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Preface

A profitable decision rule for us has been, ‘if Peter Whittle wrote it, read it.’

Whittle’s 1963 book Prediction and Regulation by Linear Least Squares Meth-

ods (reprinted and revised in 1983), taught early users of rational expectations

econometrics, including ourselves, the classical time series techniques that were

perfect for putting the idea of rational expectations to work. When we be-

came aware of Whittle’s 1990 book, Risk Sensitive Control and later his 1996

book Optimal Control: Basics and Beyond, we eagerly worked our ways through

them. These and other books on robust control theory like Başar and Bernhard’s

H∞ -Optimal Control and Related Minimax Design Problems: A Dynamic Game

Approach provide tools for rigorously treating the ‘sloppy’ subject of how to

make decisions when one does not fully trust a model and open the possibility

of rigorously analyzing how wise agents should cope with fear of misspecifica-

tion. While Whittle mentioned a few economic examples, the methods that he

and other authors of robust and risk sensitive control theories had developed

were mainly designed for types of problems that differ in some significant ways

from economic problems. Therefore, we soon recognized that risk sensitive and

robust control methods would require some modifications if they were to be ap-

plied successfully to economic problems. That is why we started the research

that led to this book. We do not claim to have attained a general theory of how

to make economic decisions while acknowledging misspecification, but only to

have begun to study this difficult and important problem that has concerned

every researcher who has estimated a rational expectations model, every central

banker who has used dubious models to guide his monetary policy decisions, and

every macroeconomist who has ever viewed formal estimation as wrongheaded

and instead ‘calibrated’ the parameters of a complete, but admittedly highly

stylized, model.

– xiii –



Part I

Motivation and main ideas



Chapter 1
Introduction

1.1. Generations of control theory

Figure 1.1.1 reproduces John Doyle’s cartoon of developments in optimal con-

trol theory since World War II.1 Two scientists in the upper panels use different

mathematical methods to devise control laws and estimators. The person on the

left uses classical methods (Euler equations, z -transforms, lag operators) and

the one on the right uses modern recursive methods (Bellman equations, Kalman

filtering). The scientists in both top panels completely trust their models of the

transition dynamics and use mathematical procedures that assume that those

models are true. The gentleman in the lower panel shares the objectives of his

predecessors from the 50s, 60s, and 70s, but regards his model only as an approx-

imation to an unknown and unspecified model that he thinks actually generates

the data. He seeks decision rules and estimators that work over a continuous set

of models near his approximating model. The H∞ in his postmodern tatoo and

the θ on his staff are alternative ways to express his doubts about his model

by measuring the discrepancy of the true data generating mechanism from his

approximating model. As we shall learn in later chapters, the parameter θ is

interpretable as a penalty on a measure of discrepancy (the entropy) between

his approximating model and the model that actually generates the data. The

H∞ refers to a measure of his objective function under a greatest lower bound

on the multiplier θ .

1 John Doyle consented to let us reproduce this drawing, which appears in Zhou, Doyle,

and Glover (1996). We have changed Doyle’s notation by making θ (Doyle’s µ) the free

parameter borne by the post-modern control theorist.

– 1 –



2 Introduction

Figure 1.1.1: A pictorial history of control theory (courtesy

John Doyle). Beware of theorists bearing a free parameter,

θ .

1.2. Control theory and rational expectations

Classical and modern control theory supplied perfect tools for applying Muth’s

(1961) concept of rational expectations to a variety of problems in dynamic

economics. Rational expectations initially diffused slowly after Muth’s (1961)

paper precisely because in 1961 most economists were not sufficiently familiar

with the tools lampooned in the top panel of Fig. 1.1.1. Rational expectations

took hold in the 1970’s only after a generation of young macroeconomists had

learned those tools. Ever since, macroeconomists and rational expectations
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econometricians have gathered inspiration and ideas from classical and recursive

control theory.2

Ironically, when macroeconomists began to apply classical and modern con-

trol theory in the late 1970’s, control theorists and applied mathematicians were

trying to find ways to relax the assumption that the decision maker trusts his

model. They sought new control and estimation methods to repair adverse out-

comes they had experienced from applying classical and modern control theory

to a variety of engineering and physical problems. They thought that model mis-

specification explained why actual outcomes were sometimes much worse than

control theory predicted and therefore sought controls and estimators that ac-

knowledged model misspecification. That is how robust control and estimation

theory came into being.

1.3. Misspecification and rational expectations

It is an understatement to say that model misspecification is at least as much of

a problem in economics as it is in physics and engineering. This book borrows,

adapts, and extends tools from the literature on robust control and estimation

to model decision makers who regard their models as approximations. A de-

cision maker believes that the data come from an unknown member of a set

of unspecified models near his approximating model.3 Concern about model

misspecification induces a decision maker to want decision rules that work over

that set of nearby models.

If they lived inside rational expectations models, decision makers would

not have to worry about model misspecification. They could trust their model

because subjective and objective probability distributions (i.e., models) coincide.

Rational expectations theorizing removes agents’ personal models as elements

of the model.4

2 See Stokey and Lucas with Prescott (1989), Ljungqvist and Sargent (2004), and Hansen

and Sargent (1991) for many examples.
3 We say unspecified because they are formulated as vague perturbations to the decision

maker’s approximating model.
4 In a rational expectations model, each agent’s model (i.e., his subjective joint proba-

bility distribution over exogenous and endogenous variables) is an equilibrium outcome, not

something to be specified by the model builder. Its early advocates in econometrics empha-

sized the empirical power that followed from the fact that the rational expectations hypothesis
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Although the artificial agents within a rational expectations model trust the

model, a model’s author often doubts it, especially after performing specification

tests or when calibrating it. There are several good reasons for wanting to extend

rational expectations models to acknowledge fear of model misspecification.5

First, doing so accepts Muth’s (1961) intention of putting econometricians and

the agents being modelled on the same footing: because econometricians face

specification doubts, the agents inside the model might too.6 Second, in vari-

ous contexts, rational expectations models under-predict prices for risk that are

revealed by asset market data. For example, relative to standard rational ex-

pectations models, actual asset markets seem to assign prices to macroeconomic

risks that are too high. The equity premium puzzle is one manifestation of this

is mispricing.7 Agents’ caution in responding to concerns about model mis-

specification can raise the theoretical values of the prices to be assigned to those

macroeconomic risks. This reason for studying robust decisions is positive and

is to be judged by how it helps explain market data. A third reason for studying

the robustness of decision rules to model misspecification is normative. A long

tradition dating back to Friedman (1953), Bailey (1971), Brainard (1967) and

Sims (1971, 1972) advocates framing macroeconomic policy rules and interpret-

ing econometric findings in light of doubts about model specification, though

how those doubts have been formalized in practice has varied.

eliminates all free parameters associated with peoples’ beliefs. For example, see Hansen and

Sargent (1980) and Sargent (1981).
5 In chapter 16, we explore various mappings, the fixed points of which can be used to

restrict a robust decision makers’ approximating model. As is usually the case with rational

expectations models, we are silent about the process by which an agent arrives at his approx-

imating model. A qualification to the claim that rational expectations models do not model

the process by which agents’ model is formed comes from the literature on learning, in which

agents who use recursive least squares learning schemes eventually come to have rational ex-

pectations. Early examples of such work are Bray (1982), Marcet and Sargent (1989), and

Woodford (1990). See Evans and Honkapohja (2001) for new results.
6 This argument might offend someone with a preference against justifying modelling as-

sumptions on behavioral grounds.
7 A related finding is that rational expectations models impute low costs to business cycles.

See Hansen, Sargent, and Tallarini (1999), Tallarini (2000), and Alvarez and Jermann (1999).
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1.4. Our extensions of robust control theory

When we say that we ‘adapt and extend’ robust control theory for economic

problems, we have three main things in mind: discounting, a reinterpretation of

the ‘worst case shock process’, and equilibrium reasoning.

1.4.1. Discounting

Most treatments of robustness in the control theory treat undiscounted prob-

lems, and the few formulations of discounting that do appear differ from the way

macroeconomics would set things up.8 In this book, we formulate discounted

problems that preserve the recursive structure of decision problems that macroe-

conomists and other applied economists use so widely.

1.4.2. Representation of worst case shock

As we shall see, in existing formulations of robust control theory, the misspecifi-

cation shocks and the worst case shock process, in particular, is allowed to feed

back on endogenous state variables that are influenced by the decision maker,

an outcome that in some contexts appears to confront the decision maker with

peculiar incentives to manipulate future values of some of those shocks by ad-

justing his current decisions. Some critics of robust control theory in economics

like Christopher Sims have questioned the plausibility of the notion that the de-

cision maker is concerned about any misspecifications that can be represented

in terms of shocks that feed back on state variables under his partial control. In

chapter 6, we use a device informally known as the ‘Big K , little k trick’ from

the literature on recursive competitive equilibria to reformulate perturbations to

an approximating model, and the worst case shock in particular, as exogenous

processes that cannot be influenced by the decision maker. As we illustrate in

the analysis of the permanent income model of chapter 9, this reinterpretation

of the worst case shock process is useful in a variety of economic models.

8 See Whittle (1990) and Hansen and Sargent (2005XXX-commitment).
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1.4.3. Multiple agent settings

In formulations from the control theory literature, a description of the decision

maker’s model of the state transition law is a primitive element of the statement

of the problem. In multi-agent dynamic economic problems, it is not. Instead,

the parts of the decision maker’s transition law governing endogenous state

variables, such as aggregate capital stocks, are affected by other agents’ choices

and therefore are outcomes of equilibrium reasoning. In this book, we describe

ways of formulating the decision maker’s approximating model when he and

other decision makers are all concerned about model misspecification, perhaps

in differing degrees. We proceed in a methodologically conservative way by

imposing a common approximating model on all decision makers, but allow

them to express different degrees of mistrust of that model. As we explain in

chapters 15, 11, 16, and 18, this is a conservative procedure in the sense that it

adapts the concept of a Nash equilibrium to include concerns about robustness.

1.5. Robust control theory, shock serial correlations, and
rational expectations

Ordinary optimal control theory assumes that decision makers know the model

in the form of a transition law linking the motion of state variables to controls.

The optimization problem associates a distinct decision rule with each specifica-

tion of shock processes. Many aspects of rational expectations models flow from

this association.9 For example, the cornerstone of the Lucas (1976) Critique is

the finding that, under rational expectations, decision rules are functionals of

the serial correlations of shocks. Rational expectations econometrics achieves

parameter identification by exploiting the structure of the function that maps

shock serial correlation properties to decision rules.10

Robust control theory alters the mapping from shock temporal properties

to decision rules. Robust control theory treats the decision maker’s model as an

approximation and seeks a single rule to use for a set of models that might govern

the data. The alternative models are specified vaguely in terms of distortions to

9 Stoke and Lucas with Prescott (1989) is a standard reference on using control theory to

construct dynamic models in macroeconomics.
10 See Hansen and Sargent (1980, 1981, 1991).
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the shock processes in the decision maker’s model. Because they are allowed to

feed back arbitrarily on the history of the states, such distortions can represent

general misspecifications of the dynamics.

As emphasized by Hansen and Sargent (1980, 1981, 1991), the econometric

content of the rational expectations hypothesis is a set of cross-equation re-

strictions that cause particular combinations of parameters characterizing the

stochastic processes impinging on agents’ constraint sets to appear in decision

rules. A concern for model misspecification alters these cross-equation restric-

tions by inspiring the robust decision maker to twist or slant those stochastic

processes in ways designed to make his decision rule less fragile to misspecifi-

cation. Formulas presented in chapters 2 and 6 imply that the Hansen-Sargent

(1980, 1981) formulas for those cross-equation restrictions also describe the be-

havior of the robust decision maker, provided that we use the appropriated

slanted laws of motion in the Hansen-Sargent forecasting formulas. This finding

is interesting because it shows how robust control theory adds a concern about

misspecification in a way that preserves the econometric discipline imposed by

rational expectations econometrics.

1.6. Entropy in specification analysis in econometrics

The statistical and econometric literatures on the analysis of model misspecifi-

cation supply tools for measuring discrepancies between models and for thinking

about decision making in the presence of model misspecification.

Where y∗ denotes next period’s value of a state vector y , let the data

truly come from a Markov process with one step transition density f(y∗|y)
for a Markov process that we assume has invariant distribution µ(y). is the

invariant Let the econometrician’s model be fα(y∗|y) where α ∈ A and A is a

compact set of values for a parameter vector α . If there is no α ∈ A such that

fα = f , we say that the econometrician’s model is misspecified. Assume that

the econometrician estimates α by maximum likelihood. Under some regularity

conditions, the maximum likelihood estimator α̂o converges in large samples
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to11

plim α̂o = argminα∈A

∫

I (α, f) (y) dµ (y) ≡ I (f) (1.6.1)

where I(α, f)(y) is the conditional relative entropy of model f with respect to

model fα defined as the expected value of the logarithm of the likelihood ratio

evaluated with respect to the true conditional density f(y∗|y)

I (α, f) (y) =

∫

log

(

f (y∗|y)
fα (y∗|y)

)

f (y∗|y) dy∗. (1.6.2)

The quantity I(α, f)(y) is called the conditional entropy of model fα rel-

ative to model f . It can be shown that I(α, f)(y) ≥ 0. When the model is

misspecified, the minimized value of relative entropy defined on the right side

of (1.6.1) is positive. Figure 1.6.1 depicts how the probability limit of the esti-

mator of the parameters of a misspecified model αo makes I(f)(y) as small as

possible.

fαo
�������������� f

I(f)
A

Figure 1.6.1: Econometric specification analysis. Suppose

that the data generating mechanism is f and that the econo-

metrician fits a parametric class of models fα ∈ A to the

data and that f /∈ A . Maximum likelihood estimates of α

eventually select the misspecified model the model fαo
that

is closest to f as measured by entropy I(f).

Sims (1993) and Hansen and Sargent (1993) have used the preceding analy-

sis of estimation of misspecified models has been used to deduce the consequences

of various types of misspecification for estimates of particular parameters of dy-

namic stochastic models.12 For example, they studied the consequences of using

11 Versions of this result occur in White (1982), Vuong (1989), Sims (1993), Hansen and

Sargent (1993), and Gelman et. al. (XXXX).
12 Also see Vuong (1989).
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seasonally adjusted data to estimate rational expectations models of decisions

makers who actually base their decisions on raw seasonally unadjusted data.

1.7. Acknowledging misspecification in decision making

To study decision making in the presence of model misspecification, we turn

this analysis on its head by taking fαo
as a given unreliable approximating model

and surrounding it with a set of unknown possible data generating processes,

one unknown element of which is the true process f . See figure 1.7.1. Decision

makers know their approximating model fαo
, but because they don’t know f ,

they must base their decisions on the only explicitly specified model available,

namely, the misspecified fαo
. We say nothing about the process of discovery

that culminated in the decision maker’s approximating model fαo
(y∗|y).13 We

also take for granted the decision maker’s parameter estimates αo .14 We impute

to the decision maker some doubts about his model. In particular, the decision

maker suspects that the data are actually generated by another model f(y∗|y)
with relative entropy I(αo, f)(y). The decision maker thinks that his model is a

good approximation in the sense that I(αo, f)(y) is not too large, and wants to

make decisions that will be good when f 6= fαo
. We endow the decision maker

with a discount factor β and construct the following intertemporal measure of

model misspecification:15

I = Ef

∞
∑

t=0

βtI (αo, f) (yt)

where Ef is the mathematical expectation evaluated with respect to the dis-

tribution f . Our decision maker confronts model misspecification by seeking

a decision rule that will work well across a set of models for which I ≤ η̃0 ,

where η̃0 measures the set of models F surrounding his approximating model

13 Tom: here is where we should cite Kreps’s chapter 11.
14 In chapter 8, we entertain the hypothesis that the decision maker has estimated his

model by maximum likelihood using a data set of length T and use Bayesian detection error

probabilities to guide the choice of a set of models against which the decision maker wants to

be robust.
15 Hansen and Sargent (2005a, 2005b XXXX) provide an extensive discussion of reasons

for adopting this measure of model misspecification.
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fα . Fig. 1.7.1 portrays the decision maker’s view of the world. The decision

maker wants a single decision rule that will work reliablly for all models in

the set displayed in Fig. 1.7.1.16 This book describes how he can form such a

robust decision rule by using a Bellman equation in which he maximizes his in-

tertemporal objective over decision rules while a hypothetical malevolent nature

minimizes that same objective by choosing a model f . Of course, this hypothet-

ical malevolent nature is just a device that the decision maker uses to construct

a lower bound on the performance of his rule. A decision maker interested in

robustness is naturally interested in constructing bounds on the performance of

a decision rule, and the malevolent agent assists him in that endeavor.

fαo

I(f)< η
 f

η

Figure 1.7.1: Robust decision making: A decision maker

with model fαo
suspects that the data are actually generated

by a nearby model f , where I(αo, f) ≤ η .

16 Note how this uproots the one-to-one mapping from transition laws f to decision rules

that is emphasized in the Lucas (1976) critique.
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1.8. Organization

This monograph displays alternative ways to express and respond to a decision

maker’s doubts about model specification. We study both control and estima-

tion (or filtering) problems, and both single– and multiple–agent settings. As

already mentioned, we adapt and extend results from the robust control lit-

erature in two important ways. First, while the control literature focuses on

undiscounted problems, we formulate discounted problems. Incorporating dis-

counting involves substantial work, especially in chapter 7, and requires paying

special attention to initial conditions. Second, we analyze three types of eco-

nomic environments with multiple decision makers who are concerned about

model misspecification: (1) a competitive equilibrium with complete markets

in history-date contingent claims and a representative agent who fears model

misspecification (chapters 11 and 12); (2) a Markov perfect equilibrium of a

dynamic game with multiple decision makers who fear model misspecification

(chapter 15); and (3) a Stackelberg or Ramsey problem in which both the leader

and the followers fear model misspecification (chapters 16 and 18). Thinking

about model misspecification in these environments requires that we introduce

an equilibrium concept that extends rational expectations. We stay mostly,

but not exclusively, within a linear quadratic framework (see chapter 17 for the

more general case), in which a pervasive certainty equivalence principle allows

a nonstochastic presentation of most of the control and filtering theory.

The monograph is organized as follows. Chapter 2 summarizes a set of

practical results at the lowest possible technical level. A message of this chapter

is that, although sophisticated arguments from chapters 6 and 7 are needed

fully to justify the techniques of robust control, the techniques themselves are

as easy to apply as the ordinary dynamic programming techniques that are now

widely used throughout macroeconomics and applied general equilibrium theory.

Chapter 2 uses linear quadratic dynamic problems to convey this message, but

the message applies more generally, as we shall illustrate in chapters 17 and 18.

Chapters 3 and 4 are about optimal control and filtering when the decision

maker trusts his model. Chapter 3 sets forth important principles by summa-

rizing results about the classic optimal linear regulator problem. This chapter

builds on the survey by Anderson, Hansen, McGrattan, and Sargent (1996)

and culminates in a description of invariant subspace methods for solving lin-

ear optimal control and filtering problems and also for solving dynamic linear
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equilibrium models. Later chapters apply these methods to various problems:

to compute robust decision rules as solutions of zero-sum two-player games; to

compute robust filters via another zero-sum two-player game; and to compute

equilibria of robust Stackelberg or Ramsey problems in macroeconomics.

Chapter 4 emphasizes that the Kalman filter is the dual (in a sense famil-

iar to economists from their use of Lagrange multipliers) of the basic linear-

quadratic dynamic programming problem of chapter 3. We exploit duality re-

lations often in subsequent chapters.

Within a one-period setting, chapter 5 introduces two-person zero-sum

games as a way to induce robust decisions. Although the forms of model misspec-

ifications considered in this chapter are very simple relative to those considered

in subsequent chapters, the static setting of chapter 5 is a good one for address-

ing some important conceptual issues. In particular, in this chapter for the first

time we state multiplier and constraint problems, alternative optimization prob-

lems that induce robust decision rules. We use the Lagrange multiplier theorem

to show the connection between the two problems.

Chapters 6 and 7 extend and modify results in the control literature to

formulate robust control problems with discounted quadratic objective functions

and linear transition laws. Incorporating discounting requires carefully restating

the control problems used to induce robust decision rules. Chapters 6 and

7 describe two ways to alter the discounted linear quadratic optimal control

problem in a way to induce robust decision rules: (1) to form one of several

two-player, zero-sum games in which nature chooses from a set of models in

a way that makes the decision maker want robust decision rules; and (2) to

adjust the continuation value function in the dynamic program in a way that

encodes the decision maker’s preference for a robust rule. The continuation value

that works comes from the minimization piece of one of the zero-sum two-player

games in (1). In category (1), we present a detailed account of several two-person

zero-sum games with different timing protocols, each of which induces a robust

decision rule. As an extension of category (2), we present three specifications of

preferences that embed a preference for robust rules. Two of them are expressed

in the frequency domain: the H∞ and entropy criteria. The entropy objective

function summarizes model specification doubts with a single parameter. We

describe how that parameter relates to a Lagrange multiplier in a two-player

zero-sum game, and also to the risk-sensitivity parameter of Jacobson (1973)
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and Whittle (1990), as modified for discounting by Hansen and Sargent (1995).

