that is Pareto-optimal and risk sensitive satisfies also IEUR; so this latter
property is, under the assumption of PO, a necessary condition for risk
sensitivity.

Since, in this chapter, we will consider only classical solutions, we may
without loss of generality restrict our attention here to n-person bargain-
ing games with disagreement outcome 0. From now on, we assume that
every (S,d) € G", besides (G.1) through (G.5), satisfies

(G.6) d=0,

and we will write S instead of (S,d).

The purpose of this chapter is to establish relations between some
well-known and some new properties of bargaining solutions, where a
central position is given to the risk-sensitivity property. Special attention
will be paid to the risk aspects of solutions satisfying the following prop-
erty, which wasintroduced by J. F. Nash (1950) in his fundamental paper.

I1A: A solution ¢: G — R"is called independent of irrelevant alternativesif for
all S and T in G", we have ¢(S)=H(T)if SC Tand H(T) € §S.

In addition, risk aspects of individually monotonic solutions (see Kalai
and Smorodinsky (1975), Roth (19794)) will be discussed.

IM: A bargaining solution ¢: G” — R" is called individually monotonic if, for
every i € N, the following condition holds:

IM;: For all S,T € G” with SC T and h,(S) = h(T) for each j€ N — (i} we
have ¢;(S) = ¢;(T).
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The organization of the chapter is as follows. Section 10.2 is devoted to
the risk-sensitivity property of bargaining solutions and contains an over-
view of known results. In Section 10.3, the relation between risk sensitiv-
ity and twist sensitivity of two-person classical solutions is studied. We
prove in Section 10.4 that all two-person classical ITA solutions and also
all individually monotonic classical solutions are risk sensitive, using the
result of Section 10.3, which states that all 2-person twist-sensitive classi-
cal solutions are risk sensitive. Section 10.5 discusses the risk profit oppor-
tunity and its relation to risk sensitivity and twist sensitivity for n-person
classical solutions. Section 10.6 summarizes the results, and some con-
cluding remarks are made.

10.2 Risk sensitivity of bargaining solutions

Pioneering work on the problem of how to compare the aversion to risk of
decision makers was done by Pratt (1964), Yaari (1969), Arrow (1971),
and Kihlstrom and Mirman (1974). Let A be the set of riskless alternatives
for decision makers and L(A) the set of finite lotteries over A. Let uand v
be von Neumann-Morgenstern utility functions on L(A4) for two deci-
sion makers. Closely following Yaari (1969) and Kihistrom and Mirman
(1974), the following result was derived.

Theorem 1. (Peters and Tijs (1981)): The following two assertions are
equivalent:

1. Forall a € 4: {¢ € L(A);v(€) > v(a)} C {€ € L(A),u(€) > wa)).
2. There exists a nondecreasing concave function k: #(4) — R such that
v(a) =k uwa)forall a € 4.

In view of this result, we have the following.

Definition 2. If u and v satisfy one of the equivalent conditions in
theorem 1, then we say that the decision maker with utility function v is
more risk averse than the decision maker with utility function w.

In the recent literature, the effects of increasing or decreasing risk
aversion in bargaining situations have been studied in two directions. In
the first direction, attempts have been made to answer the question of
whether it is advantageous or disadvantageous for bargainers to have
more risk averse opponents. This question was raised for the first time by
Kihlstrom, Roth, and Schmeidler (1981). It also represents the approach
followed in this chapter. In the second direction, investigators have tried
to determine whether it is advantageous for a bargainer to pretend to be
more (or less) risk averse in a bargaining situation. Interesting, in this



218 Tijs and Peters

context, is a remark by Kannai (1977, p. 54) - that in a resource-alloca-
tion problem of two agents, where the Nash bargaining solution is used,
and where each bargainer knows only the preferences of the other bar-
gainer and not the utility function, it is advantageous to announce that
one’s utility function is a minimally concave utility function, correspond-
ing to the preferences. Other contributions in this second direction can be
found in Kurz (1977, 1980), Crawford and Varian (1979), and Sobel
(1981).

Let us first introduce some notation and then give the definition of risk
sensitivity that we will use here. In this definition, it is implicitly assumed
that all Pareto-optimal elements in a game S correspond to riskless alter-
natives (i.e., elements of A).

For S &€ G™"and i € N, let C,(S) be the family of nonconstant, nonde-
creasing continuous concave functions on the closed interval [0,/,(S)] that
have value 0 on 0; and for each k; € C,(S), let

Ki(x) = (x1, o« o s Xim1 K (X)), X 15« -+ X,) fOr each x € S,
Ki(S) = (Ki(x);x € S}.

Lemma 3. LetS€ G" i€ N, and k; € C,(S). Then, K,(S) € G,.

Proof. We have to prove (G.1) through (G.6) for K,(S).

1. 0= K;(0) € K,(S), and so (G.2) and (G.6) hold.

2. Lety€ R7and x € Ssuchthat0 < y = K;(x). Then,0 = y, =< k,(x;),and
so since k, is continuous, there exists z; € [0,x;] such that k(z;,) =
y;- Hence, y=(y1, ..., Vi-1:5kZi)Vie1s - - - » Ya) € Ki(S) since 0=
Vis v oy Zis Viets Yiets - - - s Vo) = X. Thus, (G.5) holds.

3. Ki(x) = K(0) =0 for all x € S since k; is nondecreasing. Therefore,
(G.3) holds.

4. Since S is compact and K is continuous, K,(S) is compact. Let x,y €
S and A€ (0,1). Then, AK,(x)+ (1 — DK, (M) =K,[Ax+ (1 —Aple
K,(S) since k; is concave and S is convex. So K;(.S) is convex, in view of
(2) and (3). Hence, (G.1) holds

5. Let £ € S, with £> 0. Then, k;(X;) > 0 since k; is nondecreasing, non-
constant, and concave. So K;(X) > 0, and (G.4) holds.

The bargaining game K;(.S') can be seen as the game that arises from the
bargaining game S, if the ith player there (with utility function u) is
replaced by a more risk averse player (with utility function k, ° u).

Definition 4. A bargaining solution is called risk sensitive (RS) if for all
SE G i€ N, and k; € C{S), we have for all j € N\{i},

RS;; $i(K(S)) = dy(S).
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We can interpret risk sensitivity of a bargaining solution as follows:
The solution assigns higher utilities to all bargainers in N — {i}, if bar-
gainer i is replaced by a more risk averse opponent.

Our risk-sensitivity property is fairly strong. Itis even stronger than, for
example, the risk-sensitivity property in Roth (1979a), since we allow k; to
be nondecreasing in view of theorem 1. The difference, however, is only a
minor one and it allows us the advantage of simplifying the proof of
theorem 9, to follow. For more information on risk sensitivity for n > 2,
see the end of this section, and Section 10.5.

In their fundamental paper, Kihlstrom, Roth, and Schmeidler (1981)
prove that the symmetric 2-person bargaining solutions proposed by
Nash (1950), Kalai and Smorodinsky (1975), and Perles and Maschler
(1981) are all risk sensitive. Peters and Tijs (1981) prove that every
nonsymmetric two-person classical IIA solution, as proposed in Harsanyi
and Selten (1972), is also risk sensitive. In de Koster, Peters, Tijs, and
Wakker (1983), it is shown that all two-person classical ITA solutions are
risk sensitive; moreover, this class is described there. The class consists of
the Harsanyi-Selten solutions and two other dictatorial bargaining solu-
tions, D! and D2 Here, D¥S) is the point of the Pareto-set P(S) with
maximal ith coordinate (i = 1, 2). Asis well known, the Harsanyi - Selten
solutions are the solutions F*: G2 — R? (¢ € (0,1)) where, forevery S € G2
andt € (0,1), F(S) maximizes the product x} x1~*on.S. In Petersand Tijs
(1982a), it is proved that every individually monotonic two-person classi-
cal solution is risk sensitive. Moreover, all of these solutions are described
in that paper, as follows. In view of IEUR, it is sufficient to look at games
S in G? with A(S)=(1,1). A monotonic curve is a map A: [1,2] —
conv{(1,0),(0,1),(1,1)} with A(s) = A(¢) and A,(s) + A(s) = s for all s,z €
[1,2] with s = ¢. For every monotonic curve 4, the classical solution 7
G? — R2? is defined as follows: 7* (S) is the unique point in P(S) N {A(?);
t € [1,2]), forevery S € G? with A(S) = (1,1). Then, {n*; 1 is a monotonic
curve)} is the family of all individually monotonic 2-person classical solu-
tions. In particular, the Kalai-Smorodinsky solution is the
solution # with A(T): = (4t,4¢t) forevery t € [1,2],and D! = 74, D> = 7*
where A(1):= (1, — 1)and A(t): = (¢t — 1,1) forevery t € [1,2]. So D! and
D2 also satisfy IM.

For all results with regard to risk sensitivity mentioned thus far, it is
assumed implicitly that all points of the Pareto-set correspond to riskless
alternatives. For results in the case of risky Pareto-points, we refer to
Peters and Tijs (1981, 1983) and Roth and Rothblum (1982). In Peters
and Tijs (1984), for a subclass of G*, all individually monotonic n-person
classical solutions are described, and it is proved that all of these bargain-
ing solutions are risk sensitive. (It is well known (Roth (19795b)) that there
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does not exist a symmetric n-person classical solution on the whole class
G that is individually monotonic.) In Section 10.5, we will see that the
n-person Nash solution is not risk sensitive. This is one of the indications
that for n > 2, risk sensitivity is a rather strong property. Two suitable
weaker properties, risk profit opportunity and the worse-alternative prop-
erty, will be introduced in that section. All of the n-person classical ITA
solutions possess these properties (see Peters and Tijs (1983)). In the next
section, we compare for two-person classical solutions the risk-sensitivity
property and the twist-sensitivity property, and in Section 10.4 we present
new short proofs of the fact that all two-person classical IIA solutions and
all classical IM solutions are risk sensitive.

10.3 Risk sensitivity and twist sensitivity

LetS, T € G* i€ N,and o; € [0,4,(S)]. Then, we say that T'isa favorable
twisting of S for player i at level a; if

x; > a; for all x € T\S, (10.1)

x; < a; for all x € S\T, (10.2)
and an unfavorable twisting of S for player i at level o; if

x; < a; for all x € T\S, (10.3)

x;> o; for all x € S\T. (10.4)

Definition 5. A bargaining solution ¢: G" — R" is called twist sensitive
(TW)ifforeach Sand T € G* with ¢(S) € P(T), we have foreachi € N,

TW,: (T) = ¢,(S), if T is a favorable twisting of S for player / at level ¢;(S).
TW,: $(T) = ¢,(S), if T is an unfavorable twisting of .S for player i at level
bi(S).

Twist-sensitive bargaining solutions respond with a better payoff for a
player in case a favorable twisting for that player is made at his payofflevel
in the solution point. Note that if n = 2, for Pareto-optimal solutions this
notion TW is equal to the twisting property Tw, introduced by Thomson
and Myerson (1980, p. 39). In general, Tw = TW for n = 2.

The following theorem is one of the main results of the present
discussion.

Theorem 6. Each twist-sensitive two-person classical solution is risk
sensitive.



Risk sensitivity and related properties 221

Proof. Let¢: G? — R? be a twist-sensitive classical solution. We have to
prove RS, and RS,. We show only RS,. Let S € G? and k, € Cy(S). We
have to prove that

DUKAS)) = (). (10.5)
If ,(K,(S)) = 0, then by PO,
¢1(K2(S)) = h(K¥S)) = h(S) = d)l(S),

and thus (10.5) holds. Suppose now that ¢,(K,(S)) > d,. Since ¢ satisfies
the IEUR property, it is no loss of generality to suppose that

ky(q2) = q3, (10.6)

where ¢ = (g,,4,) is the point of P(S) with first coordinate ¢,(K,(S)). By
the concavity of k,, we then have

ky(x) =z x for all x € [0,4,] kix)ysxforallx=g¢g,. (10.7)

From (10.6)and (10.7) it follows that Sis an unfavorable twisting of K;(.S)
for player 1 at level ¢,(K,(S5)). From TW,, we may conclude that (10.5)
holds.

The converse of theorem 6 does not hold, as example 10 at the end of this
section shows. We introduce now another property for two-person bar-
gaining solutions, which, for classical solutions, is also implied by twist
sensitivity.

Definition 7. A bargaining solution ¢: G2 — R? is said to have the slice
property (SL), if for all S,T € G?, with A(S) = A(T) and T C S, we have

SL,: ,(T) = ¢,(S) if x; > ,(S) for all x € S\T,
SL,: y(T) = b,(S) if x, > b,(S) for all x € S\T.

Thus, a bargaining solution ¢: G2 — R?is said to have the slice property if
it favors the opponent of a player i when a piece of the set of utility payoffs,
preferred by / over ¢(S), is sliced off, the utopia point remaining the same.
Forn = 2, the slice property resembles the cutting axiom of Thomson and
Myerson (1980). The difference (for Pareto-optimal solutions) is that in
the cutting axiom, there is no condition on the utopia point. Therefore,
SL is considerably weaker than cutting. Theorem 9, to follow, shows that
risk-sensitive classical solutions are twist sensitive if they additionally
satisfy SL.

Theorem 8. Each twist-sensitive two-person classical solution has the
slice property.
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Proof. Let ¢: G* — R? be twist sensitive. We prove only that SL, holds.
Therefore, let S,T € G2, with /(S) = A(T), T C S, and x, > ¢,(S) for all
x € S\T. We must show that

d(T) = dy(S). (10.8)

Note that ¢(S) € P(T) and x, < ¢,(S) for all x € S\T because ¢(S) €
P(S). Since T\S = ¢, we may conclude that T is a favorable twisting of S
for player 1 at level ¢,(S). Thus, (10.8) follows from TW,.

Example 11 will show that the converse of theorem 8 does not hold.
The following theorem gives a characterization of twist sensitivity of
two-person classical solutions.

Theorem 9. A 2-person classical solution is twist sensitive ifand only if it
has the slice property and is risk sensitive.

Proof. (See Figure 10.1.) In view of theorems 6 and 7, we have only to
show the “if”” part of the theorem. Hence, let ¢b: G2 — R? be a risk-sensi-
tive classical solution having the slice property. We demonstrate only that
TW, for i = 1 holds. Suppose that TW, does not hold for i = 1. Then,
there are S and T € G with ¢(S) € P(T) and

DUT)> D(S) AT < PS), (10.9)
whereas

x; <@ (S) forall x € T\S, (10.10)

x; > ¢,(S) for all x € S\T. (10.11)

Let k;: [0,/,(S)] — R be the function defined by k;(A)=A1if O0=i=<
h(T)and k(A) = h(T) if b, (T) = A = h(S). Then, k, € C,(S), and

K(S)={x€ S;x;, = h(T). (10.12)
Since ¢ is risk sensitive, we have

DK 1(S)) = (S). (10.13)
Formula (10.13) and P(K,(S)) C P(S) imply that

DK (S)) = Di(S). (10.14)
Let D=S8SNT. Then,

h(D) = h(K\(S)) = (h(T),hS)). (10.15)

By (10.11), (10.12), and (10.14), we have
Xx; > (S) = d(K(S)) for all x € K (S)\D. (10.16)
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Figure 10.1 (D) € a as well as ¢p(D) € B, a contradiction

Since D C K,(S), we have, by (10.15), (10.16), and the slice property of ¢,

dxD) = d(K\(S)). (10.17)

From (10.14), (10.11), and PO, it follows that ¢(K,(S)) € P(D). Then,
(10.17) implies that

DK ((S)) = (D). (10.18)
By (10.18) and (10.14), we obtain
(D) = @y(S). (10.19)

Since, by (10.9), ¢,(T') > ¢,(S), we can apply the same line of reasoning
for T instead of S, interchanging the roles of players 1 and 2, to finally
obtain

by(D) = ¢dy(T). (10.20)

Now, (10.9),(10.19), and (10.20) yield a contradiction. Hence, TW, holds
fori=1.

We now discuss some examples of bargaining solutions with respect to
the three properties that play a role in this section.

Example 10. The superadditive solution of Perles and Maschler (1981)
is risk sensitive but not twist sensitive and does not have the slice property.
See counter-example 7.1, p. 189, in Perles and Maschler (1981).

Example 11. Let the classical solution ¢: G? — R? be defined by the
following: For all S € G2 with A(S) = (1,1), ¢(S) is the point of intersec-
tion of P(S) with y with maximal second coordinate, where y is the curve
depicted in Figure 10.2. Let oz =4 — %\/3, then between (1,1) and (o, a),
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(1,1)

Figure 10.2 Curve y, and game S

y = conv{(1,1),(a,)}, and between (a,&) and (1,0), y is an arc of the circle
(xx; — 2)* + (x, — 1) = 2. By IEUR, ¢ is determined for all S € G2 It is
easy to see that ¢ has the slice property. However, ¢ is not twist sensitive.
Let & = conv{(0,0),(1,0),(,@),(0,1)} and T: = conv{(0,0),(1,0),
(0,a(1 — @y~1)). Then, T is an unfavorable twisting of S for player 1 at
level @ = @, (S), but (T) = 1 > o = ¢(S), and so ¢ is not twist sensi-
tive.

Example 12. Let a: G2 — R? be the equal area split solution, that is, for
every S € G2, aS)isthat point of P(S) such that the areain Slying above
the line through 0 and a(S) equals half the area of S. Then, ¢ is a classical
solution, which is twist sensitive, and consequently is also risk sensitive
and has the slice property.

In the next section, we investigate the classical IIA and IM solutions
with respect to the three properties in this section.

10.4 Two-person classical IIA solutions and
IM solutions

We start with considering the family {D!,D? F*t € (0,1)} of two-person
classical IIA solutions (compare with Section 10.2). In de Koster, Peters,
Tijs, and Wakker (1983), it was proved that all elements in this family are
risk sensitive. A new proof of this fact is given now, using theorem 9. See
also Thomson and Myerson (1980, lemma 5).

Theorem 13. All two-person classical ITA solutions are risk sensitive,
twist sensitive, and have the slice property.
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Proof. Letd: G? — R?beaclassical IIA solution. In view of theorem 9, it
is sufficient to show that ¢ is twist sensitive. We prove only TW, for player
1. Let Sand T be elements of G2 and suppose that T'is a favorable twisting
of S for player 1 at level ¢,(S), that is, ¢(S) € T and

x, > ¢ (S) forall x € T\S, (10.21)

x, < (S) for all x € S\T. (10.22)
We have to prove that

DT = ¢y(S). (10.23)
Let D =SNT.Since D C Sand ¢(S) € T, the IIA property implies that

&(D) = &(S). (10.24)

Since D C T, the IIA property implies

dD)y=HT) or HT)ED.

In the case where ¢(D) = ¢(T'), we have ¢(T) = ¢(S) in view of (10.24),
and so (10.23) holds. If ¢(T) & D, then ¢(T) € T\S, and then (10.23)
follows from (10.21).

Now, we want to look at the family of two-person individually mono-
tonic classical solutions, that is, the family {#*; A is a monotonic curve} as
described in Section 10.2. In Peters and Tijs (1985), it was proved that all
classical two-person IM solutions are risk sensitive. A new proof is pre-
sented now, using theorem 6.

Theorem 14. All classical two-person IM solutions are risk sensitive,
twist sensitive, and have the slice property.

Proof Let ¢: G2 — R? be a classical IM solution. In view of theorems 6
and 8, we only have to show that ¢ is twist sensitive. We prove only that
TW | holds for player 1. Let S,T € G2 and suppose that ¢(S) € Tand that
(10.21) and (10.22) hold. We have to show that

b (T) = y(S). (10.25)

Let D = SN T. Since D C Sand i,(D) = h,(S) by (10.22), the IM, prop-
erty implies that ¢,(S) = ¢,(D). Then, since ¢(S) € D and ¢(D) € (D),
b,(S) = ¢,(D) implies that

bi(S) = D (D). (10.26)
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From D C T, hy(D) = hy(T), and IM,, we may conclude that

bi(D) = Py(T). (10.27)
Now, (10.26) and (10.27) imply (10.25).

Thomson and Myerson (1980) show (lemma 9, for » = 2) that their
property WM (which is somewhat stronger than IM) together with WPO
(for all S € G? and x € R2, if x > ¢(S), then x & S) implies Tw.

In this section, we have proved that the family of two-person twist-
sensitive classical solutions T contains the families of classical IIA solu-
tions and IM solutions. The family T also contains solutions that are
neither IIA or IM, as example 12 shows.

10.5 New risk properties for n-person
bargaining solutions

In this section, we want to extend some of the results of Sections 10.3 and
10.4 to n-person bargaining solutions. Not all results can be extended, as
the following exampie illustrates.

Example 15. Let S be the three-person bargaining game with S the
convex hull of the points (0,0,0), (1,0,0),(0,1,0), (0,0,1),and (1,0,1). Let N
be the three-person IIA Nash solution, assigning to .S the unique point at
which the function (x;,x,,x;) — X, X, X5 takes its maximum. Let k; €
C(S) be the function with ky(x) = Vx. Then, P(S)= {(a,]1 — a,@) €
R30=a=1)},

PKy(S)) = {(a,] — V) ER3 0= =< 1},
N(S) = (3.3.3), MK(S)) = (3.3.4V15).

Note that N,(K5(S)) > Ny(S) but N(K5(S)) < N,(S). Hence, N is not risk
sensitive. However, O_;(S,N) C O_;(K,(S),N ), where

O_3(S,N): = {(x,,x,) € RE(x;,x,, Ny(S)) € S},
O_3(K3(S),N): = {(x1,X,) € R%(x;, x5, N3(K5(S)) € S).

Nielsen (1984) also shows, using the same example, that the three-
person IIA Nash solution is not risk sensitive. In addition, he proves that
the n-person IM Kalai-Smorodinsky solution is risk sensitive (see Peters
and Tijs (1984)), and that both the #n-person IIA Nash and IM Kalai-
Smorodinsky solutions satisfy a weaker property, the worse-alternative
property, which can also be found in Peters and Tijs (1983), in definition
17, to follow. In Peters and Tijs (1983), it is shown that none of the
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nonsymmetric strongly individually rational n-person classical IIA solu-
tions (see Roth (19794, p. 16)), for n > 2, satisfy the risk-sensitivity prop-
erty. Of all n-person classical IIA solutions (described in Peters (1983)),
only a small subclass is risk sensitive, and all of these solutions are dicta-
torial (see Peters and Tijs (1983)). This motivated us to look for weaker
risk properties. Before introducing two such weaker properties, we pro-
vide some notation.

Fori € N,the map n_;: R* — R"~! assigns to a vector x € R" the vector
n_(xX)=(x, ..., X_ X1 - - - »X,), which is obtained from x by delet-
ing the ith coordinate. Let ¢ be an n-person bargaining solution, S € G "
and { € N. Then, the opportunity set O.(S,¢) for the bargainers in N —
{i} with respect to .S and ¢, is defined by

O_(S,9): = n_,{x € S;x; = ¢;(5)).

The opportunity set O_,(S,¢) consists of those payoft (n — 1)-tuples,
available for the collective N — {i}, if bargainer / obtains ¢,(S). We are
interested in bargaining solutions where, if one of the players is replaced
by a more risk averse player, the opportunity set of the other players
increases. Formally, we have the following.

Definition 16. We say that a bargaining solution ¢: G* — R"has the risk
profit opportunity (RPO) property ifforall S € G* i € N,and k; € C,(S),
we have

O_,(S,¢) C O_{(K,(S),9).

Peters and Tijs (1983) show that, for classical solutions, risk profit
opportunity is equivalent to another property, which here we call the
worse-alternative property. We first state this property informally. Let
S € G"and | € N, and suppose that player i is replaced by a more risk
averse player, . If, in such a situation, both player / and player { prefer the
alternative (in the underlying set of alternatives A; see Section 10.2) as-
signed by an n-person classical solution ¢ in the game with player i to the
alternative assigned by ¢ in the game with player 7, then we say that ¢ has
the worse-alternative property (WA). Peters and Tijs(1983) show that, for
games with risky outcomes, the equivalence between RPO and WA
breaks down, and argue there that WA is the most elementary property.
We think, however, that the RPO property is attractive because it says
something about the possible benefits for the other players, if one player is
replaced by a more risk averse one. We will now give the formal definition
of the worse-alternative property. To avoid having to introduce many
additional notations, we will state it in terms of utilities rather than
alternatives.
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Figure 10.3 z = §(S), » = $\(Ky(S)), ab = O_4(S,9),
ac = O_,(Ky(S),$)

Definition 17. We say that a bargaining solution ¢: G* — R” has the
worse-alternative (WA) property if all S € G", i € N, and k; € C(S), we
have

Z; = Vis

where z = ¢(S), and y € S such that K;(y) = $(K;(S)).

Of course, we also have k;(z;,) = k;(y;) in definition 17, since k; is
nondecreasing. For a two-person classical solution ¢: G2 —>R?and S €
G, we have

O_(S:9) =[0,0,(S)]  O_(S,9) = [0,0,(5)].
From this and (essentially only the) Pareto-optimality (of a classical solu-
tion) follows immediately.

Theorem 18. For two-person classical solutions, the properties RS,
RPO, and WA are equivalent.

Example 15 shows that there are RPO solutions that are not risk sensi-
tive. In general, the RPO property is weaker than the RS property, as the
following theorem demonstrates.

Theorem 19. Each risk-sensitive classical solution has the RPO
property.

Proof. Let ¢: G" — R” be a risk-sensitive classical solution. Take S €
G", k; € Ci(S). Let y be the point in P(S) for which

K=« Vierski Vi) Virrs Vo) = HEKAS)). (10.28)
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By risk sensitivity, we have

y;= @i(S) forall j€ N — {i}. (10.29)
Since y € P(S) and ¢(S) € P(S), the PO property and (10.29) imply
Vi = hi(S). (10.30)

But then by (10.30), G.5, and (10.28),

O_(S,9) =7m_;{x € S;x;= ¢;(S)) C n_,{x € S;.x; =y}
= n_;{u € Ky(S)u; = k;(y;))
= n_;{u € Ki(S)u; = ¢;(Ki(S))) = O_{(Ki(S),9).

Hence, ¢ has the RPO property.

In Peters and Tijs (1983), it is proved that all n-person classical IIA
solutions have the RPO property. Another proof of this result can be given
by looking at twist sensitivity. Then, by modifying in a trivial way the
proofs of theorems 13 and 6, we obtain the following.

Theorem 20.

1. Each n-person classical IIA solution is twist sensitive;
2. Each n-person twist-sensitive classical solution has the RPO property.

10.6 Summary and remarks

In the foregoing, we have shown that for two-person classical solutions,
the following logical implications between the discussed properties hold:

I[JA— TW ——| RS [«— RPO «— WA

/|

For n-person classical solutions, we have the following implications:
ITA — TW — RPO, RS — RPO «—— WA,

In an obvious way, many results in this chapter can be extended to
WPO (weak Pareto-optimal; see text immediately following theorem 14)
solutions. Similar results can be derived for bargaining multisolutions
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(i.e., correspondences u: G* — R" such that u(S) C S for every S € G*).
See Peters, Tijs, and de Koster (1983) for a description of (two-person)
weak (multi-)solutions with the IIA or the IM property.
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CHAPTER 11

Axiomatic theory of bargaining with a
variable population: A survey of
recent results

William Thomson
UNIVERSITY OF ROCHESTER

11.1 Introduction

In the traditional formulation of the bargaining problem, it is typically
assumed that a fixed number of agents are involved. The possibility that
their number varies has recently been the object of a number of studies,
which it is the purpose of the present chapter to review in a unified way,
with emphasis on the main results and on the main lines of their proofs.

I propose to evaluate solutions by focusing on their behavior in cir-
cumstances where new agents come in without their entry being accom-
panied by an expansion of opportunities. The standard economic prob-
lem that motivated much of the work presented here is that of dividing
fairly a bundle of goods among a group of agents. The number of agents
involved in the division is allowed to vary while the resources at their
disposal remain fixed. (Technically, this implies that the intersection in
utility space of the set of alternatives available to the enlarged group with
the coordinate subspace corresponding to the original group coincides
with the set of alternatives initially available to that group.) Of course, this
does not mean that new agents are required never to bring in additional
resources nor that their presence itself may not affect the alternatives
available to the original group. I simply want to allow for the case of fixed
resources, and I claim that a study of this special situation yields impor-
tant insights into the relative merits of solutions.

This review is organized around three themes. The first one deals with
the possibility that when new agents come in, one of the agents originally
present gains despite the fact that the claims of more agents on a pie that

The author thanks NSF for its support under grant 8311249, and the referee and
the editor for their helpful comments.
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has remained fixed have to be accommodated. I see this possibility as a
negative feature of a solution, and investigate the existence of solutions
that would not permit it. I show that such solutions exist and offer axiom-
atic characterizations of two of them involving this requirement of mono-
tonicity.

If a solution does not satisfy monotonicity, it is natural to be concerned
with the extent to which it permits violations of the property. A measure
of the opportunity for gain offered by solutions to agents initially present
when new agents come in is proposed, and it is used to rank solutions.
Conversely, one may be concerned with the losses that a solution may
inflict on an agent initially present upon the arrival of new agents and
prefer solutions for which these losses are small. A measure of the guaran-
tees offered by solutions is defined and also is used to rank solutions. The
two rankings essentially agree. However, if solutions are ranked on the
basis of either the opportunities for gains or the guarantees offered to
initial groups seen as a whole, different answers are obtained. These con-
siderations of opportunities and guarantees constitute the second theme.

The third theme is that of stability. Thisis the property that a solution
recommends for each group and for each problem faced by this group, an
outcome that is consistent with what the solution recommends for any
subgroup when facing the problem derived from the original one by giving
all agents not in the subgroup what had been decided they should receive
in the original problem. Although not all solutions satisfy this property,
some do, and I conclude by presenting characterizations involving the
requirement of stability.

In the course of this review, we will encounter all of the best known
solutions — the Nash, Kalai-Smorodinsky, egalitarian, and utilitarian
solutions. Each of the three themes will highlight different solutions, and
the reader should not expect a definite recommendation in favor of a
particular one. However, it is hoped that the results presented here will
elucidate their relative merits.

The chapter is organized as follows. Section 1 1.2 introduces definitions
and notation. The following three sections are successively devoted to
questions of monotonicity, opportunity and guarantees, and stability.
Section 11.6 offers some conclusions.

11.2 Bargaining problems and solutions

A bargaining problem, or simply a problem, is given by specifyinga list of
“alternatives” available to a group of agents through some joint action.
Agents are equipped with von Neumann-Morgenstern utility functions,
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and the problem is given directly as a subset of the utility space. Because
the agents’ preferences over the alternatives usually conflict, the question
arises how to establish a compromise, that is, how to select an alternative
that achieves an acceptable balance between the agents’ respective aspira-
tions and sacrifices. When such problems are repeatedly encountered, it
becomes natural to look for a general rule that could be used to solve all of
them. This requires that the class of the possible problems be identified;
then, the desired rule can be described as a function defined on that class,
which associates to each problem in the class a feasible alternative for that
problem, interpreted as the recommended compromise. Such a function
is called a solution, and the value it takes when applied to a particular
problem is termed the solution outcome for that problem.

The axiomatic study of solutions consists of formulating properties
that one would expect, or desire, solutions to satisfy, and in checking
whether there are solutions satisfying these properties. A theorem giving a
list of axioms that are satisfied by, and only by, a particular solution is said
to be an axiomatic characterization of the solution. This is the methodol-
ogy that Nash (1950) adopted in his pioneering paper on the bargaining
problem, and that will be followed here. However, whereas Nash consid-
ered only the two-person case, the focus of the present study is on situa-
tions in which the number of agents may vary. This more general situa-
tion is formally described as follows.

There is an infinite population I of agents, indexed by the positive
integers. Arbitrary finite subsets of I may be confronted by a problem. The
family of these subsets is denoted ?. Given P € @, =% is the class of
problems that the group P may conceivably face. Each § € 2% is a subset
of RZ, the nonnegative portion of the |PFdimensional euclidean space
with coordinates indexed by the members of P, with each point of S
representing the von Neumann - Morgenstern utilities achievable by the
members of P through some joint action. It is assumed that

1. S is a compact subset of Rf containing at least one strictly positive
vector;

2. Sis convex;

3. Sis comprehensive (i.e., if x,y ERE, x € S, and x = y, then y € S).!

Compactness of S is a technical assumption, made for convenience.
Requiring that S C R% implies that an appropriate choice of a zero of the
utilities has been made. We could have dispensed with that assumption,
but at a significant notational cost. Assuming that S contains a strictly
positive vector ensures that all agents are nontrivially involved in the
bargaining. Convexity of S holds in particular if agents can randomize
jointly, since utilities are von Neumann-Morgenstern utilities, but this
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property of .S may hold even in situations where randomization is not
permitted. Similarly, comprehensiveness holds in particular if, but not
only if, utilities are freely disposable. _

We will also consider the domain Z? of problems satisfying the addi-
tional condition

4. If x,y € S and x = y, then there exists z € S with z > y.

Then, the undominated boundary of S contains no segment parallel to a
coordinate subspace. Note that any element of = £ can be approximated in
the Hausdorff topology by a sequence of elements of X7,
Finally, we set
= U 3P and 3

pPeP

U 3P
PP

Because an important motivation for the work reviewed here is the
“economic” problem of dividing among a group of agents P a fixed
bundle of freely disposable and infinitely divisible commodities, it is of
interest that the image in the utility space of the set of such possible
divisions is an element of X 7 if the utilities are continuous, nonconstant
and nondecreasing, concave, and normalized by assigning zero utility to
the zero bundle. (An element of X 7 results if utilities are, in fact, strictly
increasing.) The converse question, whether any subset of X satisfying
(1) through (3) represents some economic problem satisfying the preced-
ing regularity assumptions, is studied by Billera and Bixby (1973).

A solution is a function defined on X and associating for each P € #
and to each S € 2%, a unique point of S called the solution outcome of S.

Finally, we turn to a formal presentation of the main solutions dis-
cussed in the literature on bargaining. All of these solutions will continue
to be central to the analysis of bargaining with a variable population.

Letting Pbe an arbitrary element of # and S an arbitrary element of = 7,
for the Nash solution,®> N(S) is the unique maximizer of II, x; for x in S;
for the Kalai - Smorodinsky solution,® K(S) is the maximal feasible point
on the segment connecting the origin to the “ideal point™ a(S) where for
each i in P, a,(S) = max{x,|x € S}; and for the egalitarian solution,*
E(S) is the maximal feasible point with equal coordinates. Mention will
also be made of utilitarian solutions, in this case, for each member of the
family, U(S) is chosen among the maximizers of 2 x; for xin S. Note that
the Kalai-Smorodinsky solution is a normalized version of the egalitar-
ian solution. Even on the somewhat restricted domain considered here,
these two solutions may fail to yield Pareto-optimal outcomes, but their
lexicographic extensions do. For the lexicographic maximin solution,®
L(S) is obtained as follows: Given x € R?, let x € R? be defined by
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Figure 11.1

rewriting the coordinates of x in decreasing order; given x, y € R®, x is
said to be lexicographically greater than y if for some k X, > ), while
X; =y, for all i > k; finally, L(S) is the unique point of S that is lexico-
graphically greater than all other points of S. A similar extension of the
Kalai -Smorodinsky solution can be defined. Several natural variants of
these solutions, some new, will also be discussed. The definitions just
given are illustrated in Figure 11.1 for P = {1,2}.

We conclude this section by introducing some additional notation.
Given Pin®and x,,. . . , x.inR? cch{x,,. . . , x;} is the convex and
comprehensive hull of these k points, that is, the smallest convex and
comprehensive subset of R containing them. Also, e, is the vector in R?
whose coordinates are all equal to one. Given i in P, ¢; is the ith unit
vector. Given P,Qin ? with P C Q, y, a point of R, and T, a subset of R<,
yp and Tp designate the projections on R¥ of y and 7, respectively.

11.3 Monotonicity

We will begin the discussion here by asking whether it is possible for a
solution to assign greater utility to an agent initially present, after the
arrival of some newcomers with equally valid claims on the fixed re-
sources, than the utility he had been assigned originally. The answer s yes,
and it is easy to construct examples showing that the Nash solution, for
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instance, does permit this phenomenon. Are there solutions that do not
allow it? Yes again. The Kalai-Smorodinsky solution is one such solu-
tion. Our first result will, in fact, be a characterization of that solution
involving a requirement of monotonicity, which formally expresses the
idea that if more agents have claims on given resources, all agents initially
present should contribute to their welfare.

This characterization also involves more familiar axioms, which will
play a role in the other results as well. They are as follows.

Weak Pareto-optimality (WPO): Forall P € @, forall S € =7, forally € RE | if
y> F(S), then y ¢ S.

Pareto-optimality (PO): for all P @, for all S€ X7, for all yeRE, if
y= F(S),then y ¢ S.

We denote by WPO(S) and PO(S), respectively, the sets of points that
are weakly Pareto-optimal and Pareto-optimal for S (observe that
PO(S) C WPO(S)).

Symmetry (SY): for all P€ 2, for all S € ¥, if for all one-one functions y:
P— P,S={x'€RE|3Ix € § such that Vi € P, x;, = x;}, then for all
i, € P, F{(S) = Fi(S). A related condition is

Anonymity (AN): For all P,P’ € & with |P|=|P’|, for all one-one functions y:
P— P forall SEXP S’ X, if §'=(x" € RE|3x € S such that
Vi€ P, x5, = x;}, then for all i € P, F,,(S’") = Fi(S).

Scale invariance (SINV): Forall Pe 2, for all $,5' € 27, foralla€ RE,, if
S’'={x" €eRP|Vi€ P, x| = a;x;}, then for all i € P, F(S") = q,F«(S).

Continuity (CONT)S: For all P € 2, for all sequences {S”} of elements of =7, if
S»— § € 3F, then F(S*) — F(S). (In this definition, convergence of S¥
to S is evaluated in the Hausdorff topology.)

These axioms are standard. WPO states that it is infeasible to make all
agents simultaneously better off, and PO that it is infeasible to make one
agent better off without hurting some other agent. SY states that if a
problem is invariant under all permutations, then all agents should get the
same amount. AN states that the names of the agents do not matter; only
the geometrical structure of the problem at hand is relevant. S.INV states
that the solution is independent of the choice of particular members of the
equivalence classes of utility functions representing the agents’ von
Neumann - Morgenstern preferences. CONT states that small changes
in the data defining the problem cause only small changes in solution
outcomes.

The following axiom is the first one to relate solution outcomes across
cardinalities.

Monotonicity with respect to changes in the number of agents (MON): For all
PQe® with PCQ, for all SEZF, T€Z? if S = Tp, then
F(S) = Fp(T).
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This axiom isillustrated in Figure 11.2a, where P = (1,2} and Q = {1,2,3}.
(Unless indicated otherwise, the indexing of the axes by agents of all
forthcoming figures will be as in Figure 11.2a.) S'is a two-person problem
in the 1-2 plane. It is obtained from the three-person problem T by setting
the utility of agent 3 equal to 0. The axiom states that the projection of
F(T) on the 1-2 plane is weakly dominated by F(S).