Chapters 6 and 7 show how robustness is induced by using min-max strate-

gies: the decision maker maximizes while nature minimizes over a set of models

that are close to the approximating model. Chapter 8 gives our method for cal-

ibrating a measure of proximity based on statistical detection theory.17 There

are alternative timing protocols in terms of which a zero-sum two player game

can be cast. A main finding of chapter 6 is that zero-sum games that make

a variety of different timing protocols share outcomes and representations of

equilibrium strategies. This important result lets us use recursive methods to

compute our robust rules and it facilitates important analytical approaches for

computing equilibria in multiple agent economics.

Arthur Goldberger and Robert E. Lucas, Jr., warned applied economists to

beware of theorists bearing free parameters (see Fig. 1.1.1). Relative to settings

in which decision makers completely trust their models, the multiplier and the

constraint problems of chapters 6 and 7 each bring one new free parameter that

expresses a concern about model misspecification, θ for the multiplier problem

and η for the constraint problem. Each of these parameters measures sets of

models near the approximating model against which the decision maker seeks a

robust rule. Chapter 8 proposes a way to calibrate these parameters by using

the statistical theory for discriminating models. We apply this theory in chapter

9.

Chapter 9 uses the permanent income model of consumption as a labora-

tory for illustrating some of the concepts from chapters 6 and 7. Because he

prefers smooth consumption paths, the permanent income consumer’s savings

are designed to attenuate the effects of income fluctuations on his consump-

tion. A robust consumer engages in a kind of precautionary savings because

he suspects error in the specification of the income process. We will also use

the model of chapter 9 as a laboratory for asset pricing in chapter 12. But

first, chapters 10 and 11 describe how to decentralize the solution of a planning

problem with a competitive equilibrium. Chapter 10 sets out a class of dynamic

economies and describes two decentralizations, one with trading of history-date

contingent commodities once and for all at time zero, and another with sequen-

tial trading of one-period Arrow securities. In that sequential setting, we give

a recursive representation of equilibrium prices. Chapter 10 describes a setting

17 See Anderson, Hansen, and Sargent (2003) for a further discussion.
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where the representative agent has no concern about model misspecification,

while chapter 11 extends the chapter 10 characterizations to situations where

the representative decision maker fears model misspecification.

Chapter 12 builds on the chapter 11 results to show how fear of model

misspecification affects asset pricing. We show how, from the vantage point

of the approximating model, a concern for robustness induces a multiplicative

adjustment to the stochastic discount factor, where the adjustment measures

fear that the approximating model is misspecified. The adjustment for robust-

ness mathematically resembles similar adjustments that finance experts used to

construct risk neutral probability measures for pricing assets. We describe the

basic theory within a class of linear quadratic general equilibrium models and

then a calibrated version of the permanent income model of chapter 9.

Chapter 13 extends the analysis of filtering from chapter 4 by describing

a discounted robust filtering problem that is dual to the control problem of

chapter 6. We discover this problem by stating and solving a conjugate problem

of a kind familiar to economists through duality theory. By faithfully following

where duality leads us, we discover a filtering problem that is peculiar (but

not necessarily uninteresting) from an economic stand point. There are two

peculiarities. First, the decision maker discounts the more distant past. Second,

‘bygones are not bygones’: the decision makers concerns about past returns

affect his current estimate of a hidden state vector.

Chapter 14 studies robust filtering again and, by using a different criterion

than chapter 13, finds a different robust filter. We argue that the chapter 14 filter

is the appropriate one for many problems and give some examples. The different

filter that emerge from chapters 13 and 14 illustrate how robust decision rules are

‘context specific’ in the sense that they depend on the common objective function

in the two-player zero-sum game that is used to induce a robust decision rule.

This theme will run through our monograph. Following Hansen, Sargent, and

Wang (2001), we use the permanent income model of chapter 9 as a laboratory

for illustrating a filtering problem.

Chapters 15 and 16 describe two more settings with multiple decision mak-

ers and introduce an equilibrium concept that extends rational expectations in

what we think is a natural way. In a rational expectations equilibrium, all de-

cision makers completely trust a common model and important aspects of that

model, those governing endogenous state variables, are equilibrium outcomes.
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The source of the powerful cross-equation restrictions that are the hallmark of ra-

tional expectations econometrics is that decision makers share a common model

and that model is presumed to govern the data.18 To preserve that empirical

power in our equilibria with multiple decision makers who fear model misspec-

ification, we impose that all decision makers share a common approximating

model.19 The pieces of that model that describe endogenous state variables are

equilibrium outcomes that depend on agents’ robust decision making processes,

and in particular, on how their min-max problems.

Chapter 15 describes how to implement this equilibrium concept in the

context of a two-player dynamic game in which the players share a common

approximating model and in which each player makes robust decisions by solv-

ing a two-player zero-sum game taking the approximating model as given. We

show how to compute the approximating model by appropriately stacking and

solving robust versions of the Bellman equations and first-order conditions for

the two decision makers. While the equilibrium imposes a common approximat-

ing model, the worst-case models of the two decision makers diverge because

their objectives diverge. In this restricted sense, the model produces a version

of endogenous heterogeneity of beliefs.

In chapter 16, we alter the timing protocol in a way that invites one decision

maker to manipulate the worst-case beliefs of the other decision makers and

thereby affect their decision rules. Chapters 16 and 18 study versions of a

macroeconomic control problem, called a Ramsey problem, where a leader wants

optimally to control followers who are forecasting the leader’s controls. We

describe how to compute a robust Stackelberg policy when the Stackelberg leader

can commit to a rule. We accomplish that by using a robust version of the

optimal linear regulator or else one of the invariant subspace methods of chapter

3.

Chapter 17 tells how the key ideas about robustness generalize to models

that are not linear-quadratic. Then chapter 16 modifies Lucas and Stokey’s

18 Lars: you might want to edit this footnote. The restriction that they share a

common model is the feature that makes free parameters governing expectations disappear.

The restriction that that common model actually governs the data is what legitimizes a law

of large numbers that underlies rational expectations econometrics.
19 In the empirical applications of Hansen, Sargent, and Tallarini (1999) and Anderson,

Hansen, and Sargent (2003), we also maintain the second aspect of rational expectations

modelling, namely, that the decision makers’ approximating model actually does generate the

data.
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model of optimal taxation by allowing the representative consumer to doubt

the specification of the Markov process for government expenditures. That al-

teration gives the Ramsey planner a motive to manipulate the representative

consumer’s worst case model as part of the process by which the planner ma-

nipulates equilibrium prices in solving the Ramsey problem.



Chapter 2

Basic ideas and methods

There are two different drives toward exactitude that will never attain

complete fulfillment, one because “natural” languages always say something

more than formalized languages can – natural languages always involve a

certain amount of noise that impinges on the essentiality of the information

– and the other because, in representing the density and continuity of the

world around us, language is revealed as defective and fragmentary, always

saying something less with respect to the sum of what can be experienced.

— Italo Calvino, Six Memos for the Next Millenium, 1996, pp. 74-75

2.1. Introduction

Standard control theory tells a decision maker how to make optimal decisions

when his model is correct. Robust control theory tells him how to make good de-

cisions when his model approximates the correct one. This chapter summarizes

methods for computing robust decision rules when the decision maker’s crite-

rion function is quadratic and his approximating model is linear.1 We modify

the Bellman equation and the Riccati equation associated with the standard

linear-quadratic dynamic programming problem to incorporate concerns about

misspecification of the transition law. The adjustments to the Bellman equation

have alternative representations, each of which has practical uses in various con-

texts.2 This chapter concentrates mainly on single-agent decision theory but

chapters 10, 15, 16, and 18 extend the theory to environments with multiple

decision makers, all of whom are concerned about model misspecification. In

the process, we describe equilibrium concepts that generalize the notion of a

rational expectations equilibrium to situations in which decision makers have

different amounts of confidence in a common approximating model.3 Chapter

1 Later chapters supply technical details that justify assertions made in this chapter.
2 Chapter 6 studies these alternative representations in detail.
3 Chapter 10 discusses competitive equilibria in representative agent economies; chapter 15

injects motives for robustness into Markov perfect equilibria for two-player dynamic games;

and chapters 16 and 18 study Stackelberg and Ramsey problems. In Ramsey problems, a

– 17 –
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17 shows that many of the insights of this chapter extend beyond the linear

quadratic setting.

2.2. Approximating models

We begin with the single agent linear quadratic problem. Let yt be a state

vector and ut a vector of controls. A decision maker’s model takes the form of

a linear state transition law

yt+1 = Ayt +But + Cǫ̌t+1, (2.2.1)

where {ǫ̌t} is an i.i.d. Gaussian vector process with mean 0 and identity con-

temporaneous covariance matrix. The decision maker thinks that (2.2.1) ap-

proximates another model that governs the data but that he cannot specify.

How should we represent the notion that (2.2.1) is misspecified? The i.i.d.

random process ǫ̌t+1 can represent only a very limited class of approximation

errors and in particular cannot depict misspecified dynamics such as nonlinear

and time-dependent feedback of yt+1 on past states. To represent dynamic

misspecification,4 we surround (2.2.1) with a set of models of the form

yt+1 = Ayt +But + C (ǫt+1 + wt+1) , (2.2.2)

where {ǫt} is another i.i.d. Gaussian process with mean zero and identity co-

variance matrix and wt+1 is a vector process that can feed back in a possibly

nonlinear way on the history of y :

wt+1 = gt (yt, yt−1, . . .) , (2.2.3)

government chooses among competitive equilibria of a dynamic economy. A Ramsey problem

too ends up looking like a single-agent problem, the single agent being a benevolent government

that faces a peculiar set of constraints that represent competitive equilibrium allocations.
4 In appendix A and chapters 5 and 17, we allow a broader class of misspecifications.

Chapter 17 represents the approximating model as a Markov transition density and considers

misspecifications that twist probabilities over future states. When the approximating model

is Gaussian, many results of this chapter survive even though (2.2.2) ignores an additional

adjustment to the innovation covariance matrix of the distorted model. In many applications,

the adjustment to the covariance matrix is quantitatively insignificant. It vanishes in the case

of continuous time. See page 400.
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where {gt} is a sequence of measurable functions. When (2.2.2) generates

the data, it is as though the errors ǫ̌t+1 in model (2.2.1) are distributed as

N (wt+1, I) rather than as N (0, I). Thus, we capture the idea that the ap-

proximating model (2.2.1) is misspecified by allowing the conditional mean of

the shock vector in the model (2.2.2) that actually generates the data to feed

back arbitrarily on the history of the state. To express the idea that model

(2.2.1) is a good approximation when (2.2.2) generates the data, we restrain

the approximation errors by

E0

∞
∑

t=0

βt+1w′
t+1wt+1 ≤ η0, (2.2.4)

where Et denotes mathematical expectation evaluated with model (2.2.2) and

conditioned on yt = [yt, . . . , y0] . In section 2.3 and chapter 8, we shall interpret

the left side of (2.2.4) as a statistical measure of the discrepancy between the

distorted and approximating models.

The decision maker believes that the data are generated by a model of the

form (2.2.2) with some unknown process wt satisfying (2.2.4). The decision

maker forsakes trying to improve his specification by learning because η0 is so

small that statistically it is difficult to distinguish model (2.2.2) from (2.2.1)

using a time series {yt}T
t=1 of moderate size T , an idea that we develop in

Chapter 8.5

The decision maker’s distrust of his model (2.2.1) makes him want good

decisions over a set of models (2.2.2) satisfying (2.2.4). Such decisions are said

to be robust to model misspecification.

We compute robust decisions rules by solving one of several distinct but

related two-player zero-sum games: a maximizing decision maker chooses con-

trols {ut} and a minimizing player (a ‘malevolent’ or ‘evil’ agent) chooses model

distortions {wt+1} . The games share common players, actions, and payoffs, but

assume different timing protocols. Nevertheless, as we show in chapters 6 and

7, equilibrium outcomes and decision rules for the games coincide. Important

technicalities must be sorted through to verify this claim,6 but their equivalence

makes the games easy to solve. Computing robust decision rules comes down

5 However, see Hansen and Sargent (2005,nocommitXXXXX) for a way to include a robust

form of learning. Also, see chapter 14.
6 The main thing that generates this outcome is that all of them are zero-sum games, a

feature that perfectly misaligns the preferences of the two players.
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to solving Bellman equations for dynamic programming problems that are very

similar to ones routinely used today throughout macroeconomics and applied

economic dynamics. Before later chapters assemble the results needed to sub-

stantiate these claims, this chapter quickly summarizes how to compute robust

decision rules with standard methods.

We begin with the ordinary linear quadratic dynamic programming prob-

lem without model misspecification, called the optimal linear regulator. Then

we describe how robust decision rules can be computed by solving another op-

timal linear regulator problem. Next we briefly describe Lagrangian (or Hamil-

tonian) methods. We close by highlighting material from chapter 16 that shows

how those Lagrangian methods achieve robust control of forward-looking macro

models and thereby solve robust Ramsey or Stackelberg problems.

2.2.1. Dynamic programming without model misspecification

The standard dynamic programming problem assumes that the transition law

is correct.7 Let the one-period loss function be r(y, u) = −(y′Qy + u′Ru)

where the matrices Q and R are symmetric and satisfy some stabilizability and

detectability assumptions set forth in chapter 3. The optimal linear regulator

problem is

−y0Py0 − p = max
{ut}∞

t=0

E0

∞
∑

t=0

βtr (yt, ut) , 0 < β < 1, (2.2.5)

where the maximization is subject to (2.2.1), y0 is given, E denotes the math-

ematical expectation operator evaluated with respect to the distribution of ǫ̌ ,

and E0 denotes the mathematical expectation conditional on time 0 informa-

tion, namely the state y0 . Letting y∗ denote next period’s value of y , the

linear constraints and quadratic objective function in (2.2.5), (2.2.1) imply the

Bellman equation

−y′Py − p = max
u

E [r (y, u) − βy∗′Py∗ − βp]
∣

∣

∣y (2.2.6)

where the maximization is subject to

y∗ = Ay +Bu+ Cǫ̌, (2.2.7)

7 Many technical results and computational methods for this problem are catalogued in

chapter 3.
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where ǫ̌ is a random vector with mean zero and identity variance matrix.

Subject to assumptions about A,B,R,Q, β to be described in Chapter 3,

some salient facts about the optimal linear regulator are these:

1. The Riccati equation. The matrix P in the value function is a fixed point

of a matrix Riccati equation:

P = Q+ βA′PA− β2A′PB (R+ βB′PB)
−1
B′PA. (2.2.8)

The optimal decision rule is ut = −Fyt where

F = β (R+ βB′PB)
−1
B′PA. (2.2.9)

We can find the appropriate fixed point P and solve problem (2.2.5),

(2.2.1) by iterating to convergence on the Riccati equation (2.2.8) starting

from initial value P0 = 0.

2. Certainty equivalence. In the Bellman equation (2.2.6), the scalar p =
β

1−β tracePCC′ . The ‘volatility matrix’ C influences the value function

through p , but not through P . It follows from (2.2.8), (2.2.9) that the

optimal decision rule F is independent of the volatility matrix C . In

(2.2.1), we have normalized by setting Eǫ̌tǫ̌
′
t = I . Therefore, the matrix

C determines the covariance matrix CC′ of random shocks impinging on

the system. The finding that F is independent of the volatility matrix

C is known as the certainty equivalence principle: the same decision rule

ut = −Fxt emerges from stochastic (C 6= 0) and nonstochastic (C = 0)

versions of the problem. This kind of certainty equivalence fails to describe

problems that express a concern for model misspecification; but another

useful kind of certainty equivalence does. See page 27.

3. Shadow prices. Since the value function is −y′0Py0 − p , the vector of

shadow prices of the initial state is −2Py0 . Form a Lagrangian for (2.2.1),

(2.2.5) and let the vector −2βt+1µt+1 be Lagrange multipliers on the time

t version of (2.2.1). First-order conditions for a saddle point of the La-

grangian can be rearranged to form a first-order vector difference equation

in (yt, µt). The optimal policy solves this difference equation subject to

an initial condition for y0 and a transversality or ‘detectability’ condition
∑∞

t=0 β
tr(yt, ut) < +∞ . On page 47 and in chapter 3, we show that subject

to these boundary conditions, the vector difference equation consisting of
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the first-order conditions is solved by setting µt = Pyt , where P solves the

Riccati equation (2.2.8).

2.3. Measuring model misspecification: entropy

We use entropy to measure model misspecification. To interpret our measure of

entropy, we state a modified certainty equivalence principle for linear quadratic

models. Although we use a statistical interpretation of entropy, by appealing

to the modified certainty equivalence result to be stated on page 27, we shall

be able to drop randomness from the model but still retain a measure of model

misspecification that takes the form of entropy.

Let the approximating model again be (2.2.1) and let the distorted model

be (2.2.2). The approximating model asserts that wt+1 = 0. For convenience,

we analyze the consequences of a fixed decision rule and assume that ut = −Fxt .

Let Ao = A−BF and write the approximating model as

yt+1 = Aoyt + Cǫ̌t+1 (2.3.1)

and a distorted model as8

yt+1 = Aoyt + C (ǫt+1 + wt+1) . (2.3.2)

The approximating model (2.3.1) asserts that ǫ̌t+1 = (C′C)−1C′(yt+1 −Aoyt).

When the distorted model generates the data, yt+1 −Aoyt = Cǫ̌t+1 = C(ǫt+1 +

wt+1), which implies that the disturbances under the approximating model ap-

pear to be

ǫ̌t+1 = ǫt+1 + wt+1, (2.3.3)

so that misspecification manifests itself in a distortion to the conditional mean

of innovations to the state evolution equation.

How close is the approximating model to the distorted model that actually

governs the data? To measure the statistical discrepancy between the two mod-

els of the transition from y to y∗ , we use conditional relative entropy defined

as

I (f) (y) =

∫

log

(

f (y∗|y)
fo (y∗|y)

)

f (y∗|y) d y∗.

8 Appendix A allows a larger set of perturbations to the approximating model and gives

a definition of entropy appropriate for those perturbations.
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where fo denotes the one-step transition density associated with the approxi-

mating model and f is a transition density obtained by distorting the approxi-

mating model.9

In the present setting, the transition density for the approximating model

is

fo (y∗|y) ∼ N (Ay +Bu,CC′) ,

while the transition density for the distorted model is10

f (y∗|y) ∼ N (Ay +Bu+ Cw,CC′) ,

where both u and w are measurable functions of yt . To evaluate entropy, we

first compute the ratio of probability densities (i.e., the ratio of likelihood func-

tions) of yt+1 under the distorted and the approximating models, conditional on

yt . Because wt+1 is measurable with respect to the history yt , then conditional

on yt , the log likelihood of yt+1 for the distorted model is

logLd = − log
√

2π − .5ǫ′t+1ǫt+1.

Using (2.3.3), the conditional log likelihood of yt+1 under the approximating

model is

logLa = − log
√

2π − .5 (ǫt+1 + wt+1)
′ (ǫt+1 + wt+1) .

Therefore, the log likelihood ratio of the distorted model with respect to the

approximating model is

logLd − logLa = .5w′
t+1wt+1 + w′

t+1ǫt+1. (2.3.4)

9 Define the likelihood ratio m(f(y∗ |y)) =
f(y∗|y)
f0(y∗|y)

. Then notice that

I (f) (y) =

∫

(m log m) fo
(

y∗|y
)

dy∗ = Efo
[m log m|y] ,

where the subscript fo means integration with respect to the approximating model fo .

Hansen and Sargent (2005a, 2005b – commit and nocommit XXXX) exploit such representa-

tions of entropy. See appendix A.
10 In a continuous time diffusion setting, Hansen, Sargent, Turmuhambetova, and Williams

(2004XXX) describe how the assumption that the distorted model is difficult to distinguish

statistically from the approximating model means that it can be said to be absolutely continu-

ous over finite intervals with respect to the approximating model. They show that this implies

that the perturbations must then assume a continuous time version of the form imposed here

(i.e., they can alter the drift but not the volatility of the diffusion).
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Define entropy I(wt+1) as the mathematical expectation of the log likelihood

ratio (2.3.4), evaluated when the data are generated by the distorted model.

Because wt+1 is measurable with respect to the history yt , averaging (2.3.4)

over ǫt+1 gives the expected log likelihood

I (wt+1) = .5w′
t+1wt+1. (2.3.5)

In chapter 8, we describe how measures like (2.3.5) govern the distribution of

test statistics for discriminating among models. In chapter 12, we show how the

log likelihood ratio (2.3.4) also plays an important role in pricing risky securities

under an approximating model when a representative agent is concerned about

model misspecification.