An example of a situation that gives rise to this particular relationship
between S and T is the economic problem of fair division mentioned
earlier. In the usual specification of the problem, there is a fixed amount of
privately appropriable commodities to which the agents are collectively
entitled. If one more agent were to be added to the list of claimants, the
intersection of the problem faced by the large group with the coordinate
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subspace pertaining to the initial group would coincide precisely with the
problem originally faced by that group, provided that the presence of the
new agents itself does not create external effects. This is the situation
represented in Figure 11.2a. The requirement of monotonicity is that in
order to accommodate the claims of the newcomers, sacrifices are re-
quired of all of the agents orginally present.

The axiom does not apply when the newcomers come in with their own
resources (e.g., commodity endowments, special productive abilities) or
when their very existence has positive external effects (e.g., if they are the
children of the agents initially present); these possibilities are illustrated in
Figure 11.2b, and the case of negative external effects (e.g., crowding) in
Figure 11.2¢. Note that we are not excluding such cases. We simply want
our solution to behave well (also) when they do not occur.

In Figure 11.3, we present examples showing that none of N, L, or U
satisfy MON and illustrating the fact that both K and E do. In the exam-
ples, P = {1,2} and Q = {1,2,3}). In Figure 11.3a, T = cchie,,e,,€;,x)
with x = (£.13,%), S = Tp = cchie;,e;}, M(T) = x, and MS) = dep;
therefore, N does not satisfy MON since N,(T') > Ny(T5). In Figure
11.3b, T = cchie,,e;,e5,(€ +4)ep,x} for €>0 small, S = Tp=
cchie; e, (€ + $)ep), U(T) = x, and U(S) = (€ + 4)ep; therefore, U does
not satisfy MON since U,(T') > U,(T5). It should be clear intuitively from
Figure 11.3cthat E, and consequently K, which is a normalized version of
E, satisfy MON. In Figure 11.3d, T = cch{y,e,,e;) with y = (1,1,4),
S=Tp=cch{(1,}),e,}, L(T) =y, and L(S) = (% ,%); therefore, L does not
satisfy MON since L(7) > L,(Tp).

We are now ready for our first main result.

Theorem I (Thomson (1983¢)). A solution satisfies WPO, AN, S.INV,
MON, and CONT if and only if it is the Kalai-Smorodinsky solution.

Proof. The proof that the Kalai - Smorodinsky solution satisfies the five
axioms is omitted. Conversely, let F be a solution satisfying the five
axioms. Also, let PE ® and S € =7 be given. We will only show that
F(S)=K(S) if |[P|=2. Without loss of generality, we suppose that
P={1,2} and, appealing to S.INV, that S is normalized so that a(S) = e,
(see Figure 11.4). We introduce agent 3, and we define Q = {1,2,3} and
T € 22by T=cch(S,5',S%aey), where S and S? are replicas of S in
R and R%3, respectively, and « is the common value of the coordi-
nates of K(S). More precisely, S! = {(x;,x;)[3 (x{,x3) €S with
x, = x{ and x; = x5} and S$? = {(x;,x3)|3 (x{,x3) €S with
x; = x{and x; = x3}. We note that T is invariant under rotations of the
agents, so that by AN, F(T') has equal coordinates. This in conjunction



Axiomatic theory of bargaining 241

Agent 2

(a) (b)

(s)

y=L(T)

(©) (d)
Figure 11.3

with WPO and the fact that aey, € WPO(T') implies that F(T) = aey,.
Also, T, = S. By MON, F(S) = Fo(T) = ae, = K(S). Since aep €
PO(S), F(S) = K(S).

Several remarks concerning the case in which |P| > 2 are in order. First,
it may not be sufficient to add only one agent in order to reach the desired
conclusion. Second, CONT, which was not used in the preceding proof,
becomes necessary; we did not need it there because for|P| = 2, K satisfies
PO (and not just WPO). To adapt the proof to the case |P| > 2, we first
show that F(S) = K(S) for all Sin Z#such that K{(S) € PO(S). Then, we
extend the argument to the case where K(S) € WPO(S)\ PO(S) by apply-
ing CONT. Third, there is no solution satisfying PO (instead of just
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WPO), AN, S.INV, and MON (i.e., even if CONT is sacrificed). Finally,
on the subdomain X, X satisfies PO (and not just WPO) and can be
characterized by the list PO, AN, S.INV, and MON (i.e., CONT is not
needed for this result).

The Kalai - Smorodinsky solution is not the only one to satisfy MON.
The egalitarian solution also does. In fact, E satisfies all but one, (S.INV)
of the axioms used to characterize K, and a characterization of E can be
obtained by replacing S.INV by the axiom of independence of irrelevant
alternatives. This is our second result.

Independence of Irrelevant Alternatives (IIA): For all P€ @, for all §,5” € $°,
if §” € Sand F(S) € S, then F(S) = F(S").

Theorem 2 (Thomson (19834)). A solution satisfies WPO, SY, CONT,
ITIA, and MON if and only if it is the egalitarian solution.

Proof. The proof that the egalitarian solution satisfies the five axioms
is omitted. Conversely, let F be a solution satisfying the five axioms. Also,
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let P€ 2 with |P|= 2 and S € =7 be given. We will show that F(S) =
E(S). Without loss of generality, we suppose that P = {1,2} and that
E(S) = ep (see Figure 11.5a). Let n be an integer such that n =
max{x, + x,|x € S}+ 1. Note that n 2 3. Let 0 ={1,. . . , n} and
TE X2 be defined by T = (xERE|Z,x; = n) (in Figure 11.5a,
0 ={1,2,3}). By WPO and SY, we have that F(T) = e;. Let T’ € Z%be
defined by T’ = cch{S,e,}. We note that T/ C Tand F(T) € T’. By IIA,
F(TYy=F(T). Also, Tp=S. By MON, F(S)Z Fp(T)=¢p. If SE X7,
this is possible only if F(S)= ep. Otherwise, we approximate S by
a sequence {S*} of elements of =? with E(S¥) = e, for all k. Then,
F(S*) = e, for all k and, F(S) = e, by CONT.

Next, let Q € ? with |Q|> 2 and T € € be given. We will show that
F(T)= E(T). Without loss of generality, we suppose that Q=
{1,. .., n}for n> 2 (in Figure 11.5b, @ = (1,2,3}) and, in a first step,
that T € =<, Supposing, by way of contradiction, that F(T') # E(T'), we
conclude from WPO and the fact that T € 2, that there exist i,j € Q
suchthat F(T)> E(T)= E{T)> F(T).Then,letT’ € 2 Cbe defined
by T’ = cch{E(T),F(T)}). Clearly, T’C T and F(T)E T’, so that
F(T)=F(T’) by IIA. Now, let P={i,j} and S= T}. We have that
E(S) = Ep(T). Since F(S) = E(S) by the first step of the proof, we con-
clude that F(T’) > F(T}) = F(S) = E(S), in contradiction to MON.
The conclusion for T € =2\ 2 € follows from an application of CONT.

When WPO is dropped from the list of axioms of theorem 2, the new
family of truncated egalitarian (TE) solutions is obtained. To define such
asolution, leta = {a¥| P € 2} be alist of nonnegative numbers such that
af = a?if and only if P C Q. Then, the TE solution relative to a, E, , is
defined by setting E_(S)= E(S) if a®ep, does not belong to S and
E_(S) = a®ep otherwise. For each P, E, behaves like E for *“small prob-
lems,” that is, if not too much is at stake, but selects some maximal
feasible point a¥ep otherwise. However, weak Pareto-optimality is less
and less likely to be achieved as a group enlarges. This result, due to the
monotonicity condition imposed on the a?, reflects the fact that negotia-
tions are more difficult in large groups than in small groups.

It can be shown (Thomson (1983a)) that any solution satisfying SY,
ITIA, MON, and CONT differs from a TE solution only for two-person
problems, in which case some limited utility substitution becomes feasi-
ble. This is of course of interest because of the central role played by
two-person problems, both in practice and in theoretical developments.
As an example, define a by a” = 1 for all P and choose F to coincide with
E, on all =% except when |P|=2. If |P|=2, given S€ 7%, select
F(S) = E(S) if ep ¢ S and argmax{x, x,|x € S,x; + €x, = 1 + €,ex, +
X, 2 1 + €} otherwise, where € is some small positive number.
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11.4 Guarantees and opportunities

Note that the axiom of monotonicity specifies that agents should not gain
when new agents come in. If a solution satisfies WPO, (at least) one of the
agents originally present will (usually) lose upon the arrival of the new
agents. It is natural to worry about the magnitude of these losses and be
more interested in solutions for which they are smaller. However, in
attempting to formulate this notion precisely, we come up against two
difficulties. The first difficulty is that the loss incurred by an agent will
typically depend on the specific initial and the final problems. If some
probabilistic structure were given on the class of admissible problems, one
could measure “expected” losses and evaluate a solution on that basis, but
the conclusions so obtained would only be relative to that structure.
Instead, our approach here will be to focus on the maximal loss that the
solution may inflict on an agent when new claimants come in. Seen
positively, we will look for the minimum that an agent will always retain
upon the arrival of the newcomers. This minimum can be viewed as the
guarantee offered by the solution to the individual. In general, of course,
agents will do better than their minima.

The second difficulty involves the way losses themselves are measured.
Whatever measure we adopt should be consistent with the invariance
properties the solutions are assumed to satisfy. We will require here solu-
tions to be invariant under positive scale changes (i.e., to satisfy S.INV);
and to ensure that our measures of guarantees are also invariant under the
same transformations, we will base them on proportional losses. Given
some original problem S involving the members of some group P, we
consider the problem T obtained after the expansion of P to some larger
group Q. As before, we assume that the new agents do not bring in
additional resources, so that S = T, and we consider the ratio F,(T')/
F,(S)of final utility to initial utility of some member i of P. The guarantee
offered by F'to i is then given by the infimum taken by this ratio subject to
the preceding conditions on S and 7. Of course, the guarantee so mea-
sured pertains to the triple (i,P,Q), but if a solution satisfies AN, it is, in
fact, only the cardinalities of P and Q that matter; then, we can speak of
the guarantee o 7" offered by F to any agent originally part of any group of
cardinality » upon the arrival of any group of cardinality n. Formally,
ot = inf{(F(T)/F(S)|i€P, PCQ,|Pl=m, |Q=m+n, SEZF
T e 3¢ 8 = T,)}. The collective guarantee structure of F is finally defined
asthe listapy={a?"|mnel}.

We are now ready to compare solutions on the basis of their guarantee
structures. Among the solutions discussed thus far, only two satisfy
S.INV - the Nash solution and the Kalai - Smorodinsky solution. First,
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we compute the guarantee structure of the Nash solution. Figure 11.6a
depicts an example of a pair S, T for which a %' is attained: P = {1,2}, 0=
{1,2,3}, T € 22isdefined by Q = cch{ey,(a,b,0)}, where a = 6/(6 — V12)
and b=3 —a. Let S = T, = cch{ep,(a,b)}. We note that N(T') = ¢; and
that N(S) = (a,b). Also, N\(T)/N,(S) = 1/a. This pair (S,7') is an exam-
ple of a worst configuration for agent 1 as the number of agents increases
from 2 to 3. More generally, we have

Theorem 3 (Thomson and Lensberg (1983)). The guarantee structure of
the Nash solution is given by

o (1 +2) = Vmn(mn + 4m — 4)
o 2(m + n)

forall mne L

Proof. The proofis outlined here and can be followed on Figure 11.6a.
In searching for a worst configuration (S,7") for some agent, we can
assume by S.INV that T € £9 is normalized so that M(T)= e,. This
implies that T is below the hyperplane in R€ of equation 2 , x; =|Q|and
that (1) S = T, is below the hyperplane in R” of equation =, x; =|Q);
because T is comprehensive, and e is the projection of e, € T on R”, we
also need (2) ep € S. Our task reduces to finding S € S P satisfying (1) and
(2) and being such that (3) x = N(S) has the greatest j ® coordinate, agent j
being an arbitrary member of P (in Figure 11.6a, j = 1). It is enough to
find x € R% with the greatest j* coordinate such that = , x; =|Q|(because
of (1)) and since N satisfies IIA, such that x = N(cch{ep,x}) (because of (2)
and (3)). The proof involves showing that the inequality £, x; =|Q)|
should be satisfied as an equality (in Figure 11.64, this means that x must
be on the line segment [3¢, ,3¢,]), that all of the coordinates of x different
from the one that is being maximized must be equal, and that the segment
[x,ep] must be tangent at x to the level curve of the function Il , x{ = kthat
goes through x. The proof concludes with some elementary but laborious
algebra, which is omitted here. (In Figure 11.6a, x = (a,b).)

Several observations are in order. First, we note that a%" = 4 for all
m,n € I. Moreover, and somewhat paradoxically, for each fixed », the
maximal proportional loss inflicted by the Nash solution on one of the
original agents increases with the size of the original group. One would
hope that the burden of supporting one additional person be light on each
of the original agents if there are many of them, and perhaps even go to 0
as their number increases to infinity. But this is not the case for the Nash
solution.
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Let us now turn to the Kalai-Smorodinsky solution. We have the
following theorem.

Theorem 4 (Thomson and Lensberg (1983)). The guarantee structure of
the Kalai-Smorodinsky solution is given by a%"= 1/(n+ 1) for all
mnel

Proof. We simply exhibit an example with m = 2 and n = 1 for which
the minimum a3! = 1 of K;(T')/K;(S) is attained (see Figure 11.6b). Let
P={1,2}, 0={1,2,3}, and let T€ 22 and S€ =% be defined by
T = cch{(1,1,0)0,1,1)} and S=T,. We note that K(S)=e, and
K(T') = {ey, as desired. The proof of the theorem is obtained by a simple
generalization of this example.

We note that a 2" = a%” for all m,n € I, and so the guarantee structure
of the Kalai - Smorodinsky solution dominates that of the Nash solution.
However, it is still not the case that a 2" — 1 as m — « foreach fixed », as
was hoped. In fact, this is impossible, as is shown next.

Theorem 5 (Thomson and Lensberg (1983)). Ifa solution satisfies WPO
and AN, then its guarantee structure is dominated by « defined by
a™=1/n+ 1forall mnel

Proof. The example of Figure 11.65 can be used to prove this for m = 2,
n = 1. Let Fbe asolution satisfying WPO and AN. Note that by WPO and
AN, F(S)=ep. By AN, F(T) = F5(T), but any x € T satisfying x, = X,
is such that x; = 4. Together, we have that F\(T)/F (S) = 3.

Theorems 4 and 5 show that the Kalai - Smorodinsky solution offers
maximal guarantees. Other solutions offering maximal guarantees as well
as satisfying WPO, AN, S.INV, and CONT can be constructed. The
problem of characterizing them all is open.

It should be stressed that the guarantees studied thus far are individual
guarantees. However, it may be that offering good guarantees to individ-
uals is very costly to the group of which they are originally part. To
measure the extent to which the interests of groups are protected by an
anonymous solution F, we introduce the notion of the collective guaran-
tee structure of F by setting S7” to be the average value of the ratios of
initial to final utilities of all the members of the group. Formally, g7" =
(1/mynf(Z , F(T)/F(S)|PC Q,|P|l=m,|Q|=m+n,S€ 2, T 22
S = Tp}. The collective guarantee structure of F is then defined as the list
Be={BE"|mnel}.
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If we compare solutions on the basis of their collective guarantee struc-
tures, we find that the ordering previously obtained on the basis of indi-
vidual-guarantee structures is reversed.

Theorem 6 (Thomson (1983b)). The Nash solution offers better collec-
tive guarantees than the Kalai-Smorodinsky solution, and in fact than
any other solution satisfying WPO and AN. However, it is not the only
solution to have that property, even among solutions satisfying S.INV
and CONT as well.

Proof. Computations analogous to those in the proofs of theorems 3 and
4 show that 7" = n/(n + 1) for all m,n € I, and that f, = ak.

The results described above concern the losses to the original agents
inflicted by a solution, but it is just as natural to study the gains that the
solution permits the original agents to achieve. Earlier, a preference was
expressed for solutions that do not allow such gains; however, since many
solutions do allow them, it seems desirable to be able to rank them on the
basis of the extent to which they do. Such a ranking would constitute a
useful complement to the ranking obtained by examining guarantees.
Proceeding as we did for guarantees, we measure the opportunity for gain
offered by an anonymous solution F'to some agent originally part of some
group of cardinality m when the group enlarges to some group of
cardinality m + n, by y2r=sup{F,(T)/F,(S)|i€ P, PCQ, |P|=m,
|Ql=m+n, S€IF, Te 39 5= T,). The opportunity structure of F is
then defined as the list y.= {7 |m,n € I).

The following results are established in Thomson (1983¢).

Theorem 7. The opportunity structure of the Nash solution is given by
yRr=m/(m + n)a" for all mn € L

Theorem 8. The opportunity structure of the Kalai - Smorodinsky solu-
tion is given by y2"= 1 forall mn € L.

Theorem 9. 1If a solution satisfies WPO and AN, then its opportunity
structure dominates y defined by ™ = 1 for all mn € I.

These results confirm the ordering of N and K obtained earlier on the
basis of individual-guarantee structures, since they imply that the Kalai -
Smorodinsky solution is better than any solution satisfying WPO and
AN, and, in fact, strictly better than the Nash solution.

If we focused on the opportunities for gains offered to groups instead
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of those offered to individuals, we would compute J57"=(1/
m)sup(Z , F(T)/F(S)|PC Q, |Pl=m, |Q|l=m+n, SEZF, T€1Q
S'= T,} and define the collective opportunity structure of F as op =
{67 | m,n € I}. However, this concept permits a less fine discrimination
among solutions than the previous one.

Theorem 10. The collective opportunity structures of the Kalai-
Smorodinsky and Nash solutions are given by %" =J%"=1 for all
m,n € I, and for any F satisfying WPO and AN, §7"2 1 forall mn € L

11.5 Stability

We turn now to considerations of stability. The idea here is that what
solutions recommend for any group should be consistent with what they
recommend for subgroups.

Given P,Q € ? with PC Q, T€ 29, and x € R%, t3(T) denotes the
intersection of T with a hyperplane through x parallel to R . We are now
ready to formally introduce the axiom of stability.

Stability (STAB): For all P,Q € @ with PC Q, for all S€ ZF, Te X9, if
S=t3(T), where x = F(T), then xp = F(S).

This axiom is illustrated in Figure 11.7, where P= {1,2} and Q = {1,2,3}.
The large problem T &€ =2 is solved at x. The small problem S& 2% is
obtained by taking a “slice” of T through x parallel to R”. The require-
ment is that the solution outcome of .S coincide with the restriction of
xtoP.

Several motivations can be offered for the axiom. First of all, it can be
interpreted as stating that an overall compromise is acceptable only if it is
compatible with what negotiations among small groups would yield.
Checking this involves, for each group of agents, setting the utilities of its
members at the values specified by the proposed compromise and consid-
ering the resulting subset of the original problem as a problem involving
the complementary group; then requiring that this problem be solved at a
point that also assigns to each of the members of that group the utility of
the proposed compromise. This motivation was offered by Harsanyi
(1959), who first introduced the condition.

The axiom also has an interesting interpretation when agents receive
their payoffs at different times. After a compromise x has been agreed
upon, some of the agents may receive their payofls first. The alternatives
that are left open to the remaining agents constitute a problem S”, which
in general will be a subset of the intersection S of the original problem with
a plane through x parallel to the coordinate subspace pertaining to that
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group. For the stability of the agreement to be guaranteed, the solution
outcome of S’ should coincide with the restriction of x to the group P. The
axiom appliesonlyif S’ = S, which will happen in particular if the feasible
set is derived from an economic problem of fair division in the one-com-
modity case. Since, in general, it is known only that S’ is a subset of S
containing x, asillustrated in Figure 11.75 the requirement is a weak one.
This motivation of stability under temporal implementation of the solu-
tion was offered by Lensberg (1981).

Figure 11.8 presents examples illustrating that U, N, and L satisfy
STAB and proving that neither K nor E do. In these examples, P = (1,2},
Q0={1,23), SeX? TeZ? and S=t}(T), where x = F(T) for the
solution F under consideration.

Toillustrate that N and U satisfy STAB, note that if the product x, x,x;
is maximized over T at x* > 0, then the product x, x,x¥ (and therefore
the product x, x,)is maximized over S = t3(T) = TN {x € R?| x; = x¥}
at (x¥,x%) (see Figure 11.84). Similarly, if the sum x, + x, + x; is maxi-
mized over T at x*, then the sum x; + x, + x¥ (and therefore the sum
Xx; + x,) is maximized over S at (x¥, x¥) (see Figure 11.85). (In the case of
U, we ignore the difficulties that occur when a tie-breaking rule has to
be used to yield a well-defined [that is, single-valued] solution.) To show
that E does not satisfy STAB, note that in Figure 11.8c¢, where
T'=cch{(2,2,1)}, E(T)=ep=x, and E(S)= E(cch{2ep}) = 2ep # Xp.
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The example represented in Figure 11.84 illustrates that L satisfies
STAB. There, T=cch{(2,3,1)}, L(T)=(2,3,1)=x, L(S)=L(cch{(2,3)}) =
(2,3) = x,. In Figure 11.8e, T'= cch{2e, (0,2,2)}, K(T) = ey = x, K(S) =
K(cch{ep,2e,}) = (3,4) # xp. Therefore, K does not satisfy STAB.

Harsanyi (1959) proved that if F satisfies STAB and coincides with
the Nash solution for groups of cardinality 2, then it coincides with the
Nash solution for all cardinalities. Of course, this is not a complete char-
acterization of the Nash solution. Lensberg gave the following full
characterization.

Theorem 11 (Lensberg (1981)). If a solution satisfies PO, AN, S.INV,
and STAB, then it is the Nash solution.
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Proof. It is clear that N satisfies the four axioms. Conversely, we first
establish that if F satisfies the four axioms, then F = N for two-person
problems. Without loss of generality, we take P = {1,2} and, appealing to
S.INV, we take S € =¥ with N(S) = e,. The idea of the proof'is to add a
third agent, agent 3, yielding Q@ = {1,2,3,} and to construct a three-person
problem whose solution outcome x is easy to determine-by appealing
only to PO and AN - and such that its slice parallel to R¥ through x is
precisely S. This approach is illustrated with the example of Figure 11.9.
Let S = cch{2e, (4,3)) (Figure 11.94). First, Sis translated parallel to R}
by the vector ey, yielding S = S + {e;} (Figure 11.9b). Then, S* and S?
are obtained from S? by replications analogous to the ones performed in
the proof of theorem 1 (Figure 11.9¢). Formally, S! = {(x € R¢|3x’ € S3
such that, x{=Xx,, x}= X3, and x} = Xx;}, and S? = {(x e R¢|3x’' € §3
such that, x{ = x;, x5 = X,, and x} = x,). Finally, T = cch{S',52,5%) is
constructed (Figure 11.94). We note that e, € PO(T) and that T'isinvari-
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ant under rotations of the agents, and so by PO and AN, F(T') = ¢p = x.
Also, t3(T)=S3 and thus by STAB, F(S% = x,, implying that
F(S) = N(S), the desired conclusion.

This argument is unfortunately not applicable to all S, as illustrated in
Figure 11.10, where S = cch{2e, ;). If we follow the same sequence of
steps for that example, we still obtain that F(T') = e, = x (note, in fact,
that T is the same here as it was in the previous example), but now

HT)2S 3, Thus, an application of STAB tells us nothing about $3, and
therefore nothing about S.

To obtain an argument applicable to all S, .S3 may have to be replicated
more than twice, that is, more than one agent may have to be added; how
many additional agents are necessary depends on how “flat” S is around
N(S). The piece t5(T)\S? that is added on to S3 by the convexification
yielding T gets smaller and smaller as the number of additional agents
increases. For a number sufficiently large, nothing is added if the Pareto-
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optimal boundary of S contains a nondegenerate segment around MN(S)
(the conclusion can be extended to all S by a continuity argument) and the
proof concludes as for the first example. The laborious algebra necessary
to make the argument rigorous is omitted.

Having proved that F = N for |P| = 2, we then appeal to Harsanyi’s
result to conclude for an arbitrary number of agents.

It is of particular interest here to see what happens when PO is deleted
from the list of axioms of theorem 11, a question that is investigated in
Thomson (19824). If a solution F is required to satisfy only AN, S.INV,
and STAB, it can be shown that either it satisfies PO as well, and therefore
it is the Nash solution by theorem 11, or there exists A < 1 such that given
any PE® and any S€ =%, F(S) is a point x such that for all i € P,
x;/max{x}|(x},x_;) € S} = A, where (x}, x_;) designates the vector x after
replacement of its ith coordinate by x}. This definition is illustrated in
Figure 11.11 for |[P|=2 and |P|= 3. In the illustrations, (x;/A,x_,) is
denoted y;.

Note that as A — 1, any point x so defined converges to M(S). This can
be seen most easily in the two-person example since the slope of the
segment [0, x] is the negative of the slope of the segment [y,,,]. AsA —1,
x approaches the boundary of S, the latter slope approaches the slope of a
line of support of S at x, and the equality of slopes at the limit is the one
that characterizes the Nash solution.
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There is no difficulty in showing, for any 0 = A < 1, the existence of a
point x satisfying the equalities x;/max{x;|(x!,x_,) € S} =2 for all i.
However, uniqueness is not guaranteed (Lensberg (19385), Moulin
(1983)). Therefore, the list of axioms SY, S.INV, and STAB does not seem
to characterize a unique one-parameter family N, of solutions, although
there may be some ways of performing selections that would have appeal-
ing properties.

We will conclude this section by stating two additional results based on
the stability axiom. In addition to stability, the first result involves the
natural generalization to an arbitrary number of agents of the axiom of
individual monotonicity formulated by Kalai and Smorodinsky (1975)
for the two-person case and used by them to characterize their solution.
This axiom states that if a problem is expanded “in a direction favorable
to an agent,” the agent should not lose. Formally, we have

Individual monotonicity (IMON): For all P& 2, for all S,5’ € X7, for all
i€ P, if Sp.;,= Sp,and $’ D §, then F;(S’) = Fi(S).

I.MON is satisfied by K as well as by E and L. However, L also satisfies
STAB, which neither K nor E do. Again, L satisfies PO almost by defini-
tion. In fact, we have

Theorem 12 (Lensberg (1982)). A solution satisfies PO, AN, LMON,
and STAB if and only if it is the lexicographic maximin solution.

The last theorem is interesting in that it involves considerations of both
monotonicity and stability. Recall that E satisfies WPO, AN, MON, and
CONT, but that it fails to satisfy STAB. However, on the domain X of
problems whose set of weakly Pareto-optimal points coincides with the set
of Pareto-optimal points, STAB is in fact also satisfied. Obviously, on this
restricted domain, F satisfies PO and not just WPO. Our final result is

Theorem_13 (Thomson (1982b)). A solution defined on the restricted
domain Z satisfies PO, AN, MON, CONT, and STAB if and only if it is
the egalitarian solution.

11.6 Concluding comments

This review was intended to show that much of the theory of bargaining
can be rewritten in the context of a variable population and that useful
insights into the behavior of solutions can be gained by studying them in
this more general framework. This work is far from complete. Of particu-
larly interest are the recent results of Lensberg (19834), in which PO,
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CONT, and STAB are shown to characterize the general class of solutions
defined by the maximization of a sum (one for each agent) of increasing
and strictly concave functions. The axiom of stability is shown there to be
closely related to the axioms of revealed preference in demand theory, and
certain formal similarities between that theory and axiomatic bargaining
are brought out in an illuminating way.

NOTES

1. Given x,y € RF, x Z y means that x; Z y; forall € P; x = y means that x = y
and x # y; x > y means that x;, > y; forall i € P.

2. The Nash solution was introduced by Nash (1950) and further discussed by
him (1953), as well as by many other writers.

3. This solution was introduced and characterized by Kalai and Smorodinsky
(1975) for the two-person case. A closely related solution had been defined
previously, but not axiomatized, by Raiffa (1953). Rosenthal (1976) proposed
and axiomatized another related solution. Although the definition of the
Kalai-Smorodinksy solution can be generalized easily to the n-person case,
the property it has in the two-person case of yielding Pareto-optimal outcomes
does not extend unless comprehensiveness of the problems is required, as is the
case here (to be precise, this assumption guarantees only weak Pareto-optimal-
ity). It is not straightforward to extend the characterization of the solution
given in the two-person case to the n-person case, as discussed by Roth (1980),
although such extensions are possible, as shown by Segal (1980) and Imai
(1983), who is concerned with the lexicographic extension of the solution.

4. This solution and variants of it have been characterized by Kalai (1977),
Myerson (1977), Roth (19794, 1979b), Thomson and Myerson (1980), and
Myerson (1981).

5. This solution has been characterized by Imai (1983).

6. For a thorough study of the continuity properties of various solutions, see
Jansen and Tijs (1983).
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CHAPTER 12

Toward a focal-point theory of bargaining

Abvin E. Roth
UNIVERSITY OF PITTSBURGH

12.1 Introduction

The purpose of this chapter is to consider some recent experimental
evidence that existing models of bargaining, both axiomatic and strategic,
are incomplete in ways that make them unlikely candidates from which to
build powerful descriptive models of bargaining. After reviewing some of
this evidence, a direction will be proposed that seems to offer some prom-
ising possibilities, and this will be briefly explored with the aid of an
extremely simple preliminary model.

The plan of the chapter is as follows. Section 12.2 reviews some experi-
ments in which certain kinds of information that are assumed by existing
game-theoretic models not to influence the outcome of bargaining were
nevertheless observed to have a dramatic effect. The data from these
experiments make it plausible to suggest that bargainers sought to identify
initial bargaining positions that had some special reason for being credi-
ble, and that these credible bargaining positions then served as focal points
that influenced the subsequent conduct of negotiations, and their out-
come. Section 12.3 explores this idea by investigating a simple model of
coordination between two well-defined focal points. This model exhibits
some of the same qualitative features observed in the bargaining data,
concerning the frequency of disagreements as a function of the focal
points. The section concludes with a brief discussion.

12.2 Review of four experiments

To test theories that depend on the expected utilities of the players, it is
desirable to design experiments that allow the participants’ utility func-
tions to be determined. A class of games allowing this was introduced in

This work has been supported by grants from the National Science Foundation
and the Office of Naval Research, and by Fellowships from the John Simon
Guggenheim Memorial Foundation and the Alfred P. Sloan Foundation.
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Roth and Malouf (1979). In that experiment, players bargained over the
probability that they would receive some monetary prize, possibly a dif-
ferent prize for each player. Specifically, they bargained over how to
distribute “lottery tickets” to determine the probability that each player
would win his personal lottery (i.e., a player who received 40 percent of
the lottery tickets would have a 40-percent chance of winning his mone-
tary prize and a 60-percent chance of winning nothing). The rules of the
game specified which distributions of lottery tickets were allowable. If no
agreement was reached in the allotted time, each player received nothing.
We call such games, in which each player has only two possible monetary
payoffs, binary lottery games.

To interpret the outcomes of a binary lottery game in terms of each
player’s utility for money, recall that if each player’s utility function is
normalized so that the utility for receiving his prize is 1, and the utility for
receiving nothing is 0, then the player’s utility for any lottery between
these two alternatives is the probability of winning the lottery. The set of
feasible utility payoffs in such a game equals the set of allowable divisions
of lottery tickets. Thus, binary lottery games can be used to test experi-
mentally theories of bargaining that depend on the set of feasible utility
payoffs. Note that the set of feasible utility payoffs does not depend on the
prizes, and so a binary lottery game in which the players know the allow-
able divisions of lottery tickets is a game of complete information, regard-
less of whether each player also knows the other’s prize. The classical
models of bargaining that follow the work of John Nash (1950) and
depend on only the set of feasible utility payoffs to the players (see Roth
(1979)) thus predict that the outcome of a binary lottery game will not
depend on whether the players know their opponent’s prize.

The experiment of Roth and Malouf (1979) was designed to test this
hypothesis, among others. Participants played binary lottery games under
either full or partial information. In the full-information condition, each
player knew his own potential prize and his opponent’s potential prize.
Under partial information, each player knew only his own prize. Contrary
to the predictions of the classical models in the tradition of Nash (1950),
the outcomes observed in the two information conditions exhibited dra-
matic differences: Under partial information, outcomes tended to be very
close to an equal division of the lottery tickets, whereas under full infor-
mation, outcomes showed a pronounced shift toward equal expected
payofis.

Of course, other classical models describe games in greater detail. The
strategic form of a game describes not only the feasible utility payoffs, but
also the strategies available to the players. In the games described pre-
viously, strategy choices concern the formulation of messages and pro-
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posals during negotiations. Since the strategies available to the players
depend on the information those players possess, we must consider
whether the observed results can be accounted for by the different strate-
gies available to the players in the two information conditions.

The experiment of Roth, Malouf, and Murnighan (1981) was designed
to address this question and involved binary lottery games with prizes
stated in terms of an intermediate commodity. Prizes were expressed in
chips having monetary value, and each player played four games under
either high, intermediate, or low information. (See Table 12.1.) In each
condition, each player knew the number of chips in his own potential
prize and their value, but a player’s information about his opponent’s
prize varied with the information condition. In the high-information
condition, each player knew the number of chips in his opponent’s prize,
and their value. Under intermediate information, each player knew the
number of chips in his opponent’s prize, but not their value. Under low
information, each player knew neither the number of chips in his oppo-
nent’s prize, nor their value. In the latter two conditions, players were
prevented from communicating the missing information about the
prizes.

The experiment took advantage of two kinds of strategic equivalence
relations.! Binary lottery games with prizes expressed in both chips and
money, played in the low-information condition of this experiment, are
strategically equivalent to binary lottery games with the same monetary
prizes expressed in money alone, played in the partial-information condi-
tion of the previous experiment, because under the rules of the two infor-
mation conditions, any legal message in one kind of game would be legal
in the other. So the strategy sets are the same for both kinds of games, as
are the utility functions and the underlying set of alternatives. Also, games
expressed in both chips and money, played in the intermediate-informa-
tion condition of this experiment, are strategically equivalent to games

Table 12.1.
Player 1 Player 2

Number Value Value Number Value Value

of per of of per of

chips chip prize chips chip prize
Game 1 60 $0.05 $ 3.00 20 $0.45 $9.00
Game 2 80 0.03 2.40 240 0.04 9.60
Game 3 100 0.09 9.00 300 0.01 3.00

Game 4 150 0.08 12.00 50 0.06 3.00
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expressed in money alone, played in the full-information condition of the
previous experiment. This is the result of the fact that any legal message in
one kind of game can be transformed into a legal message in the other kind
of game by substituting references to chips for references to money (or
vice versa) in any message concerning the value of the prizes.

If the observed difference between the partial- and full-information
conditions of the previous experiment was due to the players’ different
strategy sets in the two conditions (the strategic hypothesis), then a similar
difference should be observed between the low- and intermediate-infor-
mation conditions of the present experiment. The observed results did
not support the strategic hypothesis. The low- and high-information con-
ditions replicated the partial- and full-information conditions of the pre-
vious experiment, but the outcomes observed in the intermediate-
information condition did not differ significantly from those in the
low-information condition: The observed agreements tended to give both
players equal probabilities, regardless of the size of their prize in chips.
Thus, information about the artificial commodity, chips, did not affect
the outcomes in the same way as did strategically equivalent information
about money.

Both of the experiments discussed here revealed an effect of informa-
tion that cannot be explained by existing models. The experiment of Roth
and Murnighan (1982) was conducted to separate this effect into compo-
nents resulting from the possession of specific information by specific
individuals, and to assess the extent to which the observed behavior can be
characterized as equilibrium behavior.2

In the two earlier experiments, either both bargainers knew their oppo-
nents’s prize, or neither bargainer knew his opponent’s prize. Also, it was
always common knowledge whether the bargainers knew one another’s
prizes. Information is common knowledge in a game if it is known to all of
the players, and if every player knows that all the players know, and that
every player knows the others know that he knows, and so forth. Two
bargainers can be thought of as having common knowledge about an
event if the event occurs when both of them are present to see it, so that
they also see each other seeing it, and so on. In these experiments, a set
of instructions provides common knowledge to the bargainers if it con-
tains the information that both of them are receiving exactly the same
instructions.

Each game of the third experiment was a binary lottery game in which
one player had a $20 prize and the other a $5 prize. In each of the eight
conditions of the experiment, each player knew at least his own prize. The
experiment used a 4 (information) X 2 (common knowledge) factorial
design. The information conditions were: (1) neither knows his oppo-
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nent’s prize; (2) the 320 player knows both prizes, but the $5 player knows
only his own prize; (3) the 35 player knows both prizes, but the $20 player
knows only his own prize; and (4) both players know both prizes. The
second factor made this information common knowledge for half of the
bargaining pairs, but not common knowledge for the other half.

The results of this experiment permitted three principal conclusions.
First, the effect of information on the agreements reached is primarily a
function of whether the player with the smaller prize knows both prizes.
Second, whether this information is common knowledge influences the
frequency of disagreement, with more disagreements occurring in the
noncommon-knowledge conditions. Third, in the noncommon-knowl-
edge conditions, the relationship among the outcomes showed virtually
no departure from equilibrium.

Together, these three experiments allowed fairly specific speculation as
to the cause of the observed information effects. The first experiment
demonstrated an effect of information about the prizes that could not be
accounted for in terms of players’ preferences over consequences (lot-
teries). The second experiment showed that this effect could not be ac-
counted for by the set of available actions (strategies). The third experi-
ment showed that the effect is consistent with rational (equilibrium)
behavior. Thus, if we continue to hypothesize that the players are (approx-
imately) Bayesian utility maximizers, it must be that the effect of infor-
mation is due to a change in the players’ subjective beliefs.

The experiment of Roth and Schoumaker (1983) was conducted to
investigate this hypothesis. The design of the experiment took advantage
of the fact that agreements in the previous experiments tended to cluster
around two divisions of the lottery tickets: One kind of agreement split the
lottery tickets equally between the bargainers, and the other gave the’
bargainers equal expected monetary payoffs. The experiment of Roth and
Schoumaker investigated whether, by manipulating the bargainers’ ex-
pectations, one or the other of these two kinds of agreements could be
obtained as a stable equilibrium.