As an intertemporal measure of the size of model misspecification, we take

R (w) = 2E0

∞
∑

t=0

βt+1I (wt+1) , (2.3.6)

where the mathematical expectation conditioned on y0 is evaluated with respect

to the distorted model (2.3.2). Then we impose constraint (2.2.4) on the set of

models or equivalently

R (w) ≤ η0. (2.3.7)

In the next section, we construct decision rules that work well over a set of

models that satisfy (2.3.7). Such robust rules can be obtained by finding the

best response for a maximizing player in the equilibrium of a two-player zero-

sum game.
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2.4. Two robust control problems

This section states two robust control problems, the constraint problem and

the multiplier problem. The two problems differ in how they treat constraint

(2.3.7). Under proper conditions, the two problems have identical solutions.

The multiplier problem is a robust version of a stochastic optimal linear regula-

tor. A certainty equivalence principle allows us to compute the optimal decision

rule for the multiplier problem by solving a corresponding nonstochastic optimal

linear regulator problem.

We state the

Constraint problem: Given an η0 satisfying η > η0 ≥ 0, a constraint problem

is

max
{ut}∞

t=0

min
{wt+1}∞

t=0

E0

∞
∑

t=0

βtr (yt, ut) (2.4.1)

where the extremization11 is subject to the distorted model (2.2.2) and the

entropy constraint (2.3.7), and where E0 , the mathematical expectation con-

ditioned on y0 , is evaluated with respect to the distorted model (2.2.2). Here

η measures the largest set of perturbations against which it is possible to seek

robustness.

Next we state the

Multiplier problem: Given θ ∈ (θ,+∞), a multiplier problem is

max
{ut}∞

t=0

min
{wt+1}∞

t=0

E0

∞
∑

t=0

βt
{

r (yt, ut) + βθw′
t+1wt+1

}

(2.4.2)

where the extremization is subject to the distorted model (2.2.2) and the math-

ematical expectation is also evaluated with respect to that model.

In the max-min problem, θ ∈ (θ,+∞] is a penalty parameter restraining

the minimizing choice of the wt+1 sequence. The lower bound θ is a so-called

‘breakdown point’ beyond which it is fruitless to seek more robustness because

the minimizing agent is sufficiently unconstrained that he can push the criterion

function to −∞ despite the best response of the maximizing agent. Formula

(7.3.13) for θ on page 184 shows how the value of θ depends on the return

11 Following Whittle (1990), extremization means joint maximization and minimization. It

is a useful term for describing saddle-point problems.
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function, the discount factor, and the transition law. Tests for whether θ > θ

are presented in formulas (6.2.9) and (6.2.10). We shall discuss the lower bound

θ and an associated upper bound η extensively in chapter 7.

Chapters 6 and 7 state conditions on θ and η0 under which the two prob-

lems have identical solutions, namely, decision rules ut = −Fyt and wt+1 =

Kyt . Chapter 6 establishes many useful facts about distinct versions of the

multiplier problem that employ alternative timing protocols12 and that justify

solving the multiplier problem recursively. Let −y′0Py0 − p be the value of

problem (2.4.2). It satisfies the Bellman equation13

−y′Py − p = max
u

min
w
E {r (y, u) + θβw′w − βy∗′Py∗ − βp} (2.4.3)

where the extremization is subject to

y∗ = Ay +Bu+ C (ǫ+ w) (2.4.4)

where ∗ denotes next period’s value, and ǫ ∼ N (0, I). As a tool to explore

the fragility of his decision rule, in (2.4.3) the decision maker pretends that a

malevolent nature chooses a feedback rule for a model-misspecification process

w .

In summary, to represent the idea that model (2.2.1) is an approximation,

the robust version of the linear regulator replaces the single model (2.2.1) with

the set of models (2.2.2) that satisfy (2.2.4). Before describing how robust

decision rules emerge from the two-player zero-sum game (2.4.2), we tell a kind

of certainty equivalence that applies to the multiplier problem.

12 For example, one timing protocol has the maximizing u player first commit at time 0

to an entire sequence, after which the minimizing w player commits to a sequence. Another

timing protocol reverses the order of choices. Other timing protocols have each player choose

sequentially.
13 In chapter 6 we show that the multiplier and constraint problems are both recursive, but

that they have different state variables and different Bellman equations. Nevertheless, they

lead to identical decision rules for ut .
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2.4.1. Modified certainty equivalence principle

On page 21,14 we stated a certainty equivalence principle that applies to the

linear quadratic dynamic programming problem without concern for model mis-

specification. It fails to hold when there is concern about model misspecification.

But there is another certainty equivalence principle that allows us to work with

a non-stochastic version of (2.4.3), i.e., one in which ǫt+1 ≡ 0 in (2.4.4). In

particular, it can be verified directly that precisely the same Riccati equations

and the same decision rules for ut and for wt+1 emerge from solving the ran-

dom version of the Bellman equation (2.4.3) as would from a version that sets

ǫt+1 ≡ 0. This fact allows us to drop ǫt+1 from the state-transition equation

and p from the value function −y′Py − p , without affecting formulas for the

decision rules.15 Nevertheless, inspection of the Bellman equation and the for-

mula for the decision rule for ut show that the ‘volatility matrix’ C does affect

the decision rule. Therefore, the version of the certainty equivalence principle

stated on page 21 — that the decision rule is independent of the volatility matrix

— does not hold when there are concerns about model misspecification. This is

interesting because of how a desire for robustness creates an avenue for the noise

statistics embedded in the volatility matrix C to impinge on decisions even with

quadratic preferences and linear transition laws.16 This effect is featured in the

precautionary savings model of chapter 9, a simple version of which we shall

sketch in section 2.8.

14 Tom: figure out why the pagetag is off by one page.
15 The certainty equivalence principle stated here shares with the one on page 21 the facts

that P can be computed before p ; it diverges from the certainty equivalence principle without

robustness on page 21 in that now P and therefore F both depend on the volatility matrix

C .
16 The dependence of the decision rule on the volatility matrix is an aspect that attracted

researchers like Jacobson (1973) and Whittle (1990) to risk-sensitive preferences (see chapter

17).
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2.5. Robust linear regulator

The modified certainty equivalence principle lets us attain robust decision rules

by positing the nonstochastic law of motion

yt+1 = Ayt +But + Cwt+1 (2.5.1)

with y0 given, where the w process is constrained by the nonstochastic coun-

terpart to (2.2.4). By working with this nonstochastic law of motion, we obtain

the robust decision rule for the stochastic problem in which (2.5.1) is replaced

by (2.2.2). The approximating model assumes that wt+1 ≡ 0. Even though

randomness has been eliminated, the volatility matrix C affects the robust de-

cision rule because it influences how the specification errors wt+1 feed back on

the state.

To induce a robust decision rule for ut , we solve the nonstochastic version

of the multiplier problem:

max
{ut}

min
{wt+1}

∞
∑

t=0

βt
[

r (yt, ut) + θβw′
t+1wt+1

]

(2.5.2)

where the extremization is subject to (2.5.1) and y0 is given. Let −y′0Py0 be

the value of (2.5.2). It satisfies the Bellman equation17

−y′Py = max
u

min
w

{r (y, u) + θβw′w − βy∗′Py∗} (2.5.3)

where the extremization is subject to the distorted model

y∗ = Ay +Bu+ Cw. (2.5.4)

In (2.5.3), a malevolent nature chooses a feedback rule for a model-misspecification

process w . The minimization problem in (2.5.3) induces an operator D(P ) de-

fined by

−y∗′D (P ) y∗ = min
w

{θw′w − y∗′Py∗} (2.5.5)

where the minimization is subject to the transition law y∗ = Ay + Cw . From

the minimization problem on the right of (2.5.5), it follows that18

D (P ) = P + θ−1PC
(

I − θ−1C′PC
)−1

C′P. (2.5.6)

17 Notice how this is a special case of (2.4.3) with p = 0. The modified certainty equivalence

principle implies that the same P matrix solves (2.5.3) and (2.4.3).
18 Before computing D in formula (6.2.10), we always check whether the matrix being

inverted on the right side of (2.5.6) is positive definite.
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The Bellman equation (2.5.3) can then be represented as

−y′Py = max
u

{r (y, u) − βy∗′D (P ) y∗} (2.5.7)

where now the maximization is subject to the approximating model y∗ = Ay +

Bu and concern for misspecification is reflected in our having replaced P with

D(P ) in the continuation value function. Notice the use of the approximating

model as the transition law in the Bellman equation (2.5.7) instead of the dis-

torted model that is used in (2.5.3), (2.5.4). The reason for the alteration in

transition laws is that Bellman equation (2.5.7) encodes the activities of the

minimizing agent within the operator D that distorts the continuation value

function.19

Define T (P ) to be the operator associated with the right side of the ordinary

Bellman equation (2.2.6) that we described in (2.2.8):

T (P ) = Q+ βA′PA− β2A′PB (R + βB′PB)
−1
B′PA. (2.5.8)

Then according to (2.5.7), P can be computed by iterating to convergence on

the composite operator T ◦D and the robust decision rule can be computed by

u = −Fx , where

F = β (R+ βB′D (P )B)
−1
B′D (P )A. (2.5.9)

The worst case shock obeys the decision rule w = Ky , where

K = θ−1
(

I − θ−1C′PC
)−1

C′P (A−BF ) . (2.5.10)

Several comments about the solution of (2.5.3) are in order.

1. Interpreting the solution. The solution of problem (2.5.2), (2.5.1) has a

recursive representation in terms of a pair of feedback rules

ut = −Fyt (2.5.11a)

wt+1 = Kyt. (2.5.11b)

19 The form of (2.5.7) links this formulation of robustness to the recursive form of Ja-

cobson’s (1973) risk-sensitivity criterion proposed by Hansen and Sargent (1995), as we shall

elaborate on in chapter 17.
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Here ut = −Fyt is the robust decision rule for the control ut , while wt+1 =

Kyt describes a worst case shock. This worst-case shock induces a distorted

transition law

yt+1 = (A+ CK) yt +But. (2.5.12)

After having discovered (2.5.12), we can regard the decision maker as de-

vising a robust decision rule by choosing a sequence {ut} to maximize

−
∞
∑

t=0

βt [y′tQyt + u′tRut]

subject to (2.5.12). However, as noted above, the decision maker believes

that the data are actually generated by a model with an unknown process

wt+1 = w̃t+1 6= 0. It is just that by planning against the worst case process

wt+1 = Kyt , he designs a robust decision rule that performs well under a

set of models. The worst-case transition law is endogenous and depends

on θ, β,Q,R,A,B . Equation (2.5.12) incorporates how the distortion w

feeds back on the state vector y ; it permits w to feed back on endogenous

components of the state, meaning that the decision maker indirectly influ-

ences future values of w through his decision rule. Allowing the distortion

to depend on endogenous state variables in this way may or may not be

a useful way to think about model misspecification. How useful it is de-

pends on whether allowing wt+1 to feed back on endogenous components of

the state vector captures plausible specifications that concern the decision

maker. But there is an alternative interpretation that excludes feedback of

w on endogenous state variables, which we take up next.

2. Reinterpreting the solution. We shall sometimes find it useful to reinterpret

the solution of the robust linear regulator problem (2.5.1), (2.5.2) so that

the decision maker believes that the distortions w do not depend on those

endogenous components of the state vector whose motion his decisions af-

fect. In particular, in chapter 6, we show that the robust decision rule

ut = −Fyt solves the ordinary linear regulator problem

max
{ut}

∞
∑

t=0

βtr (yt, ut) (2.5.13)

subject to the distorted transition law

yt+1 = Ayt +Byt + Cwt+1 (2.5.14a)
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wt+1 = KYt (2.5.14b)

Yt+1 = A∗Yt (2.5.14c)

where A∗ = A−BF+CK , where (F,K) solve problem (2.5.2), (2.5.1), and

where we impose the initial condition Y0 = y0 . In (2.5.14), the maximizing

player views Yt as an exogenous state vector that propels the distortion

wt+1 that twists the law of motion for state vector yt . The solution of

(2.5.13), (2.5.14) has the outcome that Yt = yt ∀t ≥ 0.20 Chapters 6 and

7 show how formulation (2.5.13), (2.5.14) emerges from a version of the

multiplier problem that imposes a timing protocol in which the minimizing

agent at time 0 commits to an entire sequence of distortions {wt+1}∞t=0 and

in which it is best for the minimizing agent to make wt+1 obey (2.5.14b),

(2.5.14c). As we shall see in chapter 7, this formulation helps us to interpret

frequency domain criteria for inducing robust decision rules. In addition,

the transition law (2.5.14) rationalizes a Bayesian interpretation of the

robust decision maker’s behavior by identifying a particular belief about

the shocks for which the maximizing player’s decision rule is optimal.21

This observation is reminiscent of some ideas of Fellner.

3. Relation to Fellner. In the introduction to Probability and Profit , William

Fellner wrote:

. . . the central problems of decision theory may be described in semiprob-

abilistic views. By this I mean to say that in my opinion the directly

observable weights which reasonable and consistent individuals attach to

specific types of prospects are not necessarily the genuine (undistorted)

subjective probabilities of the prospects, although these decision weights

of consistently acting individuals do bear an understandable relation

to probabilities. . . . the decision weights which these decision-makers

attach to alternative monetary prospects need not be universally on par

with probabilities attached to head-or-tails events but may in cases be

20 In contrast to formulation (2.5.1), (2.5.2), in problem (2.5.13), (2.5.14) the maximizing

agent does not believe that his decisions can influence the future position of the distortion w .

Depending on the types of perturbations to the approximating model that the maximizing

agent wants to protect against, we might actually prefer interpretation (2.5.1), (2.5.2) in

some applications.
21 A decision rule is said to have a Bayesian interpretation if it is undominated in the sense

of being optimal for some model. See REFERENCE XXXX (Blackwell-Girshick???).
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derived from such probabilities by “slanting” or “distortion.” Slanting

expresses an allowance for the instability and controversial character

of some types of probability judgment; the extent to which may even

depend on the magnitude of the prize which is at stake when a prospect

is being weighted.

Robust control theory contains concepts that embody some of Fellner’s

ideas. Thus, the ‘decision weights’ implied by the ‘slanted’ transition law

(2.5.14) differ from the ‘subjective probabilities’ implied by the approximat-

ing model (2.2.1). The distortion or ‘slanting’ is context-specific because

K depends on the parameters β,R,Q of the discounted return function.

4. Robustness bound. The minimizing player in the two player game assists

the maximizing player by helping him construct a useful bound on the

performance of his decision rule. Let AF = A − BF for a fixed F in a

feedback rule u = −Fy . In chapter 6 on page 171, check the pagetag

here: it is off a page we show that equation (2.5.7) implies that

− (AF y + Cw)′ P (AF y + Cw) ≥ −y′A′
FD (P )AF y − θw′w. (2.5.15)

The quadratic form in y on the right side is a conservative estimate of the

continuation value of the state y∗ under the approximating model y∗ =

AF y .22 Inequality (2.5.15) says that the continuation value under a dis-

torted model is at least as great as a conservative estimate of the continu-

ation value under the approximating model , minus θ times the measure of

model misspecification w′w . The parameter θ influences the conservative-

adjustment operator D and also determines the rate at which the bound

deteriorates with misspecification. Lowering θ lowers the rate at which the

bound deteriorates with misspecification. Thus, (2.5.15) provides a sense in

which lower values of θ provide more conservative estimates of continuation

utility and therefore more robust guides to decision making.

5. Alternative games with identical outcomes. The game (2.5.2) summarized

by the Bellman equation (2.5.3) is one of several two-player zero-sum games

with identical lists of players, actions, and payoffs but different timing pro-

tocols. Chapter 6 describes the relationships among these games and the

remarkable fact that they have identical outcomes. The analysis of chapter

22 That is, when w = 0, −(AF y)′D(P )AF y understates the continuation value.
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6 justifies using recursive methods to solve all of the games. That chapter

also discusses senses in which the decision maker’s preferences are dynam-

ically consistent.

6. Approximating and worst-case models. The behavior of the state under the

robust decision rule and the worst case model can be represented

yt+1 = Ayt −BFyt + CKyt. (2.5.16)

However, the decision maker does not really believe that the worst-case

shock process will prevail. He uses wt+1 = Kyt to slant the transition

law as a tool to help him construct a rule that will be robust against a

range of other wt+1 processes that represent unknown departures from his

approximating model. We want to evaluate the performance of the robust

decision rule under other models. In particular, we often want to evaluate

the robust decision rule when the approximating model governs the data

(so that the decision maker’s fears of model misspecification are actually

unfounded). With the robust decision rule and the approximating model,

the law of motion is

yt+1 = (A−BF ) yt. (2.5.17)

We obtain (2.5.17) from (2.5.16) by replacing the worst case shock Kyt

by zero. Notice that although we set K = 0 in (2.5.16) to get (2.5.17), F

in (2.5.16) embodies a best response to K , and thereby reflects the agent’s

‘pessimistic’ forecasts of future values of the state. We call (2.5.17) the

approximating model under the robust decision rule and we call (2.5.16)

the worst-case or distorted model under the robust decision rule.23 In

chapter 12, we use stochastic versions of both the approximating model

(2.5.17) and the distorted model (2.5.16) to express alternative formulas

for the prices of risky assets when consumers fear model misspecification.

7. Lower bound on θ and H∞ control. Starting from θ = +∞ , lowering θ

increases the fear of misspecification by lowering the shadow price on the

norm of the control of the minimizing player. We shall see in chapter 7

that there is a lower bound for θ . This lower bound is associated with the

largest set of alternative models, as measured by entropy, against which

23 The model with randomness adds Cǫt+1 to the right side of (2.5.17).
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it is feasible to seek a robust rule: for values of θ below this bound, the

minimizing agent is penalized so little that he finds it possible to choose

a distortion that sends the criterion function to −∞ . Control theorists

are interested in the cutoff value of θ because it is affiliated with a rule

that is robust to the biggest allowable set of misspecifications. We describe

the associated H∞ control theory in chapter 7. However, the applications

that we are interested in usually call for values of θ that far exceed the

cutoff value. We explain why in chapter 17, where we use detection error

probabilities to discipline the setting for θ .

8. Risk-sensitive preferences. It is a useful fact that we can ignore doubts

about model specification and instead adjust attitudes toward risk in a way

that implies the decision rule and value function that come from the two

player zero-sum game (2.5.2). In particular, the decision rule ut = −Fxt

that solves the robust control problem also solves a stochastic infinite hori-

zon discounted control problem in which the decision maker has no concern

about model misspecification but instead adjusts continuation values to ex-

press an additional aversion to risk. The risk adjustment is a special case

of one that Epstein and Zin (1989) used to formulate their recursive specifi-

cation of utility and is governed by a parameter σ < 0. If we set σ = −θ−1

from the robust control problem, we recover the same decision rule for the

two problems.

The risk-sensitive decision maker trusts that the law of motion for the state

is

yt+1 = Ayt +But + Cǫt+1 (2.5.18)

where {ǫt+1} is a sequence of i.i.d. Gaussian random vectors with mean zero

and identity covariance matrix. The utility index of the decision maker is

defined recursively as the fixed point of recursions on

Ut = r (yt, ut) + βRt (Ut+1) (2.5.19)

where

Rt (Ut+1) =
2

σ
logE

[

exp

(

σUt+1

2

)

∣

∣

∣yt

]

(2.5.20)

and where σ ≤ 0 is the risk-sensitivity parameter. When σ = 0, an appli-

cation of l’hospital’s rule shows that Rt becomes the ordinary conditional
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expectation operator E(·|yt). When σ < 0, Rt puts an additional adjust-

ment for risk into the assessment of continuation values.

For a quadratic r(y, u), the Bellman equation for Hansen and Sargent’s

(1995) risk-sensitive control problem is

−y′Py − p̂ = max
u

{r (y, u) + βR (−y∗′Py∗ − p̂)} , (2.5.21)

where the maximization is subject to y∗ = Ay+Bu+Cǫ and ǫ is a Gaussian

vector with mean zero and identity covariance matrix.

Using a result from Jacobson (1973), it can be shown that

R (−y∗′Py∗ − p̂) = − (Ay +Bu)′ D (P ) (Ay +Bu) − p (P, p̂) (2.5.22)

where D is the same operator defined in (2.5.6) with θ = −σ−1 , and the

operator p is defined by

p (P, p̂) = p̂− σ−1 log det (I + σC′PC) . (2.5.23)

Consequently, the Bellman equation for the infinite-horizon discounted risk-

sensitive control problem can be expressed as

−y′Py − p̂ = max
u

{r (y, u)− β (Ay +Bu)
′ D (P ) (Ay +Bu) − βp (P, p̂)}.

(2.5.24)

Evidently, the fixed point P satisfies P = T ◦ D(P ), and therefore is the

same P that appears in the Bellman equation (2.4.3) for the robust control

problem. The constant p̂ that solves (2.5.24) differs from the p in (2.4.3),

but since they depend only on P and not on p or p̂ , the decision rules are

the same for the two problems.
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2.6. More general misspecifications

Thus far, we have permitted the decision maker to seek robustness against mis-

specifications that occur only as a distortion wt+1 to the conditional mean of

the innovation to the state yt+1 . When the approximating model has the Gaus-

sian form (2.2.1), this is less restrictive than may at first appear. In appendix

A and chapter 17, we allow a more general class of misspecifications to the lin-

ear Gaussian model (2.2.1), but nevertheless find that important parts of the

preceding results survive. For convenience, express the approximating model

(2.2.1) in the compact notation

fo (y∗|y) ∼ N (Ay +Bu,CC′) ,

which portrays the conditional distribution of next period’s state as Gaussian

with mean Ay + Bu and covariance matrix CC′ . Let f(y∗|y) be an arbitrary

alternative conditional distribution that puts positive probability on the same

events as the approximating model fo . The conditional entropy of model f

relative to the approximating model fo is

I (f) (y) =

∫

log

(

f (y∗|y)
fo (y∗|y)

)

f (y∗|y) d y∗.