Each player played 25 identical binary lottery games. Although players
were told that they bargained with another individual in each game, each
individual in fact played against a programmed opponent in the first 15
games. Half the participants had a prize of $40 and half a prize of $10;
both players knew both prizes, and players whose prize was $40 always
bargained against players whose prize was $10 (each player had the same
prize in all 25 games). Subjects were divided into three experimental
conditions. The first was a 20-80 condition in which the programmed
opponent promoted a 20 - 80 division of the lottery tickets, which yields
equal expected payoffs. The second was a 50-50 condition in which



264 Alvin E. Roth

subjects bargained with a programmed opponent designed to promote the
equal division of lottery tickets. The third condition was the control:
Subjects never bargained with a programmed opponent, but always with
other members of the control group.

The experiment was designed to distinguish between two competing
hypotheses. The classical game-theoretic hypothesis, which states that the
outcome of a game can be predicted from the set of feasible utility payoffs
and strategic possibilities, implies that, in this experiment, the different
experimental conditions should have no continuing effect. Specifically, if
this is correct, we would expect to observe that, starting with trial 16, any
differences between the two experimental conditions and the control
condition would begin to disappear and the outcomes in the three condi-
tions should converge over time, as continued play removes any transient
effects due to the initial experience of players in the 20-80 and 50-50
conditions.

However, if the expectations have a critical role in determining the
outcome, as suggested by the earlier experiments, then we should expect
to see divergent outcomes, established in the first 15 trials, persist in a
stable fashion in each of the three conditions. We would expect the first
condition’s mean agreement to be near 20 - 80 and the second condition’s
to be near 50-50. The control condition’s mean agreement should be
somewhere between these two. This would be consistent with the hypoth-
esis that the players’ expectations were the uncontrolled factor accounting
for the results of the previous experiments. The observed results clearly
supported this latter hypothesis, since the observed agreements in the
three conditions diverged just as the hypothesis predicts.

12.3 Focal points

The agreements observed in the experiment of Roth and Murnighan
(1982) were distributed bimodally. One mode was at the 50,50 agreement,
which gave the bargainers an equal chance of winning their prize; the
other was at the 80,20 agreement, which gave the bargainers an equal
expected (monetary) value by giving the bargainer with a $5 prize four
times the probability of winning his prize as the bargainer with a $20 prize.
This suggests that these equal-probability (EP) and equal-value (EV)
agreements served as some sort of focal points for the bargaining. Exami-
nation of the transcripts from all the experiments supports this suggestion,
since the EP and EV agreements also figure in the discussions between
bargainers.

Recall, however, that in the experiment of Roth, Malouf, and Mur-
nighan (1981), the “equal-chips” agreement failed to function as a focal
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Table 12.2.
50,50 (50 + h)/2, (150 — h)/2 hes0zd,
.4, 7,100 — A 50 =100 — h=d,

point in the intermediate-information condition, even though it was stra-
tegically equivalent to the EV agreement in the high-information condi-
tion. Thus, focal points are not determined by the usual (strategic) data
with which existing theories describe a game. Nevertheless, focal points
appear to play a significant role in determining the outcome of bargain-
ing. For this reason, it seems sensible to attempt to construct theories of
bargaining that treat focal points as an (empirically determined) part of
the data used to model a game, and to test the ability of such theories to
predict and explain other observable regularities of bargaining behavior.

Let us therefore take the focal points in a bargaining situation as given.
In the binary lottery games that we have been considering, the EP agree-
ment has always been a focal point, whereas the EV agreement appears as
a focal point only when there is sufficient information about the prizes to
allow the bargainer who would prefer it to identify it.

Perhaps the simplest model of bargaining with focal points is the coor-
dination game in which each player has only two strategies: to demand the
focal point that is more favorable to himself, or to acquiesce to the less
favorable focal point. If both players demand the focal point that favors
them, a disagreement results. If only one player demands the focal point
that favors him, then that focal point is the resulting agreement. If both
players acquiesce to their less favored focal point, some sort of compro-
mise between the two focal points is the final agreement. Table 12.2
represents the simple coordination game in which the outcomes are bi-
nary lotteries of the kind discussed here, and the second focal point (aside
from (50,50)) is (4,100 — A) for some /4 = 50. For simplicity, compromise
agreements are here taken to have an expected value halfway between the
two focal points. (In all of the experiments discussed here, the disagree-
ment payoffs d, and d, have been equal to zero.)

For /1 > 50, this coordination game has two pure-strategy equilibria
(corresponding to the focal points), and one mixed-strategy equilibrium.
When /= 50 (so that there is only one focal point), there is a unique,
pure-strategy, equilibrium.

The data from the bargaining experiments conducted to date are sug-
gestive of the hypothesis that, when there is only one focal point, we are
observing the unique equilibrium in such a coordination game, and when
there are two, we are observing the mixed-strategy equilibrium. This
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Table 12.3. Frequency of disagreement

(h,100 — h)
Experiment (50,50) (75,25) (80,20)
Roth and Malouf (1979) 2% (1/54)° 14% (3/21)°
Roth, Malouf, and Murnighan
(1981) 6% (2/32y 20% (6/30y  24%(7/29)°
Roth and Murnighan (1982) 11% (7/63)7 25% (37/146)#
All experiments combined 7% (10/149) 18% (9/51) 25% (44/175)
Prediction of the coordination
model (mixed-strategy equilibrium) 0% 7% 10%

2 Games with only a (50,50) focal point in this experiment are all those in the partial-infor-
mation condition, and games with equal prizes for both bargainers in the full-information
condition.

b Games with a (75,25) focal point in this experiment are games 3 and 4 in the full-informa-
tion condition.

¢ Games with only a (50,50) focal point in this experiment are all games in the low-informa-
tion condition.

4 Games with a (75,25) focal point in this experiment are games | and 3 in the high-informa-
tion condition.

¢ Games with an (80,20) focal point in this experiment are games 2 and 4 in the high-infor-
mation condition.

/Games with only a (50,50) focal point in this experiment are those in which neither player
knows both prizes, in the common- and noncommon-knowledge conditions.

€ Games with an (80,20) focal point in this experiment are all those in conditions in which
the $5 player knows both prizes.

hypothesis allows predictions to be made about observable bargaining
phenomena, such as the frequency of disagreement, as a function of the
focal points.? Table 12.3 compares this predicted frequency with the
observed frequency of disagreements as a function of the second focal
point (4,100 — A) for each of the experiments discussed previously (ex-
cept that of Roth and Schoumaker, in which the degree of coordination
was subjected to experimental manipulation).

Note that a prediction of the coordination model is that the frequency
of disagreement should increase as / increases, and that this is, in fact,
observed within each experiment and across experiments. Comparing the
disagreement frequency predicted by the coordination model with the
frequency observed across all experiments, it appears plausible that there
is a coordination component to the observed disagreements. Of course,
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such connections between disagreement in bargaining and disagreements
arising from coordinating between two focal points must remain specula-
tion until they can be subjected to a test by means of experiments specifi-
cally designed for the purpose.

It should be noted in passing that the coordination model makes other
testable predictions that appear plausible as well. For example, it predicts
that the frequency of disagreement should increase as the disagreement
payoff to either player increases. Of course, the model is also incomplete
in a number of important ways. For example, it gives no guidance as to
when we should expect to observe a mixed-strategy equilibrium as op-
posed to a pure-strategy equilibrium as the parameters of the model vary.
This kind of incompleteness in the coordination model can perhaps be
seen as complementary to the different sorts of incompleteness in the
axiomatic models, which, for example, make no predictions about the
frequency of disagreement.

In closing, it should be emphasized that the disagreements discussed
here are quite different in origin from the disagreements predicted by the
chapters in this volume that study strategic models of bargaining under
incomplete information. In those papers, the positive probability of dis-
agreement at equilibrium is entirely due to the presence of incomplete
information. Here, both the disagreements observed in the experiments
discussed, and those predicted by the coordination model, occur in games
having complete information. The purpose of this chapter, therefore, is to
suggest that some of the disagreement observed in bargaining has nothing
to do with incomplete information, and might better be understood as
resulting from the questions of coordination inherent in bargaining.

NOTES

1. Two games are strategically equivalent if they both can be represented by the
same game in strategic form. Thus, any theory of games that depends only on
the strategic form of a game yields the same prediction for strategically equiva-
lent games.

. Reference here is to the familiar noncooperative equilibrium of Nash (1951).

. The frequency of disagreement at the mixed-strategy equilibrium of the coor-
dination game is equal to the product of two probabilities: the probability x
that player 1 demands the EV focal point, and the probability y that player 2
demands the EP focal point. These quantities are given by x = (h/2 — 25)/
(75— h/2 —d,), and y= (h/2 — 25)/(h/2 + 25 — d,). At the mixed-strategy
equilibrium, the probability chosen by each player is the one that makes his
opponent indifferent between playing either of his two pure strategies. This has
the (perverse) effect of having each player’s probability of choosing either of his
pure strategies at equilibrium depend only on his opponent’s payofTs.

w N
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CHAPTER 13

Bargaining and coalitions

K. G. Binmore
LONDON SCHOOL OF ECONOMICS

13.1 Introduction

This chapter represents the first of several putative papers on bargaining
among a small number of players. The problem treated in the current
paper may be thought of as the “three-player/three-cake” problem. Each
pair of players exercises control over the division of a different cake, but
only one of the cakes can be divided. Which of the cakes is divided and
how much does each player receive? This problem is, of course, a para-
digm for a much wider class of problems concerning the conditions under
which coalitions will or will not form.

The general viewpoint is the same as that adopted in our previous
papers on bargaining (e.g., [3], [4], and [5]). Briefly, we follow Nash ([15],
[16], and [17]) in regarding “noncooperative games” as more fundamen-
tal than ‘“‘cooperative games.”! Operationally, this means that coopera-
tive solution concepts need to be firmly rooted in noncooperative theory
in the sense that the concept should be realizable as the solution of at least
one interesting and relevant noncooperative bargaining game? (and pref-
erably of many such bargaining games). '

The cooperative concept that we wish to defend in the context of the
three-person/three-cake problem is a version of the “Nash bargaining
solution.” A precise statement of the version required is given in Section
13.3. For the moment, we observe only that the notion can be thought of
as synthesizing to some extent the different approaches of Nash and von
Neumann and Morgenstern.® The n-player version of the Nash bargain-
ing solution that is usually quoted (see, for example, Roth [19]) is, of
course, not relevant to the three-player/three-cake problem but to the
three-player/one-cake problem.

Our defense of what we feel to be the appropriate version of the Nash
bargaining solution is based on the construction of noncooperative bar-
gaining models in which the bargaining process is described explicitly.
Our purpose in studying these models is not to attempt to show that the

269
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cooperative concept on which we focus is the only one worthy of atten-
tion. Indeed, it is well known that a considerable variety of cooperative
concepts can be implemented noncooperatively by using sufficiently in-
genious bargaining models (see, for example, Moulin [14]). Our purpose
is rather to provide some reasonably solid grounding for judgments about
the circumstances under which our cooperative solution concept is likely
to be applicable instead of another.

In particular, it seems often to be the imperfections in the negotiation
process that resolve the indeterminacy of the basic bargaining problem.
But it is seldom obvious a priori precisely how the final outcome and the
imperfections of the negotiation process are related. The use of a specific
bargaining model (in which imperfections are modeled by constraining a
player to remain within his strategy set) allows one to get some feel for this
issue. Of course, if a particular bargaining model imposes constraints on a
player’s behavior that he would prefer to violate and no mechanism exists
in the situation one is trying to model that would prevent such violations,
then little insight can be expected from the model. The question of
whether a model is vulnerable to such criticism is a matter for the judg-
ment of the modeler. This approach therefore does not avoid the necessity
of exercising one’s judgment but at least one does succeed in transferring
the judgment from the rather diffuse question of what is a “reasonable
outcome” to the more down to earth question of the nature of the “im-
perfections” in the negotiation process.

The noncooperative bargaining models to be considered here are based
on the very natural two-person model described by Rubinstein*in [21]. In
this model, the imperfections of the negotiation process lie in the fact that
a player cannot respond immediately with a counter offer to an offer
made by his opponent but must wait for a given time period.> We follow
Rubinstein in studying the perfect equilibria of such games where “per-
fect” is used in Selten’s original sense (i.e. subgame perfect®). It is worth
noting that Rubinstein’s arguments can be simplified even when the
model is generalized (see Binmore [5] and Fudenberg and Levine [7]). For
models with some element of stationarity over time, an especially simple
technique is described in Shaked and Sutton [25]. My indebtedness to
Shaked and Sutton however is much wider, and I would like to take this
opportunity to acknowledge the numerous useful discussions I have had
with them, both separately and together, on this topic and others.

We conclude this introduction by noting that Sections 13.5 and 13.6
contain some implications of our results for the Raiffa/Kalai-
Smorodinsky bargaining solution and for the nontransferable utility Sha-
pley value. As far as the former is concerned, we hope that our remarks
will be seen as evidence that the notion is complementary to the Nash
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bargaining solution rather than contradictory. As far as the latter is con-
cerned, we contend that this is perhaps best not thought of as a bargaining
concept except possibly in a modified form and then only under restric-
tive conditions.

13.2 The two-player/one-cake problem

Our version of the Nash bargaining solution for the three-player/three-
cake problem requires some preliminary discussion of the two-player/
one-cake problem. The “cake” isidentified with a set  inR2.. (We use R,
for the nonnegative reals and R, for the positive reals.) Each point x
represents a pair of utilities corresponding to a possible division of the
cake. We assume that & is compact, strictly convex,” and satisfies

XEF—=VyeER(D=ysx=—y€EZX).

The “status-quo” point is normalized at 0. We use quotation marks here
because we will not always wish to identify the ““status-quo’ point with a
utility pair that results from disagreement. As far as the mathematical
derivation of the Nash bargaining solution from Nash’s axioms is con-
cerned, the interpretation of the “status-quo” point is irrelevant. All that
is necessary is that a reference point ¢ be given with the property that the
solution f(%,£) depends only on the feasible set £ and the given reference
point &, -

A basic assumption in this paper is that the two-person/one-cake prob-
lem as just described should be “solved” with an (asymmetric) Nash
bargaining solution as presented, for example, by Roth in [19]. Various
noncooperative justifications can be advanced (see, for example, [3] or
[5]). One of these justifications is mentioned below in a somewhat more
elaborate context. The word “asymmetric” is used in association with the
Nash bargaining solution to indicate that we intend to use the version in
which each player is assigned a positive® “bargaining power®”. The asym-
metric Nash bargaining solution corresponding to the bargaining powers
7, and T, is the point g € & at which x}'x% is maximized subject to the
constraints x € & and x = 0.

In this section, we will be concerned with the stability of this resolution
of the two-player/one-cake problem given that one or both of the players
may have the opportunity to go and bargain elsewhere if displeased with
the course of the negotiations thus far. Any bargaining solution must
presumably be stable in the presence of small enough perturbations from
outside of this type, if it is to have any hope of realistic application.

Suppose that, if the first player breaks off negotiations and goes else-
where to bargain, then the first player will obtain a utility », and the
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second player will be left with utility 0; similarly for the second player,
with m, replacing m,. It seems not unreasonable under these circum-
stances to propose that the fact that m, and m, might be positive should be
irrelevant provided that the asymmetric Nash bargaining solution g satis-
fies g = m. We will go somewhat farther than this and resolve the two-
player/one-cake problem with an “outside-option” pair m € ¥ by maxi-
mizing x3'x% subject to the constraints x € £ and x = m (see Figure
13.1). Note that we do not use 1 as a new “‘status quo™. The “‘status quo”
remains'® at 0. The outside-option pair m is accommodated by replacing
& with

Y ={xx€ & and x = m}

and then applying the (asymmetric) Nash bargaining solution as usual.!!

We now briefly describe a version of the Rubinstein bargaining model
that supports the preceding resolution of the two-person/one-cake prob-
lem with outside-option pair m. A feature of this model is that, if the
bargaining question is still open at time 7, then matters look much the
same to the players at time 7" as they did at time O (except that all payoffs
are appropriately discounted). In so far as traditional thinking about a
status-quo point is concerned it follows that, if the bargaining is not over
by time 7, then the status-quo point & 7") used by the players at time 7"and
the solution g(T’) of their bargaining problem at time 7 should be related
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by an equation of the form
T)=o(T+6T).

Such considerations would seem relevant whenever forward commit-
ment in the bargaining process is not possible. But the case of forward
commitment would seem by far the less interesting. Thus, although 0 will
continue to be called the “status-quo” point, and although it is true that if
the players never agree to anything (including their outside options), then
the result will be 0, it is nevertheless misleading to think of O in terms of a
“disagreement point.”

Returning to the appropriate version of the Rubinstein model, we first
assign each player a discount factor from the interval (0,1). These factors
are labeled J, and J,. Next, we fix ¢ > 0 as the time interval between
successive ‘“‘negotiation rounds.” At time 2nt (n=0,1,...), player 2
makes an offer (d,,d,) to player 1. If player 1 agrees, then the offer is
implemented provided (67%%d,,07*"d,) € ¥. If player 1 disagrees, he
may either take up his outside option, '? thereby implementing (§3%m, ,0),
or else wait until time (27 + 1) and make a counterofter (e, ,e,) to player
2. If player 2 agrees, then the offer is implemented provided
(07 Crt g, 65C@nt e ) € &. Alternatively, player 2 may take up his out-
side option. Otherwise, we pass to time (2n + 2)t and proceed as before,
with #n + 1 replacing ».

As far as the analysis of the game is concerned, there is nothing worth
adding to what is stated in [3] and [5]. The unique (subgame) perfect
equilibrium converges to what we have called the (asymmetric) Nash
bargaining solution for the two-person/one-cake problem with outside-
option pair m € ¥ as the time interval between successive proposals
becomes vanishingly small (i.e., £ — 0+). The appropriate bargaining
powers are given by 7, =(—log ;)" ' (i=1, 2, .. .).

Note that, in the limit as t — 0+, it does not matter to the outcome
whether we begin with player 1 or with player 2 making an offer at time 0.
The result will be the same in either case.

We have two motives for reviewing the Rubinstein model in this con-
text. The first is to clarify the “status-quo” issue, on which we now under-
take to remain silent in the remainder of this chapter. The other is to
provide a rationale for the assumptions we wish to make about what
happens when m ¢ %, that is, when the outside-option pair is not feasible.

We are interested in the situation in which one player or the other can
be regarded as having the “initiative” in the sense that, if disagreement
arises, then it will be the player with the “initiative’” who secures his
outside option'? if there is competition among the players.!* We regard
the ““initiative” as an ephemeral phenomenon in that, if not taken up, it



274 K. G. Binmore

I3

1

1o
I
o

Figure 13.2

passes to the other player. Thus, in the preceding bargaining model, the
“initiative” at time O is with player 1, although this makes no difference to
the outcome if m € & and t — 0+. However, if m ¢ %, a perfect equilib-
rium will clearly have to assign player 1 a payoffof m, , whereas if the roles
of 1 and 2 were reversed, player 2 would be assigned a payoff of m,.

In the diagrams of Figure 13.2, we suppose that player 1 has the “initia-
tive”, The point ¢ represents the actual outcome of the bargaining pro-
cess, and p represents the “standby” outcome. By this we mean the out-
come that would result if player 2 had the “initiative”. In particular, pis
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the outcome of the game that will result if player 1 fails, or is unable for
some reason, to exercise his “initiative”. We suggest that the plausibility
of the proposed “‘solutions” be studied with the help of the bargaining
model introduced earlier in the case when m ¢ £ and t = 0+.

Although the nomenclature is clumsy, we will refer to g in the diagrams
of Figure 13.2 as the (asymmetric) Nash bargaining solution with outside-
option pair m when player 1 has the initiative.

13.3 The three-player/three-cake problem

We label the three players with the numerals 1, 2, and 3. The coalitions
(2,3}, (3,1}, and {1,2} are labeled 7, J, and K, respectively. Associated with
each coalition Cis a cake £€in R} with the property thatif x € #¢and pis
the player excluded from C, then x, = 0. In so far as the players other than
pare concerned, we assume that ¢ satisfies properties analogous to those
assumed in Section 13.2 for . The situation is illustrated in Figure 13.3.

We are interested in a bargaining game in which at most one of the
coalitions 7/, J, or K can form. The formation of a coalition consists of an
agreement by its members on a point x € €. If no coalition forms, each
player receives Q; that 1s, the ‘“‘status-quo” point is normalized at 0.

The question we address is: Ifcoalition C forms, on what point x € ¢
will its members agree? Insufficient structure has been provided to resolve
the question of which coalition will form in the general case.!’ Of course,
in taking this view we simply follow von Neumann and Morgenstern. We
refer to our proposed resolution of this question as the three-player/three-
cake (asymmetric) Nash bargaining solution.

|

Xz
Xy

Figure 13.3
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Before describing this proposed solution, we wish to make some com-
ments on the possible “stickiness” of the two-person/one-cake solution.
That the two-person/one-cake solution should remain unaffected by the
introduction of a third player and two further cakes is not surprising if all
divisions of the new cakes yield a utility to the original players of less than
what they will enjoy at their original agreement point. This observation
was incorporated in the discussion of Section 13.2. It might be thought
however that, if the third player were able to offer one or both of the
original players more than they enjoy at the original agreement point,
then the original agreement point would automatically be abandoned.
Indeed, perfect-competition arguments in this context take the proposi-
tion for granted. Thus, for example, the introduction of a second buyer to
a one-buyer/one-seller problem is usually assumed to result in an out-
come in the core!$, and the bargaining solution described shortly will also
yield this result. However, the three-player noncooperative model consid-
ered in Section 13.4 shows that the two-player/one-cake solution can be
surprisingly resistant to the introduction of a third player even when this
player is able to offer both original players more than they obtain at the
original agreement point. In this model, although the original players are
free to open a channel of communication to the third player, it is optimal
for them not to do so and the third player has no means of forcing his
attentions on them. The result is that the two-player/one-cake solution
survives the introduction of the third player. It follows that, when an
“outsider” is not able to guarantee the attention of the “insiders,” it may
be rational for the insiders to ignore the outsider even though they are
aware of his existence and of the cakes that can be divided with his
cooperation. The bargaining solution we now describe is not intended to
apply in these circumstances but to the “mainstream” situation!” in
which potential outsiders do not require the consent of potential insiders
in order to gain an ear for their proposals. The idea is very simple and not
particularly original.'?

We begin with three positive® parameters, ,, 7,, and 7;, which repre-
sent the bargaining powers of the three players. If C={p,q} and the
excluded player is r, we define!® a point

g%’
inR3 as follows. We take the rth coordinate to be 0, and the remaining pair
of coordinates is taken to be the (asymmetric) Nash bargaining solution
for the two-player/one-cake problem for the case when

1. The players are p and ¢
2. The cake is ¢ (with the rth coordinate suppressed)
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3. The status quo is 0

4. The outside-option vector is m€ as defined shortly (but with
the rth coordinate suppressed)

5. Player p has the initiative.

The outside-option vectors mC are defined!® by

6. m!'=(0,0%,0%"),
7. m!=(6%20,04?),
8. mk=(013,043,0).

We will interpret g7 as the outcome that will result if the negotiations
conclude with the formation of coalition C and the division of the cake
that C controls. This interpretation requires that, when g&? ¢ &<, coali-
tion C will never form.

Some comment is also necessary on the interpretation of the outside-
option vectors. Observe that, if p exercises his initiative and defects from
C = {p.,g), it is assumed?° that it will be r who holds the initiative in the
subsequent negotiations between p and r. One may imagine that the
bargaining model of Section 13.2 is employed, with p playing the role of
player 2 and r that of player 1.

We now define an (asymmetric) Nash bargaining solution for the
three-player/three-cake problem to be a function

UK —RY
such that
1. For each C € {(I,J,K}, there exists a p € C for which
g =f(C)=gCP,

2. The outside-option vectors defined by (6), (7) and (8) also
satisfy
ml = (O’U2K’ag)9
m’ = (af,0,0%),
mk = (a{,64,0).

The rationale for condition (1) will be clear from the discussion accompa-
nying the definition of g©?. Condition (2) simply requires that, where f
assigns the initiative to a player, then this assignment be consistent with
the assumptions players are making about the values of their outside
options.

To characterize the function f, it is necessary to distinguish two cases
(Figure 13.4). Observe that the coordinates of the point P illustrated for
case I are strictly decreasing functions of x, and hence the locus of P cuts
the Pareto-boundary of £’ in at most one point. If there is a point of
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Case | Case 1l

Figure 13.4

intersection, it follows that there exists a unique triple (v/,»”/,0%) as illus-
trated for case I. For obvious reasons, we call (v/,v/,v%) a “von
Neumann - Morgenstern triple.” If there is no point of intersection, then
the game has a nonempty “core’ S, as illustrated for case II (although S
might equally well be a subset of 7 or X in the general case).

Proposition 1. An (asymmetric) Nash bargaining solution for the three-
player/three-cake problem always exists and is unique (for fixed values of
Ty, T, and 73).

I. Ifa von Neumann - Morgenstern triple (v/,07,0X) exists, then

f(C)y=0C¢

for each C € {I.J,K} (Figure 13.5)

II. If a von Neumann - Morgenstern triple does not exist, then
the game has a nonempty core S, which is a subset of either 7,
&/, or K. If SC %€, then f(C) is the (asymmetric) Nash
bargaining solution for the two-player/one-cake problem in
which the players are the members of C, the status quo is 0 and
the cake has Pareto-boundary S. If D is a coalition other than
C, then f(D) is the point on the Pareto-boundary of #? that
assigns 0 to the player excluded from C (Figure 13.5).

Note 1. Given proposition 1, one may ask which coalition would be
expected to form. This question clearly is unanswerable as far as case I is
concerned!® without further structure being supplied. In case II, however,
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Case 11

Figure 13.5

one might reasonably focus attention on the coalition C with S C €. But
some care is necessary here. The situation in case II is rather similar to an
example given by Roth [20], in which he argues that coalition C will
necessarily form. Roth then advances the example as a criticism of the
nontransferable utility Shapley value. Aumann [2] has challenged Roth’s
conclusion, and his arguments certainly cast doubt on the proposition
that coalition C will necessarily form. On the other hand, Aumann’s
arguments do not seem adequate to demolish the somewhat more tem-
perate claim that the formation of C should be seen as the “mainstream”
result.?!

Proof of proposition 1. There is no difficulty in verifying that the func-
tions f'described in proposition 1 satisfy the conditions for an (asymmet-
ric) Nash bargaining solution for the three-player/three-cake problem.
We therefore concentrate on the uniqueness question. Suppose therefore
that there exists an appropriate f: (I,J, K} = R3.

I. Suppose that each outside-option vector m € is either exterior
to Z°€ or else is Pareto-efficient in €. Under these conditions,
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Figure 13.6

II.

m€ = g€ with equality if and only if m© € €. But, by condi-
tion (2) of the definition of f,

m! = (0,06%,0{) < (0,m§,m}) = (0,04,0%) = d’,

and thus m! = g’. Similarly, m’ = g’ and m¥ = gX. We con-
clude that (¢7,0”7,d%) is a von Neumann - Morgenstern triple.
If the hypothesis of case I just considered does not hold, then
at least one m€ € ¥€ but is not Pareto-efficient in #€. Sup-
pose that this is true in the case C = I. Either m} < g4 or
mi < ai. Suppose the former. Because m%¥ = g4 and g5 =
mi, it follows that m¥ > g% and hence that m¥ = g% = g1,
But m{ = g%, and also m{ = g% We deduce that ¢§! = g§2,
But, since m¥ > g%, mX ¢ &%, and it must therefore be the
case that m§ = g%! = g&2=0. Since m{= 0% and mJ=
a4, we also conclude that m{ = o' = ¢{? = 0. We are there-
fore left with the configuration shown in Figure 13.6.

Note 2. The considerations of this section are closely related to Albers’
notion of “stable demand vectors” described by Selten in [24]. In fact, in
case I, a stable demand vector is a member of the von Neumann-
Morgenstern triple, whereas in case II, the stable demand vectors are the
elements of the core S (assuming the obvious adaptation of Albers’ defini-
tion necessary in the absence of a characteristic function description of the
game). If this were not the case, there would be grounds for concern in
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view of the noncooperative implementation results that Selten obtains in
[24]. In this paper, Selten characterizes stable demand vectors as certain
equilibrium outcomes of noncooperative bargaining games related to
those studied here.

Note 3. Itisnatural to ask what happens if there are more players and/or
more cakes. We do not have adequate bargaining models to defend the
obvious generalizations. However, for the three-player/four-cake prob-
lem (i.e. one “large™ cake under the control of all three players and three
“small” cakes, each under the control of a different pair of players), it
seems clear that one should first calculate the subset S of the big cake that
assigns each player at least as much as he would obtain at his most favored
solution outcome for the corresponding three-player/three-cake prob-
lem. If S'is empty, then one would expect the result of the bargaining to be
a solution outcome of the three-player/three-cake problem. If S is non-
empty, then one would expect the result of the bargaining to be the
(asymmetric) Nash bargaining solution for the three-player/one-cake
problem with cake S and “‘status quo” 0.

The four-player/six-cake problem is less easily dealt with. But assum-
ing that only one cake can be divided, presumably the solution outcomes
can be described in terms of one of the four three-player/three-cake prob-
lems obtained by omitting one of the four players. Where two cakes can be
divided simultaneously, a two-stage analysis would seem necessary. This
approach clearly involves combinatorial difficulties but such difficulties
are presumably intrinsic to the problem.

13.4 Noncooperative bargaining models

The origin of the models discussed in this section is the Rubinstein [21]
model for the two-player/one-cake problem. For alternative methodolo-
gies and related models, see Binmore [5], Fudenberg and Levine [7] and
Shaked and Sutton [25]. As a first step in the direction of an incomplete-
information analysis, see Rubinstein [22]. It is perhaps worth noting that,
although Rubinstein-type models accord better with our intuitive feelings
about the nature of negotiation processes, nevertheless the results one
obtains often turn out to be the same as those obtained by studying
simpler models based on Nash’s original demand game [15] and the fact
that we do not employ the latter in this paper does not mean that we now
regard it as redundant.

To recapitulate some of what was said in Section 13.2, the version of
the two-player/one-cake model of Rubinstein that we wish to generalize
has the following properties. Two players, labeled 1 and 2, alternate in
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making offers in the presence of a shrinking cake. The shrinkage is to be
interpreted as representing disutilities derived from delays in agreement.
At time 0, the cake is assumed to be a set & satisfying the conditions of
Section 13.2, and at time ¢n, the cake is

Z, = {(07x,09%,): (x;,%,) € &},

where 4, and 4, are real numbers in the interval (0,1) representing the
players’ respective discount rates.?2 Attime 2nt(n =0, 1, 2, . . .), player |
makes an offer x € ¥,,, which player 2 may accept or reject. If the offer is
accepted, the game terminates with the implementation of x: If the offer is
rejected, then player 2 makes an offer y € &,,,.+,; and so on. This game has
a unique perfect-equilibrium outcome. The interesting case occurs when
t — 0+, since without constraint on their behavior, players would wish to
get their offers in as early as possible (see [5], p. 29). As¢ — 0+, the unique
perfect-equilibrium outcome approaches an (asymmetric) Nash bargain-
ing solution in which the “bargaining powers” satisfy 7, = (—log d;)™!
(i=1, 2). For the latter result, see Binmore [3], MacLennan [13] or
Moulin [14].

There are problems in generalizing this model to more complicated
bargaining solutions and it would be misleading simply to present a model
that implements the results of Section 13.3 without drawing attention to
them. We therefore propose to discuss a number of possible generaliza-
tions in the three-player context. (Readers who prefer to ignore these
considerations should skip forward to the subsection entitled “A market
bargaining model.”)

The problems with these generalizations fall into two distinct classes,
which it seems important to separate carefully. The first class of problem
is that of multiple equilibria. In the absence of an adequate theory of
equilibrium selection, we do not know how to proceed in general when
there is more than one equilibrium.?? Personally, I feel that progress can
be made on this front via refinements of the perfect-equilibrium concept,
but this is too large a subject for the current paper. Here, we simply set
aside models with multiple equilibria.

The second class of problem concerns the range of application of the
model. This is the more difficult type of problem since it calls for the
exercise of good judgment rather than technical expertise. The traditional
view is that if there are no “imperfections” in the bargaining procedure,
then the result of the bargaining will be indeterminate. If this not-unrea-
sonable proposition is accepted, then we must look for the force that
drives bargainers to a determinate outcome among the imperfections (i.e.
costs, delays etc.) of the bargaining procedure. But what is it reasonable to
assume about such imperfections? The difficulty is compounded by the



Bargaining and coalition 283

fact that, if one were to observe rational bargainers using, for example, the
Rubinstein two-player/one-cake model, one would never directly observe
the imperfections resulting from the necessary delays in making counter-
offers because all plays of the game would end with the acceptance of the
opening offer. The existence of potential imperfections would therefore
have to be deduced indirectly from the value of the opening offer and the
fact of its acceptance. All I feel able to do is point out that any bargainers
will be subject to constraints on their behavior (if only physical con-
straints), and although one may be tempted to neglect these constraints
for the same reason that a physicist might neglect a very low coefficient of
friction or for the reason that the constraints seldom seem “active,” never-
theless it is to be expected that such constraints will, in fact, determine the
bargaining outcome. In the future, it is to be hoped that we will obtain a
better understanding of which constraints really matter. The only firm
principle would seem to be that one cannot expect players to submit to
constraints that limit their payoffs unless there is some mechanism that
forces the constraints on them. Although these remarks may not be very
constructive, they may serve to indicate that we do not subscribe to the
school that maintains that a bargaining model (or a cooperative solution
concept) is “successful” because it has a unique equilibrium or because it
implements a favored economic notion. Such considerations may well be
necessary for “success” in some circumstances but are most certainly not
sufficient. -

Returning to the specifics of the Rubinstein model, the most natural
generalization is to the three-player/one-cake problem. The three players,
labeled 1, 2, and 3, rotate in making offers. The player making an offer at
time nt (n=0, 1, 2,...) will be denoted by p,, where p,=1, p, =2,
D,=3,p=1,p,=2,...,thatis, p, = n(mod 3) + 1. At time n¢, player
D, makesan offer x € Z,,, and the game terminates if the offer is accepted
by both of the players.?* This game has a unique “stationary”?* perfect-
equilibrium outcome, and the perfect-equilibrium outcomes of the corre-
sponding finite-horizon games converge to this outcome as the horizon
recedes to infinity. Moreover, this outcome is the unique “strong”?¢ per-
fect equilibrium (this is a result of Maria Herrero). None of this evidence,
however, seems adequate in the context of this paper to counterbalance
the fact that any efficient point of & is an ordinary perfect-equilibrium
point provided ¢ is sufficiently small. We propose to consider the three-
player/one-cake problem in a later paper since we are anxious to avoid
multiple-equilibrium problems in what is already a lengthy discussion.

This paper is concerned with the three-player/three-cake problem, and
here the simplest Rubinstein-type model would again seem to be the one
in which the players rotate in having the opportunity to make offers. As
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before, we denote the player with the opportunity to offer at time nt
(n=0,1,2,...) by p,= n(mod 3) + 1. At time nt, we suppose that the
cake available is that controlled by coalition C, = {p,,P,+,}. Thus, C, =
K C=1C=JC =K, C,=1,...An offer by player p, at time nt
therefore consists of a vector x € Z$». If an offer is made by player p, and
accepted by player p,,,, the game terminates at time »n¢ with the imple-
mentation of x. The game tree is illustrated in Figure 13.7. The double
lines in this figure indicate strategy choices leading to the acceptance of an
offer of j2 by player 3 to player 1 being accepted at time 2t.

Not only is this game the most direct generalization of the two-player/
one-cake problem. In addition, the two-player analysis of, for example,
[5] can be applied directly to this model. As is pointed out in Shaked and
Sutton [25], a perfect-equilibrium analysis of the game will be unaffected
if we replace our three players by only two players who alternate in
making offers, provided we make a suitable assumption about the cake
available at time #¢ in the new situation. The assumption is that, if g, is the
player making an offer at time »n¢ in the new situation whereas it was p, in
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the old situation, then the utility pairs available to g, and g, respec-
tively, at time nt will be the same as the utility pairs available at time nt to
D, and p,.., respectively.

We illustrate the technique in the most primitive case when d, = §, =
d;=4Jand

%I= {(O’XZ,XS): X2 = 0’ x3 = 0’ x2 + x3 = 1},

with symmetric definitions for 7 and Z%.

Observe that, in Figure 13.8, the cake available to coalition I = {2,3) at
time ¢ has been drawn with player 3’s utility plotted on the x,-axis. Simi-
larly, the cake available to coalition J = {3,1} at time 2f has been drawn
with player 3’s utility still plotted on the x;-axis but with player 1’s utility
now plotted on the x,-axis. The argument of [5] for the two-player case
survives and shows that the set of perfect-equilibrium outcomes is the
intersection of the sets E,(n =0, 1, 2, .. .). In the current case, this is a
single point that converges to (3,4,0) as 1 = 0+.

To link this result with Section 13.3, it is necessary only to observe that
for this version of the three-player/three-cake problem, there is a unique
von Neumann-Morgenstern triple,?” namely, {(0,4,%), (4,0,3), (4,4,0)}.
The bargaining model considered implements the third point of the triple,

Figure 13.8
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because the coalition K = (1,2} has the first opportunity to form. The
other points in the triple may be obtained either by permuting the players
in the bargaining model or by examining the perfect-equilibrium out-
comes of subgames in the original model.

In Figure 13.8, the cakes shrink steadily, allowing an easy calculation of
the set E,,. However, the analysis of [5] works even when the cakes do not
shrink steadily. But, in the latter case, a unique perfect-equilibrium out-
come is not guaranteed, and sometimes there will be multiple perfect-
equilibrium outcomes (see [5], p. 42). This is not the only difficulty. If case
II of Section 13.3 arises (see Figure 13.4), then the model imposes an
unnatural constraint on player 3, who would typically wish to address an
offer to player 2 given the opportunity whereas the model insists that any
offers made by player 3 be to player 1. The model therefore suffers from
both types of difficulty mentioned earlier and we therefore set it aside. It is
worth noting, however, that in those special cases when these difficulties
are absent (i.e. case I with a unique perfect-equilibrium outcome), the
model does implement the appropriate result of Section 13.3 (i.e., the von
Neumann -Morgenstern triple).

To avoid the second difficulty mentioned in the previous paragraph,
one can relabel the decision nodes of Figure 13.7 in such a way that the
players are treated more symmetrically. Alternatively, one can introduce
chance moves to determine who makes an offer to whom at each time nt
(n=20,1,2,...). However, both of these alternatives seem too contrived
for it to be possible to bestow much significance on the result of their
analysis. Instead, we prefer to look at models in which a player with the
initiative is not subject to an exogenous constraint that determines to
whom he can make an offer.

Two models suggest themselves. The first is based on the practicalities
of telephone conversations and so we refer to this as the “telephone
bargaining model”. One player phones another and they exchange offers
until there is agreement or one of them hangs up and phones the third
player, whereupon the situation repeats itself. This story is very similar to
that of Section 13.2, and it is perhaps surprising that an analysis does not
yield the results presented there. The second model is based on what
transpires at gatherings of brokers and so we call this the “market bar-
gaining model”. Players shout their offers and settle with the first player
who is willing to meet their terms. It is this model that implements the
results of Section 13.3.

It seems likely that there is some practical significance to the dichot-
omy just mentioned. To the layman it seems extraordinary that large
sums of money should be risked in commodity markets by individuals
who shout and wave their arms in the air, and the temptation is to dismiss
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Figure 13.9

this exchange mechanism as an archaic survival. However, even recently
established markets operate in this way,?® and our analysis suggests that
there may be good reasons for this. In particular, if it were the custom to
deal exclusively by telephone (or bilaterally through private conversa-
tions), then there would be players who would wish to disturb the custom
by advertising or shouting or whatever else was necessary to gain attention
for their offers.

A telephone bargaining model

The game tree isillustrated in Figure 13.9. It differs from that illustrated in
Figure 13.7 in that a player with the initiative is free to choose to whom to
make an offer, whereupon the initiative is transferred to the object of that
choice.

We consider the special case in which

%I= {O,XZ,X3): x2 = 09 x3 = 09 x2 +x3 = 1}9

with symmetric definitions for 7 and &%. The case 6, =, = ;= is
not very instructive here, and instead we assume that J, < J, <d;. We
will exhibit a perfect equilibrium in which the outcome is the same as it
would be if player 3 were absent.?®
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Figure 13.10

The perfect equilibrium is a stationary equilibrium in which player 1
plans on always making an offer to player 2 when the opportunity arises,
player 2 plans on always making an offer to player 1 when the opportunity
arises and player 3 plans on always making an offer to player 1 when the
opportunity arises. The offers that the players will make if they have the
opportunity to make an offer at time »n¢ are as follows:

Player 1: (x67%(1 — x)d%,0) € ¥X,
Player 2: (1 — »)0%,y0%,0) € ¥X,
Player 3: (1 — 2)67%,0,z20%) € ¥,

where the values of x, y, and z are as indicated in the Figure 13.10.

As far as responses are concerned, the players plan to accept at time nt
any offer that assigns them a utility at least as great as that listed below and
to refuse any offer that assigns them less:

Player 1: xd{**1,
Player 2: yo{+ 1,
Player 3: zo ¢+ 1.

To obtain this equilibrium, we require that x=¢& y=#, and z = {.
Otherwise, the players would wish to switch the player to whom they plan
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to make offers. Checking these inequalities involves some elementary
algebra. Equilibrium requires that

x+6'2y=1}

ytdoiy=1
z+d8ix=1 =
Et+oyz=1 y
n+diz=1 _
C+opy=1] ST

From the first pair of equations, we obtain
_1=d _1=4
ST T T

which are the values one would obtain if player 3 were absent and players
1 and 2 were involved in a two-player Rubinstein bargaining model. Since
J, < d,, we have that y > x. Also,

xzi{e==x=1—-06z=1-47dy
—=x+diy=1
= Jiy—3dy=0 (Because x + 35y =1)
= J,=4,.

Similarly,

zz{e=y=1—20%y
s=y=(1+49)7"
= (1 — 091 +d5)=1—051d%
—J,= 4.

As always, the most interesting situation is when t — 0+. Then,
players 1 and 2 split the cake Z% according to the (asymmetric) Nash
bargaining solution with “bargaining powers” 7, = (—log d,)"!, 7, =
(—log J,)~ . This remains true if we allow player 2 to open the bidding. If
player 3 opens the bidding, then players 1 and 3 will split the cake Z”, but
not according to the (asymmetric) Nash bargaining solution with 7, =
(—log 4,) ' and 7, = (—log J;)~!. Instead, player 1 will receive the same
as he would if he were bargaining with player 2 and player 3 has to be
content with what remains of the cake.

Note that this conclusion means that the stronger a player would be in a
two-player problem, the weaker he will be in a three-player problem. In
particular, player 3 is either excluded altogether or else, if he happens to
begin with the initiative, can secure only what player 2 would secure in



290 K. G. Binmore

Figure 13.11

this position. But player 3 is the least impatient and hence has the largest
value of 7. Clearly, an instability is built into this model.

The same phenomenon occurs with the one-seller/two-buyer case in
which &7 and X are as in the previous discussion but 7 = {(0,0,0)}. The
considerations remain exactly the same and the object is sold by player 1
to player 2 as if the second buyer, player 3, did not exist.

A market bargaining model

In this model, player 1 begins by announcing a real number x, which
represents the utility he requires if agreement is to be reached. This re-
quirement is conveyed to both player 2 and player 3 but player 2 has the
first opportunity to accept. If player 2 refuses, then player 2 announces a
real number y, which represents the utility he requiresif agreementisto be
reached. If the game reaches this stage, player 3 then has two offers to
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consider and we suppose that he first considers player 1’s offer and then
player 2’s offer. If he refuses both, then player 3 announces a real number
z and it is now player 1 who has two offers to consider. If player 1 refuses
both, then the entire situation is repeated from the beginning. The game
tree of this model is illustrated in Figure 13.11. The strategy choices
indicated by double lines result in the acceptance of player 2’s demand of
y by player 1.

This bargaining model implements the (asymmetric) Nash bargaining
solution for the three-player/three-cake problem as described in Section
13.3 provided suitable assumptions are made about discounting and the
timing of offers. As explained in proposition 1, the solution has different
descriptions depending on whether case I or case II applies and it will
simplify the discussion to consider the two cases separately.

Case I. Here we have a von Neumann - Morgernstern triple {v/,07,0%}
(see Figure 13.12). The problem is to show that a perfect-equilibrium
outcome of the game is one of the points in this triple. (It will, in fact, be v¥
because player 1 opens the bidding and player 2 has first refusal.) To
obtain the required result in case I, we do not even need to assume that the
players suffer disutilities from delays in agreement and we will present the
argument for the case §, =, =9, = 1.

The argument is based on Figure 13.12. We will show that a perfect
equilibrium in pure strategies requires player 1 to open with thedemand o
and that this offer will be accepted by player 2, thereby implementing v¥.
That a perfect equilibrium exists with this property is trivial.

The first observation is that a perfect equilibrium in pure strategies for
the subgame that follows an initial offer of @ < a by player 1 cannot have

Figure 13.12
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Figure 13.13

the property that a is refused by both players 2 and 3. To prove this, we
suppose, on the contrary, that the equilibrium strategies are as in Fig.
13.13. Here, d is player 2’s counteroffer and ¢ (depending on a and d) is
the payoff vector that results from the use of the putative equilibrium
strategies in the subgame.

There are three possibilities for & E € &%, (€ X/ orl e XX If &€ &,
then at least one of players 2 and 3 will prefer his coordinate of 7 to that of
£ (see Figure 13.12) and hence would wish to amend his refusal of a. If
¢ € &’oré € ZX, one of players 2 and 3 will receive 0 and hence again will
wish to amend his refusal of a. It follows that, in equilibrium, any
offer a < o by player 1 will be accepted by either player 2 or player 3 and
hence no a < & can be an equilibrium offer because player 1 would
receive more by offering 4(a + ).

Next, observe that an offer 4 > a by player 1 will be refused by both
players 2 and 3. The reason that player 2 refuses is that he can guarantee b
(see Figure 13.12), by the preceding argument. There are two possibilities
for player 3. If player 2 offers player 3 more than player 1 has offered, then
clearly player 1’s offer will be refused. If player 2 offers player 3 no more
than player 1 has offered (e.g. B in Figure 13.12), then player 3 will refuse
both 4 and B because he can guarantee ¢ (see Figure 13.12).

It remains to observe that once a player has the initiative, he is guaran-
teed a positive payoff (in equilibrium). Thus, it cannot be optimal for
player 1 to offer A and have it refused since his resulting payoff will then
be 0.

The only possible equilibrium offers are therefore «, § and y by players
1, 2, and 3, respectively. Moreover, player 1’s offer of  will be accepted by
player 2 (because, if player 2 were planning to refuse , player 1 would bid
o —€).
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If disutilities arise from delays in agreement (i.e. 0 <J, < 1,0 < J, <
1,0 < 4§, < 1), then the argument needs to be modified. However, it will
be clear that, if the time interval ¢ between successive offers is sufficiently
small, then equilibrium offers will have to be correspondingly close to a, b,
and ¢ respectively and hence the same result will be obtained as t — 0 +.

Case II.  'We consider only the version of case II when the core Sis a
subset of #7. The position is illustrated in Figure 13.14. If ¢ is sufficiently
small, player 2 can guarantee a payoff of & <  — € (by refusing any offer
by player | that yields a lesser payoff and then offering b, which will be
accepted by player 3 or by player 1 in consequence of the argument given
for caseI). Similarly, player 3 can guarantee a payoffofc < y — € provided
player 2 refuses player 1’s opening offer.

Having made these observations, we can now apply the usual two-
player/one-cake arguments to players 2 and 3. Ast — 0+, a perfect-equi-
librium outcome approaches the (asymmetric) Nash bargaining solution
calculated for a cake with Pareto-boundary S, status quo 0, and bargain-
ing powers 7, = (—log &,)”, 73 = (—log J;)~!, unless thisis equal to ¥ or v
(see Figure 13.14), in which case the points (0,5,0) and (0,0,y) are also
possible.

Figure 13.14
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13.5 The nontransferable utility Shapley value

For a general discussion of this concept together with an axiomatic deri-
vation, we refer to a recent paper by Aumann [1]. In this paper, Aumann
suggests that the notion is best seen asa “‘group decision’ or an “arbitrated
outcome” ora “reasonable compromise.” This viewpoint implies that the
nontransferable utility (NTU) Shapley value is best studied under the
heading of social-choice theory rather than of game theory proper. How-
ever, it remains the case that the Shapley value is often cited in the latter
context (as the Aumann/Roth debate mentioned in note 1 of Section 13.3
confirms). It is therefore necessary to explain how the material of this
paper relates to the NTU Shapley value.

In particular, one might ask whether the results of this paper are con-
sistent with the use of the NTU Shapley value when one imposes the
symmetry requirements that 7, = 7, = 7, and that equal probabilities are
assigned to the formation of each of the coalitions I, J, and K. Since there
appears to be much confusion on this issue (not least in the mind of the
author) it does not seem adequate simply to remark that the answer is that
our results are not consistent with the NTU Shapley value. For some
readers, it may be enough to comment that neither Pareto-efficiency (in
the context of an averaging process) nor Additivity makes much sense for
a game-theoretic interpretation (although this certainly does not apply in
the social choice context). However, we propose to examine more closely
the question of why our considerations diverge from those implicit in the
use of a Shapley value.

The first point to be made is that our whole approach is founded on the
notion that forward commitments are not possible. Any threats that the
players make must therefore be “‘credible threats” if they are to influence
the outcome: hence the use of a perfect-equilibrium analysis. We made
this point about single players in Section 13.2. But, obviously, it would
make little sense to forbid forward commitment for single players but to
allow forward commitment for coalitions. Consistency therefore requires
that we forbid binding agreements between players concerning the con-
duct of the future negotiations between themselves and other players.
Indeed, the only binding agreements admissible are cake-division agree-
ments (and note that our utilities are very definitely nontransferable).
None of this is meant to imply that games with forward commitment are
never relevant, only that we prefer to study what seems to be the logically
prior and more natural case in which forward commitment is not possi-
ble. A consequence of this assumption is that, if a coalition C forms, all
thatit can do is agree to an unconditional division of the cake ¥ . It cannot
agree to a conditional division of the cake contingent on some event being
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observed during the future negotiations. This means that Harsanyi’s idea
of all coalitions simultaneously guaranteeing their members a minimum
payoff with which he defends the transferable utility (TU) Shapley-value
notion is not applicable. Or, to put the same point more crudely, one
cannot think in terms of coalitions forming by accretion, with each extra
player contributing a little more, as is the essence of the TU Shapley-value
idea. The claim that our assumptions are logically prior to these necessary
for dealing with conditional agreements or other forward commitments is
based on the proposition that a formal analysis of forward commitment
should incorporate the appropriate commitments within the game struc-
ture itself, which should then be analyzed without commitment assump-
tions. This view derives from Nash and has been emphasized by Harsanyi
and Selten. The claim that our assumptions are more natural refers to the
practical difficulties in making commitments stick. This view has been
stressed by Schelling, among others. To me, it seems that the role of the
legal profession in this context has been much overrated. A consideration
of greater relevance is the fact that games are often in reality stages in a
supergame but then, of course, a formal analysis would be directed toward
the supergame to which the consideration would not apply.

An example may assist. Consider a “‘transferable utility” game with
characteristic function V that assigns single players 0 and otherwise has

V(J)=V(K)=2,
i) =WG) =3,

where G is the grand coalition {1,2,3}. One may compute the TU Shapley
value from the following table:

1 1 2 2 3 3
Order of 2 3 1 3 1 2 Sum of Shapley
Players 3 2 3 1 2 1 rows value
(1) (2) (3) 4 (%) (6)
Player 1 0 0 2 0 2 0 4 2/3
Player 2 2 1 0 0 1 3 7 7/6
Player 3 1 2 1 3 0 0 7 7/6

Note that all but columns 4 and 6 implicitly assume a “two-stage™ agree-
ment. It is therefore not surprising that the Shapley value (3,2,2) differs
from (4,1,1), which is the average of the von Neumann-Morgenstern
triple {(0,3,2),(3,0,2),(1,3,0)}, since the latter is computed on the assump-
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tion that we are dealing with a ““one-stage” process. But suppose that we
compute a “one-stage’’ Shapley value as in the following table.

! ! 2 2 3 3 One-stage
Orderof | 2 3 1 3 ! 2| Sumof | ofF g
players 3 2 3 1 2 1 rows valu% Y
(D (2 (3 4) (5) (6)
Player 1 0 0 2 0 2 0 4 2/3
Player 2 2 0 0 0 0 3 5 5/6
Player 3 0 2 0 3 0 0 5 5/6

Note that (3,,2) still differs from the average (4,1,1) of the von
Neumann - Morgenstern triple. There is a good reason for this difference,
which we now discuss.

In the presentation of Section 13.13, the order in which potential
coalitions formed was essentially “endogenous” in that it was the player
who broke off negotiations with another player who gained the ear of the
third player in the subsequent negotiations. However, Shapley-value con-
siderations implicitly require that the order of coalition formation be
“exogenously” determined by a random mechanism. It is therefore of
interest to reexamine Section 13.3 with this alternative (and considerably
simpler) assumption in mind. An appropriate modification would seem
to be to redefine the outside-option vectors m?, m¥, and m* appearing in
the definition of the function f'so that o

m! = (0405 40%),
m’ = (40§,0,30%),
mX = (4a1{,40%,0).

Figure 13.15 illustrates the impact that this redefinition will have on
the nature of the function fin a typical situation (which includes the
preceding example provided that 7, = 7, = 1;). Observe that, for this
typical case, each f(C) is simply the (asymmetric) Nash bargaining solu-
tion for €. When 1, = 1, = 13, it happens that f(C) also coincides with
the NTU Shapley value for the two-person problem with cake Z°€.

For our example, f(I), f(J), and f(K) are easily calculated. When
T, = T, = T3, they are equal to (0,3,3), (1,0,1), and (1,1,0), respectively, for
which the average is (3,3,2). This is what we called the one-stage Shapley
value.

It probably is obvious that this result is a special case of a more general
proposition. However, we do not feel the general result is worth formulat-
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-~ x;xx;z =0

JK)
Figure 13.15

ing for two reasons. The first is that the general result will apply only in the
typical case illustrated in Figure 13.15 (and which corresponds to case I of
Section 13.13). For situations corresponding to that of case II, the result
will not hold (and, in any event, one would be very suspicious about
attaching equal probabilities to the coalitions). Second, the considera-
tions necessary to try to force some relevance for the NTU Shapley value
for problems more complex than the three-player/three-cake problem
seem excessively Machiavellian.

Where does this leave the NTU Shapley value? Certainly nothing that
has been said affects the notion in so far as it is a construct of social choice
(or social valuation) theory. Likewise, nothing has been said that denies
the validity of Harsanyi’s [9] analysis given the basic assumptions on
which the analysis is based. However, it is to be hoped that the discussion
offered does raise doubts about the use of the NTU Shapley value as a
general principle in bargaining theory except in the case of the two-
player/one-cake problem. Even here, the observation that the (symmet-
ric) Nash bargaining solution and the NTU Shapley value happen to
coincide would seem more reasonably attributable to the fact that only a
limited number of invariances are available in such a simple situation
than to any intrinsic merit of the NTU Shapley value. (Of course,
independent arguments are available in favor of the Nash bargaining
solution.)
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Figure 13.16

13.6 The Raiffa/Kalai- Smorodinsky solution

Various alternatives have been offered to the Nash bargaining solution for
the two-player/one-cake problem (see Roth [19]). Some of these are
clearly not genuine competitors because they relate to informational as-
sumptions that differ from those appropriate to the Nash bargaining
solution. However, the Kalai-Smorodinsky [11] solution certainly does
share the same informational base as the Nash solution (Figure 13.16).
In this section, we hope to offer a reason for regarding the Nash bar-
gaining solution and a variant of the Kalai-Smorodinsky solution as
complementary rather than rival notions, Perhaps this variant is better
described as the Raiffa solution. The difficulty with Kalai and Smoro-
dinsky’s monotonicity axiom is its implicit assumption that the replace-
ment of one cake, &, by another cake %, may put one playerin a “stronger
bargaining position” than previously, and hence he ought to receive at
least the payoff he would have received with the original cake, . How-
ever, it is difficult to understand what mechanism could generate this
stronger bargaining position given that we are supposed to assume that the
only threat available to either player is the threat to disagree and that
disagreement by either player leads simply to the status quo. We propose
to avoid this difficulty by arguing as in Section 13.2 that the status quo
should be seen as a reference point rather than a unique disagreement
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point. We are then free to admit the possibility discussed in Section 13.2 of
the players having open the opportunity to bargain elsewhere if the negoti-
ations are unsatisfactory. The simplest such situation is precisely that
discussed in Section 13.3 with a single third player in the background, and
we will work with this situation although it will be evident that similar
considerations may apply with a more complex scenario.

We adapt the notation of Section 13.3 by taking & to be ZX but with the
third coordinate of its elements suppressed. Similarly, we suppress the
first and second coordinates, respectively, of the sets ¥/ and #”, and
assume that the resulting sets are both Z. Since the Kalai- Smorodinsky
solution requires a symmetry axiom, we cannot dispense with this as-
sumption. We regard & as fixed and & as a variable. Where does the Nash
bargaining solution for the three-person/three-cake problem place the
agreement point g* for the coalition {1,2} as a function of the set #? The
question is answered in Figure 13.17 provided that the point v illustrated
does not lie in &.

For circumstances under which the best possible result for the players
will be the same no matter with whom this result is negotiated (i.e.,

Figure 13.17
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[ exogenously determined

curve

Figure 13.18

A, = A,and B, = B,), the “utopia point” u of Figure 13.16 and the point
v of Figure 13.17 will be the same, and hence gX will be precisely the
Kalai-Smorodinsky solution k. Without a symmetry assumption, the
straight line joining 0 and v in Figure 13.17 will be replaced by a curve.

Finally, it may be worth noting what an outside observer would record
after watching a sequence of independent bargaining games with different
cakes Z and a fixed status quo 0 in ignorance of the existence of a third
player and two further fixed cakes #7 and . This situation is illustrated
in Figure 13.18. The “solution” for &, on the basis of the analysis of
Section 13.3 is denoted by g;. (Of course, g, is to be interpreted as the
result if agreement were reached, which would seem unlikely in general.)
Note the mixture of different ideas.

13.7 Axiomatization

The question of an axiomatic characterization has been left until last for
two reasons. The first reason is that it seems inappropriate to say more
than a few words unless the general m-player/n-cake problem is to be
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examined. The second reason is that undue weight seems to be attached to
concepts that admit simple axiomatic characterizations.

Briefly, however, we note that [3] provided an axiomatic characteriza-
tion of the Nash bargaining solution in the two-player/one-cake case in
which the “independence of irrelevant alternatives’ axiom was replaced
by a “multiplicative axiom.” The latter bears a family resemblance to the
Shapley “additivity axiom” but requires invariance when two games are
“multiplied” rather than “added”. Refer to [3] for an explanation of why
it may be reasonable to wish to multiply two games. In the current context
of the three-player/three-cake example, such a multiplicative axiom
would reduce the problem to the consideration of games that admit a
characteristic function description; that is, the use of the multiplicative
axiom would correspond to the reduction in the Shapley context of non-
transferable utility games to transferable utility games. How one deals
with a game in characteristic function form remains a matter for debate
but at least this is familiar ground.

NOTES

1. This view has been championed perhaps most effectively by Harsanyi and
Selten.

2. This observation is not of course intended to apply to cooperative solution
concepts that are justified as “fair arbitration schemes” or the like. My own
view is that “fair arbitration schemes” are best studied under the heading of
social-choice theory rather than game theory (although admittedly some
blurring of the distinction is inevitable once the question of implementation
arises).

3. It is important to note that various n-person cooperative concepts have a
tendency to coalesce in the three-person/three-cake case and that, in choosing
to couch the required cooperative idea in terms of Nash bargaining solutions,
Iam vulnerable to accusations of prejudice. It would be possible, for example,
10 make do with the two-person Nash solution and graft this onto the notion
of the core of a game together with Vickrey’s strengthening of the von
Neumann-Morgenstern idea of a stable set to that of a strongly stable set (see,
for example, [12], p. 213). Alternatively, one could use a stability notion of
Albers as a substitute for the core and strongly stable sets. This path is fol-
lowed by Selten [24] in a paper with similar aims to the current paper. Yet,
again, one could adopt the Aumann -Maschler notion of a bargaining set (see
[18]). What is certain is that, if there is a “correct” description of the appropri-
ate cooperative bargaining concept, the three-person/three-cake problem has
100 simple a structure to reveal this.

4. Rubinstein worked independently, but his work is of course closely related to
that of Stahl {26], and of Harsanyi and Selten and others. Rubinstein has
recently made an important advance in extending his work to a case where
information is not complete (see [22]).

5. Such a constraint must exist if only for physical reasons. Naturally, however,
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players would prefer to respond at the earliest possible moment and so inter-
est centers on what happens when the response times are small compared
with the other parameters of the problem.

. This means that strategy #-tuples are Nash equilibria not only in the game asa

whole but also in every subgame (see Selten [23]).

. The assumption that & is compact and convex is standard. The other as-

sumptions on & are not essential and are introduced to avoid the discussion
of technicalities.

. For simplicity, we exclude the degenerate case of zero bargaining powers.
. This usage of the term “bargaining power” is quite different from that of

Harsanyi. Incidentally, it is important that the parameters 7, and 7, be deter-
mined entirely by the players and are independent of #. In Section 13.4, 7,
and 1, measure the players’ impatience at delays in agreement but other
interpretations are possible.

To ignore the location of the original “status quo” point would certainly not
be correct with the interpretation of m given in this section, although this is
disguised to some extent by the fact that the original ““status quo” is normal-
ized at 0. However, even if one assumed that both player 1 and player 2
receive their respective coordinates of m if negotiations break down (i.e. m is
the disagreement point), it does not necessarily follow that one should simply
use the Nash bargaining solution with “status quo” transferred to m. It still
may be appropriate, as in the entirely natural bargaining model described
later in this section, to use a point other than m (in our case 0) as a reference
point.

. As far as an axiomatic characterization is concerned, one simply needs to

classify those x € & that do not satisfy x = m as “irrelevant alternatives”.

. For the purposes of interpretation, one may imagine that player 1 threatensto

use his outside option before the preceding offer by player 2. Player 2 will then
have to consider whether this threat is credible. This consideration is taken
care of by using a perfect-equilibrium analysis.

The player with the initiative, for example, might be the first to notice the
opportunity for outside activity.

We do not consider the situation in which both players can simultaneously
secure their outside options, although this is an easier case to analyze. This
case is not relevant to the application required in Section 13.3.

As Selten observes in [24], in practice one would expect this question to be
resolved by issues such as who first notices that a bargaining situation exists
and whom it is convenient for him to contact first. Since the factors governing
such items are likely to be ephemeral, there seems little point in trying to
model them explicitly other than by attaching equal probabilities to the three
coalitions where necessary.

Sometimes this is assumed, as in [27], even when the possibility of the buyers
being able to form an unbreakable coalition has not been excluded.

The fact that we reject the survival of the two-person/one-cake solution in the
presence of the three-person/three-cake problem as “mainstream”, does not
mean that we deny the existence of important situations in which such “stick-
iness” is the overriding factor.

It is similar to an idea of Harsanyi ([9], p. 248) embodied in what has been
called the Harsanyi/Nash/Shapley value. An important difference between
the situation considered here and that considered by Harsanyi is that, in his
case, a coalition is able to guarantee its members certain utility levels inde-
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pendently of the guarantees made by other coalitions, whereas for the three-
person/three-cake problem considered in this paper, this is impossible.
Among other things, this means that there is a difference in the interpretation
of the solution payoffs. For Harsanyi, these are actual payoffs, whereas in this
paper they are potential payoffs contingent on an appropriate coalition being
formed.

The word “define” is premature since it remains to be established that the
property offered is consistent and categorical.

Of course, there may be situations in which if player p breaks off negotiations,
then he will not necessarily gain the ear of player r; that is, the idea of the
“initiative” is inappropriate. If, for example, the breaking off of negotiations
between players 2 and 3 led to a random move with probability 4 that player 2
would be involved in the subsequent negotiations with player 1 and probabil-
ity 4 that player 3 would be involved, then it would make sense to take
mi = to{+ 40 and mi{ =40 + 0¥

In the sense that, if one were assigning probabilities to the three possible
outcomes in the spirit of the Shapley value, one would attach a high probabil-
ity to f(C).

As explained in [5], the argument goes through under very much more gen-
eral conditions on &,,, but there seems little point in describing a very general
model for our purposes.

Indeed, we sometimes do not know how to proceed when there is a unique
equilibrium. However, at least the bargaining games considered here are free
of this type of problem. As far as the general problem of equilibrium selection
1s concerned, attention should be drawn to the theory of Harsanyi and Selten
[10]. I cannot claim to appreciate fully the guiding philosophy behind this
theory but the relevance of much of what is said cannot be denied. My
problem lies in fitting all the many considerations into a coherent whole. In
any case, I am not competent to attempt to apply the theory in the current
context.

One may model them as voting in sequence or simultaneously. In the latter
case, it would seem sensible to introduce a Selten “trembling hand” to avoid
the trivial equilibrium in which all players always vote in the negative. For a
study of a finite-horizon version, see Dutta and Gevers [6].

One in which actions chosen at time ¢ are independent of history, that is, of
what happened at times s < ¢.

Strong in the sense of Aumann (i.e. the strategies are optimal not only for
single players but also for coalitions, given no deviations by outsiders).

The “discriminating” von Neumann-Morgenstern solution sets do not ap-
pear in any of the bargaining models considered here.

We have the London financial futures market in mind here.

One can use the method of Shaked and Sutton [25] to show that this is the
only perfect-equilibrium outcome in this particular case but I do not know of
a technique adequate to handle the general case.
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CHAPTER 14

Axiomatic approaches to
coalitional bargaining

Sergiu Hart
TEL-AVIV UNIVERSITY

14.1 Introduction

The simplest bargaining situation is that of two persons who have to agree
on the choice of an outcome from a given set of feasible outcomes; in case
no agreement is reached, a specified disagreement outcome results. This
two-person pure bargaining problem has been extensively analyzed, start-
ing with Nash (1950).

When there are more than two participants, the n-person straightfor-
ward generalization considers either unanimous agreement or complete
disagreement (see Roth (1979)). However, intermediate subsets of the
players (i.e., more than one but not all) may also play an essential role in
the bargaining. One is thus led to an n-person coalitional bargaining
problem, where a set of feasible outcomes is specified for each coalition
(i.e., subset of the players). This type of problem is known as a game in
coalitional form without side payments (or, with nontransferable utility).
It frequently arises in the analysis of various economic and other models;
for references, see Aumann (1967, 1983a).

Solutions to such problems have been proposed by Harsanyi (1959,
1963, 1977), Shapley (1969), Owen (1972), and others. All of these were
constructed to coincide with the Nash solution in the two-person case.
Unlike the Nash solution, however, they were not defined (and deter-
mined) by a set of axioms.

Recently, Aumann (19835) has provided an axiomatization for the
Shapley solution. Following this work, further axiomatizations were ob-
tained: for the Harsanyi solution by Hart (1983), and for a new class of
monotonic solutions by Kalai and Samet (1983). The purpose of this
chapter is to review and compare these three approaches.

The discussion is organized as follows. The mathematical model is
described in Section 14.2, and is followed by the definitions of the solu-
tions in Section 14.3. The axioms that determine these solutions are
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presented in Section 14.4, and Section 14.5 includes some general re-
marks together with a comparison of the solutions in terms of the axioms
of Section 14.4.

It should be emphasized that this chapter includes only a minimal
discussion of the various concepts; it is intended as a summary and a
directory to the existing literature on the subject. In particular, the reader
should consult the papers of Aumann (19835), Hart (1983), and Kalai
and Samet (1983) for extensive presentations and comments.

14.2 The mathematical model

We start by introducing the notations. The real line is denoted R. For a
finite set I, let || be the number of elements of I, and let R’ be the
|I}-dimensional euclidean space with coordinates indexed by the elements
of I (when I is the empty set ¢, R¢ contains just one element, namely, ¢).
We will thus write x = (x‘),; € R! and, for JC I, x/ = (x¥),c, € R’
(hence, x = x; note that we use the symbol C for weak inclusion). Some
distinguished vectors in R” are: the origin 0 = (0, . . . , 0); and for every
J C 1 itsindicator 1;, with i =1ifi€ Jand 1,=0if i & J.

For x and yin R/, the inequalities x = y and x > yare to be understood
coordinatewise: x’ = y¥ and x’ > y’, respectively, for all i € I. The non-
negative, the positive, and the nonpositive orthants of R’ (defined by the
inequalities x = 0, x > 0, and x =< 0, respectively) are denoted R4, RZ,,
and RZ. For A and x in R’, we write A - x for the real number X ., Aix’
(their scalar product), and Ax for that element of R/ given by (Ax)f = Aix¢
forallie I

Let A be a closed subset of R; its boundary is denoted 4. For Ain R/,
the set A4 is {Aa | a € A}; for another closed subset B of R/, A + B is the
closure of (a + b| a € A,b € B). Note that A — B will denote the set dif-
ference (x € A | x ¢ B).

A coalitional bargaining problem - c.b.p., for short - isan ordered pair
(NV,V), where Nis a finite set and V'is a set-valued function that assigns to
every S C Na subset V(S) of RS. The set N is the set of players; a subset S
of N is a coalition; and V is the characteristic function.

The interpretation is as follows. Let 4 be the set of all possible out-
comes. For each player i € N, let u*: A — R be his utility function. Fi-
nally, for every coalition S C N, let A(S) C A be the set of outcomes that
can be reached by S. Then, F(S) is the set of utility payoff vectors that are
feasible for S, namely,

MS) = {(u¥(@)ies € R | a € A(S)).
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In game theory, such a pair (N, V) is called a game in coalitional (or,
characteristic function) form with nontransferable utility (or, without side
payments).

The set N of players will be fixed throughout this chapter; a ¢.b.p. will
thus be given by its characteristic function V. The space I' = I'(N) of all
c.b.p.’s that we will consider consists of all members of V that satisfy the
following conditions:

(1) For every S C N, the set V(S) is
a. A non-empty subset of RZ,
b. Closed,
¢. Convex,
d. Comprehensive (i.e., x € M(S) and x = y imply y € V(S)).

We will also consider the following additional regularity conditions:

(2) The set (V) is
a. Smooth (i.e., ¥(N) has a unique supporting hyperplane at
each point of its boundary dV(N)),
b. Nonlevel (i.e., x,y €EdV(N) and x = y imply x = y).
(3) For every S C N, there exists x € R such that

NS) X RY¥=SC U(N) + {x}.

(4) Forevery S C Nand every sequence {X,,} =, C V(S)thatis non-
decreasing (i.€., X,,..; = X,,, forall m = 1), there exists y € RSsuch
that x,, < yforall m= 1.

Denote the set of all Vin I that satisfy (2) by I';, those that satisfy (4) by
I',, and those that satisfy (2) and (3) by I';.

Conditions (1) are standard. Condition (2b) is a commonly used regu-
larity condition, meaning that weak and strong Pareto-optimality coin-
cide for V(N). The smoothness of V(N) is an essential condition; (2a)
implies that, for every x € V(N ), there exists a unique normalized vector
Ain R¥such that A - x= 41 - yfor all y in V(N). Note that A must be
positive (i.e., A € RY,) by (1d) and (2b). Condition (3) may be viewed as
an extremely weak kind of monotonicity: There exists some translate of
V(N) that includes all of the payoff vectors that are feasible for S and
assign zero to the players outside S. Finally, (4) is a boundedness-from-
above condition. A thorough discussion on assumptions and their impact
can be found in Sections 9 and 10 in Aumann (1983b).

For a coalition S C N, an S-payaff vector is simply an element of RS,
when S=N, it is a payoff vector. A collection x = (xg)g-y of S-payoff
vectors for all coalitions S is called a payoff configuration (thus,
Xg = (x5),es € RS for all SC N). The space of payoff configurations
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I xRS will be denoted X. In particular, the payoff configuration x with
xs =0 for all S will be denoted 0.

Note that every ¢.b.p. I may be regarded as a (rectangular) subset of X,
namely, I1 ;.4 V(S). Operations are thus always understood coalitionwise.
Hence, V 4+ W is given by (V+ W)S) = V(S) + W(S) for all SC N,
V' C Wmeans V(S)C W(S)forall S;and dVis 1,8 (S)C X. If Aisa
vector in RY, , then AV is defined by

(AVXS) = VS) = {(Ax')ies| x = (X');es € VIS

(recall that A5 = (Af),c¢ is the restriction of A to R$,). Moreover, for a
subset Y of X, we write AY for {((A5Vs)scn|Y = (V9)sen € Y.

14.3 Solutions

In this section, we will define the three solutions of Harsanyi, Shapley, and
Kalai and Samet. The following conditions will be considered, where V'is
acoalitional bargaining problem; Ais a vectorin R¥ , ; and foreach S C N,
Xs € RS is an S-payoff vector and &5 € R a real number:

(5) xs€INS),
(6) A5 - xg= AS - yforall y€ V(S),
(7) ¥xs=Zrcgierérforalli€eS.

The solutions are then defined as follows:

Definition 1. A payoff vector x € R¥ is a Harsanyi (NTU) solution of a
c.b.p. Vifthere exist A € RY,, x = (xg)scy € X Withxy=x, and {;ER
for all S C N such that the following are satisfied:

Condition (5) for all SC N,
Condition (6) for S = N,
Condition (7) for all SC N.

Definition 2. A payoff vector x € R” is a Shapley (NTU) solution of a
cb.p. Vifthere exist 1 € RY, , x = (Xg)scy E X With xy =X, and {cER
for all S C N such that the following are satisfied:

Condition (5) for all SC N,
Condition (6) for all SC N,
Condition (7) for S= N.

Definition 3. Let A be a vector in R%, . A payoff vector x € R¥ is the
Kalai and Samet A-egalitarian solution of a cb.p. V if there exist
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X = (Xg)scn € X with xy = x and &4 € R for all S C N such that the fol-
lowing are satisfied:

Condition (5) for all S C N,
Condition (7) for all S C N.

Note that Kalai and Samet define a class of solutions, parameterized by
A (which is thus exogenously given, besides V'); moreover, each ¢.b.p. can
have at most one A-egalitarian solution (for every 4; see the end of this
section). In both the Harsanyi and Shapley solutions, A is endogenously
determined, and there may be no solution or more than one. When the A}
are all equal (i.e., A = cl for some ¢ € R ), the corresponding Kalai and
Samet solution is called the symmetric egalitarian solution. The vector A
yields an interpersonal comparison of the utility scales of the players;
whether it is obtained from the bargaining problem itself, or it is an
additional datum of the problem, is thus an essential distinction (see also
Section 14.5).

The associated payoff configuration x = (xg)s. » Specifies for every co-
alition S a feasible (and even efficient, by condition (1)) outcome x. One
may view xg as the payoff vector that the members of S agree upon from
their feasible set (S); if coalition S “forms,” then x% is the amount that
player i (in S') will receive (note that these are contingent payoffs - if'S
forms). Following Harsanyi, one may furthermore regard xg as an optimal
threat of coalition S (against its complement N — S), in the bargaining
problem. More discussion on these interpretations can be found at the
end of section 5 in Hart (1983).

The three conditions (5), (6), and (7) may be interpreted as efficiency,
A-utilitarity, and A-equity (or fairness), respectively. Indeed, condition (5)
means that the S-payoff vector x; is Pareto-efficient for the coalition S:
There is no vector y € R5that is feasible for S(i.e., y € V(S)) such thatall
members of S prefer y to xg (i.e., ¥ > xs). Condition (6) means that xg is
A-utilitarian for S, since it maximizes the sum of the payoffs for members
of S, weighted according to A, over their feasible set (S). And, finally, the
weighted payoff Aix% of each member of the coalition S is the sum of the
dividends & rthat player i has accumulated from all subcoalitions 7 of S'to
which he belongs; because the dividend & is exactly the same for all
members of T (for each T'), xs is thus A-equitable or A-fair.

In the two-person simple bargaining problem, the Nash solution is
efficient, and for an appropriate vector A > 0, it is both A-utilitarian and
A-equitable. Both the Harsanyi and the Shapley solutions to the general
coalitional bargaining problem require efficiency (5) for all coalitions
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together with utilitarity (6) and equity (7) for the grand coalition N. They
differ in the condition imposed on subcoalitions (other than N and the
singletons): The Harsanyi solution requires equity, and the Shapley solu-
tion utilitarity. The Kalai and Samet solutions do not consider utilitarity
at all, but only equity (for all coalitions). Thus, the weights A have to be
given exogenously, whereas in the other two solutions they are deter-
mined by the conjunction of (6) and (7). Note further that, in the two-
person case, all of the egalitarian solutions (including the symmetric one)
differ from the Nash solution (they are the proportional solutions of Kalai
(1977)).

In general, some of the coordinates of A may be zero (and thus
A € RY — {0} instead of A € RY,); the simplifying assumption (2b) rules
out this for the Harsanyi and the Shapley solutions (by (6) for S = N); for
the egalitarian solutions, the positivity of A is part of the definition.

The three definitions have been stated in order to facilitate comparison
among the solutions. For alternative (and more constructive) definitions,
we need the following.