Entropy I(f)(y) is thus the conditional expectation of the log likelihood ratio

evaluated with respect to the distorted model f . A multiplier robust control

problem is associated with the following Bellman equation:

−y′Py − p = max
u

min
f
E {r (y, u) + 2θβI (f) (y) − βy∗′Py∗ − βp} (2.6.1)

Let σ = −θ−1 and consider the inner minimization problem, assuming that

u = −Fy . On page 399, we shall show that the extremizing f is the Gaussian

distribution

f (y∗|y) ∼ N
(

Ay −BFy + CKy, ĈĈ′
)

(2.6.2)

where (F,K) are the same matrices appearing in (2.5.11),

ĈĈ′ = C (I + σC′PC)
−1
C′, (2.6.3)

and P is the same P that appears in the solution of the Bellman equation for

the deterministic multiplier robust control problem (2.5.3). Equation (2.6.2)
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assures us that when we allow the minimizing player to choose a general mis-

specification f(y∗|y), he chooses a Gaussian distribution with the same mean

distortion as when we let him distort only the mean of a Gaussian conditional

distribution. Hovever, formula (2.6.3) shows that the minimizing agent would

also distort the covariance matrix of the innovations, if given a chance.24

The upshot of these findings is that when the conditional distribution

f(y∗|y) for the approximating model is Gaussian, even if we actually were to

permit general misspecifications f(y∗|yt), we could compute the worst-case f

by solving a deterministic multiplier robust control problem for P, F,K , and

then use P to compute the appropriate adjustment to the covariance matrix

(2.6.3). In chapter 12, we use some of these ideas to price assets under alter-

native assumptions about the set of models against which decision makers seek

robustness.

2.7. A simple algorithm

Chapter 6 discusses alternative algorithms for solving (2.5.3) and relationships

among them. This section describes perhaps the simplest algorithm, an adapted

ordinary optimal linear regulator. Chapters 6 and 7 describe necessary technical

conditions, including restrictions on the magnitude of the multiplier parameter

θ .25

Application of the ordinary optimal linear regulator can be justified by

noting that the Riccati equation for the optimal linear regulator emerges from

first-order conditions alone, and that the first-order conditions for extremizing

(i.e., finding the saddle point by simultaneously minimizing with respect to w

and maximizing with respect to u) the right side of (2.5.3) match those for

an ordinary (non-robust) optimal linear regulator with joint control process

{ut, wt+1} . This insight allows us to solve (2.5.3) by forming an appropriate

optimal linear regulator.

24 In a diffusion setting in continuous time, the minimizing agent chooses not to distort

the volatility matrix because it is infinitely costly in terms of entropy. See Hansen, Sargent,

Turmuhambetova, and Williams (2005) and Anderson, Hansen, and Sargent (2003).
25 The Matlab program olrprobust.m described in the appendix implements this algorithm;

doublex9.m implements a doubling algorithm of the kind described in chapter 3 and Hansen

and Sargent (XXXXbook); please note that doublex9.m solves a minimum problem and that

−θ−1 ≡ σ < 0 connotes a fear of model misspecification.
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Thus, put the Bellman equation (2.5.3) into a more compact form by defin-

ing

B̃ = [B C ] (2.7.1a)

R̃ =

[

R 0

0 −βθI

]

(2.7.1b)

ũt =

[

ut

wt+1

]

. (2.7.1c)

Let ext denote ‘extremization’ – maximization with respect to u , minimization

with respect to w . The Bellman equation can be written

−y′Py = extũ

{

−y′Qy − ũR̃ũ− βy∗′Py∗
}

(2.7.2)

where the extremization is subject to

y∗ = Ay + B̃ũ. (2.7.3)

The first-order conditions for problem (2.7.2), (2.7.3) imply the matrix Riccati

equation

P = Q+ βA′PA− β2A′PB̃
(

R̃+ βB̃′PB̃
)−1

B̃′PA (2.7.4)

and the formula for F̃ in the decision rule ũt = −F̃ yt

F̃ = β
(

R̃+ βB̃′PB̃
)−1

B̃′PA. (2.7.5)

Partitioning F̃ , we have

ut = −Fyt (2.7.6a)

wt+1 = Kyt. (2.7.6b)

The decision rule ut = −Fyt is the robust rule. As mentioned above, wt+1 =

Kyt provides the θ -constrained worst-case specification error. We can solve the

Bellman equation by iterating to convergence on the Riccati equation (2.7.4),

or by using one of the faster computational methods described in chapter 3.



Example: robustness and discounting in a permanent income model 39

2.7.1. Interpretation of the simple algorithm

The adjusted Riccati equation (2.7.4) is an augmented version of the Riccati

equation (2.2.8) that is associated with the ordinary optimal linear regulator.

The right side of equation (2.7.4) defines one step on the composite operator

T ◦D where T and D are defined in (2.5.8) and (2.5.5).26 Chapter 7 connects

the D operator to Hansen and Sargent’s (1995) discounted version of the risk-

sensitive preferences of Jacobson (1973) and Whittle (1990).

2.8. Example: robustness and discounting in a perma-
nent income model

This section illustrates various aspects of robust control theory in the context of

a linear-quadratic version of a simple permanent income model.27 In the basic

permanent income model, a consumer applies a single marginal propensity to

consume to the sum of his financial wealth and his human wealth, where human

wealth is defined as the expected present value of his labor (or endowment)

income discounted at the same risk-free rate of return that he earns on his

financial assets. In the usual permanent income model without a concern about

robustness, the consumer has no doubts about the probability model used to

form the conditional expectation of discounted future labor income. Instead, we

assume that the consumer doubts that model and therefore forms forecasts of

future income by using a conditional probability distribution that is twisted or

slanted relative to his approximating model for his endowment. Otherwise, the

consumer behaves as an ordinary permanent income consumer.

His slanting of conditional probabilities leads the consumer to engage in

a form of precautionary savings that under the approximating model for his

endowment process tilts his consumption profile toward the future relative to

what it would be without a concern about misspecification of that process.

Indeed, so far as his consumption and saving program is concerned, activating a

concern about robustness is equivalent with making the consumer more patient.

26 This can be verified by unstacking the matrices in (2.7.4). See page 170 in chapter 6.
27 See Sargent (1987) and Hansen, Roberds, and Sargent (1991) for accounts of the con-

nection between the permanent income consumer and Barro’s (1979) model of tax smoothing.

See Aiyagari, Marcet, Sargent, and Seppälä (2002) for a deeper exploration of the connections.
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However, that is not the end of the story. Chapter 12 shows that attributing a

concern about robustness to a representative consumer has different effects on

asset prices than are associated with varying his discount factor.

2.8.1. The LQ permanent income model

In Hall’s (1978) linear-quadratic permanent income model, a consumer receives

an exogenous endowment {dt} and wants to allocate it between consumption

ct and savings kt to maximize

−E0

∞
∑

t=0

βt (ct − b)2 , β ∈ (0, 1) . (2.8.1)

We simplify the problem by assuming that the endowment is a first-order au-

toregression. Thus, the household faces the state transition laws

kt + ct = Rkt−1 + dt (2.8.2a)

dt+1 = µd (1 − ρ) + ρdt + cd (ǫt+1 + wt+1) , (2.8.2b)

where R > 1 is a time-invariant gross rate of return on financial assets kt−1

held at the end of period t − 1, and |ρ| < 1 describes the persistence of his

endowment. In (2.8.2b), wt+1 is a distortion to the mean of the endowment that

represents possible model misspecification. We use σ = −θ−1 to parameterize

the consumer’s desire for robustness. Soon we’ll confirm how easily this problem

maps into the robust linear regulator. But first we’ll use classical methods to

elicit some useful properties of the consumer’s decisions when σ = 0.
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2.8.2. Solution when σ = 0

We first solve the household’s problem without a concern about robustness by

setting θ−1 ≡ σ = 0. Define the marginal utility of consumption as µct = b−ct .
The household’s Euler equation is

Etµc,t+1 = (βR)−1 µct, (2.8.3)

where Et is the mathematical expectation operator conditioned on date t in-

formation. Treating (2.8.2a) as a difference equation in kt , solving it forward

in time, and taking conditional expectations on both sides gives

kt−1 =

∞
∑

j=0

R−(j+1)Et (ct+j − dt+j) . (2.8.4)

Solving (2.8.3) and (2.8.4) and using µct = b− ct implies

µct = −
(

1 −R−2β−1
)



Rkt−1 + Et

∞
∑

j=0

R−j (dt+j − b)



 . (2.8.5)

Equations (2.8.3) and (2.8.5) can be used to deduce the following representation

for µct

µc,t+1 = (βR)
−1
µc,t + νǫt+1. (2.8.6)

We provide a formula for the scalar ν in (2.8.11) below.

Given an initial condition µc,0 , equation (2.8.6) describes the consumer’s

optimal behavior; µc,0 can be determined by solving (2.8.5) at t = 0. It is easy

to use (2.8.5) to deduce an optimal consumption rule of the form

ct = gyt

where g is a vector conformable to the pertinent state vector y . In the case

βR = 1 that was analyzed by Hall (1978), (2.8.6) implies that the marginal

utility of consumption µct is a martingale under the approximating model, which

because µct = b− ct in turn implies that consumption itself is a martingale.
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2.8.3. Linear regulator for permanent income model

This problem is readily mapped into a linear regulator in which the marginal

utility of consumption b− ct is the control. Express the transition law for kt as

kt = Rkt−1 + dt − b + (ct − b) .

Define the state as y′t = [ 1 kt−1 dt ]′ and the control as ut = µct ≡ (b − ct)

and express the state transition law as yt+1 = Ayt +But + C(ǫt+1 + wt+1) or





1

kt

dt+1



 =





1 0 0

−b R 1

0 0 ρ









1

kt−1

dt



+





0

1

0



 (b− ct)+





0

0

cd



 (ǫt+1 + wt+1) (2.8.7)

This equation defines the triple (A,B,C) associated with a robust linear reg-

ulator. For the objective function, (2.8.1) implies that we should let r(y, u) =

−y′Ry − u′Qu where R = 03×3 and Q = 1.

We can obtain a robust rule by using the robust linear regulator and setting

σ < 0. The solution of the robust linear regulator problem is a linear decision

rule for the control µct :

µct = −Fyt. (2.8.8)

Under the approximating model, the law of motion of the state is then

yt+1 = (A−BF ) yt + Cǫt+1. (2.8.9)

Equations (2.8.8) and (2.8.9) imply that

µc,t+1 = −F (A−BF ) yt − FCǫt+1. (2.8.10)

Comparing (2.8.10) and (2.8.6) shows that −F (A−BF ) = −(βR)−1F and

ν = −FC, (2.8.11)

which is the promised formula for ν .
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2.8.4. Effects on consumption of concern about misspecification

To understand the effects on consumption of a concern about robustness, we

use as a benchmark Hall’s assumption that βR = 1 and no concern about ro-

bustness (σ = 0). In that case, the multiplier µct and consumption ct are

both driftless random walks. To be concrete, we set parameters to be consistent

with ones calibrated from post-World War II U.S. time series by Hansen, Sar-

gent, and Tallarini (1999) for a more general permanent income model. HST

set β = .9971 and fit a two-factor model for the endowment process; each fac-

tor is a second order autoregression. To simplify that specification, we replace

this estimated two-factor endowment process with the population first-order au-

toregression one would obtain if that two factor model actually generated the

data. That is, we use the population moments implied by Hansen, Sargent, and

Tallarini’s (HST’s) estimated endowment process to fit the first-order autore-

gressive process (2.8.2b) with wt+1 ≡ 0. Ignoring constant terms, we obtain the

endowment process dt+1 = .9992dt + 5.5819ǫt+1 where ǫt+1 is an i.i.d. scalar

process with mean zero and unit variance.28 We use β̂ to denote HST’s value

of β = .9971. Throughout, we suppose that R = β̂−1 .

We now consider three cases.

• The βR = 1, σ = 0 case studied by Hall (1978). With β = β̂ , we

compute that the marginal utility of consumption follows the law

of motion

µc,t+1 = µc,t + 4.3825ǫt+1 (2.8.12)

where we compute the coefficient 4.3825 on ǫt+1 by noting that it

equals −FC by formula (2.8.11).

• A version of Hall’s βR = 1 specification with a concern about

misspecification. Retaining β̂R = 1, we activate a concern about

robustness by setting σ = σ̂ − 2E − 7 < 0.29 We now compute

that30

µc,t+1 = .9976µc,t + 8.0473ǫt+1. (2.8.13)

28 We computed ρ, cd by calculating autocovariances implied by HST’s specification, then

used them to calculate the implied population first-order autoregressive representation.
29 We discuss how to calibrate σ in chapters 9, 12, and 17.
30 We can confirm this formula computationally as follows. Use doublex9 to solve the

robust optimal linear regulator and compute representations µc,t = −Fyt and compare it to

the term F (A − BF )yt on the right side of (2.8.10) to discover that F (A − BF ) = .9976F

i.e., the coefficients are proportional with .9976 being the factor of proportionality.
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When b − ct > 0, this equation implies that Et(b − ct+1) =

.9976(b − ct) < (b − ct) which in turn implies that Etct+1 > ct .

Thus, the effect of activating a concern about robustness is to put

upward drift into the consumption profile, a manifestation of a

type of ‘precautionary savings’ that comes from the consumer’s

fear of misspecification of the endowment process.

• A case that raises the discount factor relative to the βR = 1

benchmark prevailing in Hall’s model, but withholds a concern

about robustness. In particular, while we set σ = 0 we increase

β to β̃ = .9995. Remarkably, with (σ, β) = (0, β̃), we com-

pute that µc,t+1 obeys exactly (2.8.13).31 Thus, starting from

(σ, β) = (0, β̂), in so far as the effects on consumption and saving

are concerned, activating a concern about robustness by lower-

ing σ while keeping β constant is evidently equivalent to keeping

σ = 0 but increasing the discount factor to a particular β̃ > β̂ .

These numerical examples illustrate what is true more generally, that in

the permanent income model an increased concern about robustness has effects

on (ct, kt+1) that operate exactly like an increase in the discount factor β . In

chapter 9, we extend these numerical examples analytically within a broader

class of permanent income models. In particular, let α2 = ν′ν and suppose

that instead of the particular pair (σ̂, β̂), where (σ̂ < 0), we use the pair (0, β̃),

where β̃ satisfies:

β̃ (σ) =
β̂
(

1 + β̂
)

2 (1 + σα2)






1 +

√

√

√

√

1 − 4β̂
1 + σα2

(

1 + β̂
)2






. (2.8.14)

Then the laws of motion for µc,t , and therefore the decision rules for ct , are

identical across these two specifications about concerns about robustness. We

establish formula (2.8.14) in appendix B of chapter 9.

31 We discover this computationally using the method of the previous footnote.
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2.8.5. Equivalence of quantities but not continuation values

We have seen that, holding other parameters constant, there exists a locus of

(σ, β) pairs that imply the same consumption, saving programs. It can be

verified that the P matrices appearing in the quadratic forms in the value

function are identical for the (σ̂, β̂) and (0, β̃) problems. However, in terms

of their implications for pricing claims on risky future payoffs, it is significant

that the D(P ) matrices differ across such (σ, β) pairs. For the (0, β̃) pair,

P = D(P ). However, when σ < 0, D(P ) differs from P . As we shall see in

chapter 12, when we interpret (2.8.1), (2.8.2) as a planning problem, D(P )

encodes the shadow prices that can be converted into competitive equilibrium

state-date prices that can then be used to price uncertain claims on future

consumption. Thus, although the (σ̂, β̂) and (0, β̃) parameter settings imply

identical savings and consumption plans, they imply different valuations of risky

future consumption payoffs. In chapter 9, we use this fact to study how a

concern about robustness influences the theoretical value of the market price of

macroeconomic risk and the equity premium.

2.8.6. Distorted endowment process

On page 30, we described a particular distorted transition law associated with

the worst case shocks wt+1 = Kyt . If the decision maker solves an ordinary

dynamic programming program without a concern about misspecification but

substitutes the distorted transition law for the one given by his approximating

model, he attains a robust decision rule. Thus, when σ < 0, instead of facing

the transition law (2.8.7) that prevails under the approximating model, the

household would use the distorted transition law29

[

yt+1

Yt+1

]

=

[

A CK

0 (A−BF + CK)

] [

yt

Yt

]

+

[

B

0

]

µct +

[

C

C

]

ǫt+1. (2.8.15)

For our numerical example with σ = −2E − 7, we would have A−BF + CK =
[

1.0000 0 0
15.0528 0.9976 −0.4417
−0.0558 0.0000 1.0016

]

and CK =

[

0 0 0
0 0 0

−0.0558 0.0000 0.0024

]

. Notice

the pattern of zeros in CK , which shows that the distortion to the law of

29 This is not a minimal state representation because we have not eliminated the constant

from the Y component of the state.
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motion of the state affects only the dt component of the component of the state

y . The components Y of the state are information variables that account for

the dynamics in the misspecification imputed by the worst case shock w . In

chapter 9, we shall analyze the behavior of the endowment process under the

distorted model (2.8.15).

It is useful to consider our observational equivalence result in light of the

distorted law of motion (2.8.15). Let Êt denote a conditional expectation with

respect to the distorted transition law (2.8.15) for the endowment shock and let

Et denote the expectation with respect to the approximating model. Then the

observational equivalence of the pairs (σ̂, β̂) and (0, β̃) means that the following

two versions of (2.8.5) imply the same µct processes:

µct = −
(

1 −R−2β̂−1
)



Rkt−1 + Êt

∞
∑

j=0

R−j (dt+j − b)





and

µct = −
(

1 −R−2β̃−1
)



Rkt−1 + Et

∞
∑

j=0

R−j (dt+j − b)



 .

For both of these expressions to be true, the effect on Ê of setting σ less than

zero must be offset by the effect of raising β from β̂ to β̃ .

2.8.7. Representing misspecification: a Stackelberg formulation

In chapters 6 and 7, we show the equivalence of outcomes under different tim-

ing protocols for the two-player zero-sum games. In appendix B of chapter 9,

we shall use a Stackelberg game to establish the observational equivalence for

consumption, savings plans of (0, β̃) and (σ̂, β̂) pairs. The minimizing player’s

problem in the Stackelberg game can be represented as

min
{wt+1}

−
∞
∑

t=0

β̂t
{

µ2
ct + β̂σ−1w2

t+1

}

(2.8.16)

subject to

µc,t+1 =
(

β̃R
)−1

µc,t + νwt+1. (2.8.17)
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Equation (2.8.17) is the consumption Euler equation of the maximizing player.

Under the Stackelberg timing, the minimizing player commits to a sequence

{wt+1}∞t=0 that the maximizing player takes as given. The minimizing player

determines that sequence by solving (2.8.16), (2.8.17). The worst case shock

that emerges from this problem satisfies wt+1 = kµct and is identical to the

worst case shock wt+1 = Kyt that emerges from the robust linear regulator for

the consumption problem.

2.9. Stabilizing property of shadow price Pyt

In chapter 3, we solve problem (2.5.1), (2.5.2) with a Lagrangian method that

provides a fast way to compute P and gives insights about a recursive represen-

tation µt = Pyt , where −2βt+1µt+1 is the vector of shadow prices on the time

t+ 1 state vector. The Lagrangian formulation is also convenient for designing

decision rules for Ramsey and Stackelberg problems, as we shall show in section

2.10 and chapter 16. Form the Lagrangian

L = −
∞
∑

t=0

βt
[

y′tQyt + u′tRut + 2βµ′
t+1 (Ayt +But + Cwt+1 − yt+1) − θβw′

t+1wt+1

]

.

(2.9.1)

We want to maximize (2.9.1) with respect to sequences for ut and yt+1 and

minimize it with respect to a sequence for wt+1 . The first-order conditions with

respect to ut, yt, wt+1 , respectively, are:

0 = Rut + βB′µt+1 (2.9.2a)

µt = Qyt + βA′µt+1 (2.9.2b)

0 = βθwt+1 − βC′µt+1. (2.9.2c)

Solving (2.9.2a) and (2.9.2c) for ut and wt+1 and substituting into (2.5.1)

gives

yt+1 = Ayt − β
(

BR−1B′ − β−1θ−1CC′)µt+1. (2.9.3)

Write (2.9.3) as

yt+1 = Ayt − βB̃R̃−1B̃′µt+1. (2.9.4)

We represent the system formed by (2.9.2b) and (2.9.4) as
[

I βB̃R̃−1B̃′

0 βA′

] [

yt+1

µt+1

]

=

[

A 0

−Q I

] [

yt

µt

]

(2.9.5)
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or

L∗
[

yt+1

µt+1

]

= N

[

yt

µt

]

. (2.9.6)

We want to find a ‘stabilizing’ solution of (2.9.6), i.e., one that satisfies30

∞
∑

t=0

βty′tyt < +∞.