A transferable utility game (TU game, for short) consists of a finite set
of players N and a real function v that assigns to each coalition SC N
its worth v(S), with v(¢) = 0. The Shapley (1953) value of such a TU
game (N,») is a payoff vector x € R¥, which will be denoted
Sh(N,v) = (SH(N,v));en- It is defined by a set of axioms, and it equals the
vector of average marginal contributions of each player to those preceding
him in a random order of all the players.

Using this concept, one can rewrite the condition “there exist real
numbers &, € R for all T C S such that (7) is satisfied forall T C S as:

(8) Aixi = Shi(S,v), where v(T) = AT + xp=Z,erdixiforall TC S.

We then obtain the following.

Definition1’. A payoff vector x € R¥1s a Harsanyi solutionofac.b.p. V
if there exist A € RY, and x = (xg)gcy € X with Xy = x such that condi-
tions (5) and (8) are satisfied for all S C N and condition (6) is satisfied for
S=N.

Definition2’. A payoffvector x € R¥isa Shapley solutionofac.b.p. Vif
x € V(N) and there exists A € RY_ such that

Aixi= Sh(N,v),
where v(S) = max{A% - y|ye V(S foral SC N.
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(Note that (6) implies (5) and that the TU game v in (8) coincides with v
defined previously.)

Definition 3. Let A€ RY,. A payoff vector x € R” is the Kalai and
Samet }-egalitarian solution of a c.b.p. V if there exists X = (Xg)scy € X
with x, = x such that conditions (5) and (8) are satisfied for all SC N.

How are the solutions of agiven c.b.p. V constructed? In the case of the
Shapley solution, for each A € RY, , one computes the TU game v, by

vy(S) = max{A® - y|y € NS)}
forall S C N, and then obtains its Shapley TU value SA(N,v,). If the payoff
vector x = (x*),cn given by x'= Sh{(N,v,)/ A} for all i € N belongs to
V(N), then x is a Shapley solution of V.

The Kalai and Samet A-egalitarian solution (for a given A € R%,) is
obtained as follows. Inductively on the lattice of all subsets S of N, we
define

&s=max{t ER | z5(2) € U(S)},
where z4(1) = (z4(1)),es € RS is given by

==+ T &

A ics
T#S
ieT
If we put
Xs = z5(Ss),

then xy is the A-egalitarian solution of V.

Finally, to obtain the Harsanyi solution, we compute the A-egalitarian
solution x(A) foreach A € R¥Y, ; then, x = x(A) is a Harsanyi solution of V'
whenever 4 + x(A) =max{d + y|y € V(N)).

Thus, both the Harsanyi and the Shapley approaches require essen-
tially a fixed-point construction, whereas the Kalai and Samet approach
does not (again, Ais exogenously given there). It isnow clear that each V'in
I" has at most one A-egalitarian solution, and precisely one (foreach A)if V'
belongs to I',.

14.4 Axiomatizations

In this section, we will present an axiomatization for each one of the three
solutions defined previously. By axiomatization is meant a set of axioms
that uniquely characterize the corresponding solution.



312 Sergiu Hart

Asis usually the case, there are various ways of choosing an appropriate
set of axioms. We will follow here the choices made by each author in the
papers we review. This will enable us to exhibit a large number of axioms
emphasizing a variety of reasonable principles for solving coalitional
bargaining problems.

The first solution studied will be the Shapley solution, according to
Aumann’s (1983b) pioneering paper. For every c.b.p. Vin T, let A(V)
denote the set of Shapley solutions of V; A(V') is thus a (possibly empty)
subset of RY.

LetI', denote the set of all c.b.p.’s in I'; that possess at least one Shapley
solution (i.e., I', = (V' € T'| V satisfies (2), (3), and A(V) # ¢)). The set-
valued function A from I', to R¥ will be called the Shapley function. The
following axioms will characterize it.

A0. @ is a non-empty-set-valued function from I', to R¥.
(Foreach V&T,, ®(V)is a nonempty subset of RV.)
Al. (V)YCIV(N)forall VeT,.

(Efficiency: Every solution must be Pareto-efficient [for the grand
coalition].)

A2, AV)=210(V)forall A€RY, and VET,.

(Scale covariance: If the payoffs of the players are rescaled independently,
all solutions will be rescaled accordingly.)

A3 If U=V+ W, then ®U)D (D) + (W) NdUN) for all
UV,WET,.

(Conditional additivity: If x € ®(V') is a solution of V.y € ®(W) is a
solution of W, and z=x+ y is efficient for U=V + W, then z is a
solution of Uli.e., z € ®(U)].)

A4. If VIN)CW(N) and WV(S)= WA(S) for all S+ N, then
V) DDW)N V(N)foral VWeT,.

(Independence of irrelevant alternatives: If V' is obtained from W by re-
stricting the feasible set of the grand coalition, then any solution of W that
remains feasible in V" will be a solution of V" as well.)

For the next axiom, we define a class of ¢.b.p.’s usually referred to as
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unanimity games. For every nonempty 7'C N and every real number c,
let ur, be the TU game given by ur(S)=cif SO T and ur(S)=0
otherwise; then, Ur (S) = {(x ERS| Z,csx' = ur(S)) for all SC N.

A5, DUg,)={17/|T)forall TC N, T+ ¢.

(Unanimity games: Ur,; models the situation where each coalition § can
arbitrarily divide among its members the amount 1, if it contains all the
players of T - or nothing, otherwise. This c.b.p. has a unique solution,
where the members of T receive equal shares (1/|T|), and the other players
Zero.)

Theorem A (Aumann (1983b)). There exists a unique function P satis-
fying AO through AS; it is the Shapley function A.

We continue next with the Harsanyi solution, according to Hart
(1983). We will consider here not only the payoff vector x = x, of the
grand coalition, but rather the full payoff configuration x = (xg)s. . Let
H(V) stand for the set of all x = (xg)sc»y € X associated with a Harsanyi
solution of a c.b.p. V; that is, x = (x5)scy € H(V') if there exists A € RY,
such that conditions (5) and (8) are satisfied for all $ C N and condition
(6) is satisfied for S = N, see definition 2’). The set-valued function H
from I'; to X will be called the Harsanyi function; we will refer to
X = (xg)scny € H(V') as a Harsanyi solution of V' (rather than just to xy).
Note that H(7') may well be an empty set for some V € I', . Consider now
the following axioms.

B0O. VY is a set-valued function from I'; to X.
(Foreach VT, ¥(V)is a subset of X.)
Bl. Y(V)coVforall VET,.

(Efficiency: Every solution X = (xg5)scy € H(V') must be Pareto-efficient
for all coalitions: x5 € 3¥(S) for all SC N.)

B2, W(AV)=¥Y(V)foral AcRY and VeET,.

(Scale covariance: If the payoffs of the players are rescaled independently,
all solutions will be rescaled accordingly.)

B3 If U=V+W, then WU)DWV)+Y¥YW)noU for all
UV,WeT,.
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(Conditional additivity: If x = (xg)scy € W(V) is a solution of V,
Y= (¥9)scny € ®(W) is a solution of W, and z=x +y is efficient for
U=V+ Wilie., zs€ 3V(S) forall S C N], then z is a solution of Ui.e.,
ze Y(U))])

B4. IfVC W, then W(V)D¥Y(W)Nn Viorall V,WeT,.

(Independence of irrelevant alternatives: If V is obtained from W by re-
stricting the feasible set of some coalition(s), then any solution of W that
remains feasible in ¥ will be a solution of V as well: x = (xg)scny € Y(W)
and xg € V(S) C W(S) for all SC Nimply x € \¥(V).)

B5. W(Ur,) = {2(T,c)} = (z(T.,¢))scp) for all TC N, T+ ¢, and all
¢ €ER, where zi(T,c) = cl4/|T|if S D T and z4(T,c) = 0 otherwise.

(Unanimity games: Ur, models the situation where each coalition S can
arbitrarily divide among its members the amount ¢ if it contains all the
players of T - or nothing, otherwise. This c.b.p. has a unique solution
z = z(T,c); the S-payoff vector zg of a coalition S that contains 7 assigns
equal shares (¢/|T'|) to all members of T and zero to the rest; if S does not
contain T, everyone gets zero.)

B6. 1f0 €48V, then 0 € W(V).

(Inessential games: A c.b.p. is called zero inessential if 0 € 3V(S) for all
S C N, that is, if the zero payoff vector is efficient for all coalitions. This
means that for all coalitions, 0 is feasible, whereas no positive vector is
feasible. In particular, V({i}) = {x' € R¥|x!=0). For such a game,
where there is nothing to bargain on, the payoff configuration zero is a
solution.)

Theorem B (Hart (1983)). There exists a unique function ¥ satisfying
BO through B6; it is the Harsanyi function H.

It is remarkable that the two solutions of Shapley and Harsanyi are
determined by very similar sets of axioms. The main difference lies in the
range: payoff vectors for the former versus payoff configurations for the
latter (see Section 5 in Hart (1983) for further discussion of this subject).

We come now to the class of Kalai and Samet solutions. For every
A€ RY,, let E* be the function from I';, into R¥ that assigns to each
V €T, its A-egalitarian solution E4(V'). We will refer to E* as the A-egali-
tarian function. Consider now the following axioms, according to Kalai
and Samet (1983).
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CO. Fis a function from I, into R".

As usual, we will write F(V)=(F{(V))eyERY and FI(V)=
(F(V))ier €ERT for all TC N. Given a c.b.p. V, a coalition TC Nis a
carrier of Vif (S)=MSNT)XR5Tforall SC N.

Cl. IfTisacarrier of V, then F7(V) € 9W(T)forall V€ I'yand T C N.

(Carrier: The solution is Pareto-efficient for any carrier of V.) This axiom
implies both an efficiency axiom and a dummy axiom (where any player
outside a carrier is a dummy). Note that if 7 is a carrier of V, then any
T’ D T (in particular 77 = N, for all V) is also a carrier, and thus
FT(V)Yye a(T").

Given a c.b.p. V, let V, denote its individually rational restriction,
defined as follows:

U =max{x|x € V({i})) forall i € N,
VA(S)={x&€ NS)|x'=viforalli € S),

for S C N. Note that V., does not belong to I (it does not satisfy compre-
hensiveness nor possibly nonemptiness [see (1) in Section 14.2]). A ¢.b.p.
V' is individually rational monotonic (monotonic in Kalai and Samet
(1983))if forall SC Nand i ¢ S.

VAS U (i}) D VUS) X V(i)

In such a ¢.b.p., the contribution of a player is never detrimental, so long
as only individually rational outcomes are considered. Note that
V.({i}) = {v%}, and repeated applications of the preceding inclusion imply
VeV, (S)C V(S) forall SCN.

C2. If V is individually rational monotonic, then F(V) = v for all
Ver,.

(Individual rationality: The solution is individually rational (i.e.,
FiV)=viforall i € N), provided that every player always contributes
nonnegatively to all coalitions he may join.)

Given a nonempty coalition 7 C N and a payoff vector a € R with
a'=0 forall i ¢ T, let A, be the c.b.p. defined by

L[@)+RS ifSOT,
T |RS otherwise.

C3. IfFAp)=a,then FV+Ap)=FV)+aforall VET,.
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(Translation invariance: If the payoffs of each member i of T in each
coalition that contains T are translated by a’, and moreover the vector a is
acceptable (meaning that the solution of the ¢.b.p. A7 is precisely @), then
the solution of the new c.b.p. will be translated by a; note that the c.b.p.
W=V + Arisgivenby W(S) = V(S) + {a®}forS D T'and W(S) = WV(S)
otherwise.)

C4. If T C Nissuch that V(S)= WA(S)forall S+ Tand V(T') C WA(T),
then FT(V) =< FT(W)forall VW €ET,.

(Monotonicity: If the feasible set of some coalition T is enlarged (and all
the other feasible sets remain unchanged), then the payoff of each
member of T does not decrease.)

On the space of ¢.b.p.’s, consider the product of the Hausdorff topolo-
gies for all S C N: A sequence {V,,}%,_, converges to Vif, for each S C N,
the sequence {V,,(S)}=, of subsets of RS converges in the Hausdorff
topology to ¥(S).

C5. The function F is continuous on I';.

(Continuity:If asequence {V,,) %, in ', convergesto V € I';, then Fi(V,,)
converges to Fi(V') forall i € N.)

Theorem C (Kalai and Samet (1983)). A function F satisfies axioms CO
through C5 if and only if there exists A € RY, such that F = E* is the
A-egalitarian function.

Thus, each E*(for A € RY, ) satisfies CO through C5; moreover, those are
the only functions to do so.

This completes the presentation of the three axiomatic systems. We
note again that we have considered here only one of the various ways of
characterizing the three solutions; there are other combinations of the
postulates given (and others) that could do as well.

14.5 Discussion

This last section will include some remarks on the solutions presented
earlier, together with a comparison of their properties in terms of the
axioms presented in Section 14.4.

The basic assumption underlying all the approaches is that the only
information available is the characteristic function of the coalitional bar-
gaining problem. Thus, nothing is given on the extensive form of the
bargaining process: how the players are discussing, who talks to whom,
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whether there are procedures for making proposals - or threats — and for
rejecting them, for making coalitions, and so on. The solutions thus
cannot depend on such data; moreover, any particular assumptions of
this kind must necessarily be ad hoc. This implies that the solutions
proposed must be based on rather general principles, which should hold in
all situations described by the same characteristic function. The Nash
solution in the two-person case is an example of such an axiomatic ap-
proach applied to the characteristic-function form. (See Sections 5
through 7 in Aumann (1983a) for further discussion on this point; and see
Binmore (1983) for an “extensive-form” approach to three-person coali-
tional bargaining.)

The solutions discussed in this chapter are of two types. The Harsanyi
and Shapley solutions depend only on the cardinal representation of the
utility of each player separately. Thus, if a positive linear transformation
isapplied to some player’s payoffs, the same transformation applies to the
solutions as well (for rescaling, see axioms A2 and B2). The Kalai and
Samet solutions are different. If only one player’s utility is rescaled, the
solution may change completely. Only joint rescaling of the utilities of a//
players leads to the same change in the solution as well. In the former two
solutions, independent rescaling is allowed; here, only common rescaling.
Formally, for every i € N, let/: R — R be a positive linear transformation
given by /(x) = a‘x + b*, where a* > 0 and b’ are real constants. For each
c.b.p. V, let W= [(V') be the transformed c.b.p., namely,

W(S) = {lx) = (I'(x"))ies € RS | x = (x7)ies € V(S))

for all S C N. If a payoff vector x € R¥isa Harsanyi or a Shapley solution
of V, then the payoff vector /(x) € R~ is a Harsanyi or a Shapley solution,
respectively, of W= (V). Let A € RY,; if a payoff vector x € R¥ is the
Kalai and Samet A-egalitarian solution of V, and moreover all the a‘ are
identical (i.e., @’ = q for all i € N), then the payoff vector {x) is the
A-egalitarian solution of W= I(V).

Accordingto Shapley’s (1983) classification, the Harsanyi and Shapley
solutions are both of category CARDY, whereas the egalitarian solutions
are of category CARD,,. The interpersonal comparison of utility is ob-
tained endogenously in the former, and it is exogenously given in the
latter. s

We conclude this paper with a comparison of the three solutions via the
axioms presented in Section 14.4. Table 14.1 points out for each solution
function which axioms it satisfies and which it does not. The domainisT,
for the Shapley and the Harsanyi functions, and I', for the Kalai and
Samet functions. Note that axioms A1 through A5 regard the solution asa
set-valued function that assigns a subset of R¥ to each c.b.p. (possibly
empty, since we consider I'; and not I',); similarly for axioms B1 through
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Table 14.1.
Solution function

Axiom Shapley Harsanyi Kalai and Samet
Al (efficiency) Yes Yes Yes
A2 (scale) Yes Yes No*
A3 (additivity) Yes No? No?
A4 (irrelevant alternatives) Yes Yes Yes
A5 (unanimity games) Yes Yes No¢
B1 (efficiency) Yes Yes Yes
B2 (scale) Yes Yes No?
B3 (additivity) Yes Yes Yes
B4 (irrelevant alternatives)  Yes Yes Yes
B5 (unanimity games) No4 Yes No*
B6 (inessential games) No¢ Yes Yes
C1 (carrier) Yes Yes Yes
C2 (individual rationality)  Yes Yes Yes
C3 (translation) No/ No/ Yes
C4 (monotonicity) No¢# No¢# Yes
C5 (continuity) No* No* Yes

The instances where axioms are satisfied (“’yes” in the table) follow easily
from theorems A, B, and C, and straightforward arguments (see also
Section 5 in Hart (1983) and Section 8 in Kalai and Samet (1983)).

aIf A = cly for some c € R, then “yes.”

blet N={1,2,3}, U= Uyy, and W ="U,y,,; let (S)= Uy (S) for
S+ (1,2} and M{1,2}) = {(x€ RO |x' +2x2 =<0 and 2x' + x2 = 3).
Then, W=V + U, each of the three games W, V, and U has a unique
Harsanyi solution, namely, z = (4,4,0), x = (4 ,4,1), and y = (0,0,0), re-
spectively; and z # x + y. Furthermore, the symmetric egalitarian solu-
tion coincides with the Harsanyi solution for each of the three games.
c“Yes” for the symmetric egalitarian solution.

4 See proposition 5.4 and axiom B5 in Hart (1983).

¢ See example 5.6 in Hart (1983).

/“No” already in the two-person case (the Nash solution): Let N = {1,2},
a=(2,1), T=N, V({(i}) =R®, and V(N¥N) = {(x E RV | x! + x2 < 2}; the
Nash (=Shapley = Harsanyi) solutions of Ay, V, and V+ Ay are,
respectively, (2,1), (1,1), and (2.5,2.5).

¢ See Sections 1 and 2 in Kalai and Samet (1983).

# Upper-semi-continuity only: If x,, is a solution of V,, for everym = 1,
X, — X, and V,, = V, then x is a solution of V (recall condition (2b) in
Section 14.2).
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B6, with the range being the subsets of X (the set of payoff configurations).
Axioms C1 through CS refer to a (point-valued) function into R¥, al-
though they can be extended in a straightforward manner to apply to a
set-valued function.
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CHAPTER 15

A comment on the Coase theorem

William Samuelson
BOSTON UNIVERSITY SCHOOL OF MANAGEMENT

15.1 Introduction

Beginning with the observation of Ronald Coase, it has long been held
that private bargaining can provide an antidote to the inefficiencies
caused by externalities. Coase (1960) argued that

1. A pair of agents, by striking a mutually advantageous agreement, would
obtain an efficient economic solution to the externality, and

2. A change in the assignment of property rights or in the liability rule
would not affect the attainment of efficient agreements.

The Coase “theorem” relies on a number of assumptions, some explicit,
some implicit, among which are that: agents have perfect knowledge of
the economic setting including each other’s utility function; in the ab-
sence of transaction costs, the agents will strike mutually beneficial agree-
ments; and there exists a costless mechanism (a court system) for enforc-
ing such agreements.

As many observers have pointed out, the presumptions that the bar-
gainers have perfect knowledge of, and pursue, mutually beneficial agree-
ments — assumptions borrowed from the theory of cooperative games —
are crucial for the Coase results.! The usual argument is that rational
bargainers would (should) never settle on a given set of agreement terms if
instead they could agree on alternative terms that were preferred by both
sides. The conclusion, according to this argument, is that any final agree-
ment must be Pareto-optimal.

Although this argument seems compelling, it leaves a number of ques-
tions unanswered. By what bargaining procedure do the individuals actu-
ally arrive at a Pareto-efficient agreement? Will alternative procedures
attain such agreements? The usual presentation of the Coase theorem

This research was supported by National Science Foundation Grant
SES-8309345.
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omits the specifics of the bargaining process. The presumption is simply
that such agreements can and will be reached since it is in the joint interest
of the parties to do so. Although this conclusion is appealing, it is consid-
erably stronger than the economist’s customary hypothesis of individual
rationality. Even under perfect information, this presumption is far from
obvious. Each individual seeks only to maximize hisindividual utility and
does not seek a point on the utility-possibility frontier per se. Moreover, in
any interesting problem, there will be a multiplicity (in fact, an infinity) of
efficient agreements — such that an improvement in one agent’s welfare
necessitates a sacrifice in the other’s. Thus, one would expect the agents to
negotiate (or haggle) over these candidates — a process that may in turn
expend resources and delay agreement. Other types of strategic behavior
are also possible. In pursuit of a preferred agreement, one party may
threaten the other and, for credibility’s sake, bind himselfto carry out the
threat some portion of the time. When he does, efficiency fails.2 Alterna-
tively, the parties may adopt the standard negotiation bluff, insisting on
ultrafavorable (and incompatible) terms of agreement. If agents persist in
these demands, a mutually beneficial agreement may be lost. Although
proponents of the Coase presumption may regard these actions as irratio-
nal, it is no less true that such behavior (e.g., strikes, the carrying out of
costly threats) frequently occurs.

Moreover, it is unrealistic to suppose that the bargaining setting is one
of perfect information. To a greater or lesser degree, each party will be
uncertain about key aspects of the bargaining situation — possibly about
his own payoffs for alternative agreements and almost certainly about the
other side’s potential payoffs. As an example, consider a simple setting of
bilateral monopoly in which a single seller and buyer are negotiating the
sale price of a good. Although each may have relatively precise informa-
tion about his own monetary value for the good, each will have only a
probabilistic assessment of the other’s walk-away price. In the case of an
externality, two firms (e.g., one a polluter and one a victim of the pollu-
tion) would be engaged in negotiations aimed at a mutually beneficial
agreement. Each firm would be knowledgeable about its own cost (clean-
up cost or pollution cost) but would have limited information about the
cost of the other side.

The presence of limited or imperfect information is an impediment to
the attainment of efficient agreements. Before the fact, neither side will
know whether, or what, mutually beneficial agreements are available.
Such agreements, when they exist, must be uncovered by the bargaining
process itself. Thus, the key question is whether there exists a suitable
bargaining method, conducted by self-interested individuals, that can
always achieve Pareto-efficient agreements.



A comment on the Coase theorem 323

This chapter addresses this question by exploring the Coase theorem in
a setting of incomplete information. In contrast to the traditional version
of the Coase theorem, the propositions under incomplete information are
as follows:

1. The parties affected by an externality will, in general, be unable to nego-
tiate efficient agreements all of the time, or if an efficient agreement is
reached it may come only after costly delay;

2. The degree of efficiency of a negotiated agreement depends on
a. which party is assigned the specific property right, and
b. the bargaining process used by the parties;

3. Efficiency can be increased by allocating the property right via competi-
tive bid, rather than relying on some preassignment.

Proposition | indicates that the presence of incomplete information im-
poses a second-best negotiation solution — one in which agent welfare
falls short of that attainable under perfect information. Once an initial
rights assignment is made, bargaining cannot ensure the costless transfer
of the right to the party that values it most highly.? In this sense, the
condition of incomplete information creates a kind of trading friction or a
barrier to trade. Proposition 2 follows as an immediate consequence.
Given the informational barriers to trade, the ultimate solution to the
externality depends directly on the initial assignment of the right and on
the bargaining method adopted by the parties. Proposition 3 indicates a
potential remedy: Efficiency can be increased by foregoing the rights
assignment in the first place. Instead, the right is allocated via competitive
bid (so that the agent willing to pay the most for the right obtains it)
without recontracting.

The main propositions in this chapter are applications or extensions of
recent resultsin the area of resource allocation under uncertainty. Impor-
tant contributions are provided by Myerson (1979) and Harris and
Townsend (1981). Despite their importance, many of these results are not
well known (or if known, not assimilated into mainstream economic
thinking). Proposition 1 has been noted by several authors — by Arrow
(1979) and Samuelson (1980) for specific bargaining procedures and in an
important paper by Myerson and Satterthwaite (1983) for the class of all
bargaining procedures (under independent information). Nonetheless,
the importance of this amendment to the Coase theorem has gone largely
unrecognized. Thus, the conventional wisdom holds that in the absense of
transaction costs (caused, for instance, by numerous interested parties),
bargaining can solve in principle the externality problem. However,
whether bargaining is an appropriate remedy depends on the kind of
market failure present. If external effects are the sole cause of the failure, a
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bargaining solution that, in effect, internalizes the externality will be
appropriate. But in the common case when external effects are accompa-
nied by the presence of imperfect information, a property-rights assign-
ment followed by private bargaining will not be a fully efficient remedy.
The present study emphasizes this basic point and attempts to explore its
logical consequences, for example, the importance, so far as efficiency is
concerned, of the bargaining method used by the agents and of the initial
rights assignment.

The chapter is organized as follows. Section 15.2 outlines the basic
model and presents propositions 1 and 2. Section 15.3 suggests a remedy
in the form of rights bidding, and Section 15.4 examines a specific appli-
cation - the siting of hazardous-waste-processing facilities. A final section
offers a summary and concluding remarks.

15.2 Bargaining and externalities

The Coase theorem is a proposition not only about externalities and their
remedies, but also about the efficiency of bargaining in general. Coase
viewed the externality problem (its specific features notwithstanding) as a
member of the general class of bargaining problems. Examples in this
class range from negotiated purchase-and-sale agreements to the signing
of international treaties to management — labor contract bargaining.
Why should parties to the externality not negotiate mutually beneficial
agreements as in these other cases? In the spirit of cooperative game
theory, Coase concluded that they could, provided that a definite prop-
erty-right assignment was made. This assignment would specify the out-
come in the event that the interested parties failed to reach an agreement.
Forinstance, in the purchase-and-sale example, the seller retains the good
in the event of a disagreement. In the externality example, the property
right would reside with one of the parties in the event of a disagreement.
Clearly, then, one can think of the right holder as a kind of seller and the
other party as a buyer who must compensate the holder if he is to obtain a
better outcome (than the disagreement alternative) for himself.

To begin, it will be convenient to focus on the general bargaining
problem, of which the externality problem is a special case. The simplest
such problem can be described as follows. Suppose that two individuals
are negotiating over two possible outcomes. Agent preferences are in
conflict. The first agent prefers one outcome, the second prefers the other.
To keep things simple, let us suppose that each individual is risk neutral
and assigns a monetary value to his preferred outcome—a value that is
independent of income effects. If negotiations end in a disagreement, one
agent (labeled the right holder) will obtain his preferred alternative. Thus,
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the would-be acquirer, if he is to secure his favored outcome, must pro-
vide monetary compensation to the right holder.

When individual values are common knowledge, ex post efficiency
requires that the agent with the greater value obtain his preferred outcome
(or, equivalently, the right to this outcome). Short of this full-information
case, ex post-efficient outcomes cannot always be secured, a result con-
tained in an initial proposition. '

Proposition 1. The parties affected by an externality will, in general, be
unable to negotiate efficient agreements all of the time, or if an efficient
agreement is reached it may come only after costly delay.

The following is a simple but graphic example of this basic result.

Example 1. A buyer and a seller are negotiating the price at which a
single, indivisible good might be sold. Both parties know that the buyer
has a comparative advantage for the good. In fact, the buyer’s monetary
value for the good is 50 percent greater than the seller’s value, that is,
v, = 1.5 v,. The complication is that only the seller knows these underly-
ing values v, and v, . The buyer knows only that v, is uniformly distributed
on the interval [0,1].

To examine bargaining possibilities, we model the negotiation process
as a two-person game of incomplete information following Harsanyi
(1967). The information structure of this game is as specified previously.
Because both parties know of the buyer’s 50 percent advantage, it is
natural to expect a sale always to occur, and, of course, ex post efficiency
requires this. Nevertheless, it is straightforward to confirm that self-
interested and rational bargainers can never conclude a mutually benefi-
cial agreement in these circumstances. For instance, suppose that under
the rules of the bargaining game, the buyer has the opportunity to make a
first-and-final price offer, which the seller can then accept or reject. What
offer should he make? An offer of (let us say) .6 will be accepted 60 percent
of the time by a seller holding an average value v, = .6/2 = .3. Thus, the
buyer’s average acquisition value is v, = (1.5)(.3) = .45, and his expected
profitis (.6)(.45 — .6) = —0.9. More generally, any buyer offer b resultsin
a negative profit of —.25b2. Clearly, no offer that the buyer can make is
profitable.

What if the informed seller makes the first-and-final offer? For in-
stance, consider a seller who demands a price that is 30 percent greater
than his value, that is, s = 1.3v,. Anticipating this strategy, a buyer can
profitably accept all seller offers (even a price of 1.3). Against such an
accepting buyer, however, a profit-maximizing seller would choose to
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price at 1.3 for all v,, in which case the buyer would suffer an average loss
of .75 — 1.3, or — .55, in accepting this offer. The same result holds if the
buyer commits himself to accept any seller offer no greater than s, for any
s. The seller’s best response is to quote s for all v, = s, leaving the buyer
with an average loss. Thus, in equilibrium, no offer made by a rational
seller could ever be profitably accepted by the buyer. Although these two
procedures do not exhaust the bargaining possibilities (e.g., offer, coun-
teroffer, and so on), more general methods can be used to show that the
buyer’s most preferred bargaining procedure is to make a first- and final
offer.# Since even this is unprofitable, mutually beneficial agreements
under any bargaining procedure are impossible.

This example points up the conflict between the collective and individ-
ual interests of the parties. Even though the bargainers share the desire to
conclude a mutually beneficial agreement, each individual pursues a
negotiation strategy that maximizes his own expected profit. In the pres-
ence of asymmetric information, bargaining self-interest precludes the
attainment of any agreements. Thus, despite his comparative advantage
for the good, it is impossible for the uninformed buyer to conclude a
profitable agreement. It is not only the buyer who suffers. The informa-
tion asymmetry robs the informed seller of trading profit as well. Clearly,
this barrier to trade would not exist if both players knew v, and v,, in
which case they could conclude an agreement at some P € [v,,0,]. In
short, although a mutually beneficial agreement is always economically
feasible, such an agreement is impossible given the self-interest of the
parties.

This finding of bargaining inefficiency is not limited to the case of
asymmetric information. As a second example, consider a bargaining
setting in which each side holds a personal monetary value concerning the
issue at stake—a value that is known only to himself. For instance,
suppose that an upstream paper mill is negotiating a pollution agreement
with a downstream fishery that has the right to clean water. The mill seeks
to obtain the right to discharge moderate amounts of pollution and is
willing to pay the fishery for the privilege. Denote the mill’s value for this
right by v,, (embodying the clean-up cost it avoids) and the fishery’s
pollution cost by vy. Then, if v, < v,,, both sides can profit from a pollution
agreement whereby the mill obtains the right to pollute and makes a
payment P to the fishery, where P € [v,,0,,]. The difficulty is that each
value is known only to the player himself. The fishery’s probabilistic belief
about the mill’s value is summarized by the cumulative distribution func-
tion G(v,,), the mill’s probability assessment is denoted by G,,(vy), and
these distributions are common knowledge.

The usual description of bargaining involves unrestricted offers and
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counteroffers until an agreement is concluded or an impasse is reached.
To bring out the main points, however, it is convenient to begin by
presenting a highly stylized bargaining procedure such as the following.

a. Ascending offers. The agents place oral ascending bids for the right,
where the last and highest bidder obtains it. If this last and highest bidder
is the right holder, he retains the right. If this bidder is the other agent, he
purchases the right and pays the holder his bid price.

Though unconventional, this bargaining procedure has the virtue of
being “competitive.” The would-be acquirer can secure the right by mak-
ing an unmatched competitive bid and paying this amount to the holder.
Alternatively, the right holder retains the right by “outbidding” the other
agent. How will profit-maximizing individuals bargain under these
ground rules? The answer to this question requires a complete description
of each agent’s bargaining strategy, that is, a specification of the offers he
will make contingent on his value and the offer history to date. In general,
this may be a formidable task. Under ascending offers, however, the
strategy description is quite simple. The mill, seeking to acquire the right,
has a dominant strategy: If necessary, it should bid up to a price not
exceeding its true value, that is, make a maximum bid b,, = v,,. Antici-
pating this behavior, the fishery determinesits own ““ceiling bid”’ to maxi-
mize its expected profit:

(by— y)Prob(b,, < by) = (b, — v, X1 — G(by).

Here, it is presumed that the mill obtains the right by matching the
fishery’s offer b,(or, in an alternative interpretation, by bidding b,+ €).
Thus, if the right is transferred, the fishery’s profitis b, — vy, and thisevent
occurs with probability 1 — G(b;). The fishery’s optimal strategy deter-
mines b, by trading off the probability and profitability of an agreement
(where the latter is increasing in and the former decreasing in ;). It is
evident that the fishery’s ceiling bid is in excess of its value (b,> v,).
Consequently, the bargaining procedure fails to attain an ex post-efficient
outcome when b,> v,, > v,. Here, the fishery retains the right although it
is more valuable to the mill.

A similar finding of bargaining inefficiency occurs under more con-
ventional bargaining methods. In the usual description of negotiations,
the bargainers begin with incompatible demands, and over time the sides
converge to an agreement (if one is possible) by making staged conces-
sions. In keeping with the postulate of individual rationality, it is natural
to insist that each side use a Nash-equilibrium bargaining strategy; that is,
each should make offers (contingent upon its personal value) that maxi-
mize its expected profit given the bargaining strategy of the other side.
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Then, given the actual values v,, and v/, the agents will engage in bargain-
ing (according to their specified strategies), with the result that an agree-
ment is reached or bargaining terminates with no settlement.

The attainment of efficient outcomes requires that both bargainers be
willing to concede up to their true values if necessary, thereby securing a
mutually beneficial agreement, whenever trading gains (no matter how
small) are present. It can be shown, however, that such concession making
cannot constitute an equilibrium. More specifically, against a conces-
sion-making opponent, a profit-maximizing bargainer should stop con-
ceding short of his true value. (The right holder makes a final demand
by> vy, and the other bargainer a final offer b,, <uv,,.) Although this
sacrifices some probability of agreement, the bargainer more than com-
pensates by improving the terms of those agreements that are reached. As
a result, bargaining fails to attain certain ex post-efficient agreements.

Proposition 1’s finding of bargaining inefficiency is the foundation for
a second basic result.

Proposition 2. The degree of efficiency of a negotiated agreement de-
pends on (a) which party is assigned the property right, and (b) the bar-
gaining process used by the parties.

To demonstrate proposition 2, it is convenient to compare the negotia-
tion outcomes under the ascending-offer procedure with outcomes under
the following pair of stylized bargaining procedures.

b. Sealed offers. The agents submit written sealed bids, and the high bidder
obtains the right. If the high bidder is the right holder, no payment is
made. If this bidder is the other agent, he purchases the right and pays the
holder his bid price.

c. Split-the-difference offers. The parties submit written sealed bids, and
the high bidder obtains the right. If the other agent’s bid exceeds the
holder’s bid, the right is transferred at a price that “splits the difference”
between the bids. Otherwise, the holder retains the right and no payment
is made.

Consider agent bargaining behavior under each of these procedures. Sup-
pose, as before, that the fishery holds the water right. Then, under sealed
offers, it is easy to check that the fishery has a dominant strategy whereby
it submits a sealed bid equal to its true value, that is, by=v,. Clearly, it
should not bid any less, since this would risk transferring the right at a
price lessthan its value. Nor should it bid any more. Such a deviation from
truthful bidding is of no benefit if v, < b, < b,, but results in a loss of a
profitable sale if v, < b,, < b,. Thus, truthful bidding is optimal.
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The mill, on the other hand, submits an optimal bid to maximize its
expected profit:

(Um - bm )PrOb(bm = bf) = (Um - bm )Gm(bm )9

where the equality stems from the fact that the right holder bids truthfully.
It is evident from this expression that the mill uses a “shading” strategy,
submitting a bid below its true value.

Under split-the-difference offers, if b,, = by, then the mill purchases the
right and pays the fishery a price P = (b, + b,)/2. Otherwise, the fishery
retains the right. Here, the sale price depends on both offers, not on one
side’s offer as in the ascending-offer and sealed-offer procedures. It can be
shown (see Chatterjee and Samuelson (1983)) that in equilibrium the
fishery uses a “mark-up” strategy and the mill a “shading” strategy; that
is, by= b(v;) = vfor all v,and b,, = b,,(v,,) = v, for all v,,,.

Example 2. Suppose that it is common knowledge that the agents’
values are uniformly and independently distributed on the interval [0,1].
" When the fishery holds the property right, the bargaining methods yield
the following results.

a. Ascending offers. The fishery’s optimal strategy is b= .5 + .5v,. Thus,
the mill obtains the right if and only if v, = b= .5 + .50,.

b. Sealed offers. The mill’s optimal bargaining strategy is b,,, = .5v,,, and so
it obtains the right if and only if b,, = .5v,, = v, or, equivalently, when
O = 20y

c. Split-the-difference offers. The agents’ optimal bargaining strategies are
b;=4%+%v,and b, = % + 3v,,. Thus, the mill obtains the right if and
only if b,, = b,or, equivalently, if and only if v,, = v+ L.

These outcomes are depicted in Figures 15.1a —c, which indicate the agent
who obtains the right via bargaining for all possible combinations of
player values. Efficiency in the ex post sense requires that the fishery
retain the right if and only if v, = v,, (i.€., in the domain to the southeast of
the 45° line in each figure). But under incomplete information, the origi-
nal right holder retains the right over a larger domain of values (extending
to the northwest of the line), regardless of the specific bargaining proce-
dure - that is, the fishery may retain the right even though v, < v,,,. As the
figures indicate, the domains of inefficient outcomes vary according to
the bargaining procedure. (Of course, if the mill were originally assigned
the right, the domain of the mill’s retention would extend to the southeast
of the 45° line under each procedure.)

Under perfect information, the mill would obtain the right with proba-
bility 4. By comparison, under either the ascending-offer or sealed-offer
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(a) (b)

(©

Figure 15.1 (a) Ascending offers. (b) Sealed offers. (c) Split-the-
difference offers.

procedures, the probability that the mill obtains the right is 4, whereas
under split-the-difference offers, this probability is slightly higher, 5. A
natural measure of bargaining performance is the expected collective
benefit that is generated. If ex post-efficient outcomes were always
achieved, the expected benefit sum would be E[Z B] = E[max(vy,v,,)] =
%, where the expectation is taken over all possible values v,and v,,. By
comparison, the expected group benefit is § under either the ascending-
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offer or sealed-offer procedures and is slightly higher, 4, under split-the-
difference offers.*

Example 3. Now, suppose that the values are independently and uni-
formly distributed with v,€ [0,2] and v,, € [0,1], reflecting the fact that
the right is worth more on average to the fishery.

It is straightforward to derive equilibrium strategies and outcomes
under each of the bargaining procedures and for each initial assignment of
the right. Figure 15.2 displays the bargaining outcomes for different value
combinations, as well as the expected benefits generated. It is evident that
these benefits vary systematically according to the original rights assign-
ment. In this example, if a rights assignment is made, it should be to the
fishery, the firm that values the right more highly on average. However,
although this assignment rule seems to be appealing, it is easy to construct
other examples in which the attainment of maximum benefits calls for
exactly the reverse assignment.

15.3 Rights bidding

There is a simple remedy to the failure of bargaining based on a rights
preassignment. In the absense of a preassignment, let the parties bid for
the right. For historical, political, or legal reasons, an initial right assign-
ment may be a foregone conclusion in many settings. In other circum-
stances, however, bidding for the right is natural and feasible.

The bidding method envisioned is akin to a standard auction with one
exception. There is no seller to collect the proceeds; instead, the proceeds
are returned to the parties themselves. Thus, failing to acquire the right,
an agent will obtain compensation. Consider the following bidding
procedure.

Split-the-difference bidding. Agents submit sealed bids, and the high bidder
acquires the right and pays the sum (b, + by, )/4 to the other agent, where
b,, and b, are the respective bids of the parties.

Although the assignment of the right is straightforward, the amount of
compensation deserves comment. The payment is most easily under-
stood by noting that the agents are, at the same time, bidders for and joint
owners of the right. In this light, the bidding procedure described here
parallels split-the-difference offers. First, the purchase price is determined
by the average of the bids, (b,+ b,,)/2. This revenue is collected and
shared equally by the joint owners of the right, so that the acquirer’s net
payment is simply (b,+ b,,)/4.



332 William Samuelson

PISHERY HOLDS MILL HOLDS
WATER RIGHT WATER RIGHT

Ascending Offers

vm vm
1 1 —
Ve
M 7
v
v
Ve
//
, F
Ve
V' v'
0 1 2 0 1 2
E [ZB] = 1.06 E [ZB] = 1.00
Sealed Offers
Vm Vm
1 7 1 //'
M d ’
V2 v
/ M 7
// 4
7 F d F
v /7
v /7
v s v
0 1 2 0 1 2
E |ZB] = 1.06 E|ZB| = .94

Split the Difference Offers

v,
1

m

E[ZB] =1.07 E [ZB] = 1.00

Figure 15.2 Bargaining outcomes



A comment on the Coase theorem 333

Bids

%

Y2

1 Values

Ya Y2 %

Figure 15.3 Split-the-difference bidding

Suppose that this bidding procedure is adopted and that the agents’
values are drawn independently from the same distribution (i.e.,
G;( )=G,( )). Then, it is straightforward to show that the split-the-
difference bidding scheme is ex post efficient. The reasoning is simple. In
equilibrium, each agent will use the same bidding strategy that is strictly
increasing in his value. Consequently, b,= b,, if and only if v,= v,,.

Example 2’.  Suppose that the values are independently and uniformly
distributed on the interval [0,1], and that the right is assigned by competi-
tive bid. Then, the equilibrium bid function is b(v) = ¢ + %v, asgraphed in
Figure 15.3. At the mean value v = 4, an agent makes a “truthful” bid
b = 4. For larger values, he shades his bid (v) < v, and for smaller values,
he marks up his bid b(v) > v.

The intuition behind this behavior should be clear. For v > 4, the agent is
more likely than not to obtain the right. Thus, as a potential buyer, he has
an incentive to shade his bid and so pay a lower price. For v <4, on the
other hand, the likelihood is that he will be outbid for the right. Conse-
quently, he exaggerates the value of the right in order to raise his monetary
receipt. At v = 4, these incentives to shade and to mark up balance out,
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Figure 15.4 Split-the-difference bargaining

and so he bids b = v = 4. Furthermore, it is easy to check that the bidding
is profitable for both the winner and the loser of the right. Even a player
holding v = 0 profits. Although he is always outbid for the right, his
receipt is (b, + b,,)/4 or (3 + 4)/4 =} on average (where 4 is the average
winning bid). In the example, the expected profit of each player condi-
tional on his own value increases quadratically according to 3 + v%/2.

Although bids differ from agent values, the allocation of the right is
efficient (since the agent bidding strategies are identical). Figure 15.4
displays and compares the agent strategies under split-the-difference bar-
gaining. Even though this bargaining behavior bears a superficial re-
semblance to split-the-difference bidding (both involve shading and
markups), there is a crucial difference. The bidding procedure ensures ex
post efficiency; the bargaining procedure cannot. Once a rights assign-
ment is made, there is an inevitable divergence between the bargaining
strategies of the agents - that is, the fishery and mill offers, respectively,
overstate and understate true values.

The same point can be made in a slightly different way by showing that
there is no bidding procedure that is ex post efficient and that compen-
sates the holder for relinquishing his right. For instance, suppose that the
bidding procedure in example 2’ is modified in order to provide addi-
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tional compensation to the fishery (the would-be right holder). One sim-
ple means is via a lump-sum payment between the parties prior to the
bidding. Under the requirement that the mill obtain a nonnegative profit
(for all v,,), the largest possible lump-sum payment is ¢. With this pay-
ment, the conditional expected profits of the bidders become x,,(v,,) =
v2/2 and m:(v;) = % + v7/2. If the fishery is to be compensated for giving
up the right, it must be the case that n.(v;) = v, for all v,. However, it
is easy to check that this constraint is violated for v,> 1 — V4. In short,
there is no allocation mechanism that is both efficient and guarantees that
m,(v,,) = 0and n:(v,) = v forall v,,and v,. However, if the last constraint
is weakened to 7,(v) = 0, efficient outcomes are attainable via competi-
tive bids.5

The lesson of this simple example holds more generally. Because of the
rights assignment, the bargaining solution to the externality problem
introduces a constraint that (in general) prohibits an ex post-efficient
transfer of the right. By foregoing an initial rights assignment, the bidding
solution relaxes this constraint. (The only “individual-rationality”’ con-
straint implicit in the bidding solution is that agents who forego the right
should not be made to pay.) As a result, efficiency increases. This result is
summarized in the following proposition.

Proposition 3. Efficiency can be increased by allocating the property
right via competitive bid, rather than relying on some preassignment.

15.4 Siting hazardous-waste facilities

The preceding sections have compared the alternatives of bargaining and
biddingin determining rights assignments in the presence of externalities.
The important point is that foregoing a rights assignment can be crucial
for efficiency.

Many of the differences between the bargaining and bidding remedies
for externalities can be illustrated by the process used in the state of
Massachusetts for siting hazardous-waste facilities. As outlined in 1980
legislation, the siting process relies on developers (waste-management
companies) and local communities to negotiate siting agreements benefi-
cial to both, subject to certain safety and environmental standards en-
forced by state agencies. Besides safety and mitigation measures, the
negotiation agenda includes issues of compensation, both monetary
(taxes, service fees) and nonmonetary (jobs, payments in kind). Thus, in
contrast to practices in many other states, the siting process is intended to
be voluntary, providing neither state override of local decisions nor local
veto of development proposals. (These aspirations notwithstanding, to
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date none of the half-dozen or so proposals for which the siting process has
been initiated have resulted in a negotiated siting agreement.)

No short summary can do justice to the many complex issues inherent
in the siting legislation. However, the main economic objectives underly-
ing the legislation are not difficult to ascertain and appear to be twofold.
First, a facility should be sited where it generates the greatest net social
benefit (an efficiency objective). Second, the siting process should be
voluntary, that is, mutually beneficial to all affected parties (an equity
objective). A short list of these affected parties would include (most ob-
viously) the developer, the potential host community, neighboring com-
munities possibly affected by the facility, and in-state business and con-
sumers that benefit directly or indirectly from the provision of disposal
services. (In terms of aggregate net benefit, this last, general-interest group
may be the most important.) Of course, the precise magnitudes of the
benefits and costs accruing to affected groups remain private information.
Thus, the siting process occurs in a setting of imperfect information.

In light of the arguments presented herein, and based on the experience
to date with the siting process, one can identify several obstacles to the
attainment of the efficiency and equity goals.

1. The exchange of information between prospective developers and po-
tential host communities is severely limited. With few exceptions, indi-
vidual developers have considered (and subsequently pursued) a limited
number of sites based solely on their own costs and profits. (This is due
in no small part to the significant transaction cost, in time and money, of
the siting process itself.) Often, a developer’s least costly site lies in a
community with high cost burdens, for instance centrally located, high-
density areas. In short, sites with the highest net benefits (or, conversely,
lowest total costs) may not be uncovered.

2. Thenegotiations between the developer and the local community neces-
sarily fail to take into account the external benefits (consumer surplus)
conferred on businesses and consumers in-state. Consequently, it may
be impossible for the bargaining parties to conclude a mutually benefi-
cial agreement (i.e., the potential developer profit is insufficient to com-
pensate the community for its costs) even when the site is socially benefi-
cial. (Reports of the Massachusetts regulatory agencies stress repeatedly
these social benefits but fail to supply a serious benefit—cost confirma-
tion.) Of course, the presence of third-party effects is the standard prob-
lem posed by externalities.

3. Evenifa mutually beneficial agreement between the developer and local
community is possible, the parties may fail to attain it under incomplete
information (e.g., when the local community exaggerates its cost burden
and the developer downplays his potential profit for strategic reasons).

4. Under the siting act, the assignment of the property right is ambiguous.
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The local community cannot unilaterally refuse to negotiate, and if after
sixty days the talks are at an impasse, an arbitration board is convened to
resolve the dispute. (According to the legislative mandate, the board
should seek a settlement that conforms as closely as possible to the final
positions of both parties.) Thus, the local community does not have the
right to deny the facility under any circumstances. Furthermore, the
very ambiguity surrounding the holding of the property right may deter
negotiated agreements (e.g., when each side is optimistic about the
merits of its case and therefore prefers arbitration).

As an alternative to the negotiation mechanism, a system of competi-
tive bids could be used to establish the location of the facility and to
determine the compensation to be paid to the host community. Such a
procedure would change the property-right focus by requiring the com-
munities to give up the local veto right but to share the responsibility for
paying compensation to the host location. To illustrate, suppose that each
community is asked to submit a self-assessed estimate of the cost burden
of a local site. At the same time, the developer submits a list of cost
estimates for the possible sites. Based on these submissions, the site with
the least total cost is selected and appropriate compensation is paid. The
source of this compensation includes a sum comprising the expected
statewide benefits generated by the facility, a sum paid by the developer,
and pro rata shares contributed by the other communities. In practice, a
workable system might simply compensate the host community an
amount corresponding to its bid.

Beyond the political and institutional obstacles, in order for a bidding
system to work, each community must be willing to put a dollar value on
its cost of hosting the facility. Indeed, one might expect communities to
overstate the burden of the facility for strategic reasons or simply to avoid
it. Nonetheless, as long as these overstatements are anticipated and a
common bidding strategy is used, an efficient (i.e., least-cost) assignment
of the facility will be maintained. By paying compensation based on bids,
the mechanism increases the chances that the host community will accept
the facility voluntarily. At the same time, one would expect that the pro
rata contributions of the other communities would not be burdensome.

15.5 Concluding remarks

The present discussion has examined bargaining remedies to the exter-
nality problem in the presence of incomplete information and found that,
in contrast to the usual Coase result, private bargaining cannot guarantee
efficient solutions to the externality. Under these circumstances, the
choice of rights assignment is not simply a question of equity. Rather, the
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assignment influences the efficiency of ultimate negotiated outcomes in
conjunction with the bargaining method used. Indeed, foregoing a rights
assignment altogether can increase efficiency. In this case, a system of
competitive bids-not bargaining-determines the allocation of the right.

In actual practice, a number of other issues may play an important role
in the choice of rights assignment, and in determining whether a rights
assignment should be made. In many cases, the rights assignment embod-
ied in the status quo is adopted. As we saw, a chief intent of the Massachu-
setts siting legislation was that developer and community preferences
should count - in particular, that community preferences should not be
overruled by state-government fiat. In practice, however, granting this
right to communities (even in its present ambiguous form) has prevented
the siting of any facility in the state. An alternative is for communities to
give up this veto right but to share in the responsibility of paying compen-
sation to the community within which the site is built.

In addition, it is important that the rights allocation be responsive to
changes in relevant benefits and costs that may occur over time. Although
it is true that bargainers can renegotiate agreements in response to such
changes, the fact of bargaining inertia suggests that such negotiations may
well fail the test of dynamic efficiency. By contrast, intertemporal effi-
ciency can be maintained in principle (and approximated in practice) by
the simple expedient of assigning rights (via competitive bid) for limited
periods only and reauctioning the rights at frequent intervals.

Finally, although the focus here has been on two-party bargaining, the
general results extend to multiagent settings. With large numbers of
agents, the bidding procedure resembles a quasi-market in which compet-
itive bids determine an ex post-efficient allocation of rights (e.g., in the
case of pollution permits). Alternatively, if a preassignment of rights is
made, the players in the “bargaining” market would include numerous
competing right holders facing numerous would-be acquirers. It remains
the case that under uncertainty, an ex post-efficient allocation cannot be
guaranteed. However, it can be shown that the bargaining market ap-
proaches full efficiency as the number of participants on both sides of the
market approach infinity. Thus, so far as efficiency is concerned, the key
issue in the large-numbers case is the creation and institution of the
market; the rights assignment is of secondary importance.

NOTES

1. For a succinct discussion, see Arrow (1979).

2. Crawford (1982) presents an interesting model in which precommitments lead
to bargaining impasses.

3. The first proposition also holds in the case where bargaining extends over time
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and involves transaction or time-related costs. Here, it is possible to achieve ex
post-efficient assignment of the right but only at a bargaining cost that exceeds
the additional efficiency gains. For an analysis of bargaining over time, see
Chapter 8 in this volume.

. A complete analysis of this example is found in Samuelson (1984).

. Myerson and Satterthwaite (1982) show that of all of the possible bargaining
methods, the split-the-difference procedure achieves the greatest expected
group benefit.

6. Theefficiency of allocation by competitive bid (asillustrated in this example) is
a special case of general results proved by d’Aspremont and Gerard-Varet
(1979) and Laffont and Maskin (1979). In the case of identical distributions,
the split-the-difference scheme is just one of many fully efficient bidding pro-
cedures. An alternative well-known scheme requires each player to pay the
expected externality associated with his bid. In our examples, firm / submits
bid b;and pays z; = [ %o, ,8;(v;) dv;to the other firm, and the right is awarded to
the firm making the hlghest b1d When b; = b;, agent jis outbid for the right and
suffers an economic cost v;. Consequently, t represents the expected cost, by
agent i’s reckoning, suﬂered by agent j. By 1nterna1121ng the expected externa-
lity, this bidding scheme induces each agent to make an equilibrium bid b, =
v;, and therefore ensures an ex post-efficient assignment of the right.

wn B
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CHAPTER 16

Disclosure of evidence and resolution of
disputes: Who should bear the burden
of proof?

Joel Sobel

UNIVERSITY OF CALIFORNIA AT SAN DIEGO

16.1 Introduction

This chapter discusses the role of a third party in settling disputes. A judge
is responsible for deciding which of two bargainers should win a dispute.
There is a social value associated with giving the disputed item to a
particular bargainer. This is the bargainer’s claim to the item. Each bar-
gainer knows the strength of his claim and can provide evidence that
proves his claim to the judge. Presenting proof is costly and distortion is
impossible. However, it is possible to refuse to present evidence. The
judge has a prior distribution about the strength of the claims, but does not
know them exactly. The judge uses the information provided by the
bargainers’ disclosures (or decision not to provide evidence) and then
rulesin favor of the bargainer who has the best expected claim. When the
bargainers must decide whether to provide evidence simultaneously,
there are typically two types of equilibria. In one, each bargainer has a
positive probability of winning if he does not provide evidence. In the
other, one of the bargainers wins only if he proves his claim. Thus, rules
about which bargainer has the burden of proof, that is, who must provide
evidence in order to win the dispute, serve to select an equilibrium out-
come. This discussion compares the welfare obtainable from different
rules. The results are ambiguous. In general, the costs of providing evi-
dence are smallest if the burden of proof is placed on the bargainer who
has the lower cost of proving his claim, provided that this bargainer hasa
stronger expected claim. However, to maximize the social value of the
settlement, excluding disclosure costs, it is best to place the burden of

I received helpful comments from several conference participants as well as from
Steve Bundy, Joe Farrell, Lewis Kornhauser, and Craig Weinstein. NSF provided
funding through SES-82-04038.
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proof on the higher-cost bargainer. In this way, bargainers present more
evidence and the judge makes better decisions.

My model differs from standard models of bargaining. Bargainers are
not allowed to misrepresent their private information. This assumption is
justified if the information revealed is verifiable, so that misrepresenta-
tion can be identified and punished. Also, if well-informed attorneys
represent the bargainers, then requiring all information disclosed to be
accurate is consistent with the view that an advocate should make the best
possible case for his client without telling lies.

There is an explicit distinction between private and social valuations in
my model. This makes the role of the judge differ from his role in other
models of arbitration. Here, the judge selects a winner on the basis of the
quality of a bargainer’s claim, which I assume to be verifiable. Although a
bargainer’s private valuation influences his decision to present evidence,
his preferences do not directly enter the utility function of the judge.

Ordover and Rubinstein (1983), P’ng (1983), and Samuelson (1983)
present game-theoretic models of the legal process. They discuss how
incomplete information affects the decision to settle a dispute. The judge
is not an active player in these models. In market settings, Grossman
(1981), Milgrom (1981), and Farrell and Sobel (1983) study situations in
which agents may disclose information, but cannot distort it.

16.2 The model

There are two bargainers and a judge. For i = 0 and i = 1, bargainer 7 is
characterized by x; € [0,x7], which is his claim to the disputed item. His
strategy is a function s; defined on [0,x 7). For fixed x;, either s,(x;) = x; or
si{(x;) = n. If s,(x;) = x;, then the bargainer proves that his claim is x;
{(presents evidence) and incurs the nonnegative cost c,(x,). If s;(x;) = n,
then the bargainer does not prove his claim and incurs no cost.! Because
s{(x;) can take on only two values, distortion is impossible; bargainers
either truthfully reveal x; or disclose no information. I assume that bar-
gainer I’s von Neumann -Morgenstern utility function U, takes the form

Ui(xi,8) = vi(x) — ci(s:(x))s

where v,(x;) > Oisthe private value he places on winning, ¢;(x;) € (0,0,(x;))
is the cost of proving that his claim is x; (when his claim is, in fact, equal to
X;),and c,(n) = 0. Without further loss of generality, I normalize the utility
function by taking v,(x;) = 1. Thus, ¢,(x;} € (0,1) is the cost of providing
evidence relative to the private value of winning. It follows that if p, is the
probability that bargainer i expects to win given §; and Xx;, then his ex-
pected utility is p; — ¢ (s,(x;)).
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The judge chooses the probability p, that bargainer i wins the dispute.
Thus, the judge’s strategies consist of pairs of functions ( py,p,) such that
Do + py = land py,p, = 0. These functions depend on whatever informa-
tion the judge has when he makes his decision. The judge tries to maxi-
mize expected social welfare, which I take to be a weighted average of the
social value of assigning the object to a particular bargainer net of the costs
of providing evidence, if any. Thus,

Us(D,X0,%,,81) = Do Xo + D1 X; — k[co(so(X0)) + ci(s1(x,))], (16.1)

where k = 0. Equation (16.1) assumes that the social value of not assign-
ing the item is zero.

The judge does not know the values of x, and x, ; a probability distribu-
tion function F summarizes his information. Here, F(y,,y,) is the proba-
bility that (xy,x;) € [0,¥,] X [0,¥,]. I assume that F has a continuous,
positive density function fon [0,x7] X [0,xT]. The conditional distribu-
tion of x; given x,_; describes bargainer i’s beliefs about his opponent’s
case. The functions F, U,, U,, and U, are common knowledge, and so the
only uncertainty concerns the values x, and Xx; .

I assume that the bargainers learn the value of their claim simulta-
neously, and then prove their case to the judge (or decline to provide
evidence). At this point, the judge, knowing what the bargainers have
disclosed, decides which bargainer should win. The strategy for the judge
is an allocation rule, which selects the winner. I allow the judge to use
mixed strategies and, if he prefers, to select no winner. In addition, the
judge is able to condition his action on the signals of the bargainers.
Therefore, I represent the judge’s strategy by functions p,(y;, ¥, _;) defined
for

(Yo,y) E(mU[0xT] X (nU[0,xT])

so that p,( ¥;, ¥,_,) is the probability that bargainer i wins given the signals
¥, and y;. This describes the game. Before I describe the equilibrium, 1
introduce some notation.

Let F(x;| x,_,) be the conditional probability that bargainer i’s claim is
less than or equal to x; given X, _;, so, for example,

ff(xl ’t) dt

Foxo] x,) ==

ff(xl ’t) dt
0
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Let f(x;| x,..;) be the associated density function, and let u(N;,N,_;) be
the expected value of x; given that x; € N;and x,_, € N,_,. Finally, let

T
Xy

VX3 Din$1-3) = f [i(x;,81-i(x1-0) — P8, — (X - D fi =iy - | X)) dlxy
0

be the expected change in utility associated with revealing x; rather than
not revealing x; (excluding costs), when the strategies of the other players
are fixed.

In this setting, an equilibrium consists of strategies s;(x;) defined on
[0,xT] for i=0 and i=1 and probabilities p(y;,y,—,) defined for
(Yo, V1) E(nU[0,xF]) X (n U [0,xT]) such that

El. If Vi(x;;p;8:-0) > ¢i(x;), then si(x;) = X;,

If Vi(x;5p:,81 =) < ¢i(x;), then 5,(x;) = n.

E2a. For all (yo,¥1), (¥, Vi) 2 0 and po(¥o, 1) + Di(¥1,¥0) = 1.

E2b. Forany y,and y,,p4(Vo, ) and p,(3;, ¥,) maximize the expected value of
U,. Thus, if N; = (x; € [0,xT]: 5;(x;) = n), then
pi(nn) = 1if (NN ) > gy (N -, N,
P, = 1if (0, Ny _ ) > py (N —5X),
il —) = 1if x> X,

These conditions guarantee that players best respond to their opponents’
strategies. E1 states that a bargainer proves his claim exactly when it
improves his probability of winning enough to compensate for the cost of
providing evidence. E2a states that the judge’s strategy choice must be a
probability distribution. In particular, since the only way to obtain posi-
tive value from the item is to award it to one of the bargainers, the judge
cannot be best responding if p, + p; < 1. The conditions in E2b follow
from the form of the judge’s utility function. When the judge makes his
decision, he either knows the value of bargainer i’s claim or knows that
X; € N;. Consequently, he maximizes his expected utility by awarding the
item to the bargainer who has the greater claim (in expected value). Since
the judge makes his decision after the bargainers have incurred the costs of
providing evidence, his decision must be based only on the quality of
evidence. In order for the strategies to constitute a Nash equilibrium, the
judge’s strategies must satisfy E2b only for (xg,x;) in the range of (s,,s,). I
require that E2b holds for all (x,,x,); that is, I require the judge to best
respond to all signals, not just those used in equilibrium.

The analysis in Section 16.3 applies only to equilibria in which
si{(x;) = x; if and only if x; > X; so that only bargainers with good claims
present evidence. Therefore, equilibrium is characterized by cutoff values
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X, and X, . If x; > x; for i = 0 and i = 1, then the judge awards the item to
the bargainer with the greater claim. Otherwise, the judge must weigh the
expected claim of one bargainer against what he knows about the other
bargainer’s claim.

16.3 Characterization of equilibria

This section characterizes the equilibria of the model when ¢;(x;) = ¢; is
independent of x; for x; € [0,x7] and the social values of the bargainers
are independently distributed. Thus, F(xy,x,) = Fo(xe)F,(x,), the condi-
tional distributions are independent of private information, and the mean
of bargainer i’s claim does not depend on Xx,_;. Keeping these facts in
mind, I write F(x;) for F{x;| x;-,) and let

X

X Jilx) dx; o -
%) = f Py 620

0
0 ifx;=0
be the expected value of bargainer i’s claim given that it is no greater than
X;. Here, f; is the density of F,.

When the social values are independent, the expected gain from dis-
closing x; is increasing in x;, whereas the gain from not disclosing x; is
independent of x;. Thus, V() is increasing in x;, and when the costs of
providing evidence are constant, equilibrium strategies are characterized
by cutoff values X, and X; .

The results of this section continue to hold if x, and x; are stochastically
dependent provided that increasing x; induces a leftward shift in the
distribution of x, _;. This guarantees that V,( - )is increasing in X;, and that
if disclosing x; wins if bargainer 1 — i does not disclose, then disclosing
¥; > x;also wins if the other bargainer does not disclose. If ¢,(x;) is increas-
ing, then the results do not change provided that V(- ) increases more
rapidly than ¢, - ). These cases add little insight, but much notation, so I
assume them away.

The nature of equilibrium depends on whether or not uy(x,) = u,(x;).
If ufxy) =u,(x;), then I call the equilibrium symmetric. If
1ix;) > 1y {(x,-,), then it is an asymmetric equilibrium with the burden
of proof on bargainer 1 — i. I discuss the case in which z(x,) # u,(x,) first.
If uo(Xo) # 1,(x;), then the burden of proof is on bargainer i if y,(x;) <
Hy—(x;_;) because he must provide evidence in order to win the dispute.

Let £, = F7(c,_).
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Theorem 1. An equilibrium characterized by cutoff values X, and X,
with u,(x;) > p,_ (X, ;) exists if

Fi_{(%) = ¢; = F_(u(%)) = 0. (16.2)

If (16.2) holds, then X, and X, are equilibrium cutoff values if and only if
X,—; = u;(x;) and X; satisfies

Fi(x)—¢— Fi_(u(x))=0and X, Z %, (16.3)
orx;=x7and

Fi(x]) = ¢; = Fi_(u(x7)) = 0. (16.4)

Proof. 1f (16.2) holds, then there exists an X; that satisfies (16.3) when-
ever (16.4) does not hold. This follows from the continuity of F,_,. Let X;
satisfy (16.3) if a solution exists or let x;= x7 if (16.4) holds and let
X1—; = p(x;). It follows that bargainer 1 — i receives —c,_; if he reveals
X,_; < X;_;,and at least F,(x;) — ¢,_;if he reveals x,_; > x,_;, because, if
X,_; > X;—; = m;(x;), then bargainer 1 — i wins whenever bargainer i does
not provide evidence. Since X; 2 £;,

Fx)Z2 F(&)=c,,

so that, given X;, bargainer 1 — i optimizes by using the strategy character-
ized by X, _;. Similarly, given that bargainer 1 — {is proving his case ifand
only if x,_; > X, _;, and therefore the judge awards the item to bargainer /
if x,_; = x,_, or if bargainer i discloses x; > x,_;, bargainer i receives
F,_(x,_)) if he does not present evidence and F,_;(x;) if he discloses a
claim of x; > Xx,_;. Since x; > u,(x;) = X, _;, the definition of x; guarantees
that bargainer i optimizes by revealing Xx; if and only if x; > x,. Finally, if
X -; # pi(x;) orif (16.3) or (16.4)does not hold, then X, and x; could not be
cutoff values for an equilibrium with g,(x;) > p,-,(x,_)).

Note that in an asymmetric equilibrium, it is possible for one or both
bargainers to provide no evidence. If the bargainer who does not bear the
burden of proof never provides evidence, then he wins if and only if the
other bargainer does not prove his claim. If the bargainer who bears
the burden of proof never provides evidence, then he never wins, and the
other bargainer never proves his claim. This happens, for example, if
xT < uy(x¥), and so bargainer 1’s strongest claim cannot win against
bargainer 0 when bargainer O never proves his claim.

Corollary 1. There exists an asymmetric equilibrium. If F; 2 F,_; and
¢; Z ¢,;, then there exists an equilibrium with x;(x;) > (X, —;).
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Proof. From theorem 1, it follows that an equilibrium with w;(x;) >
Hy_(x;_)) exists if

Fi(File-)) =S¢ or  File,-) EFi(c). (16.5)

If (16.5) does not hold for i =0, then it must hold when /= 1. This
establishes the first part of the corollary. Since F;Z F,_, implies that
F7!, = F71, the remainder of the corollary follows from (16.5).

There may be multiple equilibria in which one bargainer has the bur-
den of proof. However, if F,_,(x) — F,_;(u;(x)) is strictly increasing, then
(16.2) is necessary as well as sufficient for the existence of this type of
equilibrium, and if (16.2) is satisfied, then the equilibrium is unique. This
results because any equilibrium with wu,(x;) > u,_;(x;—;) must satisfy
(16.3) or x;= xT and (16.4).

Corollary 1 establishes that there always exists an equilibrium in which
the burden of proof is on one bargainer. Moreover, it suggests that the
burden of proofis likely to be placed on the bargainer with lower costs or a
stronger (in the sense of first-order stochastic dominance) claim. How-
ever, there are many situations in which the burden of proof can be placed
on either bargainer in equilibrium. For example, let F;(x,) = b;x; for
x; € [0,b7!] fori=0andi= 1. From theorem 1, there exists an equilib-
rium with the burden of proof on bargainer 1 — i provided that

by_ici—; = 2bic;.

Therefore, if b,_;c,—; € [b;c;/2,2b,c;], then an equilibrium in which the
burden of proof is on bargainer i exists for / = 0 and i = 1. A straightfor-
ward computation reveals that these equilibria, when they exist, are
unique, and that x,_; = min[2¢;b7},,b7'] and Xx; = x,_,/2.

In an asymmetric equilibrium, the probability that the judge is indiffer-
ent about who should receive the item is zero, and specification of his
behavior in these situations does not change the nature of equilibrium. If
Ho(X) = 1,(X,), then the judge is indifferent whenever neither party pro-
vides evidence. Unless X, or X, is equal to zero, this event occurs with
positive probability. In order to support an equilibrium, the judge must
randomize in a particular way when neither party provides evidence.

Suppose, for definiteness, that uy(x3) = u,(x7) and define £(x,) to
satisfy uo(€(x,)) = u,(x;) for all x, € [0,xT]. It follows that if py(xp) =
1,(x)), then X, = €(x,). Further, if ¢; = p,(n,n) is the probability that bar-
gainer ; wins if neither bargainer presents proof, then

ata =1, ay,a, 20, and (16.6)
F,_;(max[X,,x,]) — ¢; = a,F,_,(x,-;) with equality if x; < x7. (16.7)
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The right-hand side of (16.7) is the probability that bargainer / wins if he
does not provide evidence; he wins precisely when x;_; = x,_; and the
judge rules in his favor, which occurs with probability «;. The left-hand
side of (16.7) is the payoff to revealing x; = X;. If x; = X, _,, then bargainer
i wins whenever his opponent does not prove his claim, since x; > p,(x,).
However, he never wins if bargainer 1 — i presents proof. If x; > Xx;_,,
then bargainer / wins whenever x; > x,_;. When (16.7) holds, bargainer i
best responds if he discloses x; if and only if x; > X;. This follows because
the right-hand side of (16.7)is independent of x; whereas the left-hand side
is increasing in x;. Furthermore, if to(xI) = u,(xT), then if there exists a
symmetric equilibrium, there exists a symmetric equilibrium with

F(max[xy,x,]) — ¢, = ao F\(X)).

This follows directly from (16.7) if uy(xq) > u(x7T) or if x; <x7T. If
Uo(xE) = u,(xT) and x, = x7, then X, = xT and

Fi_(max[xy,x,)) —¢;=1—¢;>0,
and thus (16.7) reduces to

l—c¢=a. (16.8)
But there exist g, and a, that satisfy (16.6) and (16.8) if and only if
l=¢ +c,

and in this case g =1—¢,=¢, <1 and a,=¢, = 1 — ¢, also satisfy
(16.6) and (16.8). Hence, symmetric equilibria exist if and only if there
exist a; € [0,1] and Xx; € [0,xT] such that

Fy(max[€(X)),x,]) — ¢ = (1 — a,)F (%) and (16.9)
Fy(max[é(x,).x,]) — ¢, = a,Fo(€(x,)) with equality if X, <xT.  (16.10)

In order to characterize the equilibrium, I must describe the cutoff
levels for the bargainers. If bargainer 1 proves his claim whenever it
exceeds x, then in a symmetric equilibrium the other bargainer presents
proof whenever his claim exceeds £(x). If both bargainers present evi-
dence with positive probability, then the cutoff value x must satisfy

F(max[€é(x),x]) —¢,-, Z0

fori=0andi=1.
Let

X={xe[0x]] l.g(i)q[Fi(maX[é’(x),x]) —a-] 20}
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and let

o {ian if X # &,
xT  ifX=¢.
If x, € Xand x, = ¢(Xx,), then bargainer i receives positive expected utility
if he reveals x; = X;. Therefore, in any symmetric equilibrium, bargainer
1’s cutoff value must be at least X. From (16.9) and (16.10), it follows that
if X, is an equilibrium cutoff value for bargainer 1, then

Fy(max[€(x,),x,]) — ¢, , Fo(max[€(X,),x,]) — c,
Fi(x,) Fy(€(xy))
The next theorem states that if (16.11) is satisfied for £, then a symmetric

equilibrium exists. To demonstrate this, it is convenient to define the
function G by

G(x,) = Fy(max[€(x,),x,]) — ¢, —
[F\(x)) — Fi(max[€(x;).x,]) + Gl Fo(€(x,))
Fi(x,) ’

=1. (16.11)

Theorem 2. If G(X) = 0, then there exists a symmetric equilibrium. If a
symmetric equilibrium exists, then the cutoff values x, and Xx, satisfy
Xo = €(X,), and either G(x,) = 0 with X, 2 X or G(x;) =0 and x; = xT.

Proof. 1If = xT, then there exists an equilibrium with x, = é(x7T),
X, =xT,a,=1—c¢,,and a, = ¢,. This follows since, in this case, (16.9)
becomes 1 — ¢, = 1 — g, and (16.10) is always satisfied because X = xT
implies that Fo(max[€(xT),xT] — ¢, = 0.If £ > x,, then the left-hand side
of (16.9) or (16.10) is negative for x; = x,, and so no symmetric equilib-
rium exists with this cutoff value. Thus, if ¥ < x7, then a symmetric
equilibrium exists if and only if (16.9) and (16.10) can be satisfied for
some x; € [X,xT]. Since the left-hand sides of (16.9) and (16.10) are non-
negative for x, € [X,xT], any a, that satisfies (16.9) and (16.10) for
X, € [%xT] must also satisfy a, € [0,1]. It follows that a symmetric equi-
librium exists with

_ i) — Fy(max[€(x).x]) + ¢
“ F((%)

and X, = ¢(x,) provided that
G(x,)=0 and X

(16.12)

v

x
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or
G(x;)=0 and Xx,=xT.

This results because (16.12) comes from solving (16.9) for a; and G is the
difference between the left- and right-hand sides of (16.10), when the
expression for g, in (16.12) is used. By the continuity of G, a sufficient
condition for an equilibrium of this type to exist is G(X) = 0.

Symmetric equilibria need not exist. For example, if ¢, > ¢, = 0 and
£(x,) < x, for x; > 0, then bargainer | always wants to prove his claim,
and so x; = 0. But if x; =0, then X, = 0 in a symmetric equilibrium.
Hence, (16.9) is not satisfied and therefore this type of equilibrium cannot
exist.

Corollary 2. If uy(x%) 2 u,(xT), then there exists a symmetric equilib-
rium if Fi(x) — ¢o 2 Fo(x) — ;.

Proof. If Fi(x)—cyZ Fo(x)—c¢;, then FyX)— ¢, =0, and hence
G(X) = 0. The corollary now follows from theorem 2.

As with asymmetric equilibria, there may be multiple symmetric equi-
libria. However, if G is strictly increasing, then the condition G(X) = 0 is
necessary and sufficient for the existence of a symmetric equilibrium and,
if it exists, then the cutoff values are unique. The judge’s strategy when
neither bargainer proves his claim is uniquely determined by (16.9) and
(16.10) when X, < x7. Otherwise, a range of values for g, may support the
equilibrium.

The condition in corollary 2 is sufficient, but not necessary, for the
existence of a symmetric equilibrium. A straightforward argument shows
that if Fi(x;) = b,x; for x; € [0,b7 '], then there exists a unique symmetric
equilibrium. If b, 2 b,, then the equilibrium cutoff values satisfy

)?0 = )?1 = min[(boco + b1 C1)/(bob1)_1ab1_1]-

Therefore, for this example, there are three equilibria for a broad range of
parameter values.

The analysis of this section suggests that there are frequently multiple
equilibria in this model. The equilibria can be classified according to what
happens when neither bargainer proves his claim. There always exists an
equilibrium in which one bargainer can win only if he proves his claim.
However, there may also exist equilibria in which the other bargainer has
the burden of proof, and in which both bargainers have a positive proba-
bility of winning if they do not present proof. The example with F,(x;) =
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b,x; shows that all three types of equilibria may exist simultaneously.

The multiple-equilibrium problem suggests that there is a role for the
judge in selecting equilibria. This role may be viewed in two ways. First,
by custom or tradition, players may learn to coordinate on a particular
equilibrium if it has attractive features. Second, the judge (or someone
else) may have a more tangible role in designing the rules of evidence. For
example, the formal game may be modified to include a move by the
judge that is made before the bargainers learn their x;. In this move, the
judge commits himself to a future strategy when neither bargainer
presents evidence. Assuming that commitment only to a pure strategy is
possible, this game has no more equilibria than the game analyzed in this
section. Moreover, if the judge prefers one of the equilibria in which the
burden of proof lies on a particular bargainer, then he is able to select it.
To see this, note that if the judge has committed himself to p;(n,n) = 0 for
i=0ori= 1,thenitisabest response for the bargainers to play according
to the equilibrium selected in the continuation and, if they do this, then
the judge actually prefers to use the strategy he is committed to use.
Therefore, the judge is able to select an equilibrium with the burden of
proof on a particular bargainer (if that equilibrium is unique). Ncte also
that there can be no equilibrium to the modified game with the judge
committing to p,(n,n) = 0 unless an equilibrium in which bargainer {
bears the burden of proof exists. Therefore, at least in those situations
where there is no more than one equilibrium of each type, the judge can
select explicitly the asymmetric equilibrium he prefers by committingto a
rule of evidence. If the judge does not commit to a rule of evidence, then
there is a suggestion that the symmetric equilibrium is salient, because the
judge could have picked either of the other equilibria if he wished. This
argument might have sufficient force to help the bargainers coordinate on
the symmetric equilibrium.

If the judge is able to make a selection from the equilibrium set, then
the welfare properties of the equilibria should be compared. This is the
subject of the next section.

16.4 Welfare comparisons

In this section, I compare the costs and benefits of the asymmetric equilib-
ria characterized in Section 16.3. Although I have no general results
comparing the costs and benefits of asymmetric equilibria to those of
symmetric equilibria, I discuss an example in which these costs and bene-
fits are comparable at the end of the section. The analysis suggests that an
asymmetric equilibrium with the burden of proof on the bargainer with
the stronger claim or lower costs minimizes the expected cost of providing
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evidence whereas the most efficient allocations are obtained when the
burden of proof is placed on the higher-cost bargainer.