Chapter 3 shows that the stabilizing solution satisfies µt = Pyt , where P

solves the matrix Riccati equation (2.7.4). Briefly, the generalized eigenval-

ues of (L∗, N) occur in
√
β -symmetric pairs (i.e., (λi, λ−i) such that if λi is

an eigenvalue, another eigenvalue is λ−i = 1
βλi

). The stabilizing solution solves

stable roots backward and unstable roots forward by imposing initial conditions

satisfying µ0 = Py0 . This condition replicates itself over time in the sense that

µt = Pyt, (2.9.7)

and implies that
∑∞

t=0 β
ty′tyt <∞ .

In summary, the solution of the nonstochastic multiplier problem is given

by the feedback rule
[

ut

wt+1

]

= −F̃ yt (2.9.8)

where F̃ depends on P through (2.7.5). We can find P either by solving a Ric-

cati equation or by using a method that rearranges the generalized eigenvectors

of L∗, N .

30 Chapter 3 describes the detectability and stabilizability conditions that make this re-

striction equivalent with
∑∞

t=0 βtr(yt, ut) < +∞ .
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2.10. Forward looking models

The basic robust control problem with Bellman equation (2.5.3) pertains to a

single decision maker. For macroeconomic applications with a representative

agent in an economy without distortions, (2.5.3) can be used to compute equi-

librium allocations and prices (for elaboration and examples see chapters 9 and

12 as well as Hansen, Sargent, and Tallarini (1999)). However, even with a

representative agent, to analyze so-called Ramsey problems where there are dis-

tortions, say flat rate taxes on labor or capital, (2.5.3) must be modified. For a

Ramsey problem, the robust decision maker is a government that wants to devise

a plan to which it commits at time 0, taking into account the ‘forward looking’

behavior of private agents whose behavior is summarized by Euler equations that

include the government’s policy instruments ut as ‘forcing variables’. In chapter

16, we describe how to solve such robust policy design problems. We formulate

the government’s problem as a Lagrangian and note how the private sector’s

forward-looking behavior formally transforms some of the state variables in an

optimal linear regulator into ‘jump’ variables, while converting some Lagrange

multipliers into ‘state variables.’ Chapter 16 reviews the interesting intellectual

history of the Lagrangian formulation for such problems on both sides of the

Atlantic. In this section, we explain the basic idea, whose implication is that

robust Ramsey policies can be computed easily by solving and appropriately

manipulating an associated ordinary optimal linear regulator problem.

Here is the basic idea. In a forward looking model, we can partition the state

y =

[

z

x

]

. The z variables are true state variables, being inherited from the past,

but the nx variables x are ‘jump variables’ that adjust to clear markets at t ,

e.g., prices and quantities. The last nx equations of (2.5.1) include descriptions

of the forward-looking behavior of the private sector, e.g., private agents’ Euler

equations.31

We need nx additional state variables. To get them, we look to the last

nx Lagrange multipliers in (2.9.1), which we call µxt , that adhere to ‘imple-

mentability constraints’ that the private sector’s Euler equations impose on the

31 When private agents also have concerns about robustness, some of these Euler equations

pertain to their worst case shocks, which in general differ from the worst case shocks of the

Stackelberg leader. See chapter 16.
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Ramsey plan.32 The implementability constraints are in effect promise keep-

ing constraints that require the government to confirm the private sector’s past

expectations about the government’s setting of the current value of its policy in-

strument, expectations that were incorporated into past decisions of the private

sector. The implementability multipliers µxt are the missing state variables.

These multipliers on the promise keeping constraints encode the effects on pri-

vate agents’ past decisions of government promises about future policies.

Let µt =

[

µzt

µxt

]

. Here −2βt+1µzt are shadow prices on the true state

variables at t + 1 and −2βt+1µxt are shadow prices on the jump variables at

time t+ 1, being the ‘implementability multipliers’. The Ramsey problem can

be written in the form (2.5.2), (2.5.1). The first-order conditions continue to

be (2.9.6) and the solution requires that (yt, µt) satisfy (2.9.7), where P still

solves the Riccati equation associated with the Bellman equation (2.7.2). At

this point the procedure for solving the robust Ramsey problem departs from

that for the linear regulator. We must use (2.9.6) to solve for the jump variable

x . With this purpose, write the last nx equations of (2.9.6) as

µxt = P21zt + P22xt

or

xt = −P−1
22 P21zt + P−1

22 µxt. (2.10.1)

Using (2.10.1), the solution of the robust Ramsey problem is

[

zt+1

µx,t+1

]

=

[

I 0

P21 P22

]

Ao

[

I 0

−P−1
22 P21 P−1

22

] [

zt

µxt

]

(2.10.2a)

xt = [−P−1
22 P22 P−1

22 ]

[

zt

µxt

]

(2.10.2b)

where Ao = (A−BF̃1 − CF̃2) for the distorted or worst-case model and Ao =

(A−BF̃1) for the robust rule under the approximating model.

The decision rule and worst case model distortion wt+1 for the Ramsey

planner (a.k.a. the Stackelberg leader) can be represented

[

ut

wt+1

]

=

[−F̃1

−F̃2

] [

I 0

−P−1
22 P21 P−1

22

] [

zt

µxt

]

. (2.10.3)

32 In chapter 16, we show how these Euler equations need to be adjusted when the com-

petitive representative agent also has concerns about model misspecification.
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Chapter 16 shows that by eliminating µxt , the robust decision rule can be

represented in the form

ut = ρut−1 + α0zt + α1zt−1.

Here the history dependence of the decision rule is captured through the depen-

dence on the lagged instrument ut−1 . Chapter 16 gives an alternative represen-

tation for the worst-case shock

wt = νut−1 + γ0zt + γ1zt−1.

2.11. Concluding remarks

The discounted dynamic programming problem for quadratic returns and a lin-

ear transition function is called the optimal linear regulator problem. This

problem is widely used throughout macroeconomics and applied dynamics. For

linear-quadratic problems, robust decision rules can be constructed by thought-

fully using the optimal linear regulator. This is true both for single-agent prob-

lems and for some Ramsey and Stackelberg problems. The optimal linear regu-

lator has other uses too. In chapters 4, 13, and 14 we describe filtering problems.

Via the concept of duality explained there, the linear regulator can also be used

to solve such filtering problems, including ones with a desire for estimates that

are robust to model misspecification.
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A. Link to a stochastic formulation

Although this chapter has focused primarily on nonstochastic formulations of

a linear-quadratic robust control theory, many of our results also pertain to a

stochastic version of our problem in which i.i.d. Gaussian shocks also occur in

the transition equation for the approximating model. In this stochastic setting,

there is a natural way to formulate perturbations to the controlled stochastic

process implied by the approximating model and a way to measure those pertur-

bations in terms of entropy. In a linear-quadratic-Gaussian setting, the formulas

obtained from solving the nonstochastic problem contain all of the information

needed to solve the corresponding stochastic problem. This appendix outlines

these connections. For a more complete account, see Hansen and Sargent (2005a,

2005b XXXX).

The approximating model (2.5.18) and the yt−1 -measurable control process

{ut} induces a probability measure over the infinite history y∞ . Hansen and

Sargent (2005) show how to represent distortions of the approximating model

in terms of positive martingales {Mt} defined on the same probability space as

for the approximating model. The martingale has the recursive representation

Mt+1 = mt+1Mt,

where mt+1 is a yt+1 measurable random variable with Emt+1|yt = 1 and

M0 = 1. We take Mt as a likelihood ratio for distorting the probability of

the joint distribution over yt conditioned on y0 that is implied by the ap-

proximating model. Define the entropy of the distortion associated with Mt

as the expected log-likelihood ratio with respect to the distorted distribution,

which can be expressed as E(Mt logMt|y0). Corresponding to the factorization

Mt = M0

∏t
j=1mj is the following decomposition of entropy:

E (Mt logMt|y0) =
t−1
∑

j=0

E
[

MjE
(

mj+1 logmj+1|yj
)

|y0
]

.

Here E[mt+1 logmt+1|yt] is the conditional relative entropy of a perturbation to

the one-step transition density associated with the approximating model. Notice

the absence of discounting on the right side. To get a recursive formulation

of stochastic robust control that sustains an enduring concern about model

misspecification, Hansen and Sargent (2005) advocate using a discounted version

of the object on the right side to penalize a malevolent player’s choice of a
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sequence of increments {mt+1} . This leads us to pose a two-player zero-sum

game of the form

min
{mt+1}

max
{ut}

∞
∑

t=0

∑

yt

βtMt {r (yt, ut) + θβmt+1 logmt+1}π
(

yt|ut−1
)

(2.A.1)

subject to

Mt+1 = mt+1Mt, (2.A.2)

where Emt+1|yt = 1, π(yt|ut−1) is the probability over the history yt =

yt, . . . , y0 induced by ut−1 and the law of motion

yt+1 = Ayt +But + Cǫt+1, (2.A.3)

where ǫt+1 is an i.i.d. Gaussian vector with mean zero and identity covariance

matrix. Guess that the value function has the multiplicative form W (M0, y0) =

M0V (y0) and express the problem as

M0V (y0) = min
{mt+1}

max
{ut}

E0

∞
∑

t=0

βtMt {r (yt, ut) + θβmt+1 logmt+1} (2.A.4)

subject to (2.A.2) and (2.A.3). The Bellman equation for this problem is

MtV (yt) = min
mt+1

max
ut

Mt {r (yt, ut) + βE [mt+1V (yt+1) + θmt+1 logmt+1]}
(2.A.5)

where V (y) = −y′Py − ρ and the extremization is subject to (2.A.2) and

(2.A.3). Since Mt enters linearly, the Bellman equation can be rewritten

V (yt) = min
mt+1

max
ut

{r (yt, ut) + βE [mt+1V (yt+1) + θmt+1 logmt+1]} (2.A.6)

and the minimizing increment mt+1 will depend on yt but not Mt . Let wt+1

and Σt obey formulas (2.A.10) and (2.A.11) below. The Gaussian conditional

distribution and the quadratic return function imply that the minimizing mt+1
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is33

m∗
t+1 ∝ exp

(−V (yt+1)

θ

)

= exp
[

−.5 (ǫt+1 − wt+1)
′
Σ−1

t (ǫt+1 − wt+1) + .5ǫ′t+1ǫt+1 − .5 logdetΣt

]

and conditional entropy is given by34

E
(

mt+1 logmt+1|yt
)

= .5
[

|wt+1|2 + trace (Σt − I) − log detΣt

]

,

so that the worst case transition law is

yt+1 = Ayt +But + Cǫ̂t+1 (2.A.8)

where ǫ̂t+1 is an i.i.d. Gaussian process with mean wt+1 and covariance matrix

Σt .

Thus, it does not harm the malevolent agent to require that he chooses

mt+1 so that the resulting worst-case model is Gaussian. Therefore, we can

express the Bellman equation as

V (yt) = min
wt+1,Σt

max
ut

{

r (yt, ut)+βEV (yt+1)+.5βθ
[

|wt+1|2 + trace (Σt − I) − log detΣt

]

}

(2.A.9)

33 To show this, let µt = Ayt + But so that yt+1 = µt + Cǫt+1 . Note that

−V
(

yt+1

)

θ
=

(

ǫ′t+1C′PCǫt+1 + C′Pµt

)

+
(

µ′
tPµt + ρ

)

2θ
. (2.A.7)

Note that −(ǫt+1 − wt+1)′Σ−1
t (ǫt+1 − wt+1) + ǫ′t+1ǫt+1 + terms measurable w.r.t. yt =

−ǫ′t+1Σ−1
t ǫt+1−w′

t+1Σ−1
t wt+1+2ǫ′t+1Σ−1

t ǫt+1+ǫt+1 = ǫ′t+1(I−Σ−1
t )ǫt+1−2ǫ′t+1Σtwt+1−

w′
t+1Σ−1

t wt+1 Matching terms with the objects in (2.A.7) gives I − Σ−1
t = C′PCθ and

wt+1 = (θI − C′PC)−1C′Pµt .
34 Conditional entropy Emt+1 log mt+1|yt evidently equals the expectation of

[

−.5
(

ǫt+1 − wt+1

)′
Σ−1

t

(

ǫt+1 − wt+1

)

+ .5ǫ′t+1ǫt+1 − .5 log det Σt

]

under the distorted distribution formed by using mt+1 as a likelihood ratio with respect to the

original N (0, I) distribution for ǫt+1 . Thus, we have to evaluate Em[−.5traceΣ−1
t (ǫt+1 −

wt+1)(ǫt+1 − wt+1)′ + .5ǫ′t+1ǫt+1] − .5 log det Σt . Using ǫt+1 = wt+1 − (ǫt+1 − wt+1) ,

ǫt+1ǫ′t+1 = w′
t+1wt+1+(ǫt+1−wt+1)′(ǫt+1−wt+1)+2w′

t+1(ǫt+1−wt+1) and taking expec-

tations gives Em = w′
t+1wt+1 + traceΣ. Therefore, Em[−.5traceΣ−1

t (ǫt+1 − wt+1)(ǫt+1 −

wt+1)′ + .5ǫ′t+1ǫt+1] − .5 log det Σt = −.5trace(Σ − I) + .5w′
t+1wt+1 − .5 log det Σt .
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subject to

yt+1 = Ayt +But + C (wt+1 + ǫ̂t+1)

Eǫ̂t+1ǫ̂
′
t+1 = Σt.

The minimizing choices of wt+1,Σt are

wt+1 = Kyt (2.A.10)

Σ−1
t = I − θ−1C′PC (2.A.11)

and the maximizing choice of ut is ut = −Fyt where K satisfies (2.5.10), F

satisfies (2.5.9), and where P is the pertinent fixed point of T ◦ D , where D
and T are defined in (2.5.6) and (2.5.8), and where θ in these formulas must

be set to .5 times the θ in (2.A.8), because of the scaling we chose in the text

of this chapter. Comparing these solutions with those in the text of this chapter

tells us that the solution can be computed by solving the nonstochastic problem

associated with the Bellman equation

V (yt) = min
wt+1

max
ut

{

r (yt, ut) + βEV (yt+1) + .5βθ|wt+1|2
}

.

With the same appropriate multiplication of θ by .5, formulas (2.5.9), (2.5.10),

(2.5.6), (2.5.8) again give the pertinent P,K , and F . After P is computed,

the minimizing Σt can be found from (2.A.11).

B. Matlab programs

A robust optimal linear regulator is defined by the system matrices Q,R,A,B,C ,

the discount factor β , and the risk-sensitivity parameter σ ≡ −θ−1 . The Mat-

lab program olrprobust.m implements the algorithm of section 2.7 by calling

the optimal linear regulator program olrp.m. The program olrprobust solves a

minimum problem, so that σ < 0 corresponds to a concern about robustness and

R and Q should be approximately negative definite, where we say approximately

because of the usual detectability qualifications. Call the program olrprobust

as follows: [F,K,P,Pt]=olrprobust(beta,A,B,C,Q,R,sig). The objects re-

turned by olrprobust determine the decision rule ut = −Fyt , the distortion
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wt+1 = Kyt , the quadratic form in the value function −y′Py , and the dis-

torted continuation value function −y∗′(Pt)y∗ . The program doublex9 imple-

ments the doubling algorithm described in chapter 3 and by Hansen and Sargent

(200XXXX( chapter 9)). To compute the robust rule with a discounted objective

function, one has to induce doublex9 to solving a discounted problem by first

setting Ad =
√
βA,Bd =

√
βB , calling [F,Kd,P,Pt]=doublex9(Ad,Bd,C,Q,R,sig),

then finally setting K = Kd/
√
β . The program bayes4.m uses both olrpro-

bust and doublex9 to compute robust decision rules and verifies that they give

the same answers.
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Standard control and filtering





Chapter 3
Linear control theory

3.1. Introduction

This chapter analyzes the standard discounted linear-quadratic optimal control

problem, called the optimal linear regulator. The robust decision maker to be

described in later chapters adjusts this problem to reflect his doubts about the

linear transition law. This chapter describes basic concepts of linear optimal

control theory and efficient ways to compute solutions.1 We describe meth-

ods that are faster than direct iterations on the Bellman equation (the Riccati

equation) and are more reliable than solutions based on eigenvalue-eigenvector

decompositions of the state-costate evolution equation.2

In later chapters, we use these techniques to formulate and solve various

robust decision and estimation problems. Invariant subspace methods are key

tools. In the present chapter, we show how they can be used to solve the Ric-

cati equation that emerges from the Bellman equation for the linear regulator.

In later chapters, we shall use invariant subspace methods in two important

settings: (a) to compute robust decision rules and estimators in ‘single agent’

problems; and (b) to solve Ramsey problems in ‘forward-looking’ macroeco-

nomic models. Invariant subspace methods also provide efficient algorithsms for

analyzing and solving equilibria of rational expectations model that are formed

by combining Euler equations and terminal conditions for a collection of deci-

sion makers with other equilibrium conditions and laws of motions for exogenous

variables.

Section 3.2 decomposes the basic linear optimal control problem into sub-

problems that are more efficient to solve and describes classes of economic prob-

lems that give rise to such problems. Sections 3.3, 3.4, 3.5, and 3.6 describe

1 Large parts of this chapter are based on Evan Anderson, Ellen McGrattan, and the

authors (1996).
2 Our survey of these methods draws heavily on Anderson (1978), Gardiner and Laub

(1986), Golub, Nash and Van Loan (1979), Laub (1979,1991), and Pappas, Laub and Sandell

(1980).

– 59 –
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recent algorithms for solving these sub-problems. Subsection 3.4.2 briefly de-

scribes how to use invariant subspace methods to solve or approximately solve

dynamic general equilibrium models.

3.2. Control problems

In this section, we pose three optimal control problems. We begin with a problem

close to the much studied time-invariant deterministic optimal linear regulator

problem. We label this the deterministic regulator problem. We then consider

two progressively more general problems.

The first generalization introduces forcing sequences or “uncontrollable

states” into the deterministic regulator problem. While this generalization is also

a deterministic regulator problem, there are computational gains to exploiting

the a priori knowledge that some components of the state vector are uncontrol-

lable. We refer to this generalization as the augmented regulator problem. As

we will see, a convenient first step for solving an augmented regulator problem

is to solve a corresponding deterministic regulator problem in which the forcing

sequence is “zeroed out.” In other words, we obtain a piece of the solution to

the augmented regulator problem by initially solving a problem with a smaller

number of state variables.

The second generalization introduces, among other things, discounting and

uncertainty into the augmented regulator problem. We refer to the resulting

problem as the discounted stochastic regulator problem. Using well known trans-

formations of the state and control vectors, we show how to convert this problem

into a corresponding undiscounted augmented regulator problem without uncer-

tainty. Therefore, while our original problem is a discounted stochastic regulator

problem, we solve it by first solving a deterministic regulator problem with a

smaller number of state variables, then solving a corresponding augmented reg-

ulator problem, and finally using this latter solution to construct the solution to

the original problem in the manner described below.
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3.2.1. Deterministic regulator problem

Choose a control sequence {vt} to maximize

−
∞
∑

t=0

(vt
′Rvt + yt

′Qyyyt) ,

subject to

yt+1 = Ayyyt +Byvt

∞
∑

t=0

(

|vt|2 + |yt|2
)

<∞. (3.2.1)

This control problem is a standard time-invariant, deterministic optimal

linear regulator problem with one modification. We have added a stability con-

dition, (3.2.1), that is absent in the usual formulation. This stability condition

plays a central role in at least one important class of dynamic economic models:

permanent income models. More will be said about these models later. In these

models, the stability condition can be viewed as an infinite horizon counterpart

to a terminal condition on the capital stock.

Following the literature on the time-invariant optimal linear regulator prob-

lem, we impose the following:

Definition: The pair (Ayy, By) is stabilizable if y′By = 0 and y′Ayy = λy′ for

some complex number λ and some complex vector y implies that |λ| < 1 or

y = 0.

Assumption 1: (Ayy, By) is stabilizable.

Stabilizability is equivalent to the existence of a time-invariant control law that

stabilizes the state (see Anderson and Moore, 1979, Appendix C). For our

applications, it can often be verified by showing that a trivial control law, such

as setting investment equal to zero, achieves this stability.

In solving this problem, we are primarily interested in specifications for

which all of the state variables are “endogenous,” and hence the following

stronger restriction is met:

Definition: The pair (Ayy, By) is controllable if y′By = 0 and y′Ayy = λy′ for

some complex number λ and some complex vector y implies that y = 0.



62 Linear control theory

When (Ayy , By) is controllable, starting from an initialization of zero, the state

vector can attain any arbitrary value in a finite number of time periods by an ap-

propriate setting of the controls (see Anderson and Moore, 1979, Appendix C).3

For this reason, we can think of a state vector sequence with evolution equation

governed by a pair (Ayy , By) that is controllable as being an endogenous state

vector sequence.

While Assumption 1 gives us a nonempty constraint set, it is still possible

that the supremum of the objective is not attained. We assume the following:

Assumption 2: The matrix Qyy is positive semidefinite, and the matrix R is

positive definite.

Among other things, this concavity assumption puts an upper bound of zero on

the criterion function. Therefore, the supremum is finite (and nonpositive). We

require that the supremum is attained.

Assumption 3: There exists a solution to the deterministic regulator problem for

each initialization of y0 .

A commonly used sufficient condition in the control theory literature for there

to exist a solution is detectability. Factor Qyy = DyDy
′ .

Definition: The pair (Ayy, Dy) is detectable if D′
yy = 0 and Ayyy = λy for

some complex number λ and some complex vector y implies that |λ| < 1 or

y = 0.

When the pair (Ayy, Dy) is detectable, it is optimal to choose a control sequence

that stabilizes the state vector. In this case, the solution to the control prob-

lem is the same with or without the stability constraint (3.2.1). However, as

we mentioned previously, for permanent income models the stability constraint

is essential for obtaining an interpretable solution to the problem. For these

models, detectability is too strong of a condition to impose. Chan, Goodwin

and Sin (1984) give a weaker sufficient condition for there to exist a solution

(see (iii) of Theorem 3.10). In the context of a continuous-time formulation,

Hansen, Heaton and Sargent (1991) proposed a very similar sufficient condition

for stabilizable systems based on a spectral representation of the deterministic

3 This is one of five equivalent characterizations of reachability given in Appendix C of

Anderson and Moore (1979). However, many other control theorists take one of these charac-

terizations as the definition of controllability. For instance, see Kwakernaak and Sivan (1972)

and Caines (1988). We choose to follow this latter convention.



Control problems 63

regulator problem. Unfortunately, these conditions may be tedious to check in

practice. Some of the solution algorithms we survey below could in principle be

modified to detect a violation of Assumption 3.

A sufficient condition for convergence of one of the solution algorithms that

we survey below is that the pair (Ayy, Dy) be observable:

Definition: The pair (Ayy, Dy) is observable if Dy
′y = 0 and Ayyy = λy for

some complex number λ and some complex vector y implies that y = 0.

Clearly, observability is stronger than detectability. Moreover, observability is

guaranteed when the matrix Qyy is nonsingular. When the pair (Ayy, Dy) is ob-

servable, the value function associated with the deterministic regulator problem

is strictly concave in the state vector y (Caines and Mayne 1970, 1971).

The solution to the deterministic regulator problem takes the form

vt = −Fyyt

for some feedback matrix Fy . The stability constraint (3.2.1) guarantees that

the eigenvalues of Ayy − ByFy have absolute values that are strictly less than

one because the state evolution equation when the optimal control is imposed

is given by

yt+1 = (Ayy −ByFy) yt.

3.2.2. Augmented regulator problem

Choose a control sequence {vt} to maximize

−
∞
∑

t=0

(vt
′Rvt + yt

′Qyyyt + 2yt
′Qyzzt) ,

subject to
[

yt+1

zt+1

]

=

[

Ayy Ayz

0 Azz

] [

yt

zt

]

+

[

By

0

]

vt

∞
∑

t=0

(

|vt|2 + |yt|2
)

<∞.
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We have modified the optimal linear regulator problem by including the

exogenous forcing sequence {zt} . The presumption here is that this partition-

ing may occur naturally in the specification of the original control problem. Of

course, as is well known in the control theory literature, we could always trans-

form an original state vector into controllable and uncontrollable components.

Constructing this transformation, however, can be difficult to do in a numeri-

cally reliable way. In the next section we will display a class of optimal resource

allocation problems associated with dynamic economies for which zt contains

a vector of taste and technology shifters. By assumption, this component of

the state vector cannot be influenced by a control vector such as the level of

investment.

For the augmented regulator problem to be well posed, we require that the

forcing sequence be stable:

Assumption 4: The eigenvalues of Azz have absolute values that are strictly less

than one.

The solution to the deterministic regulator problem gives us a piece of the

solution to the augmented regulator problem. More precisely, the solution to the

augmented problem is

vt = −Fyyt − Fzzt,

where the matrix Fy is the same as in the solution to the regulator problem

for which the forcing sequence {zt} is zeroed out. Consequently, our solution

methods entail first computing Fy by solving a deterministic regulator problem

of lower dimension and then computing Fz given Fy .

3.2.3. Discounted stochastic regulator problem

Let {Ft : t = 0, 1, ...} denote an increasing sequence of sigma algebras (informa-

tion sets) defined on an underlying probability space. We presume the existence

of a “building block” process of conditionally homoskedastic martingale differ-

ences {ǫt : t = 1, 2, ...} , which obeys

Assumption 5: The process {ǫt : t = 1, 2, ...} satisfies

(i) E(ǫt+1|Ft) = 0;

(ii) E(ǫt+1ǫt+1
′|Ft) = I.
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The discounted stochastic regulator problem is to choose a control process {ut} ,

adapted to {Ft} , to maximize

−E
( ∞
∑

t=0

βt [ut
′ xt

′ ]

[

R W ′

W Q

] [

ut

xt

] ∣

∣

∣

∣

F0

)

,

subject to

xt+1 = Axt +But + Cǫt+1

E

( ∞
∑

t=0

βt
(

|ut|2 + |xt|2
)

∣

∣

∣

∣

F0

)

<∞.

The state vector xt is taken to be the composite of the endogenous and exoge-

nous state variables. Let Uy = [I 0] be a matrix that selects the endogenous

state vector Uyxt and Uz = [0 I] be a matrix that selects the exogenous state

vector Uzxt for an optimization problem with discounting. To justify our parti-

tioning, the matrix A is restricted to satisfy UzAUy
′ = 0, and the matrix B is

restricted to satisfy UzB = 0. Notice that in addition to incorporating discount-

ing and uncertainty, the discounted stochastic regulator includes cross-product

terms between controls and states, captured with u′W ′x , which are absent in

the augmented control problem.

We now apply a standard trick for converting a discounted stochastic regula-

tor problem to an augmented regulator problem. Using the well known certainty

equivalence property of stochastic optimal linear regulator problems, we zero

out the uncertainty without altering the optimal control law. That is, we are

free to set the matrix C to zero and instead solve the resulting deterministic

control problem. We eliminate discounting and cross-product terms between

states and controls by using the transformations

yt = βt/2Uyxt, zt = βt/2Uzxt, vt = βt/2
(

ut +R−1W ′xt

)

.

As is evident from these formulas, we have absorbed the discounting directly

into the construction of the transformed state and control vectors. In addition,

the cross-product matrix W is folded into the construction of the transformed

control vector. We are left with a version of the augmented regulator problem

with the following matrices:
[

Ayy Ayz

0 Azz

]

= β1/2
(

A−BR−1W ′) , By = β1/2UyB,
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[

Qyy Qyz

Qyz
′ Qzz

]

= Q−WR−1W ′. (3.2.2)

Assumptions 1 - 4 are imposed on the constructed matrices on the left-hand side

of the equal signs in (3.2.2).

As before, write the solution to the augmented regulator problem as

vt = −Fyyt − Fzzt.

Then the solution to the discounted stochastic regulator problem is

ut = −Fxt,

where

F =

[

Fy

Fz

]

+R−1W ′.

Also as before, the matrix Fy can be computed by solving the corresponding

deterministic regulator problem with the forcing sequence “zeroed out.” Subse-

quent sections will describe methods for computing Fy and Fz .

In macroeconomics, the discounted stochastic regulator problem is often ob-

tained in the fashion of Kydland and Prescott (1982), who use it to replace

a nonlinear-quadratic problem. Thus consider the nonquadratic optimization

problem: choose an adapted (to {Ft}) control process {ut} to maximize

−E
( ∞
∑

t=0

βtr (ut, xt)

∣

∣

∣

∣

F0

)

, (3.2.3)

subject to

xt+1 = Axt +But + Cǫt+1.

Here r is not required to be a quadratic function of ut and xt . When the

associated constraints are nonlinear, sometimes we can substitute the nonlinear

constraints into the criterion function to obtain a problem of the form of (3.2.3).

Kydland and Prescott (1982) simply replace the function r by a quadratic form

in [ut
′ xt

′ ]′ as required for the discounted stochastic regulator problem, where

the quadratic function is designed to “approximate” r well near a particular

value for the state vector.4 In chapter 5, we describe a different approach

4 While Kydland and Prescott (1982) apply an ad hoc global approximation to r in which

the range of approximation is adapted to the amount of underlying uncertainty, many later

researchers have instead simply used a local Taylor series approximation around some “non-

stochastic” steady state produced by shutting down all randomness in the model. Kydland

and Prescott (1982) note that for the range of uncertainty they considered, the two methods

gave similar answers. In forming the linear quadratic problem, it is important to substitute the

non-linear constraints into the objective function before taking a Taylor series approximation.
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where, by design, the initial optimal resource allocation problem can be directly

converted into a discounted stochastic regulator problem.

3.3. Solving the deterministic linear regulator problem

In this section we describe ways to solve for the matrix Fy . Recall that this

matrix has a double role. First, it gives the control law for a particular deter-

ministic regulator problem. More importantly for us, it also gives a piece of the

solution to the discounted stochastic regulator problem.

In describing methods for computing Fy , it is convenient to work with the

state-costate equations associated with the Lagrangian

L = −
∞
∑

t=0

[y′tQyyyt + v′tRvt + 2µt+1
′ (Ayyyt +Byvt − yt+1)] . (3.3.1)

First-order necessary conditions for the maximization of L with respect to

{vt}∞t=0 and {yt}∞t=0 are

vt : Rvt +By
′µt+1 = 0, t ≥ 0 (3.3.2)

yt : µt = Qyyyt +Ayy
′µt+1, t ≥ 0. (3.3.3)

To obtain a composite state-costate evolution equation, solve (3.3.2) for vt ,

substitute the solution into the state evolution equation, and stack the resulting

equation and (3.3.3) and write the state-costate evolution equation as

L

[

yt+1

µt+1

]

= N

[

yt

µt

]

, (3.3.4)

where

L ≡
[

I ByR
−1By

′

0 Ayy
′

]

, N ≡
[

Ayy 0

−Qyy I

]

.

For a continuous-time system the a corresponding differential equation for

states and costates is
[

Dyt

Dµt

]

= H

[

yt

µt

]

, (3.3.5)

where

H ≡
[

Ayy −ByR
−1B′

y

−Qyy −Ayy
′

]

, (3.3.6)
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which assembles the first-order conditions for the problem with criterion −
∫∞
0 [y(t)′Qyyy(t)+

u(t)′Ru(t)]dt and law of motion Dy(t) = Ayyy(t) + Byu(t), where D is the

time-differentiation operator. We describe several methods for solving equa-

tions (3.3.4) and (3.3.5). Formally, we will devote most of our attention to the

discrete-time system (3.3.4). As we will see, methods designed for solving the

continuous-time system (3.3.5) can be adapted easily to solve the discrete-time

system (3.3.4), and conversely.

We want the solution of (3.3.4) that stabilizes the state-costate vector se-

quence for any initialization y0 . Since we have transformed the state vector to

eliminate discounting, we impose stability in the form of square summability:

∞
∑

t=0

∣

∣

∣

[

yt

µt

]

∣

∣

∣

2

<∞, (3.3.7)

for the discrete-time system (3.3.4). (We impose the analogous square integra-

bility restriction on the continuous time system (3.3.5)).

One way to ascertain the solution to the deterministic regulator problem is

to find an initial costate vector expressed as a function of the initial state vector

y0 that guarantees the stability of system (3.3.4) or (3.3.5). The initialization

of the costate vector takes the form µ0 = Pyy0 and is replicated over time.

Substituting Pyyt for µt into (3.3.4), we find that

(

I +ByR
−1By

′Py

)

yt+1 = Ayyyt

Ayy
′Pyyt+1 = −Qyyyt + Pyyt.

(3.3.8)

It is straightforward to verify that

(

I +ByR
−1By

′Py

)−1
= I −By

(

R+By
′PyBy

)−1
B′

yPy . (3.3.9)

Solving the first equation in (3.3.8) for yt+1

yt+1 = (Ayy −ByFy) yt, (3.3.10)

where

Fy ≡
(

R+By
′PyBy

)−1
B′

yPyAyy. (3.3.11)

Premultiplying (3.3.10) by A′
yyPy gives

A′
yyPyyt+1 =

(

A′
yyPyAyy −A′

yyPyByFy

)

yt. (3.3.12)
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For the right-hand side of equation (3.3.12) to agree with the right-hand side

of the second equation of (3.3.8) for any initialization y0 , it must be that

Py = Qyy +A′
yyPyAyy −A′

yyPyBy

(

R+B′
yPyBy

)−1
B′

yPyAyy

= Qyy + (Ayy −ByFy)′ Py (Ayy −ByFy) + Fy
′RFy

, (3.3.13)

which is the familiar Riccati equation. In other words, the matrix Py used to

set the initial condition on the costate vector is also a solution to the Riccati

equation (3.3.13). With this initialization, the costate relation µt = Pyyt holds

for all t ≥ 0. Finally, it follows from (3.3.10) that this state-costate solution is

implemented by the control law vt = −Fyyt.

The remainder of this section is organized as follows. In the first subsection,

we initially consider the case in which the matrix Ayy is nonsingular. While this

case is studied for pedagogical simplicity, it is also of interest in its own right. In

the second subsection, we then treat the more general case in which Ayy can be

singular. As emphasized by Pappas, Laub and Sandell (1980), singularity in Ayy

occurs naturally in dynamic systems with delays. One of our example economies

used in our numerical experiments has a singular matrix Ayy . Finally, in the

third subsection we study the continuous-time counterpart to the deterministic

regulator problem. We describe an alternative solution method and show how to

convert a discrete-time regulator problem into a continuous-time regulator with

the same relation between optimally chosen state and co-state vectors. We defer

the discussion of the numerical algorithms used for implementing these methods

until the next section.

3.3.1. Nonsingular Ayy

When the matrix Ayy is nonsingular, we can solve (3.3.4) for

[

yt+1

µt+1

]

:

[

yt+1

µt+1

]

= M

[

yt

µt

]

, (3.3.14)

where

M ≡ L−1N =

[

Ayy +ByR
−1B′

yA
′
yy

−1
Qyy −ByR

−1B′
yA

′
yy

−1

−A′
yy

−1
Qyy A′

yy
−1

]

. (3.3.15)

We find the matrix Py by locating the stable invariant subspace of the matrix

M .
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Definition: An invariant subspace of a matrix M is a linear space C of possibly

complex vectors for which MC = C.

Invariant subspaces are constructed by taking linear combinations of eigenvec-

tors of M . A stable invariant subspace is one for which the corresponding

eigenvalues have absolute values less than one. To solve the model, we seek a

matrix Py such that

[

I

Py

]

y is in the stable invariant subspace of M for every

n dimensional vector y . We now elaborate on how to compute this subspace.

The matrix M has a particular structure that we can exploit in character-

izing its eigenvalues. To represent this structure, we introduce a matrix J given

by

J ≡
[

0 −I
I 0

]

.

Notice that J−1 = J ′ = −J .

Definition: A matrix M is symplectic if MJM ′ = J .

It is straightforward to verify that M given by (3.3.15) is symplectic. It follows

that

M ′ = J−1M−1J. (3.3.16)

Therefore, the transpose of M is similar to its inverse. Recall that similar

matrices define the same linear transformation but with respect to a different

coordinate system. Thus M ′ and M−1 share the same eigenvalues. For any

matrix M , the eigenvalues of M−1 are the reciprocals of the eigenvalues of M ,

so it follows that the eigenvalues of a real symplectic matrix come in recipro-

cal pairs, and the number of stable eigenvalues cannot exceed the number of

states n . However, merely requiring M to be symplectic permits there to be

eigenvalues with absolute values equal to one, and so we will need an additional

argument to show that there are exactly n stable eigenvalues.

To locate the stable invariant subspace of the symplectic matrix M , we

follow Laub (1979) and (block) triangularize M :

V −1MV = W

W =

[

W11 W12

0 W22

]

, (3.3.17)
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where V is a nonsingular matrix. By construction, the matrices M and W

are similar. The matrix partitions in (3.3.17) are built to coincide with the

number of stable and unstable eigenvalues. In particular, the absolute values of

the eigenvalues of W11 are stable.

A special case of this decomposition is an appropriately ordered Jordan

decomposition of M as was used by Vaughan (1970) in developing an invariant

subspace algorithm for computing Py . Laub (1991) traces this solution strategy

back to the 19th century and credits MacFarlane (1963) and Potter (1966) with

introducing it to the control literature. As emphasized by Laub (1991), it is

preferable to build algorithms based on other upper triangular decompositions

that are more stable numerically. The Jordan decomposition is particularly

problematic when the symplectic matrix M has eigenvalues with multiplicities

greater than one (see also Golub and Wilkinson 1976). In the next section, we

describe alternative Schur decompositions, which are more reliable numerically.

To use this triangularization to calculate Py , apply V −1 to both sides of

the state equation (3.3.14):

y̌t+1 = Wy̌t,

where

y̌t = V −1

[

yt

µt

]

.

This transformation permits us to study asymptotic properties in terms of two

smaller uncoupled subsystems. Partition y̌t into two blocks with dimensions

given by the number of stable and unstable eigenvalues:

y̌t ≡
[

y̌1,t

y̌2,t

]

.

Then

y̌2,t+1 = W22y̌2,t,

and the solution sequence {y̌2,t} fails to converge to zero unless it is initialized at

zero. Setting y̌2,0 at zero can be accomplished by an appropriate initialization

of the costate vector, as we now verify.

Partition the matrices V and V −1 as

V =

[

V11 V12

V21 V22

]

, V −1 =

[

V 11 V 12

V 21 V 22

]

.
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Since V is nonsingular and there exists a (stable) solution to the optimal control

problem, we must have

V 21yt + V 22µt = 0. (3.3.18)

The rank of the matrix [V 21 V 22 ] equals the number of unstable eigenvalues

of M , and thus the rank of its null space must equal the number of stable

eigenvalues. For a solution to exist for every initialization y0 = y , it follows

from (3.3.18) that there must exist a µ such that

V 21y + V 22µ = 0.

Thus the dimensionality of the null space of [V 21 V 22 ] must also be at least

n . Therefore, M has exactly n stable eigenvalues, and the matrix partition

V 22 is nonsingular. Solving (3.3.18) for µt gives

µt = −
(

V 22
)−1

V 21yt.

Consequently, the matrix Py used to initialize the costate vector is given by

Py = −
(

V 22
)−1

V 21 = V21V11
−1, (3.3.19)

where the second equality follows from the fact that the rank of

[

V11

V21

]

is n ,

and

[V 21 V 22 ]

[

V11

V21

]

= 0.

3.3.2. Singular Ayy

We now extend the solution method to accommodate singularity in Ayy . This

method avoids inverting the L matrix in (3.3.4). Instead of locating the stable

invariant subspace of M , a deflating subspace method finds the stable deflating

subspace of the pencil λL−N .

Definition: A pencil λL−N is the family of matrices {λL−N} indexed by the

complex variable λ .

Definition: A deflating subspace of the pencil λL−N is a subspace C of complex

vectors such that the dimension of C is at least as large as the dimension of the

sum of the subspaces LC and NC .
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For the matrices L and N of equation (3.3.4), it can be verified that the

intersection of their null spaces contains only the zero vector.5 This ensures

us that a generalized eigenvalue problem is well posed. When a subspace C is

deflating, there exists a vector y in C that solves the generalized eigenvalue

problem

λLy = Ny

(see Theorem 2.1 in Stewart 1972). Implicitly, we are including the possibility

of a solution with λ = ∞ , which occurs when y is in the null space of L but

not in the null space of N . As with the previous (invariant subspace) method,

the deflating subspace of interest for solving the optimal control problem is the

deflating subspace associated with the stable state-costate sequence. The stable

deflating subspace is the subspace associated with the stable generalized eigen-

vectors (the eigenvectors associated with generalized eigenvalues with absolute

values strictly less than one.) Hence we solve the model by finding a matrix Py

such that

[

I

Py

]

y is in the stable deflating subspace of the pencil λL −N .

Recall that when Ayy is nonsingular, the matrix M is symplectic. More

generally, system (3.3.4) is associated with a symplectic pencil

Definition: A pencil λL −N is symplectic if LJL′ = NJN ′ .