If cutoff values x; and X, determine an equilibrium, then the expected
cost of providing evidence is

co(1 = Fo(Xo)) + ei(1 — Fy(xy)).

The next theorem states that placing the burden of proof on the bargainer
with the lower costs minimizes the costs of providing evidence among
asymmetric equilibria.

Theorem 3. If ¢, = ¢y, and for all x € [0,xT], F,(x) = Fy(x) and F,(x) —
Fi(uy(x)) = Fy(x) — Fo(u,(x)), and there exists an equilibrium with cutoff
values X, and x, that places the burden of proof on bargainer 0, then there
exists an equilibrium with cutoff values y, and y, that places the burden of
proof on bargainer 1 in which

co(1 = Foxo)) + oi(1 = Fy(x))  _ ~
= ol — Fo(yo)) + er(1 — Fy(yy).  (16.13)

Proof. By theorem 1, X, 2 X, and
Fy(x,) — Fo(u,(x))) = ¢, with equality if x; < x{. (16.14)

Also, F\(x) = Fi(x) and ¢, = ¢, imply that X, = F7'(co) Z Fg'(c)) Z %,.
Therefore, Fl()?l)__ Fi(uo(xy)) = Fo(x,) — Fo( (X)) = ¢, = ¢, implies

that there exists a y, 2 X, such that
F,(30) — Fi(1(30)) = ¢, with equality if yo < x{. (16.5)

Thus, if ¥, = uy(3%), then y, and y, are cutoff values for an asymmetric
equilibrium with the burden of proof on bargainer 1. If x; < x7, then
algebraic manipulation using (16.14) and (16.15) shows that (16.13) holds
whenever

(F\(7o) — F@Fo(X) — Fo(%) + (Fol3o)
~ FB)NFy(Fo) — Fy(37)) 2 0. (16.16)

However, (16.16) holds because y, = X,, X, = X,, and J, Z y,, and so all
of the factors on the left-hand side of (16.16) are nonnegative. If x, = x7,
then (16.13) holds whenever

co(Fo(¥o) — Fo(Xo)) Z ci(F\(x,) — Fy().
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The theorem follows because

colFo(¥o) — Fo(Xo)) = col Fo(yo) — Fo(a(xy))]
Z col Fo(Yo) — Foli1(Yo))]
= CI[FO()_).O) - Fo(#1()io))]
= ¢\[Fi(yo) — F1(.l_lo(J’0))]
= ¢,[Fi(¥o) — Fi(¥)]
= ¢,[Fi(x) — Fi(y)),

where the steps follow because xo= (X)), Vo = X1, Co = ¢y, Fox)—

Fo(u,(x)) = Fi(x) — Fi(po(x)), y1 = to(¥o), and y, = X;.

The assumption that
F(x) — Fi(po(x)) = Fy(x) — Fo(p1(x))

is satisfied whenever bargainer 1 has a stronger claim than bargainer O in
the following sense. I will say that bargainer 1 has a stronger claim than
bargainer O if there exists a probability distribution function H with
H(xT)=0and A € (0,1) such that

Fi(x) = AFy(x) + (1 — H)H(x).

If bargainer 1 has a stronger claim than bargainer 0, then for x € [0,x]],
Fy(x) — Fi(po(x)) = ALFo(x) = Fo(p(x)]

and
Fi(x) = AFy(x),

so that the restrictions on Fy and F; in theorem 3 are satisfied. If F, takes
this form, bargainer 1’s claim is drawn from the same distribution as
bargainer (’s claim with probability A; otherwise, it is strictly larger. Thus,
the conditions in theorem 3 combine to state that in order to minimize the
costs of providing evidence, the judge should place the burden of proof on
the bargainer (if one exists) who is able to prove his claim for less and who
has the stronger claim.

However, there is a tension between reducing the costs of providing
evidence and obtaining information needed to make better judgments.
The next theorem gives conditions under which the expected social value
of the claim is greater in the equilibrium in which the burden of proof'is
placed on the higher-cost bargainer.

Theorem 4. Ifc, = c,, bargainer | has a stronger claim than bargainer 0O,
and there is an equilibrium that places the burden of proof on bargainer 0,
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then there is an equilibrium that places the burden of proof on bargainer 1
that yields a lower expected social value.

Proof. If y,and y, are the cutoff values for an equilibrium that places the
burden of proof on bargainer 1, then the expected social value is

xT xT xT x

f f XoJo(Xo) f1(xy) dxy dx; + f f (1 — Xo)Jo(x0) f1(x1) dxg dx,
[V ] 0

N
Yo Yo

+ f f (%1 = xo)Jo(x0) f1(x1) dxo dx, .

(16.17)

o ox

Expression (16.17) reflects the fact that bargainer 0 wins unless x, Z ¥,
and x; = x, (so that bargainer 1 presents proof and his claim is better than
his opponent’s claim) or y, 2 x, = y, and J, Z x, Z X, (so that bargainer 1
presents proof and bargainer 0 does not prove a claim that would have
won). Similarly, the expected social value of an equilibrium with the
burden of proof on bargainer 0 and cutoff values X, and X, is

T T T
x§ x{ x¥ xo

f f X1 1000 fo(xo) dxy dxg + f f (%0 — X)) fi(x1) fo(xo) dxy dx,
[V}

X1 X
Xl o

(16.18)

1

+ f f (X0 = X101 JolXo) dxy dxg.

Xo Xo
However,
f f (1 — Xo) fo(xo) f1(x1) dxg dx,

5 0
T
xq

= f Fo(x)(xy — polx)) fi(x1) dx,

N
x¥ x

= f Fo(x)(x; — polx))fi(xy) dxy + f (O — so(xINA(xy) dx,
y * (16.19)

h
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T
Xo

= f Folx)0x; — polx ) f1(xy) dx,
;l
+ i (xT) = i (DF LX) — po(x§)(1 — Fi(x{]))

xT

= f f (x1 — XM fo(xo) [1(xy) dxg dx, + puy(x (),
»n o

where the equations follow, respectively, from the definition of y4,; the
definition of x7; the definition of i, ; and the definition of x4, and the fact
that u,(x%) = uy(x¥), which follows because bargainer 1 has a stronger
claim than bargainer 0. Substituting (16.19) into (16.17) and comparing
the result with (16.18) reveals that if x; and Xx, are cutoff values for an
equilibrium that puts the burden of proof on bargainer i, then the ex-
pected social value is

xi

wm(xT) + f Fy_ () — py— () fi(x) dx;

5 (16.20)

X1—i X1—i

+f f(xi_xl—i)ﬁ—i(xl—i)ﬁ(xi) dx,_; dx;.

X%

Because bargainer 1 has a stronger claim than bargainer 0, (16.20) de-
pends only on the cutoff values, not on which bargainer bears the burden
of proof. Moreover, (16.20) is decreasing in x; _;. To show this, we differ-
entiate (16.20) to obtain

f (x; — fl—i)fl—i(fl—i)f;'(xi) dx;

dx; o _ —
- E%I:Fl—i(xi)(xi = - (X fi(x) (16.21)

X1—¢

+ f O = X1 =i =) i) dxl—i]-

Xi
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The first term in (16.21) is negative, and the bracketed term reduces to
—F; 062006 = - (- fix) = 0

since x; = u; (X, -)-

I have shown that the expected social value is decreasing in the cutoff
value of the bargainer who does not bear the burden of proof. Therefore,
to prove the theorem, I need only show that if x; is a cutoff value in an
equilibrium that places the burden of proof on bargainer 0, then there is a
cutoff value y, Z Xx; in an equilibrium that places the burden of proof on
bargainer 1. However, the assumptions of the theorem guarantee that for
x € [0,x{],

Fi(x) = ¢g — Fi(ug(x)) = Fo(x) — ¢; — Fo(uy(x)).
Thus, the theorem follows from theorem 1.

As a special case, theorem 4 implies that if there exists a unique asym-
metric equilibrium that places the burden of proof on the lower-cost (or
stronger-claim) bargainer, then it generates less social value than any
asymmetric equilibrium that places the burden of proof on the other
bargainer.

Theorems 3 and 4 indicate that the two kinds of asymmetric equilib-
rium have different advantages. A bargainer who must present evidence
in order to win proves his claim relatively more often than a bargainer
who can win with positive probability even if he does not provide evi-
dence. Thus, when the burden of proof'is on the lower-cost bargainer, less
is spent on providing evidence. Also, asymmetric equilibria are character-
ized by the cutoff value of the bargainer who does not bear the burden of
proof. The better this bargainer’s claim or the lower his costs, the more
often he will present evidence. Thus, less evidence is provided when the
bargainer with the stronger claim bears the burden of proof. This is why
the cost of providing evidence falls if the stronger bargainer must prove his
claim to win.

Theorem 4 demonstrates that placing the burden of proof on the
higher-cost bargainer tends to increase social value. The proof really does
two things. First, I show that higher equilibrium cutoff values reduce the
expected social value regardless of who has the burden of proof. This
follows because the more evidence provided, the more accurate the
judge’s decisions. However, in order to show that the result holds inde-
pendently of which bargainer has the burden of proof, I need to assume
that the distribution functions are related. (That one bargainer has a
stronger claim is sufficient.) Second, I show that more evidence is pro-
vided when the weaker bargainer bears the burden of proof.
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Theorems 3 and 4 suggest that the judge’s most preferred outcome
cannot be identified without knowing more about the tradeoff between
costs and benefits. Also, I have been unable to obtain general results
comparing asymmetric equilibria to symmetric equilibria. To give an idea
about what the tradeoffs look like, I conclude this section by discussing an
example.

Let Fi(x;)=b;x; on [0,b7'] and let b, 2 b,. If 2b,c; < b,_;, and
by—_ici—; € [b;c;/2,2b,c;) for i = 0 and [ = 1, then there exist three equilib-
ria: a symmetric equilibrium and two assymmetric equilibria, one where
bargainer O bears the burden of proof and the other where bargainer 1
bears the burden of proof. Table 16.1 summarizes the properties of the
equilibria.

Several comparative statics results follow easily. In all of the equilibria,
bargainer i’s payoff improves if his claim improves (b; decreases) or if his
opponent’s claim worsens. Similarly, increasing ¢; harms bargainer / and
helps bargainer 1 — i in the symmetric equilibrium. This result holds in
the asymmetric equilibria as well, with one exception. When the burden
of proof is on bargainer i, changing ¢; does not affect bargainer 1 — i, and
increasing ¢,_; may make bargainer 1 — i better off - by reducing the
probability that he must prove his claim - if ¢, _; is large. Increasing ¢;
increases the expected costs when the burden of proof is on bargainer i,
but may reduce costs if the burden of proof is on bargainer 1 — i. Also,
increasing ¢, may reduce the expected costs in the symmetric equilibrium,
This results because the change reduces the probability that evidence is
provided in equilibrium as well as increases the cost of providing that
evidence. The first effect dominates when costs are high. If the claim of the
bargainer who bears the burden of proof improves, then bargainers dis-
close evidence less frequently, and so the costs decrease. If the other
bargainer’s claim improves, then he proves his claim more often and costs
rise. The same arguments explain why social value (measured as the
fraction of the maximum available value obtained in equilibrium) rises
when b, rises or when b, falls if bargainer O has the burden of proof. The
effects of changes in b, and b, on the social value and the expected cost in
the symmetric equilibrium are ambiguous. However, if ¢, Z ¢,, so that
bargainer 1 has a stronger claim and lower costs, then increasing b, or
reducing b, (i.e., making the distributions more similar) increases welfare
and costs by increasing the probability of disclosure. In all cases, increas-
ing costs reduce the fraction of social value obtained in equilibrium (al-
though changing ¢, has no effect on social value when bargainer ; bears the
burden of proof).

A comparison of the equilibrium outcomes verifies theorems 3 and 4
for the example. Also, it shows that the asymmetric-equilibrium values of



Table 16.1. Description of equilibria when F,(x;) = b, x; for x; € [0,b7 ]

Cutoff values Expected Expected Expected
social utility to utility to
Equilibrium Xo X, value bargainer 0 bargainer 1
. boCo + byc, boco + byc, M — byb X3 bgth, — 2¢o + byb X3 2—by'b, — 2¢,+ byb X}
t ——— —_— ———
Symmetric bob, bob, 6 2 2
Asymmetric a 2¢, M — bob X3X, by b, 2—bg'b, — 2¢, + byb, X}
burden on 0 by by 6 2 —cy+ o0y 2
Asymmetric 2¢ <o M — byb Xy x? by'by — 2co+ by, X3 1 —bg'h,
burden on 1’ by by 6 2 2-atao

In all cases, expected costs are ¢o(1 — byXo) + ¢, (1 — b, X;), and M = (b} + 3b3)/(6b3b,) is the maximum social value.
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costs and social value are between those of the asymmetric equilibria.
Simple computations show that the symmetric equilibrium never maxi-
mizes social value nor minimizes costs over the three equilibria. Finally,
in the example, each bargainer prefers that the burden of proof fall on his
opponent. This suggests that it might be in the interest of a bargainer to
increase his cost, if by doing so he can shift the burden of proof to his
opponent.

16.5 Alternative notions of proof

The basic model assumes that proof can be presented conclusively by
paying a fee. Other formulations are possible. This section describes two
and discusses their implications.

Proof allows the judge to have more precise information about what
the bargainers know. The greater the effort the bargainers make in pre-
paring and presenting their claim, the more accurate the judge’s view of
the claim’s true value. Assume that the bargainers observe their claim; for
concreteness take this to be a real number m. Proof could be identified
with selecting an effort level v. The quality of the claim and the effort level
combine to give the judge a “reading” of the bargainer’s true claim; take
this reading to be generated by a normally distributed random variable
with mean m and variance v2. Here, it is natural to assume that a bar-
gainer’s utility is decreasing in v so that providing more accurate informa-
tion is more costly. If higher readings suggest stronger claims, then a
bargainer will try to maximize the probability that the reading he gener-
ates exceeds that of his opponent. In this framework, bargainers with poor
claims gain nothing from providing evidence. Their main hope of win-
ning comes from the judge misinterpreting vague evidence in their favor.
Increasing the effort spent on providing proof reduces this possibility. On
the other hand, bargainers with strong positions may be able to establish
their claims with little effort. Thus, in this setting, the most effort may be
made by bargainers with evidence of intermediate quality who have the
most to gain from minimizing the probability and magnitude of a misin-
terpretation.

Another variation is to let effort augment the true information to form
the signal on which the judge bases his settlement. If the effort needed to
induce a certain signal decreases with a bargainer’s social value, then a
standard signaling model results. In such a model, there will typically be
an equilibrium in which the judge can invert the bargainers’ signals to
learn their true information. In addition, there will be other equilibria in
which discrete threshold levels of evidence are needed to achieve certain
probabilities of winning. These equilibria may be preferred by the judge if
he is willing to trade off reduced signaling costs against increased probabil-
ities of misallocation.



360 Joel Sobel

16.6 Conclusion and extensions

In this chapter, I have discussed the role that different rules of evidence
have on disclosure and on the quality of settlements. Even in symmetric
situations, it is often in the interest of the judge to assign the burden of
proof to one of the bargaining parties.

The essential features of the model are the existence of a third party in
charge of setting disputes and the restrictions that bargainers cannot mis-
represent their information. In this model, the judge must be uncertain
about the bargainers’ evidence. Otherwise, he could make the correct
decision without hearing the arguments of bargainers. In addition, there
must be restrictions on how much bargainers can misrepresent their
claims. If bargainers could make any statement without cost, then both
would make only the most extravagent claims and these claims would be
meaningless.

The nature of proof and evidence can be modified. I suggested two
possible variations in Section 16.5. In the first, providing evidence makes
a bargainer’s true information clearer to the judge. In the second, the
amount of evidence presented combines with the quality of the claim to
make a claim convincing. Both of these modifications, and possibly
others in which the decision to prove is not binary, have a feature that is
qualitatively different from the basic model: Bargainers with better claims
do not necessarily provide more evidence since their claim may be good
enough to be convincing without the proof. Finally, if the judge was
uncertain about what information the bargainers have or about their costs
of proving their claims, then I could better characterize which pieces of
evidence are omitted and which are emphasized.

The extensive form of the game could be changed. There are two
notable possibilities. My model assumes that the judge cannot commit
himself to a decision rule. Thus, he must award the item to the bargainer
who has the better claim. However, if the judge could commit himselfto a
decision rule, then he might increase his utility by making allocations that
are not optimal ex post. For example, to reduce the costs of providing
evidence, the judge might bias his decisions in favor of a bargainer who
does not attempt to prove his claim.

The other possibility is to allow bargainers to present evidence in
sequence. In such a model, the judge can decide which bargainer must
present evidence first in order to have an opportunity to win. The bar-
gainer who does not bear the burden of going forward need pay the cost of
presenting evidence only if the other bargainer goes forward. It is not
difficult to show that the judge can induce any cutoff values that are in
equilibrium for the simultaneous-disclosure model by picking the bar-
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gainer who must go forward first and selecting a probability that the other
bargainer will be required to prove his claim to win even if the first
bargainer does not come forward. These equilibria will have lower ex-
pected costs of providing evidence, since typically no more than one
bargainer will provide evidence. For this reason, they are attractive. On
the other hand, if preparing a case takes time and a bargainer must
respond to the other bargainer’s evidence immediately, then the simulta-
neous-disclosure model of this chapter seems to be appropriate.

In my model, no settlement can be made without the judge. This
assumes implicitly that neither party has property rights to the disputed
object. Taking this as given, third-party settlements arise naturally, pro-
vided that both bargainers expect to make a positive surplus from the
judgment. On the other hand, the question of who should bear the burden
of proof would have a different answer if one side has rights to the disputed
object, unless the judge decides otherwise or the parties are able to make a
settlement without the judge. An appropriate modification of the model
would answer questions about which cases should be brought before the
judge and who should bear the burden of proof,

NOTES

1. Iignore mixed strategies for the bargainers. Because I assume that x,and x, are
continuously distributed, mixed strategies for the bargainers add nothing es-
sential to the analysis. I allow the judge to use a mixed strategy.
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CHAPTER 17

The role of arbitration and the theory
of incentives

Vincent P. Crawford
UNIVERSITY OF CALIFORNIA AT SAN DIEGO

17.1 Introduction

Recent years have seen the parallel but largely independent development
of two literatures with closely related concerns: the theory of arbitration
and the theory of incentives. Most of the theoretical arbitration literature
seeks to predict and compare the allocative effects of the simple compul-
sory-arbitration schemes frequently used to resolve public-sector bar-
gaining disputes in practice. Crawford (1981) provides a general intro-
duction and a brief survey of this area. Sample references include Donn
(1977), Crawford (1979, 19824, 1982b), Farber and Katz (1979), Farber
(1980), Bloom (1981), Hirsch and Donn (1982), Brams and Merrill
(1983), and Donn and Hirsch (1983). These papers draw on, and give
some references to, the large empirical and institutional arbitration litera-
ture. The incentives literature concerned directly with bargaining focuses
instead on the theoretical limits of mechanism design in environments
with asymmetric information. The papers by Kalai and Rosenthal (1978),
Rosenthal (1978), Myerson (1979, 1983), Holmstrom (1982), Holm-

This paper was written in part while I enjoyed the hospitality of the Department of
Economics at Harvard University. My understanding of this subject has been
enhanced greatly by years of argument with Clifford Donn, whose work led to my
interest in arbitration. Special thanks are due him and Theodore Groves, both of
whom carefully read the manuscript and provided valuable comments. I am also
grateful for helpful conversations with David Bloom, Bengt Holmstréom, William
Samuelson, Joel Sobel, and Richard Zeckhauser; for the comments of partici-
pants in seminar presentations at Harvard and Northwestern universities; to
Merton Miller for calling my attention to the work of Carliss Baldwin; and to the
NSEF for financial support provided through grants SES-81-06912 to Harvard and
SES-82-04038 to the University of California, San Diego. Finally, only reading
Schelling’s The Strategy of Conflict (1963) can make clear the extent of my
intellectual debt to his thoughts on the role of arbitration.
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strom and Myerson (1983), Myerson and Satterthwaite (1983), Samuel-
son (1984), and Crawford (1985), are a representative sample.

Although both literatures have the same goal — achieving better bar-
gaining outcomes - this difference in focus, together with differences in
style and analytical technique, has almost completely shut down commu-
nication between them, with discernible adverse effects on both. On the
one hand, a large body of ad hoc, application-oriented analysis and mea-
surement has developed in arbitration without recourse to carefully speci-
fied and worked-out models. This precludes a serious analysis of the
strategic interactions that necessarily influence how bargainers respond to
arbitration and, in particular, rules out a credible discussion of the incen-
tive problems caused by asymmetric information, which is probably es-
sential even to a complete understanding of the purpose of arbitration.

The dangers of overspecialization are most strikingly illustrated by the
history of Carl Stevens’s (1966) proposal to replace, in the arbitration
statutes that frequently govern public-sector bargaining, a widely used
scheme that I shall call “conventional”” compulsory arbitration, with what
is now called “final-offer” arbitration. Stevens’s analysis is persuasive,
respects existing institutions, and is sensitive to the goals of policy makers.
However, it contains very little that is both correct in theory and germane
to the question of which scheme is likely to perform better, even when all
that is sought is a clear statement of the role of arbitration and how it is
served by the two schemes. (Crawford (1979) provides background and
discusses this point in detail; see also Crawford (1981).) Despite this, and
some other serious drawbacks, Stevens’s suggestion has been adopted ina
large minority of states, and in some settings outside the public sector
(e.g., professional baseball) as well. It has, in other words, enjoyed an
influence on policy much greater than that of most microeconomic policy
proposals based on sound analysis.

Even when based on incompletely specified and incorrectly analyzed
models, arbitration studies that are sensitive to institutional detail and the
practical concerns of policy makers guide empirical work and influence
policy, because they have little competition. A reorientation of mecha-
nism-design theory to provide this competition would yield obvious di-
rect benefits. It may be less clear that it would also help to resolve open
questions and suggest fruitful new directions for research in the theory of
mechanism design. Arbitration, in its several forms, has survived in envi-
ronments where there are real penalties for poor performance. Although
the competition that imposes these penalties is less rigorous than some
forms of market competition, I believe that surviving it still conveys
useful information; this information is a large fraction of all we have
about how best to resolve bargaining disputes. It seems likely that many of



Role of arbitration and the theory of incentives 365

the mechanisms taken seriously in the incentives literature would not
survive, even in simplified form. Trying to understand why, or whether,
this is so, and trying to design workable mechanisms, should serve as a
useful discipline in the theory of mechanism design.

This chapter attempts to support these views by examining several
potential points of contact between arbitration theory and the theory of
incentive schemes, with the goal of seeing whether the techniques and
behavioral assumptions of the latter can resolve the problems considered
most important in the former. The discussion will be organized around a
particular problem - the role of arbitration - which is of primary impor-
tance and has not, to my knowledge, been treated adequately. Section
17.2 defines terms, introduces the model, and considers the correspon-
dence between concepts in the two literatures. Section 17.3 discusses the
link between actual and potential roles of arbitration: whether it is reason-
able to predict that bargainers who could benefit from arbitration, will.
Sections 17.4, 17.5, and 17.6 examine potential roles for arbitration that
are consistent with the assumptions maintained in the incentives litera-
ture, under the headings ‘“‘Contract completion,” “Safety net,”” and (dis-
cussed together) “Information buffering and Coordination.”

17.2 Definitions, assumptions, and
correspondence between concepts

This section outlines the approach to be followed in the present discussion
and attempts to identify correspondences between concepts used in the
two literatures. Attention will be restricted to interest arbitration (i.e., the
arbitration of disputes over new agreements), as opposed to grievance
arbitration (i.e., the resolution of disputes about the interpretation of
existing agreements). Many of my observations carry over to grievance
arbitration, but interest arbitration corresponds most closely to the situa-
tions considered in mechanism design. Except where noted, the discus-
sion will apply both to legally imposed compulsory arbitration and to
binding arbitration agreed upon in collective bargaining. Examples of the
former are easily found in bargaining between public-sector unions and
the jurisdictions that employ them. The most important example of the
latter arose in the U.S. steel industry, which in 1974 negotiated the Experi-
mental Negotiating Agreement (recently ended) with the United Steel-
workers, prohibiting strikes and providing for binding interest arbitration
as a substitute.

For my purposes, arbitration can be defined by the presence of an
arbitrator who is empowered (possibly with constraints, as in final-offer
arbitration) to impose a settlement when bargainers cannot agree on one.
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(Mediation, on the other hand, typically refers to the presence of a third
party who can make suggestions but has no power to impose settlements.
What power to influence bargaining outcomes this leaves a mediatoris an
interesting theoretical question, not considered here.)

For simplicity, unions and managements will be treated as single bar-
gainers with coherent goals, even though they really represent overlapping
generations of workers or managers with different goals. Arbitration
practice suggests a model with the following general structure. First, the
arbitrator (or each potential arbitrator) commits himself to a mechanism
(defined later), respecting any constraints that exist, and announces his
commitment to bargainers. Then, the arbitrator (or the procedure for
selecting an arbitrator) is imposed or agreed upon by bargainers, depend-
ing on the context. Whether this step occurs before or after bargainers
observe any private information relevant to the negotiations in question is
specified where pertinent. Finally, bargainers negotiate, with the arbitra-
tor’s mechanism being imposed if they fail to reach an agreement.

Several comments on this specification are in order. First, it presup-
poses that bargainers always have the right to negotiate their own settle-
ment rather than accept an arbitral settlement. Arbitral settlements can
occur only by agreement, by “accident,” or default. This assumption
reflects the almost universal recognition in practice of bargainers’ right to
negotiate their own agreements; this right is often treated as inalienable.
The belief that arbitration may interfere with the right to bargain seems to
account for much of the opposition to it. Limiting consideration to
schemes that allow bargainers to negotiate “around” arbitration may help
to defuse this objection, and turns out to restrict the role of arbitration less
than one might expect. Recognizing the right to bargain, however, may be
costly when there is a significant public interest in the agreement reached
(and not just in avoiding strikes) that is not adequately represented by one
of the bargainers. In extreme cases (e.g., price fixing), these external effects
may be handled adequately by legal fiat. But in other cases (e.g., “infla-
tionary” wage settlements), the public interest seems to depend on more
subtle tradeoffs among the issues resolved in bargaining, and it might
therefore be helpful to have a more direct influence on negotiations. I do
not consider such roles for arbitration further, because the incentives
approach seems to add little to understanding them, and because it is
difficult in such cases to justify intervention on/y when impasses occur,
whereas this restricted intervention is all that is considered in the arbitra-
tion literature.

Second, I have assumed that the arbitrator selects and enforcesa mech-
anism, rather than a settlement. A mechanism, as the term is used in the
incentives literature, is simply a set of rules used to determine outcomes
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and, thereby, control agents’ incentives. For example, each agent might be
asked to report his private information, and these reports used to deter-
mine the outcome in some prespecified way. (There need be no presump-
tion that the reports are truthful, although the mechanism can be designed
so that truthful reporting is a rational response to the incentives it creates.)
This specification may appear to be in conflict with the arbitration litera-
ture, where it is almost universally assumed that the arbitrator imposes a
settlement if negotiations break down. In fact, the two notions are essen-
tially equivalent in the absence of uncertainty, which is rarely considered
explicitly in the arbitration literature. Thus, the assumptions maintained
by writers on arbitration need not be viewed as carefully considered
positions on this point. In practice, the arbitrator, quite sensibly, solicits
information about bargainers’ preferences and what is feasible before
fashioning a settlement. The closest analog to this in the incentives litera-
ture is choosing a mechanism, rather than choosing a settlement.

Third, T have assumed that the arbitrator has powers of commitment
that bargainers do not possess. Although ideally this might be explained
rather than assumed, it appears quite realistic and follows naturally from
institutional and reputational considerations. “Track records” and, to a
lesser extent, long-term relationships between bargainers and arbitrators,
are considered to be of paramount importance in arbitration practice.
These powers of commitment give the arbitrator the power to override his
personal preferences, transforming himself into an instrument for im-
proving bargaining outcomes. This is the primary difference between the
arbitrator and bargainers, and between bargaining under arbitration and
in more general social institutions. The arbitrator’s commitment need
not be explicit for this model to be appropriate. It entails only that an
arbitrator’s intention and ability to fashion a fair and efficient settlement
can be credibly communicated, before he is selected, to the agent or agents
responsible for selection, and that the arbitrator does not engage in negoti-
ations with bargainers about his standards of fairness and efficiency.

To close the model, it is necessary to specify how agents’ behavior is
determined, and to describe the bargaining environment. Given the rules
specified previously, all parties are assumed to pursue their goals ratio-
nally, in the sense of playing strategies that are in Bayesian Nash equilib-
rium. An additional requirement that the equilibrium be perfect or se-
quential (see Kreps and Wilson (1982); the distinction is not important
for my purposes) is imposed to ensure equilibrium play in every stage of
the game. This specification is compatible with a wide range of noncoop-
erative models of bargaining; some samples of such models are described
in Crawford (1981, 1982c¢). It specializes to the ordinary (subgame perfect)
Nash equilibrium when information is perfect or symmetric.
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My observations do not depend on precise specifications of bargainers’
or the arbitrator’s preferences. However, it is useful, for definiteness, to
think of bargainers as “selfish,” whereas the arbitrator may be thought of
as seeking to maximize the quality of bargaining outcomes according to
some criterion. (An alternative view, that this desire is coupled with a
desire to maximize fees from clients, is used in Section 17.6 to describe the
implications of arbitrators’ having to compete for clients. Because bar-
gainers’ views of the quality of outcomes may resemble closely those of
arbitrators, and an arbitrator with no clients can have only a weak, indi-
rect effect on outcomes, these two goals need not be in sharp conflict.)

The physical aspects of the bargaining environment are assumed to be
independent of the presence of an arbitrator. This assumption rules out
several phenomena that are important in practice but do not help to
explain the role of arbitration. In particular, it implies that arbitrators
have no advantage over bargainers in identifying feasible agreements; and
it rules out the so-called narcotic effect, whereby bargainers rely exces-
sively on arbitration because it is (physically or politically) easier than
bargaining. Also ruled out is the symmetric possibility that arbitral settle-
ments are distasteful to bargainers per se, or that a given agreement is
more likely to enlist the allegiance of bargainers in trying to make it work
ifthey have fashioned it themselves. This seems to be the main reason why
the narcotic effect, as its pejorative connotation suggests, is considered a
bad thing.

Finally, this assumption prevents arbitrators from administering in-
centive schemes that might violate the physical constraints that bind
bargainers when they form a closed system. In theory, there might easily
be a potential role for the arbitrator in allowing commitment to such
schemes, because in some cases they allow a more effective response to
bargainers’ incentive problems. This possibility is discussed by Myerson
and Satterthwaite (1983) and, in a different context, by Holmstrom
(1982). I do not consider it here mainly because it is apparently never
done in practice, which suggests — but does not prove - that it is not truly
helpful in arbitration. There may be sound theoretical reasons for this. In
the simple bargaining environments studied by Myerson and Satter-
thwaite, only subsidies to bargainers are helpful in increasing efficiency.
(When their assumption that bargainers’ valuations of the object they
seek to exchange are independent is relaxed, roles for arbitration that do
not depend on subsidization may appear; see Samuelson 1984.) These
subsidies would need to be very large, some of the time, in significant
applications of Myerson and Satterthwaite’s schemes. Distributional con-
siderations aside, the moral-hazard and collusion considerations asso-
ciated with this kind of administration of funds, public or private, are
disturbing to contemplate.
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To complete the specification of the bargaining environment, I assume
that all aspects of it are common knowledge, making one exception when
discussing roles of arbitration that depend on informational asymmetries.
In those cases, it is assumed that an agent privately observes an informa-
tion variable, called his type, which can be thought of as reflecting other
parties’ uncertainty about his preferences or information. In most cases,
only bargainers are assumed to have private information, so that the
arbitrator knows exactly what is common knowledge to bargainers.

These strong restrictions on the information structure are convenient
for the purpose of identifying potential roles of arbitration for several
reasons. First, the case where some private information becomes com-
mon knowledge ex post, and it is possible to make contracts contingent on
this information, is easily fitted into this framework by reinterpreting
preferences and the set of feasible mechanisms. Second, given the arbitra-
tor’s powers of commitment and that I will follow the incentives literature
in allowing him to use randomization if this is helpful,' allowing him
private information would not contribute to the goal of identifying po-
tential roles of arbitration. Neither, of course, would putting him at an
informational disadvantage relative to bargainers’ common knowledge. It
is interesting to note, however, that informational disadvantages of this
type might not impair the arbitrator’s ability to achieve his goals, either.
As suggested by Kalai and Rosenthal (1978), and by Rosenthal (1978), the
arbitrator can ask bargainers to submit independent reports of their com-
mon-knowledge information, punishing them severely for any discrepan-
cies and treating their reports, when there are no discrepancies, as the
truth. This makes truthful reporting uniquely salient among a continuum
of equilibria. As Kalai and Rosenthal are aware, this result takes full
advantage of assumptions (in particular, exact knowledge of the informa-
tion structure) not usually taken literally, so that practical application
would be premature. Applicable schemes might be sought, however, by
considering whether theoretical performance can be made less sensitive to
unrealistic assumptions and trying to explain why it is considered so
importantin practice for the arbitrator to begin with as much information
as possible about bargainers and their environment, even when that in-
formation is common knowledge to bargainers.?

With asymmetric information, the natural objects of choice are rela-
tionships between the environment and agents’ types, and the final out-
come. I will follow Holmstrém and Myerson (1983) in calling these rela-
tionships decision rules. (A mechanism, together with agents’ responses to
the incentives it creates, induces a decision rule.) My assumptions imply
that bargainers, taken together, and the arbitrator face the same menu of
physically feasible decision rules. When the arbitrator has no private
information (or, more generally, when he needs no incentives to reveal



370 Vincent P. Crawford

any private information he has), bargainers and the arbitrator face the
same incentive problems as well. It follows that any role for arbitration
that emerges under my assumptions must stem from the effect of arbitra-
tion on the set of decision rules that can arise in bargaining equilibrium.

17.3 Actual and potential roles of arbitration

In Sections 17.4 through 17.6, several potential roles of arbitration that
are compatible with the model outlined in Section 17.2 will be discussed. I
will argue that there are several ways in which arbitration could improve
the quality of bargaining outcomes. These roles of arbitration are poten-
tial, in the sense that they indicate the possibility of welfare gains but do
not establish how, or whether, those gains will be realized in practice.

In applications where arbitration is imposed from outside the bargain-
ing relationship, this creates no new conceptual difficulties in evaluating
its actual impact. One simply concludes that if arbitration is used skillfully
when it is needed, it will help bargainers; otherwise, it will not. (It is worth
noting that the impact of arbitration on the bargaining environment, even
when there are no arbitral settlements, means that there is no guarantee
that unskillful use of arbitration will not hurt bargainers.) Even if bar-
gainers can influence the choice of arbitrator, but their influence is con-
veyed through a procedure that results in a selection even if they cannot
agree, no conceptual difficulties arise. The analysis of the choice of arbi-
trator in these procedures, which typically begin with each side making
several proposals and end with a series of alternating, limited vetoes, is an
interesting problem in applied social-choice theory, on which Moulin
(1981) and others have made some progress.

The real puzzle arises when binding interest arbitration must be nego-
tiated by bargainers themselves, within the collective-bargaining agree-
ment.? (Such applications are growing in importance. A leading example
is discussed in Section 17.4.) Then, a subtle question arises in evaluating
the actual role of arbitration. It might be expressed as follows:

Arbitration’s only direct influence on outcomes occurs when
bargainers cannot reach an agreement on their own. But choos-
ing an arbitrator is itself a bargaining problem: If bargainers can
predict arbitrators’ intentions without bias, choosing an arbitra-
tor amounts to choosing a settlement to be imposed if bargainers
cannot reach one. An actual role of privately agreed-upon arbi-
tration therefore depends on the assumption that bargainers can
reach an agreement, in one guise, that matters only when they are
unable to reach the same agreement in another guise.
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This view, although stated strongly to provide a clear target, is widely held,
and deserves to be taken seriously. It can be answered in at least three
ways. All three answers rest on differences between bargaining over arbi-
trators and bargaining over settlements that arise even when bargainers
can predict what settlements arbitrators will impose. All three answers
also need to be backed up by more theoretical, experimental, or empirical
work before they can be viewed as full explanations.

First, notions of “fairness” play a crucial role in determining what
offers bargainers will accept. This is particularly apparent if bargaining is
modeled as a noncooperative coordination game (see Schelling (1963) for
the leading development of this view), since then fairness notions provide
important clues to help bargainers select one of the many possible equilib-
ria. It seems unlikely that bargainers’ notions of fairness are exclusively, or
even mostly, “end-state” notions. It is easy to imagine someone agreeing
to follow the dictates of a procedure he perceives as fair, even when its
outcome is predictable and violates the end-state notion of fairness he
would apply if it had been suggested in isolation. Arbitration may there-
fore be agreed upon simply because it is more nearly congruent to bar-
gainers’ notions of fairness.

In repeated bargaining, our prevalent procedural notions of fairness
may even enjoy significant efficiency advantages. When impasses are
costly and cannot always be avoided in bargaining without arbitration
(see Section 17.5), bargainers might benefit by being constrained for sev-
eral bargains in a way that avoids impasses, even though these constraints
sometimes lead to settlements that would be ““unacceptable” in isolation.
Section 17.6 considers how such constraints might help bargainers deal
more effectively with incentive problems. Since the constraints must be
imposed before the particulars of each application are known, they tend to
be “procedural.” Arbitration mandated by law or social custom might be
the easiest way to impose and enforce them.

Finally, even when the preceding arguments do not apply, the choice of
arbitrator is still a different bargaining problem than the choice of a
settlement. It is resolved earlier, when bargainers may have less informa-
tion. And, particularly if bargainers eschew explicit randomization, its
apparently simpler set of feasible agreements might facilitate coordina-
tion. Although arbitral settlements occur only as a result of bargaining
impasses, arbitration can have a significant indirect effect on outcomes
even when impasses never occur (see Crawford (19824)). Thisimplies that
bargainers’ negotiating strategies will generally differ in the two problems.
It follows that there is no necessary link between the occurrence of im-
passes in bargaining over settlements and in bargaining over arbitrators.
Bargainers might easily have better luck in agreeing on an arbitrator than
in agreeing on a settlement.
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In summary, the potential roles of arbitration identified in Sections
17.4-17.6 should also convey some useful information about how arbi-
tration is used in practice, even when such use requires that bargainers
bind themselves to follow the dictates of an arbitrator. The associated
opportunities for potential gain should thus be realized some, if not all, of
the time.