Pappas, Laub and Sandell (1980, Theorem 4) show that the generalized eigen-

values of the symplectic pencil (λL − N) come in reciprocal pairs, just as the

eigenvalues of M do when Ayy is nonsingular. Hence we again have that the

number of stable generalized eigenvalues is no greater than n . Furthermore, we

can imitate our argument in the case in which Ayy is nonsingular to show that

there are exactly n stable generalized eigenvalues.6

We triangularize the state-costate system (3.3.4) using the solutions to the

generalized eigenvalue problem. As in Theorem 2.1 of Stewart (1972), there

5 See Theorem 3 of Pappas, Laub and Sandell (1980) for the case in which (Ayy, Dy)

is detectable. As we noted previously, the restriction to a detectable system rules out some

interesting economic models. More generally, nonexistence of a common nonzero vector in the

null spaces of N and L can be shown by way of contradiction. Suppose there is a common

nonzero vector in the null space. Then the matrix (I + QyyByR−1B′
y) is singular. However,

this singularity contradicts Theorem 1 of Kimura (1988).
6 Theorems 3 and 4 of Pappas, Laub and Sandell (1980) establish this result when the

pair (Ayy , Dy) is detectable.
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exists a decomposition of the pencil λL −N such that

ULV = T =

[

T11 T12

0 T22

]

, UNV = W =

[

W11 W12

0 W22

]

, (3.3.20)

where U and V are unitary matrices and the matrix partitions have the same

number, n, of elements as the number of entries in the state vector yt . Pre-

multiplication of the pencil λL−N by the nonsingular matrix U preserves the

solutions to the generalized eigenvalue problem, and postmultiplication by V al-

ters the generalized eigenvectors but not the eigenvalues. A consequence of the

triangularization is that the solutions to the generalized eigenvalue problem for

the original system are constructed directly from the solutions to the following

two smaller problems:
λT11ỹ = W11ỹ

λT22ỹ = W22ỹ.
(3.3.21)

As with the invariant subspace method, we build the blocks of the trian-

gularization so that the generalized eigenvalues of the first problem in (3.3.21)

satisfy |λ| < 1, and for the second problem |λ| > 1. As a consequence, the span

of the first n columns of V gives the vectors of the deflating subspace we seek.

The span of the remaining n columns contains the problematic initializations

of the state-costate vector for which the implied sequence of state-costate vec-

tors diverges exponentially. In addition, it includes the span of the generalized

eigenvectors associated with infinite eigenvalues. Imitating the solution method

when Ayy is nonsingular, we initialize the costate vector as µt = Pyyt , where

the matrix Py is again given by (3.3.19).

To understand better the nature of this unstable subspace, recall that an

eigenvector associated with an infinite eigenvalue is in the null space of T22 .

Suppose the triangularization of L and N is built so that we can further par-

tition the matrices:

T22 =

[

M11 M12

0 0

]

W22 =

[

O11 O12

0 O22

]

,

where the matrices M11 and O22 are nonsingular. Such a triangularization

always exists. Consider solving the following equation recursively for a sequence

{ỹt+1} ; for each t solve for ỹt+1 given ỹt by using

T22ỹt+1 = W22ỹt.
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For this equation to have a solution, the second component of ỹt must be zero

for all t because

O22ỹt,2 = 0, (3.3.22)

and O22 is nonsingular. In addition to eliminating the nonexistence problem,

imposing this restriction also resolves the multiplicity problem. Note that the

multiplicity problem for the triangular system is that for a given t , (3.3.22) does

not restrict ỹt+1,2 . However, applying (3.3.22) at t+ 1 resolves the problem.

3.3.3. Continuous-time systems

To conclude this section, we consider solving continuous-time Hamiltonian sys-

tems of the form (3.3.5). The defining feature of a Hamiltonian matrix is:

Definition: A matrix H is Hamiltonian if JH is symmetric.

The matrix H in (3.3.5), (3.3.6) clearly satisfies this property. It follows that

H ′ = −JHJ−1,

which in turn implies that the matrix H ′ is similar to −H . Consequently, the

eigenvalues of a real Hamiltonian matrix come in pairs that are symmetric about

the imaginary axis of the complex plane. The stable eigenvalues of a Hamiltonian

matrix are those whose real parts are strictly negative. Similar arguments to

those given above guarantee that there are exactly n stable eigenvalues of H .

Therefore, (3.3.5) can be solved by using an invariant subspace method and its

associated decomposition (3.3.17), provided that the classification of stable and

unstable eigenvalues is modified appropriately.7

There is an alternative approach for solving a continuous-time Hamiltonian

system. Given a Hamiltonian matrix H , another Hamiltonian matrix G is

constructed with the same stable and unstable invariant subspaces. The matrix

7 Deflating subspace methods are not needed for solving the class of continuous-time

quadratic control problems considered here because we can form directly the Hamiltonian

matrix and apply an invariant subspace method. However, as we have formulated it, the

continuous-time problem does not permit systems with finite gestation lags in making invest-

ment goods productive or systems for which consumption services depend on only a finite

interval of past consumptions.
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G is called the “sign” of the matrix H , and is defined as follows. Take the

Jordan decomposition of H :

H = V

[

Λ11 0

0 Λ22

]

V −1,

where Λ11 is an upper triangular matrix with the eigenvalues of H that have

strictly negative real parts on the diagonals, and Λ22 is an upper triangular

matrix with the eigenvalues of H that have strictly positive real parts on the

diagonals. Then

G = sign (H) ≡ V

[−I 0

0 I

]

V −1.

Thus the sign of a matrix is a new matrix with the same eigenvectors as the

original matrix and with eigenvalues replaced by −1 or 1 depending on the

signs of the real parts of the original eigenvalues.

The matrix Py can be inferred directly from G . To see this, we use an

insight from Roberts (1980). By construction, all of the stable eigenvalues of G

are equal to −1. Consequently, the matrix Py satisfies the following eigenvalue

problem:

G

[

I

Py

]

y = −
[

I

Py

]

y

for any n dimensional vector y , and the matrix Py solves the affine equation

G

[

I

Py

]

+

[

I

Py

]

= 0. (3.3.23)

This method is implemented by finding fast ways to compute the “sign” of a

matrix.

While the matrix sign method is directly applicable for solving continuous-

time Hamiltonian systems, Hitz and Anderson (1972) and Gardiner and Laub

(1986) show how to use it to locate deflating subspaces of discrete-time systems.

Consider the generalized eigenvalue problem for the symplectic pencil

λLy = N.

Then

(1 + λ) (L−N) y = (1 − λ) (L+N) y.
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Since the only common vector in the null space of L and N is zero, we construct

the solution to the eigenvalue problem

δy = (L−N)
−1

(L+N) y,

where

δ =
1 + λ

1 − λ
.

Consequently, the stability relations (3.2.1) carry over here as well, and we

apply the matrix sign algorithm to (L−N)−1(L+N).

It also turns out that (L − N)−1(L + N) is a Hamiltonian matrix, which

we can exploit in computation. To verify the Hamiltonian structure, note that

(L−N)J (L′ +N ′) = LJL′ −NJN ′ −NJL′ + LJN ′

= −NJL′ + LJN ′

= NJN ′ − LJL′ −NJL′ + LJN ′

= − (L+N)J (L′ −N ′)

,

where we have used the fact that λL −N is a symplectic pencil. Therefore,

J (L−N)−1 (L+N) = (L′ +N ′) (L′ +N ′)
−1
J (L−N)−1 (L+N)

= (L′ +N ′) [− (L−N)J (L′ +N ′)]
−1

(L+N)

= (L′ +N ′) [(L+N)J (L′ −N ′)]
−1

(L+N)

= (L′ +N ′) (L′ −N ′)
−1
J ′,

which proves that (L −N)−1(L+N) is a Hamiltonian matrix.

In summary, by construction, the stable (unstable) invariant subspace of

the Hamiltonian matrix (L−N)−1(L+N) coincides with the stable (unstable)

deflating subspace of the symplectic pencil λL−N . This coincidence permits us

to compute the matrix Py used for initializing the costate vector for the discrete-

time system (3.3.4) by applying a matrix sign algorithm to (L−N)−1(L+N).
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3.4. Computational techniques for solving Riccati
equations

We consider three types of algorithms for computing Py :

(i) Schur algorithm;

(ii) doubling algorithm;

(iii) matrix sign algorithm.

A Schur algorithm is based on locating a stable subspace using a Schur decom-

position of the state-costate system. As we noted in the previous section, once

a stable subspace is located, the relevant Riccati equation solution Py is eas-

ily computed. There are two versions of a Schur decomposition, depending on

whether the matrix Ayy is known to be nonsingular or not. A Schur decomposi-

tion gives a more reliable way of locating stable spaces than the familiar Jordan

decomposition and its generalization for pencils.

A doubling algorithm is an iterative method for speeding up the dynamic

programming Riccati equation iteration by doubling the number of time periods

in each iteration.

Recall from our discussion in the previous section that the stable deflating

subspace of the pencil {λL−N} coincides with the invariant subspace of the sign

of the matrix (L−N)−1(L+N) associated with the eigenvalue −1. A matrix

sign algorithm is an iterative method for computing the sign of (L−N)−1(L+N)

from which we can recover Py easily. See section 3.4.4 for details of the matrix

sign algorithm.

3.4.1. Schur algorithm

Suppose the matrix Ayy is nonsingular. As we noted in section 3, the matrix Py

can be found by locating the stable invariant subspace of the matrix M given

in (3.3.15). In some of our numerical calculations, we use what is referred to as

a real Schur decomposition of M to locate its invariant subspace.
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Definition: The real Schur decomposition of a real matrix M is an orthogonal

matrix V̂ and a real upper block triangular matrix Ŵ such that

V̂ ′MV̂ = Ŵ =











Ŵ11 Ŵ12 . . . Ŵ1m

0 Ŵ22 . . . Ŵ2m
...

. . .
. . .

...

0 . . . 0 Ŵmm











where Ŵii is either a scalar or a 2× 2 matrix with complex conjugate eigenval-

ues.8

A real Schur decomposition is a computationally convenient version of the block

triangular decomposition (3.3.17) used to compute Py when Ayy is nonsingular.

Golub and Van Loan (1989) describe how to compute the real Schur decompo-

sition (in particular, see sections 7.4 and 7.5). Recall that the block triangular

matrix W in (3.3.17) results from partitioning the eigenvalues into stable and

unstable eigenvalues. Algorithms that compute the real Schur decomposition of

a matrix typically do not partition the diagonal blocks of Ŵ according to sta-

bility. Instead, given an arbitrary real Schur decomposition M = V̂ Ŵ V̂ ′ , one

can use the approaches described in either Bai and Demmel (1993) or Stewart

(1976) to construct a sequence of orthogonal transformations that reorder the

diagonal blocks of Ŵ , while updating V̂ so that M = V̂ Ŵ V̂ ′ holds at every

step.

In summary, the steps for implementing a Schur algorithm are

(1) form the matrix M in (3.3.15);

(2) form a real Schur decomposition of M where the first n columns of V̂ ,

written in a partitioned form as [ V̂11
′
V̂21

′
]
′
, are a basis for the stable

invariant subspace of M ;

(3) solve PyV̂11 = V̂21 for Py .

We recommend computing the real Schur decomposition of M by using the

LAPACK function DGEES; Py in step (3) can be computed using the built-in

MATLAB operator ’/’, which solves a linear equation using Gaussian elimination

with partial pivoting.

8 There is also a complex Schur decomposition of a real or complex matrix in which V̂ is

a unitary matrix and Ŵ is upper triangular.



80 Linear control theory

A deflating subspace method is required when Ayy is singular and likely

to be more stable numerically when Ayy is nearly singular. To implement this

approach in practice, we use an ordered real generalized Schur decomposition

to find an appropriate triangularization of the state-costate dynamical system

(see Van Dooren (1982)).

Definition: A generalized real Schur decomposition of a real matrix pencil λL−N
is a pair of orthogonal matrices Û and V̂ , a real upper triangular matrix T̂ ,

and a real upper block triangular matrix Ŵ , such that

ÛLV̂ = T̂ =











T̂11 T̂12 . . . T̂1m

0 T̂22 . . . T̂2m
...

. . .
. . .

...

0 . . . 0 T̂mm











ÛNV̂ = Ŵ =











Ŵ11 Ŵ12 . . . Ŵ1m

0 Ŵ22 . . . Ŵ2m
...

. . .
. . .

...

0 . . . 0 Ŵmm











,

where the pencil λT̂ii − Ŵii is either a 1 × 1 matrix pencil or a 2 × 2 matrix

pencil with complex conjugate generalized eigenvalues.

As with the real Schur decomposition, we initially compute a generalized real

Schur decomposition of λL − N without regard to whether the generalized

eigenvalues are stable or not. We then reorder the diagonal blocks of T̂ and Ŵ

so that the generalized eigenvalues are partitioned in the manner required by

(3.3.20). This partitioning can be done using the algorithms described in Van

Dooren (1981,1982) or in Kågström and Poromaa (1994).

Thus the steps for implementing a generalized Schur algorithm are

(1) form the matrices L and N in (3.3.4);

(2) form a generalized real Schur decomposition of the pencil λL − N where

the first n columns of V̂ , written in a partitioned form as [ V̂11
′
V̂21

′
]
′
,

span the deflating subspace of the pencil λL −N ;

(3) solve PyV̂11 = V̂21 for Py .
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3.4.2. Digression: solving DGE models with distortions

Linear or log-linear approximations to the equilibrium conditions of dynamic

general equilibrium (DGE) models take one of the forms

Lyt+1 = Nyt + G̃zt (3.4.1)

or, if L is nonsingular,

yt+1 = Myt +Gzt (3.4.2)

where M = L−1N and zt is a vector of forcing variables governed by a law of

motion

zt+1 = A22zt, (3.4.3)

where the eigenvalues of A22 are all less than or equal to unity in modulus.9

We shall consider the case in which L is nonsingular. We assume that the

eigenvalues of M split into equal numbers of stable and unstable ones so that we

can obtain a real Schur decomposition of M = V −1MV = W =

[

W11 W12

0 W22

]

where W11 is a stable matrix and W22 is an unstable matrix. The assumption

that the eigenvalues split in this way is tantamount to assuming that there exists

a unique stabilizing solution of (3.4.1).

Using M = VWV −1 in (3.4.2) and premultiplying both sides by V −1 gives

V −1yt+1 = WV −1yt + V −1Gzt (3.4.4)

or

y∗t+1 = Wy∗t +G∗zt (3.4.5)

where y∗t = V −1yt and G∗ = V −1G . Express (3.4.5) in terms of the uncoupled

dynamic system

y∗1t+1 = W11y
∗
1t +W12y

∗
2t +G∗

1zt (3.4.6a)

y∗2t+1 = W22y
∗
2t +G∗

2zt. (3.4.6b)

9 This assumption can be relaxed to be that the eigenvalue of maximum modulus of A22

times the reciprocal of the largest eigenvalue of A22 is strictly less than unity. Tom: check

the sign of this statement.
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Where L̃ is the lag operator, rewrite (3.4.6b) as (I −W22L̃)y∗2t+1 = G∗
2zt

or −W22L̃(I −W−1
22 L̃

−1)y∗2t+1 = G∗
2zt or10

y∗2t = −W−1
22

(

I −W−1
22 L̃

−1
)−1

G∗zt. (3.4.7)

Substituting this into (3.4.6a) and rearranging gives

y∗t+1 = W11y
∗
1t +

[

G∗
1 −W12W

−1
22

(

I −W−1
22 L̃

−1
)−1

G∗
2

]

zt. (3.4.8)

Equations (3.4.7), (3.4.8) give the stabilizing solution for the uncoupled dy-

namic system cast in terms of y∗t . To retrieve the original variables, we simply

use yt = V y∗t .

The very same solution would also be sustained as the solution of the

stochastic system in which (3.4.3) is replaced by the stochastic law of motion

zt+1 = A22zt + Cwt+1 (3.4.9)

where wt+1 is a martingale difference sequence with identity covariance ma-

trix; and where yt+1 on the left side of (3.4.1) and (3.4.2) is replaced by

E[yt+1|yt, z
t] , where here E is the mathematical expectation operator and zt

denotes the history of the zs process up to and including t . Equations (3.4.7),

(3.4.8) are also the heart of the solution that would obtain if were we to assume

that in a stochastic system the state zt is not observed, but that noisy signals

Yt that are linearly related to it. In that case, the solution is to replace zt

in (3.4.7), (3.4.8) with E[zt|Y t] . The projection E[zt|Y t] can be computed

recursively using the standard Kalman filtering formulas reported in chapter 4.

10 These formulas can be viewed as extensions to the vector case of formulas found in

Sargent (1987a, ch IX, pp. ???).
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3.4.3. Doubling algorithm

Dynamic programming solves the infinite horizon problem by backward induc-

tion, which leads to iterations on the Riccati equation (3.3.13). A doubling

algorithm accelerates this approach. It preserves the idea of approximating the

solution to the infinite horizon problem by a sequence of finite horizon problems,

but instead of increasing the horizon by one time period in each iteration, the

number of time periods gets doubled.

To see how this approach works, recall that the solution to the finite horizon

problem for periods 0, . . . , (τ − 1) can be viewed as a two point boundary value

problem where the initial state vector y0 is set to some arbitrary vector y and

the costate vector at the terminal date µτ is set to zero. Suppose for simplicity

that Ayy is nonsingular. By iterating on relation (3.3.14), we find that

M̂

[

yτ

0

]

=

[

y0

µ0

]

, (3.4.10)

where

M̂ ≡M−τ .

To approximate the matrix Py , we solve (3.4.10) for the initial costate vector µ0

as a function of y0 . Partitioning M̂ conformably to the state-costate partition,

we see that

M̂11yτ = y0, M̂21yτ = µ0.

Therefore, the implicit initialization of the costate vector is

µ0 = M̂21

(

M̂11

)−1

y0,

and our approximation for the matrix Py is given by M̂21(M̂11)
−1 .

What is needed to implement this approach is a way to compute M̂ when

the horizon τ is large. Expanding the horizon one period at a time corresponds

to multiplying the matrix M−1 , τ times in succession. However, when τ is

chosen to be a power of two, computations can be sped up by using

M−2k+1

=
(

M−2k
)

M−2k

. (3.4.11)

As a consequence, when τ = 2j , the desired matrix can be computed in j

iterations instead of 2j iterations, which explains the name doubling algorithm.
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Given that the matrix M−1 has unstable eigenvalues, direct iterations on

(3.4.11) can be very unreliable. Clearly, the sequence of matrices {M−2k} di-

verges. One of the features of a doubling algorithm is to transform these compu-

tations into matrix iterations that converge. Another feature is that a doubling

algorithm exploits the fact that the matrix M is symplectic. Symplectic matri-

ces have several nice properties.11 We have already seen that their eigenvalues

come in reciprocal pairs. In addition, the product of symplectic matrices is

symplectic, and the inverse of a symplectic matrix is symplectic. Moreover, for

any symplectic matrix S , the matrices S21(S11)
−1 and (S11)

−1S12 are both

symmetric and

S22 = (S′
11)

−1
+ S21 (S11)

−1
S12

= (S′
11)

−1
+ S21 (S11)

−1
S11 (S11)

−1
S12.

Therefore, a (2n × 2n) symplectic matrix can be represented in terms of the

three n × n matrices α = (S11)
−1, β = (S11)

−1S12, γ = S21(S11)
−1 , the latter

two of which are symmetric.

The doubling algorithm described by Anderson (1978) and Anderson and

Moore (1979) exploits such a representation by using the following parameteri-

zation of M−2k

:

M−2k

=

[

(αk)
−1

(αk)
−1
βk

γk (αk)
−1

α′
k + γk (αk)

−1
βk

]

,

where the n× n matrices αk, βk, γk are given by the recursions

αk+1 = αk (I + βkγk)
−1
αk

βk+1 = βk + αk (I + βkγk)
−1
βkα

′
k

γk+1 = γk + α′
kγk (I + βkγk)

−1
αk.

(3.4.12)

While this alternative parameterization introduces a matrix inverse into the

recursions (3.4.12) that is absent in (3.4.11), the matrix I+βkγk being inverted

is only n dimensional. The nonsingularity of this matrix for all k is established

in Kimura (1988). To initialize the doubling algorithm, we simply deduce the

implicit parameterization of M−1 given in partitioned form by

M−1 = N−1L =

[

Ayy
−1 Ayy

−1ByR
−1By

′

QyyAyy
−1 QyyAyy

−1ByR
−1By

′ +Ayy
′

]

, (3.4.13)

11 There is a variation of the Schur algorithm that exploits the symplectic structure of M.

See pages 431-434 of Petkov et al. (1991) for an overview of this algorithm.
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which leads to the initializations

α0 = Ayy, β0 = ByR
−1By

′, γ0 = Qyy.

While our derivation took the matrix Ayy to be nonsingular, Anderson (1978)

argues that the doubling algorithm is more generally applicable.

A convenient feature of this parameterization is that there are known con-

ditions under which the matrix sequences {αk}, {βk}, {γk} converge. When the

pair (Ayy, Dy) is detectable, then the sequence {γk} is nondecreasing and con-

verges to the matrix Py . (Here we are adopting the usual partial ordering for

positive semidefinite matrices.) As noted by Kimura (1988, Theorem 5), under

the same restrictions, the sequence {βk} is nondecreasing and converges to a

positive semidefinite matrix P ∗
y associated with a “dual” to the deterministic

regulator problem.