17.4 Contract completion

This section discusses the role of interest arbitration as a substitute for
complete contracts. The role of grievance arbitration in collective bar-
gaining, and of arbitration in commercial contract disputes, iscommonly
considered to be contract completion in legal theory, where it is taken for
granted that dealing by contract with every contingency, no matter how
unlikely ex ante, is impractical (see Fuller (1963), for example). But con-
tract completion may be a somewhat novel view of the role of interest
arbitration, which by definition deals with contracts not yet made.

This role is possible because many important economic relationships,
particularly employment relationships, extend over long periods and in-
volve important intertemporal allocation decisions, but are governed by
contracts or agreements shorter than their anticipated lives. Although the
use of short-term contracts economizes on contracting costs and provides
valuable flexibility, it also means that some decisions about the organiza-
tion of the relationship have consequences that extend beyond the hori-
zon of any single contract. This partial loss of control over incentives,
even when it is the only imperfection in the model, can cause inefficiency
in some settings. In the remainder of this section, I will describe a model,
originally presented in Crawford (1983), that supports this claim, and
then show how the appropriate use of binding interest arbitration can
restore efficiency while allowing bargainers always to negotiate their own
settlements. The section concludes with a discussion of two important
applications of binding interest arbitration that seem to be well explained
by these results.

In the model of Crawford (1983), it is assumed that there are two
bargainers, each with perfect information and perfect foresight, who
always negotiate agreements that are efficient relative to their contracting
possibilities. There are two periods, and two contracting regimes are com-
pared. In one regime, complete, long-term (two-period) contracts are
possible; in the other, contracting is complete within each period, but
must be done period by period, so that only current-period actions can be
enforceably agreed upon in a given period. Bargainers decide, for each
period, whether to cooperate in production, how to share the resulting
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output, and how much (if any) current output to set aside as an invest-
ment in the relationship. (Such investments are assumed to raise the
relationship’s productivity in the future, but not in the current period;
thus, in the two-period model being considered, they make sense only in
the first period.) Two different kinds of investment are compared, which
differ according to whether the capital they create, once invested, can later
be economically withdrawn from the relationship. A sunk-cost invest-
ment in the relationship is one whose returns depend on the bargainers’
continued cooperation in production, and which are otherwise irrecover-
able. A reversible investment is one whose capital can later be withdrawn
and either consumed or reinvested in another relationship.

When long-term contracts are possible, the assumption that parties
always negotiate efficiently, relative to the contracting possibilities, im-
mediately implies that the level of investment in the relationship is chosen
efficiently, no matter what combination of sunk-cost and reversible in-
vestment efficiency happens to require. When only period-by-period
contracts are possible, however, the efficiency of investment may depend
crucially on whether costs must be sunk for efficient organization of the
relationship. Inefficiency can arise, in abstract terms, because of the time-
consistency constraints that must be satisfied by bargainers’ contracts
when long-term contracts are unenforceable. To see this more concretely,
consider the extreme case where only sunk-cost investment is required for
efficiency, and assume that bargainers’ efficient agreements result in co-
operation in each period. The sunk-cost character of the investment may
seem unlikely to cause problems under these circumstances. However,
any returns that a bargainer anticipates from such an investment after the
current contract expires must be negotiated in bargaining environments
that are completely independent of which bargainer sunk the associated
costs. Thus, to the extent that a bargainer pays for such an investment by
foregoing his own current consumption, his position resembles that of a
private provider of public goods: He pays full cost but can rationally
expect to receive only part of the benefit. This analogy suggests strongly
that sunk-cost investments will not be undertaken to the full extent re-
quired for efficiency under period-by-period contracting.

As it happens, this intuition is not fully borne out by analysis of the
model, but it does contain an important kernel of truth. There are two
things wrong with it. First, in the pure sunk-cost case, a bargainer who
bears (part of ) the cost of the investment can expect no return for doing so
beyond the period covered by the current contract, but nothing prevents
him from being compensated in the current contract. In some environ-
ments, this kind of compensation at the time of the investment is costless,
in the sense that it is consistent with some fully efficient plan with the
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distribution of surplus that bargainers would negotiate under long-term
contracting. This is the case, for example, if bargainers have access to a
perfect capital market, or if their preferences make them indifferent about
the time pattern of compensation. But more generally, and more realisti-
cally, this kind of compensation, although it can be used to restore the
incentives for efficient sunk-cost investment under period-by-period
contracting, itself has costs. Bargainers’ best response to these costs is a
second-best-efficient compromise between efficient investment and efhi-
cient patterns of compensation. It turns out that these compromises gen-
erally involve some of each kind of inefficiency, but that standard as-
sumptions about preferences, technology, and surplus-sharing rules do
not necessarily support the intuition that the bias in sunk-cost investment
is toward too little investment. There is, however, some basis for belief
that this direction of bias is more likely than the reverse direction.

The second flaw involves the extreme assumption that efficiency re-
quires only sunk-cost investment. One might suspect that, normally,
some reversible investment is also required or, more generally, that effi-
ciency also requires some investment with technologically linked sunk-
cost and reversible components. It turns out that if the preponderance of
reversible investment in the efficient plan is sufficiently great, the inefhi-
ciencies associated with sunk-cost investment in its pure form can be
eliminated, even under period-by-period contracting.

To see this, it is helpful to begin with an analysis of the case where only
reversible investment is required for efficiency. The crucial feature of
reversible investment is that its absence of sunk costs implies the existence
of costlessly enforceable property rights in the capital created by it, with
equal value inside and outside the relationship. (If property rights were
costly, or uneconomic, to enforce, then the costs of enforcement, up to the
external value of the investment, would by definition be sunk at the time
of investment.) It follows that if the property rights that reversibility
entails are costlessly transferable and perfectly divisible, they allow bar-
gainers costlessly to guarantee future compensation, and thereby provide,
within a sequence of short-term contracts, the incentives for efficient
investment even when it has long-term consequences. This is done by
assigning property rights in the reversible capital, in each period’s con-
tract, in such a way that the next period’s negotiations yield the pattern of
compensation associated with the fully efficient plan. Bargainers’ rational
anticipations of the outcomes of future bargains make the current-period
part of the efficient plan efficient relative to current-period contracting
possibilities. It is not hard to see that this argument remains valid so long
as there is not “too much” sunk-cost investment in the efficient plan,
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where what is too much, of course, depends in a complex way on prefer-
ences and technology, and on bargainers’ relative bargaining powers.

I will now consider two applications of binding interest arbitration, one
in the public sector, and one in the private sector, that seem to be ex-
plained, in part, by considerations like those just outlined. In each case,
efficient organization of the relationship in question requires irreversible
actions that resemble (but are more complex than) sunk-cost investment
decisions. In each case, the role of the arbitrator is, in effect, to remember
who sunk costs in the past, and to ensure that future compensation is paid
in a way that creates the “correct” incentives to make such investments. It
isimportant that he can do this without infringing on the right to bargain,
simply by “threatening,” in each period, an arbitral settlement that leads
bargainers to negotiate, for themselves, the appropriate agreement. The
fact that arbitration can solve this kind of problem so well without in-
fringing on the right to bargain may account for the empirical importance
of this kind of application.

My public-sector illustration is an explanation of the pattern of use of
compulsory interest arbitration in dealing with local public-sector em-
ployees. (Long-term labor contracts are, by law, not binding on workers,
and only partly binding on firms in practice.) Here, applications com-
monly occur in conjunction with a strike prohibition, and cover police
officers and fire fighters much more often than most other types of public
employees. This raises the question, Why police officers and fire fighters,
and not, say, librarians? On a common-sense level, the answer is clear: Itis
difficult, on short notice, to find trained replacements for employees like
police officers and fire fighters, and extremely costly to do without them,
even for a short time. Thus, once a particular group of such employees has
been hired and trained, it enjoys a great deal of monopoly power in the
short run. The right to strike would make it difficult for the employing
jurisdiction to resist attempts to exploit this monopoly power.

It is important to note that this difference between police officers and
fire fighters and most other workers arises purely because efficient organi-
zation of the employment relationship (e.g., training the workers, but not
training substitutes just as a bargaining chip) causes large variations in
relative bargaining power over its lifetime. Before a police officer is hired,
his bargaining position with respect to his employer is not radically differ-
ent from that of a librarian. Losing the opportunity to hire a particular
police officer would be costly, but not especially costly. Thus, if the rela-
tionship could be governed by a single, costlessly enforceable, long-term
contract, the difference would be irrelevant. Employees who are expected
to acquire excessive monopoly power could simply agree never to strike,
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and be compensated in the agreement for this concession according to
their ex ante bargaining power. There would remain a “safety-net” role
for arbitration, as discussed in Section 17.5, in limiting the costs of bar-
gaining impasses in the initial negotiations, but this role would emerge
with roughly equal force for all types of employees.

It is also possible, in principle, for unions and employers simply to
recognize that the union will acquire and exploit monopoly power in the
course of the relationship, and to adjust the pattern of compensation in
anticipation of this. This would, no doubt, require workers to post a large
bond when hired, or at least to undergo a long apprenticeship without pay.
This is unthinkable in real labor relations, of course, for reasons that are
obvious (but not correspondingly easy to model). The use of arbitration
allows a solution of the problem without incurring the costs of such
distortions in the pattern of compensation over time. I interpret the wide-
spread adoption of compulsory interest arbitration for this kind of appli-
cation as powerful evidence in favor of the model proposed in Crawford
(1983).

The second illustration of the contract-completion role is the most
importantinstance, to date, of voluntarily agreed-upon compulsory inter-
est arbitration in the private sector. (The qualification is necessary to rule
out the National War Labor Board in World War II, which of course did
not rely on the consent of firms and workers.) From 1974 until early 1983,
new contracts in the American steel industry were negotiated under the
Experimental Negotiating Agreement, which substituted binding interest
arbitration for the right to strike. Baldwin (1983) gives an explanation of
this partly in contract-completion terms, using a model similar in spirit to
but different in substance from the model just described.

Two parts of Baldwin’s argument are directly relevant to the role of
arbitration. First, stability of steel supply over time is very valuable to
customers. As a result, steel suppliers engage in a great deal of costly
stockpiling, both to reduce the costs of strikes when they occur and to
enhance their bargaining positions by reducing their vulnerability to
strike threats. The first of these motives leads to a safety-net role for
arbitration, discussed in Section 17.5; the second creates a contract-
completion role similar to that just outlined, in allowing the industry to
avoid the costs of stockpiling that takes place just to enhance firms’
bargaining positions.

Second, new investment in steel capacity has a particularly large sunk-
cost component. The U.S. steel industry has long experienced difficulty
competing with foreign suppliers because its plant and equipment are old
and inefficient. Baldwin explains this by suggesting that new investment is
weak because investors are reluctant to invest in “hostage capital,” whose
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rents are vulnerable to expropriation by unions once investment costs are
sunk.

The Experimental Negotiating Agreement ended in early 1983, to
mixed reviews, with the U.S. steel industry still facing great difficulties. It
will be of great interest to watch the postmortems for clues to the uses and
limitations of arbitration.

17.5 Safety net

This section discusses the safety-net role of arbitration in reducing the
expected costs of bargaining impasses. I assume in this section that bar-
gainers can make complete contracts (except as limited by informational
asymmetries; see Myerson (1979) for a good discussion of how to incorpo-
rate incentive constraints). Under my assumptions, the effect of arbitra-
tion on bargaining is transmitted entirely through the substitution of an
arbitral settlement for the status-quo impasse outcome. A safety-net role
exists only when there is some chance that bargainers will fail to reach an
agreement on their own, and so I shall begin with a critical discussion of
the explanations of the occurrence of impasses that are used in the two
literatures.

The kinds of environments in which the bargaining impasses that lead
to arbitral settlements will occur is a central question in the arbitration
literature. The law and economics literature faces analytically equivalent
problems in explaining, for example, why not all civil suits are settled out
of court. Despite the importance of these questions, both of these litera-
tures suffer greatly from a failure to give a serious explanation of bargain-
ing impasses.

This failure seems due in part to the technical difficulties involved, but
it also seems to stem from an honest distrust of the strong rationality
assumptions necessary to make strategic interactions with asymmetric
information analytically tractable. This distrust deserves some sympathy,
because real bargainers undeniably behave irrationally much of the time,
and even a fully rational bargainer would need to take this into account.
However, game-theoretic rationality, with simple rules to govern the
making of agreements and informational asymmetries introduced in a
controlled way, is the only mode of analysis yet proposed that is parsimo-
nious enough to yield strong, but not arbitrary, predictions about the
influence of the bargaining environment on outcomes. I therefore main-
tain these rationality assumptions, which are standard in the incentives
literature, with a clear conscience.

In view of these difficulties and the absence of convincing competitors
to the game-theoretic approach, one might expect writers on arbitration
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to be circumspect about bargaining impasses. Boldness rather than cau-
tion has been the rule, however. Several views of how the frequency of
impasses is related to the bargaining environment, of varying levels of
sophistication, have emerged. All are based on a flawed analogy between
bargaining and individual decision making, where large costs, taking
uncertainty and the difficulty of decision making into account, are more
likely to be avoided than small costs, other things being equal. The flaw is,
of course, that bargaining is one of the most interactive of all economic
situations, so that there is no reason to expect bargainers’ collective behav-
ior to resemble individual decision making. (This is why there is an
important distinction between actual and potential roles of arbitration.)

I now summarize the most common views of why arbitral settlements
occur, in increasing order of sophistication, and then explain what I think
is wrong with the most sophisticated one, which rests on a relatively subtle
logical error. The simplest view is that bargaining outcomes are always
efficient, taking into account bargainers’ beliefs and the costs of bargain-
ing. Impasses can occur only when they are efficient, in the sense just
defined. This view becomes both more prevalent and more tautological
the nearer one approaches Chicago (in the intellectual sense), where bar-
gaining costs are sometimes even defined as anything that stands in the
way of efficiency. This theory could, of course, be made operational by
appending a specification of what observable variables determine bar-
gaining costs.

The limitations of this view have been recognized by some arbitration
writers, who have modified it by assuming that the probability of impasses
is a decreasing function of the size of the contract zone - the set of feasible
agreements preferred by both bargainers to the prospect of an impasse.
This is less extreme than the first view, but it does not represent a real
improvement. Some attempts to justify it refer to the difficulties of identi-
fying agreements in the contract zone. In fact, in simple bargaining exper-
iments, Malouf and Roth (1981) found that the size of the contract zone
was a good predictor of how long it took bargainers who eventually
reached an agreement to do so, but a poor predictor of how often an
agreement was reached. Further, bargaining impasses seem intuitively
likely to occur not when competition shrinks the contract zone to a point,
but when there is enough surplus to be worth fighting over. Thus, it would
be somewhat surprising if the frequency of impasses were always inversely
related to the size of the contract zone.

The third view rests on bargainers’ optimism about the impasse out-
come. If bargainers have identical probabilistic beliefs about the conse-
quences of an impasse, it is evident (and sometimes recognized in the
literature) that bargainers can always duplicate by agreement the prospect



Role of arbitration and the theory of incentives 379

of an impasse. (There is no reason to rule out random agreements if they
appear mutually beneficial.) Bargainers who can negotiate efficient agree-
ments will therefore never have a positive interest in allowing an impasse
to occur, and in general the prospect of an impasse will actually be ineffi-
cient in the set of feasible agreements. It is argued in response to this that
bargainers are commonly quite uncertain about the impasse outcome.
This tends to make impasses still worse for risk-averse bargainers, but it
also has the advantage of making it more plausible to assume that bar-
gainers’ beliefs about the impasse outcome are significantly different. If
their beliefs are relatively optimistic, in the sense of being better for both
bargainers than some efficient agreements, an impasse is perceived as
efficient, and assumed to occur. (What happens when some feasible
agreements also remain efficient is not discussed.) Under this assumption,
a modeler who could observe everything but bargainers’ beliefs would
observe a negative correlation between the estimated size of the contract
zone and the frequency of impasses.

This view has been taken still further; see Farber (1980) for the clearest
statement. It is recognized as a flaw that bargainers have unexplained
differences in their perceptions of the arbitrator’s intentions. Farber ex-
plains these differences by assuming that bargainers start with a common
prior, but receive different observations relevant to the arbitrator’s behav-
ior. Some of the time, rational optimism (the term is mine, not Farber’s)
results, and an impasse occurs. There are two problems with this explana-
tion. First, many factors handicap arbitrators in fashioning settlements.
Also, arbitrators’ track records are almost public knowledge, and there are
other reasons to believe that an arbitrator’s intentions are not wildly
unpredictable (see Crawford (1979, Section I)). I will argue later that, in
reasonable models of bargaining, many feasible agreements (defined tak-
ing into account incentive constraints, if any) are not really available, with
certainty, to bargainers, because bargaining outcomes must arise as equi-
libria under the rules of the bargaining game. If all feasible agreements
were available to bargainers, with no risk of impasses, it would take quite a
bit of optimism to prevent all of the available agreements from being
better for both bargainers than the prospect of an arbitral settlement. It is
only human for a bargainer to see the merits of his own arguments and
goals more clearly than those of the other bargainer. But I cannot believe
that there is enough optimism in this and in differences in information to
explain anything like the large number of arbitral settlements that occur.*

The second problem concerns the logical underpinnings of the ratio-
nal-optimism theory. If bargainers could be sure of reaching an efficient
agreement on their own, then an arbitral settlement could not truly be
better for both bargainers than all of the agreements available by negotia-
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tion. Thus, the rational-optimism theory raises the difficult question of
whether such rationally misguided bargainers should be allowed to “hang
themselves” when society knows better, or if the paternalism needed to
prevent this would be a still greater evil. Fortunately, what I have called
rational optimism is not truly rational, so that theorists, at least, can avoid
this dilemma. To see this, suppose that bargainers have identical priors
and that all aspects of the bargaining environment are common knowl-
edge except for some private information that is relevant to the arbitra-
tor’s behavior. (This is true to the spirit of Farber’s (1980) arguments.)
Suppose further that any outcome the arbitrator can achieve is also a
potential negotiated settlement. Then, an argument like that used to
establish Milgrom and Stokey’s (1982) “no-trade” theorem shows that it
can never be common knowledge that both prefer the prospect of an
arbitral settlement to an efficient negotiated settlement. (See Holmstrom
and Myerson (1983) [Sections 4 and 5] for a simple proof, and Milgrom
and Stokey for a good exposition of the argument and its implicationsin a
market setting.) It follows that if bargainers could be sure of reaching an
efficient agreement, they could never rationally agree to rely on arbitra-
tion, since that agreement would make their mutual preference for the
arbitral settlement common knowledge, contradicting efficiency.

The intuitive reason for this is that it is common knowledge that any
feasible change from an efficient outcome must be to the detriment of at
least one party. That one bargainer is willing to approve such a change is
therefore proof that he knows something that means the other should not.
The result has been called the Groucho Marx theorem, because it is
reminiscent of his remark that he would never join a club willing to accept
him as a member, (This characterization is attributed to Milton Harris by
Milgrom and Stokey.) As Marx’s remark suggests, the no-trade argument,
although it requires some effort to formalize, has a powerful, common-
sense element one would expect bargainers to appreciate. I therefore view
it not as a technical quibble, but as a serious criticism of the rational-
optimism theory. Like its less sophisticated predecessors, this theory can
explain impasses only by assuming that bargainers do not fully under-
stand their situation.

These arguments establish that a “fully rational” explanation for the
occurrence of arbitral settlements, and therefore for the safety-net role of
arbitration, must rest on bargainers’ inability always to realize all physi-
cally feasible gains from trade. There are two different types of rationaliza-
tion for this. The first assumes implicitly that bargainers can reach any
incentive-compatible outcome. Impasses arise because in some environ-
ments a positive probability of impasse is an efficient way to achieve
incentive compatibility. Efficiency is defined here taking into account
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incentive-compatibility constraints. From now on, I will use Holmstrom
and Myerson’s (1983) term incentive efficiency to express this qualifica-
tion when necessary. (This general approach to bargaining is outlined in
Myerson (1979). Further developments, for particular specifications of
the bargaining environment, have been given by Myerson and Satter-
thwaite (1983) and Samuelson (1984).)

This explanation of impasses is of interest and, in my opinion, vastly
superior to those criticized earlier. It also has an important element of
realism. Indeed, the earliest recorded example of arbitration of which Iam
aware, in which King Solomon identified the true mother of a baby by
threatening to resolve a maternity dispute via equal division in a highly
nonconvex environment, can be interpreted in this way. Even the possi-
bility that Solomon fooled the women about his true intentions could be
accommodated in this explanation.

One reservation should be recorded, however, as a suggestion for future
research along these lines. To date, almost all of the models in which
incentive compatibility has been shown to require a positive probability
of impasse are ones in which that is the only possible failure of full
efficiency. (Some exceptions are given in Samuelson (1984).) These
models therefore contain little to suggest that risking an impasse, as op-
posed to other forms of inefficiency, is the most efficient way to ensure
incentive compatibility. Studying static models in which the physical
environment is richer than a single, indivisible good, and further study of
dynamic models in which waiting costs can serve as a sorting device,
should help to resolve these doubts. It should be noted, however, that the
common use of discrete sets of feasible outcomes, or risk-neutrality, may
obscure some realistic features that bear on this question.

The second type of rationalization focuses on the effect of the rules of
bargaining on which incentive-compatible outcomes bargainers can
achieve. Here, impasses sometimes occur because the rules create incen-
tives for bargainers to risk them, in an attempt to capture a larger share of
the gains from trade. Examples of this approach are Chatterjee and Samu-
elson (1983) and Crawford (1982c¢), which are discussed elsewhere in this
volume. For reasonable specifications of the rules of bargaining, equilib-
rium relationships between agents’ types and the final outcome are in
general not incentive-efficient decision rules.

The two kinds of explanation of the occurrence of impasses just de-
scribed have very different implications for the role of arbitration, under
the assumptions outlined in Section 17.2. If bargainers could achieve any
incentive-compatible outcome, with impasses occurring solely to guaran-
tee incentive-compatibility, then arbitration would be irrelevant. The
entire bargaining game, with arbitration replacing the status-quo impasse
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outcome, is itself a mechanism, and bargainers could duplicate its effects
by explicit agreement. In general, of course, they could do even better
when not constrained by a particular set of bargaining rules. If, on the
other hand, impasses occur in part because of the incentives created by the
rules of bargaining, and bargaining outcomes (broadly construed to re-
flect whatever risk is inherent in the bargaining process) are not always
incentive-efficient, there may be a safety-net role.

To understand this role, recall that there are three channels through
which arbitration can influence bargaining outcomes. First, arbitration
has an obvious direct effect on the impasse outcome. Second, it has an
indirect effect (called bias in the arbitration literature) on negotiated
settlements. Finally, it affects the probability of impasse. It is natural to
think of evaluating the total effect through a simple expected-welfare
calculation, with the welfare criterion possibly reflecting how well bar-
gainers could do outside the relationship, as in most normative bargaining
solutions,

If arbitral settlements could be made efficient, in the sense appropriate
to the environment, then rational bargainers would always rely on arbitral
settlements, and this would be an efficient social arrangement. The ques-
tion becomes more interesting if one assumes, realistically, that arbitral
settlements cannot always be made fully efficient, for the reasons dis-
cussed in Section 17.2. Then, it is no longer clear a priori that the arbitral
settlement should be made as efficient as feasible: Even if this could be
done without affecting bias, it might raise the probability of impasse and
reduce welfare, on balance. However, some changes in the impasse out-
come that could be brought about by arbitration would normally be
beneficial. And it seems quite likely that improving the efficiency of the
impasse outcome is the direction in which to find welfare gains, as my
term “‘safety net” suggests.

I emphasize this last point because it runs counter to the conventional
wisdom in the arbitration literature, where the role of arbitration is almost
universally viewed as lowering the probability of impasse by making
impasses more costly to bargainers (see Stevens (1966), Donn (1977),
Farber and Katz (1979), Farber (1980), and Bloom (1981)). Although it is
possible in theory for increasing the cost of an impasse to benefit bar-
gainers by reducing the probability of impasse, this seems unlikely in
practice. Much more information, theoretical and empirical, about what
determines the probability of impasse is needed to resolve this question.

In conclusion, it may be worth noting that this confusion in the arbi-
tration literature seems to stem from reasoning about bargaining by anal-
ogy with individual decision making. This conditions authors to accept,
uncritically, simplistic assumptions about how the probability of impasse
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is related to the bargaining environment. Further, it leads to a misinter-
pretation of the bargaining problems that originally led to public-sector
compulsory arbitration. The need for prohibiting costly strikes by police
officers and fire fighters is accepted on common-sense grounds. Then, it is
observed that employers who can no longer lose anything by intransi-
gence are unlikely to bargain seriously. The final leap, to assuming the
problem is that impasses are sufficiently costly for both bargainers, is
made by false analogy. The end result is a serious misinterpretation of the
role of arbitration.

17.6 Information buffering and coordination

The last roles of arbitration that I consider are information buffering and
coordination. Information buffering refers to the arbitrator’s role in en-
forcing mechanisms that deal efficiently with incentive problems but
cannot be implemented by bargainers unaided. Coordination refers to the
role of arbitrators and mediators in solving multiple-equilibrium prob-
lems. These two roles are discussed together because they are linked in my
main illustrations.

Although the information-buffering and safety-net roles overlap some-
what, there is a significant distinction between them. The safety-net role
discussed in Section 17.5 can arise even when the set of fully efficient
agreements is common knowledge, provided that there is a positive prob-
ability that bargaining will end in an impasse. Examples where this hap-
pens can be found in Crawford (1982¢), where the rules of bargaining
create incentives for bargainers to ““burn their bridges” to an uncertain
extent, thereby risking an impasse, in attempts to capture a larger share of
the gains from cooperation; in Chatterjee and Samuelson (1983), where
impasses can occur in equilibrium even when the supports of the distri-
butions of bargainers’ reservation prices do not overlap; and in Nash’s
(1953) “demand game,” which has perfect, mixed-strategy equilibria with
a positive probability of impasse even with complete information. Al-
though, in the examples analyzed to date, incentive-inefficiency always
appears in the form of a positive probability of impasse (no trade, when
trade is efficient, in the language of Chatterjee and Samuelson (1983),
Myerson and Satterthwaite (1983), and Samuelson (1984)), this form is
by no means inevitable in more general, multi-issue models of bargaining.
For these more general models, an information-buffering role may
emerge even when bargainers, in isolation, would always reach some sort
of agreement.

Information buffering allows bargainers, by tacitly agreeing to rely on
an arbitral settlement, to override the rules of bargaining and replace
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them with an alternative mechanism. Although examples are known
where simple, realistic bargaining rules are an incentive-efficient mecha-
nism,’ this is unlikely to be true in any reasonably general environment.
(One possible reason for this is that incentive-efficient mechanisms
typically depend sensitively on the details of the environment, whereas
perhaps only simple bargaining institutions can enjoy an evolutionary
advantage over other mechanisms.) When bargaining is not incentive-
efficient, it may be possible for an arbitrator to commit himself to a
mechanism that is better for each type of each bargainer than the antici-
pated bargaining equilibrium. If there is only one possible arbitrator, he
will have some incentive to make such a commitment, since this maxi-
mizes the number of his clients. If he does so, bargainers can rely on an
arbitral settlement without leaking any of their private information, be-
cause it is already common knowledge that the arbitral settlement is better
for both bargainers. Since this ensures that the arbitrator’s mechanism
will operate as intended, it is rational for bargainers, who can each insist
on an arbitral settlement, to do so.

Here, the arbitrator may play a coordination role as well, in ensuring,
by suggestion, that the desired mechanism equilibrium is played. This
may overcome multiple-equilibrium selection problems that are assumed
away in the standard use of the revelation principle to characterize incen-
tive constraints.

The argument just outlined depends on several assumptions. First, it is
important that the arbitrator can commit to a mechanism that is known
to be better for both bargainers, independent of their private information.
Otherwise, the tacit decision to rely on arbitration may leak some of their
private information, altering the incentives created by the arbitrator’s
mechanism. This is not certain to cause problems, but the associated
partial loss of control over incentives may prevent the arbitrator from
improving on the bargaining outcome.

Second, it is important that either there be only one sensible choice of
arbitrator, or that bargainers can commit themselves to an arbitrator (who
has, by assumption, first committed himself to a mechanism) before
observing their private information. To see why competition among arbi-
trators that takes place after bargainers have observed their private infor-
mation may cause problems, it is helpful to model the process of choosing
among arbitrators as the application of a bargaining solution to the set of
possible arbitrators (evaluated by the anticipated effects of their mecha-
nisms). With symmetric information, a solution like Nash’s (1950) might
be used; the generalization to asymmetric information might use the
Harsanyi-Selten (1972) solution.
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This model of competition among arbitrators has several interesting
features. If arbitrators commit themselves to mechanisms simulta-
neously, it is analogous to the Rothschild-Stiglitz- Wilson model of
competitive insurance markets (Rothschild and Stiglitz (1976) and Wil-
son (1977)); the analogy suggests that neither pure-strategy equilibria nor
pooling equilibria (where all arbitrators propose the same mechanism) are
likely to exist in general. In a nonpooling equilibrium, the choice of
arbitrator, if it takes place after bargainers have observed their private
information, will generally leak information, causing problems similar to
those described earlier. (Since there are fewer arbitrators than mecha-
nisms, partial information buffering, which may still be beneficial, will
occur.) This suggests that arbitration may have elements of natural mo-
nopoly, for novel, informational reasons. It also underscores the benefits
of long-term commitments between arbitrators and clients, which, in-
terestingly (although mainly for other reasons), are often thought to
give arbitration an “unfair” advantage over bargaining (e.g., see Fuller
(1963)). Finally, the demand for a particular arbitrator’s services responds
favorably to the equity as well as the efficiency of his settlements, if one
accepts the equity notion built into the bargaining solution. (This is natu-
ral if one views the bargaining solution as a focal-point resolution of the
multiple-equilibrium problems in bargaining; see Schelling (1963).)
Thus, the model provides a framework in which to evaluate Landes and
Posner’s (1979) claim that competition will eliminate bias in the analo-
gous setting of private adjudication. This claim seems unlikely to be valid
under realistic assumptions about the joint distribution of arbitrators’
skills and their preferences for bias, or about the information structure.

Perhaps somewhat surprisingly, there may exist an information-
buffering role even if bargainers can make binding agreements about the
mechanism that will be used to control their incentives. The implications
of this possibility were first discussed formally by Holmstrém and Myer-
son (1983), and are the subject of Crawford (1985), whose arguments are
summarized here.

When bargainers can bind themselves to a mechanism, it is natural to
assume that they evaluate possible mechanism agreements according to
their rational expectations of the effect of the incentives they create,
taking into account any information that is leaked in the process of
selecting a mechanism. Given this, the choice of a mechanism becomes
analogous to the choice of an allocation in “ordinary” bargaining theory,
which suggests natural models of the process of agreeing on a mechanism.

Two cases can be distinguished. In the first, agents can bind themselves
to a mechanism before observing their private information, and standard
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arguments suggest that they can agree on a mechanism whose ultimate
effect will be an incentive-efficient allocation, evaluated according to
bargainers’ ex ante preferences (ex ante incentive-efficient, in Holmstrém
and Myerson’s terminology). This immediately implies that there is no
information-buffering role for arbitration.

In the second case, where agents observe their private information
before they can agree on a mechanism, it turns out that reasonable specifi-
cations of the rules for bargaining over mechanisms imply that bargainers
cannot generally achieve incentive-efficiency. (Here, the appropriate no-
tion of incentive-efficiency treats each possible realization of an agent’s
private-information variable as a separate person; I will use Holmstrém
and Myerson’s term interim incentive-efficiency to refer to this concept.
Roughly speaking, an allocation is interim incentive-efficient if there is no
other attainable allocation, taking into account incentive constraints, as
well as physical constraints, that is better for all agents independent of
their private information.) The problem is that the process of mechanism
design, to yield good results, must aggregate information about bar-
gainers’ preferences over mechanisms. Because these preferences gener-
ally depend on bargainers’ types, mechanism design in this case may leak
some of their private information, altering the incentives created by the
mechanism that is chosen. Even if the effects of this information leakage
are rationally anticipated, they can make it impossible for bargainers to
achieve a result that is interim incentive-efficient.

Since, under my assumptions, an arbitrator is simply a predictable and
enforceable choice of mechanism, there remains in this case no role for
arbitration as defined so far. If, however, the arbitrator’s powers are ex-
panded somewhat, to allow him to enforce the rules of a particular mecha-
nism-design process, a striking result emerges. With these expanded
powers, the arbitrator can make it possible for bargainers to achieve, after
they have observed their private information, any desired interim incen-
tive-efficient outcome. (As before, this need not be in conflict with the
right to bargain, although information-leakage problems may arise.)
Since these are the best outcomes attainable when mechanism design can
take place before agents observe their types — or in any case — this form of
arbitration can be said to allow bargainers to retreat behind the veil of
ignorance to bargain over mechanisms, even when they are no longer
truly ignorant. This is accomplished by using rules for bargaining over
mechanisms that allow bargainers endogenously to restrict the language
they use to bargain over mechanisms, in a way that permits aggregation of
their preferences, but prevents them from encoding their private infor-
mation in their mechanism proposals. I will now briefly describe these
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rules, and conclude by discussing the nature of the expansion of the
arbitrator’s powers, and his role as coordinator.

The mechanism-design process in Crawford (1985) is a generalization
of Nash’s (1953) demand game, modified to allow for bargainers’ private
information. It is assumed, for simplicity only, that there is a common-
knowledge normalization of each bargainer’s types’ von Neumann-
Morgenstern utility functions, with no agreement on a mechanism, and
no information leakage, yielding zero utility for each type. Bargainers,
after learning their types, simultaneously announce demands and
weights. A bargainer’s demand specifies a utility level for each of his types.
His weights are nonnegative real numbers, one for each type of the other
bargainer. If each bargainer’s demand is proportional to his opponent’s
weights, and if bargainers’ demands are compatible, in the sense that the
demanded type-contingent utility levels are realized in equilibrium by
some mechanism, then such a mechanism is implemented. (There is a
common-knowledge “tie-breaking” rule, and the mechanism is imple-
mented whether or not bargainers learn about each other’s types in the
process.) If not, the underlying game is played with no agreement, hence
noncooperatively.

It is not difficult to show that for this mechanism-design process, any
interim incentive-efficient outcome can be achieved as a “reasonable”
equilibrium. A partial converse, using strong restrictions on equilibria,
singles out these interim incentive-efficient outcomes as especially rea-
sonable, in a weak but not implausible sense. Thus, an arbitrator whose
suggestions are taken seriously (as they might well be in a game with such
formidable multiple-equilibrium problems) might be able to use this
mechanism-design process to get around the difficulties associated with
bargainers already knowing their private information. This is accom-
plished by creating incentives for each bargainer to ignore proposals by
the other bargainer that favor one or more of his types more (or less) than
the arbitrator has suggested is appropriate. Although the rules of this
mechanism-design process can be specified using only bargainers’
common-knowledge information, they are highly sensitive to the details
of the environment, and are quite complex. Even though this sensitivity
may be necessary to achieve interim incentive-efficiency when mecha-
nism design takes place after bargainers have already observed their types,
the associated complexity makes it clear that this process is far removed
from anything that could be taken literally as a solution to the problem.
(Crawford (1985) discusses some recent work that may make it possible to
achieve good results in a more decentralized way.) However, the part of
the arbitrator’s task thatinvolves figuring out how to reconcile bargainers’
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demands with their incentives appears quite realistic. This suggests that
further analysis of the process of mechanism design might lead to a deeper
understanding of what arbitrators actually do.

NOTES

1. Explicit randomization would be considered bizarre in arbitration circles, but
uncertainty about the arbitrator’s intentions has been deemed vital to the
effectiveness of arbitration since the time of King Solomon, albeit for reasons I
consider misguided (see Section 17.5). In practice, one would expect to see
randomization only in “purified” form, based on private information pos-
sessed by the arbitrator, which in his opinion is not relevant to finding the best
settlement.

2. Access to bargainers’ private information would, of course, help the arbitrator
mitigate incentive problems. But access to their common-knowledge informa-
tion would be important only if information-gathering difficulties are much
greater than is usually assumed in the incentives literature.

The most striking evidence of the importance of information-gathering
costs is implicit in Stevens’s (1966) proposal to replace conventional compul-
sory arbitration with final-offer arbitration, and its subsequent widespread
adoption. Recall that in conventional arbitration, the arbitrator is permitted to
impose an unrestricted settlement if negotiations break down, whereas in the
simplest form of final-offer arbitration, he is required to choose without com-
promise between bargainers final offers. Stevens’s proposal was motivated by
the common belief that, in rendering their decisions, arbitrators tend to spllt
the difference between bargainers’ final posmons This makes concessions in
bargaining doubly costly to a bargainer, since they then reduce the value of the
arbitral settlement, if one occurs, as well as the negotiated settlement. The
resulting distortion of bargainers’ concession decisions is known as the chilling
effect. Final-offer arbitration presumably weakens the chilling effect by making
it possible for concessions to improve the arbitral settlement for the bargainer
who makes them, by raising the probability that his final offer will be selected.

Stevens viewed final-offer arbitration as a way of intimidating bargainers
into negotiating their own agreements (thought desirable both intrinsically and
for efficiency reasons) without undermining their ability to do so by the tradi-
tional series of gradual concessions. He did not notice that if intimidation was
the true function of arbitration, it would be better accomplished in a nondissi-
pative way (e.g., by fines) than by threatening bargainers with a risky settle-
ment that might not reflect their preferences as efficiently as possible. (This has
been suggested, more recently, by Hirsch and Donn (1982), for example.) It is
significant that Stevens did not suggest (or apparently even consider) eliminat-
ing the chilling effect by sealing the bargaining record and requiring the arbi-
trator, when he is called upon to render a judgment, to gather his own informa-
tion. This is now done sometimes, and has been discussed, for example, by
Wheeler (1977). However, despite great dissatisfaction with both forms
of arbitration, it is far from universal. I conclude from this that information-
gathering costs are probably of much greater significance than the focus of
research in mechanism design would suggest.

3. Itisamusing that one of the most hotly contested issues in collective bargaining
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is whether such an arbitrator can award, as part of his settlement, binding
interest arbitration as the impasse procedure in the next negotiations.

4. This issue is misperceived in the arbitration literature partly because of exces-
sive reliance on one-issue models of bargaining, in which inefficiency arises
solely from the interaction of risk aversion and arbitral risk. This elimination
from consideration of the most important sources of inefficiency overstates the
case for the rational-optimism explanation. See Crawford (1981) for an elabo-
ration of this point.

5. Myerson and Satterthwaite (1983), for example, demonstrate that this is true,
in a class of examples, for the bargaining rules studied by Chatterjee and
Samuelson (1983). This is no longer the case, however, as demonstrated by
Samuelson (1984), when Myerson and Satterthwaite’s assumption that bar-
gainers’ valuations of the object to be traded are independent is relaxed.
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