The convergence of the {αk} sequence is more problematic. Unfortunately,

without simultaneous convergence of {αk} , it is not evident that iterations of

the form given in (3.4.12) can be used as the basis of a numerical algorithm. If

this latter sequence diverges, small numerical errors may get magnified, causing

the resulting algorithm to be poorly behaved. Kimura (1988) provides some

sufficient conditions for {αk} to converge to a matrix of zeros. His sufficient

conditions are used to guarantee that either Py or P ∗
y is nonsingular.

As we noted previously, a sufficient condition for Py to be nonsingular is

that the pair (Ayy, Dy) be observable. Sufficient conditions for the nonsingu-

larity of the matrix P ∗
y are that (i) (Ayy, By) is controllable; and (ii) (Ayy, Dy)

is detectable (Kimura 1988). Recall that controllability is often achieved by our

a priori partitioning of the state vector into endogenous and exogenous compo-

nents. Thus for our purposes, the restrictions guaranteeing the nonsingularity

of P ∗
y may be of particular interest. Even so, detectability is too strong for

some of our applications.

To apply a doubling algorithm more generally, we sometimes modify the

control problem by adding small quadratic penalties to linear combinations of

the states and controls. As long as these penalties are sufficient to guarantee

that either Py or P ∗
y is nonsingular, we are assured of convergence of all three

sequences. Of course, there is a danger that the penalty distorts the solution

to the original control problem in a nontrivial way, which must be checked in

practice.
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3.4.3.1. Initialization from a positive definite matrix

Instead of adding small quadratic penalties to the objective function for each

calendar date, we could add a terminal penalty to the finite horizon approx-

imation to the control problem. From Chan, Goodwin and Sin (1984), it is

known that iterations on the Riccati difference equation converge to the unique

stabilizing solution whenever the Riccati equation is initialized at a positive def-

inite matrix.12 Initializing the Riccati difference equation at a positive definite

matrix is equivalent to imposing a terminal penalty that is a negative definite

quadratic form in the state vector. We will now show how to initialize the dou-

bling algorithm to impose a terminal penalty. This will permit us to compute

Py via a doubling algorithm for a richer class of control problems.

Consider first a finite time horizon problem with a quadratic penalty on the

terminal state. We select this penalty so that the terminal multiplier µτ = Poyτ

for some positive definite matrix Po . Then equation (3.4.10) is altered to be

M̂

[

I

Po

]

yτ =

[

y0

µ0

]

. (3.4.14)

Build a matrix K

K ≡
[

I 0

Po I

]

.

Then equation (3.4.14) can be rewritten as

K−1M̂KK−1

[

I

Po

]

yτ = K−1

[

y0

µ0

]

.

Equivalently,

M∗
[

yτ

0

]

=

[

y0

µ0 − Poy0

]

,

where

M∗ = K−1M̂K.

Partitioning M∗ consistently with the state-costate vector, the implicit initial-

ization of the costate vector is now

µ0 = Poy0 +M∗
12 (M∗

11)
−1
y0,

12 Here we are using the fact that the pair (Ayy , By) is stabilizable and that there exists

a solution to the deterministic regulator problem when constraint (3.2.1) is imposed. The

result follows from (i) and (iii) of Theorem 3.1 and Theorem 4.2 of Chan, Goodwin and Sin

(1984).
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and our approximation for Py is given by M∗
12(M

∗
11)

−1 + Po .

We are now left with computing the matrix M∗ when the horizon τ is very

large. Notice that

M∗ =
(

K−1MK
)−τ

.

It is straightforward to verify that because M is symplectic, so is K−1MK . This

means that doubling algorithm (3.4.12) is applicable for computing (K−1MK)−2k

;

however, the initializations must be altered. The new initializations can be

deduced by looking at the implicit parameterization of the symplectic matrix

K−1M−1K , and they are given by

α0 =
(

I +ByR
−1By

′Po

)−1
Ayy

β0 =
(

I +ByR
−1By

′Po

)−1
ByR

−1By
′

γ0 = Qyy − Po +Ayy
′Po

(

I +ByR
−1By

′Po

)−1
Ayy.

(3.4.15)

Not surprisingly, the original initializations coincide with setting Po to zero in

(3.4.15).

There are two related advantages to these initializations over the previous

ones. First, the sequence {γj} converges to Py − Po whenever Po is positive

definite. This follows from the Riccati difference equation convergence described

previously and does not require that (Ayy, Dy) be detectable. Second, the

sequence {βj} converges and satisfies the bounds

0 ≤ βj ≤ (Po)
−1

even when (Ayy, Dy) is not detectable.13 Although we do not have a com-

plete characterization of convergence of the resulting algorithm, all three matrix

13 The convergence and bound can be established as follows. Let {β∗
j } denote the sequence

starting from the original initialization. Then it is straightforward to show that

βj =
(

I + β∗
j Po
)−1

β∗
j .

Exploiting the nonsingularity of Po , the following equivalent formula can be deduced:

βj = (Po)−1 −
(

Po + Poβ∗
j Po
)−1

.

The reported bound follows immediately. The sequence {β∗
j } is monotone increasing because

it is a subsequence of Riccati difference equation iterations for a dual problem initialized at

zero. Therefore, the sequence {βj} is also monotone increasing. Given the upper bound

(Po)−1 , this latter sequence must converge.
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sequences (including {αj}) are guaranteed to converge with these alternative

initializations if they converge with the original ones.

In summary, the steps for implementing the doubling algorithm are

(1) initialize α0 , β0 , and γ0 according to (3.4.15);

(2) iterate in accordance with (3.4.12);

(3) form Py as the limit of {γk} + Po .

3.4.3.2. Application to continuous time

As noted by Anderson (1978) and Kimura (1989), a doubling algorithm for a

discrete-time symplectic system can be used to solve a continuous-time Hamil-

tonian system. Recall that in our discussion of solving control problems via

a matrix sign algorithm, we showed how to covert a discrete-time symplectic

system into a continuous-time Hamiltonian system. To apply a doubling al-

gorithm, we want to “invert” this mapping, e.g., given a Hamiltonian matrix

H , we construct a symplectic pencil with the same stable deflating subspace.

The symplectic pencil associated with H is given by λ(I +H) − (I −H). By

adopting a very similar argument as before, we found it easy to show that the

generalized eigenvectors for the constructed pencil coincide with the eigenvec-

tors of the original Hamiltonian matrix H . Moreover, the classification of stable

and unstable (generalized) eigenvalues is preserved.

3.4.4. Matrix sign algorithm

In section 3.3.3 we showed how to compute Py from the sign of the Hamilto-

nian matrix for a continuous-time state-costate system. To compute Py for a

symplectic pencil λL−N , we first form the Hamiltonian matrix

H = (L−N)
−1

(L+N)

and then compute sign(H). For this to be a viable solution method, we must

be able to compute sign(H) easily.

There are alternative matrix sign algorithms. An algorithm advocated by

Roberts (1980) and Denman and Beavers (1976) is to average a matrix and its
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inverse:

G0 = H

Gk+1 = Gk + (1/2)
[

(Gk)−1 −Gk

]

, k = 0, 1, . . . .
(3.4.16)

To speed up convergence, Gardiner and Laub (1986) suggest using the recursion

G0 = H, Gk+1 = (1/2ǫk)
(

Gk + ǫk
2Gk

−1
)

,

where

ǫk = | detGk|1/n
. (3.4.17)

Bierman (1984) and Byers (1987) propose a further refinement, which ex-

ploits the fact that the matrix Gk is a Hamiltonian matrix for each k . Recall

that if H is a Hamiltonian matrix, then JH is symmetric where

J =

[

0 −I
I 0

]

.

Hence

JGk+1 =
1

2ǫk

(

JGk + ǫk
2JJGk

−1J
)

, (3.4.18)

where ǫk is either set to one as in the original sign algorithm or set via formula

(3.4.17) using JGk in place of Gk . Consequently, it suffices to compute the

sequence of symmetric matrices {JGk} recursively via (3.4.18) starting from

the initialization JH .14

In summary, the steps for implementing a matrix sign algorithm are

(1) form the matrices L and N in (3.3.4);

(2) compute the sign of G = (L−N)−1(L+N);

(3) compute Py by solving the over-determined system

[

G12

G22 + I

]

Py = −
[

G11 + I

G21

]

(3.4.19)

for Py .

As noted in Anderson (1978), the original sign algorithm (3.4.16) also can

be viewed as a doubling algorithm. Interpreted in this manner, it uses (at least

14 Kenney, Laub and Papadopoulos (1993) and Lu and Lin(1993) discuss further improve-

ments to the matrix sign algorithm.
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implicitly) an alternative parameterization of the symplectic matrix M−1 to

that used in the doubling algorithm (3.4.12). Both recursions entail inverting

a matrix. While recursion (3.4.18) requires that a symmetric (2n× 2n) matrix

be inverted in each iteration, the doubling algorithm (3.4.12) requires that a

nonsymmetric n× n matrix be computed at each iteration.

3.5. Solving the augmented regulator problem

So far, we have shown how to compute the matrix Fy , which provides us with

the optimal control law for the deterministic regulator problem. This matrix also

gives us a piece of the solution to the augmented control problem and, hence, to

the problem of interest: the discounted stochastic regulator problem. The missing

ingredient is the matrix Fz , where the optimal control law for the augmented

regulator problem is given by vt = −Fyyt − Fzzt . In this section, we show that

Fz can be calculated by solving a particular Sylvester equation.

We start by forming a Lagrangian modified to incorporate the exogenous

state vector sequence {zt} :

L = −
∞
∑

t=0

[y′tQyyyt + 2yt
′Qyzzt + v′tRvt + 2µt+1

′ (Ayyyt +Ayzzt +Byvt − yt+1)] ,

where the evolution of the forcing sequence is given by

zt+1 = Azzzt. (3.5.1)

First-order necessary conditions for the maximization of L with respect to

{vt}∞t=0 and {yt}∞t=0 are

vt : Rvt +By
′µt+1 = 0, t ≥ 0 (3.5.2)

yt : µt = Qyyyt +Qyzzt +Ayy
′µt+1, t ≥ 0. (3.5.3)

Solve equation (3.5.2) for vt ; substitute it into the state equation; and stack

the resulting equation along with (3.5.3) and (3.5.1) as composite system

La





yt+1

µt+1

zt+1



 = Na





yt

µt

zt



 ,
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where

La ≡





I ByR
−1B′

y 0

0 Ayy
′ 0

0 0 I



 , Na ≡





Ayy 0 Ayz

−Qyy I −Qyz

0 0 Azz



 . (3.5.4)

As with the deterministic regulator problem, the relevant solution is the one

that stabilizes the state-costate vector for any initialization of y0 and z0. Hence

we seek a characterization of the multiplier µt of the form

µt = P

[

yt

zt

]

,

such that the resulting composite sequence [ yt
′ µt

′ zt
′ ]′ is in the stable de-

flating subspace of the augmented pencil λLa −Na . Assuming for the moment

that a solution P exists, it must be the case that P = [Py Pz ] , where Py is

the Riccati equation solution that was characterized in section 3.3, and Pz is a

matrix that has not yet been characterized. To see why this must be the case,

note that the solution to the augmented regulator problem with z0 = 0 coincides

with the solution to the deterministic regulator problem . We have previously

shown that Py is a matrix, such that all vectors in the deflating subspace of the

pencil λL − N can be represented as [ y′ y′Py ]′ . When the forcing sequence

is initialized at zero, so that it remains there for all t, it must also be the case

that [ y′ y′Py 0 ]
′

is in the stable deflating subspace of the augmented pencil

λLa−Na. This justifies our previous claim that the solution to the deterministic

regulator problem is a piece of the solution to the augmented regulator problem .

To deduce the control law associated with the matrix P , we substitute P

into (3.5.4), which yields

La





yt+1

Pyyt+1 + Pzzt+1

zt+1



 = Na





yt

Pyyt + Pzzt

zt



 .

Write the three equations in this composite system separately:

(

I +ByR
−1By

′Py

)

yt+1 +ByR
−1By

′Pzzt+1 =Ayyyt +Ayzzt

Ayy
′Pyyt+1 +Ayy

′Pzzt+1 = (Py −Qyy) yt + (Pz −Qyz) zt

zt+1 =Azzzt.
(3.5.5)
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Substitute the last equation into the first and solve for yt+1 :

yt+1 =
(

I +ByR
−1By

′Py

)−1 [
Ayyyt +

(

Ayz −ByR
−1By

′PzAzz

)

zt

]

.

It follows from relation (3.3.9) that this evolution equation for yt can be rewrit-

ten as

yt+1 = (Ayy −ByFy) yt + (Ayz −ByFz) zt, (3.5.6)

where Fy and Fz are given by

Fy ≡
(

R+By
′PyBy

)−1
By

′PyAyy,

Fz ≡
(

R+By
′PyBy

)−1
By

′ (PyAyz + PzAzz) . (3.5.7)

For the reasons given previously, our construction of Fy coincides with (3.3.11)

used to represent the optimal control law for the deterministic regulator problem.

Stability of the state vector sequence {yt} is guaranteed by evolution equation

(3.5.6) because the matrix Ayy − ByFy is the same matrix that appears in

the state evolution equation for the deterministic regulator problem under the

optimal control law. Since the solution to the deterministic regulator problem

is stable by design, the eigenvalues of Ayy − ByFy have absolute values that

are strictly less than one. The optimal control law for the augmented regulator

problem is given by

vt = −Fyyt − Fzzt.

The matrix Fz can be computed using formula (3.5.7) once we know Pz .

We now show that Pz is the solution to a Sylvester equation. Premultiply (3.5.6)

by Ayy
′Py :

Ayy
′Pyyt+1 = Ayy

′Py (Ayy −ByFy) yt +Ayy
′Py (Ayz −ByFz) zt. (3.5.8)

Using formula (3.5.7), we rewrite the coefficient matrix on zt as

Ayy
′Py (Ayz −ByFz) = (Ayy −ByFy)

′
(PyAyz + PzAzz) −Ayy

′PzAzz.

To obtain an alternative formula for this coefficient, substitute the last equation

of (3.5.5) into the second equation and solve for Ayy
′Pyyt+1 :

Ayy
′Pyyt+1 =

(

Pz −Qyz −Ayy
′PzAzz

)

zt + (Py −Qyy) yt. (3.5.9)
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Equating coefficients on zt in (3.5.8) and (3.5.9) results in

(Ayy −ByFy)′ (PyAyz + PzAzz) −Ayy
′PzAzz = Pz −Qyz −Ayy

′PzAzz .

Rewriting this in the form of a Sylvester equation (in the unknown matrix Pz ),

we have that

Pz = Qyz + (Ayy −ByFy)
′
PyAyz + (Ayy −ByFy)

′
PzAzz . (3.5.10)

As already noted, the matrix (Ayy − ByFy) has only stable eigenvalues.

Also, we assumed that the matrix Azz has only stable eigenvalues (Assumption

4). These restrictions are sufficient for there to exist a unique solution Pz to

(3.5.10). Up to now, our discussion proceeded under the presumption that

there exists a matrix P , such that by setting µt = P

[

yt

zt

]

, we stabilize the

state vector sequence. We can now work backwards using the (unique) solution

to the Sylvester equation to show that indeed such a matrix P does exist.

3.6. Computational techniques for solving Sylvester
equations

A Sylvester equation is represented by

M = W + SMT, (3.6.1)

where the matrices W , S , and T are specified in advance and M is the matrix

to be computed. Consistent with (3.5.10), the matrices S and T have stable

eigenvalues.15 There is a variety of ways to depict the solution to a Sylvester

equation. One is to vectorize (3.6.1) as

[I − T ′ ⊗ S] vec (M) = vec (W ) , (3.6.2)

where vec(·) denotes stacks of the columns of a matrix argument. (To derive

(3.6.2) from (3.6.1), use the identity vec(SMT ) = [T ′ ⊗ S]vec(M)). Hence

15 We have recycled some of the notation used in previous sections.
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vec(M) is the solution to a linear equation system. Alternatively, M is given

by the infinite sum

M =

∞
∑

j=0

SjWT j. (3.6.3)

This representation can be deduced by iterating on equation (3.6.1), starting

from any initial matrix with the appropriate dimensions.

We consider two types of algorithms for computing M :

(i) Hessenburg-Schur algorithm;

(ii) doubling algorithm.

The Hessenberg-Schur algorithm uses a Schur decomposition of the matrix T

to convert a single Sylvester equation to a collection of much smaller Sylvester

equations, each of which can be vectorized as in (3.6.2). A Hessenberg de-

composition of the matrix S is used further to simplify the calculations. The

doubling algorithm is an iterative algorithm that approximates the infinite sum

on the right-hand side of (3.6.3) by a finite sum. As with the doubling algorithm

for solving a Riccati equation, the number of terms included in the finite sum

approximation “doubles” at each iteration.

3.6.1. The Hessenberg-Schur algorithm

As suggested by Bartels and Stewart (1972), one strategy for solving Sylvester

equations entails block triangularizing the matrices T and/or S . We follow

Golub, Nash and Van Loan (1979) by forming a Schur decomposition of the

matrix T : V ′TV = T̂ , where V is an orthogonal matrix and T̂ is upper

block triangular with row and column blocks that are either one or two dimen-

sional (see section 3.4.1 for a formal definition). Postmultiply Sylvester equation

(3.6.1) by V and rewrite the equation as

M̂ = Ŵ + ŜM̂ T̂ , (3.6.4)

where M̂ = MV , Ŵ = WV , and Ŝ = S . Notice that (3.6.4) is in the form of

a Sylvester equation in the matrix M̂ .

The block triangularity of T̂ can now be exploited to reduce (3.6.4) into m

smaller Sylvester equations, where m is the number of row and column blocks
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of T̂ . Write the matrix T̂ in partitioned form as

T̂ =











T̂11 T̂12 . . . T̂1m

0 T̂22 . . . T̂2m
...

. . .
. . .

...

0 . . . 0 T̂mm











.

Use the column partition of W to partition M̂ and Ŵ , and let M̂j and Ŵj

denote the corresponding jth partitions. Decompose Sylvester equation (3.6.4):

M̂1 = Ŵ1 + ŜM̂1T̂11 (3.6.5)

M̂j = Ŵj + Ŝ

j−1
∑

k=1

M̂kT̂kj + ŜM̂j T̂jj , j = 2, ...,m. (3.6.6)

Notice that (3.6.5) is a Sylvester equation in M̂1 and that (3.6.6) is a Sylvester

equation in M̂j as long as the matrices M̂k for k = 1, 2, ..., j − 1 have already

been computed. Thus these m Sylvester equations can be solved sequentially

as linear equations using vectorization (3.6.2).

An additional refinement advocated by Golub, Nash and Van Loan (1979)

entails taking a Hessenberg decomposition of the matrix S .16

Definition: The Hessenberg decomposition of the square matrix S is an orthog-

onal matrix U and a matrix Ŝ that has all zeros below the first subdiagonal,

such that S = UŜU ′.

In addition to postmultiplying equation (3.6.1) by V , we now also premultiply

this equation by U ′ . Equation (3.6.4) continues to hold with M̂ = U ′MV ,

Ŵ = U ′WV , and Ŝ = U ′SU . This Sylvester equation can still be decomposed

as in (3.6.5) and (3.6.6). With Ŝ in Hessenberg form, we can solve these

latter Sylvester equations more efficiently using an equation solver designed for

Hessenberg systems.17

In summary, the steps for implementing a Hessenberg-Schur algorithm for

computing Pz are

16 Alternatively, we could take the Schur decomposition of S as proposed by Bartels and

Stewart (1972).
17 Interesting variations on the Hessenberg-Schur algorithm have been proposed by Ham-

marling(1982) and Gardiner et al. (1992).
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(i) form the matrices W = Qyz + (Ayy − ByFy)′PyAyz , S = (Ayy − ByFy)′ ,

and T = Azz ;

(ii) form a Hessenberg decomposition S = UŜU ′ and a Schur decomposition

T = V T̂V ′ ;

(iii) compute the solution M̂ to (3.6.5) and (3.6.6) and form Pz = UM̂V ′.

Since the Hessenberg decomposition of a matrix can be computed faster than the

real Schur decomposition, one should always arrange the Sylvester equation so

that the Hessenberg decomposition is taken of the matrix (Ayy−ByFy)′ or Azz ,

whichever has more entries. The steps just described should be implemented if

there are more elements in the vector yt than zt . If zt has more elements, then

the alternative Sylvester equation

Pz
′ = Qyz

′ +A′
yzPy (Ayy −ByFy) +A′

zzPz
′ (Ayy −ByFy)

′

should be solved for the matrix Pz
′ .18

3.6.2. Doubling algorithm

The doubling algorithm for Sylvester equations iterates on

αk+1 = αkαk

βk+1 = βkβk

γk+1 = γk + αkγkβk

(3.6.7)

to convergence, where α0 = S , β0 = T, and γ0 = W. By repeated substitution,

it can be shown that

γk =

2k−1
∑

j=0

SjWT j.

In other words, each iteration doubles the number of terms in the sum.19

18 In numerical work in Anderson, Hansen, McGrattan, and Sargent (1996), we formed

the Hessenberg decomposition of a matrix using MATLAB subroutine HESS and the Schur

decomposition of a matrix with SCHUR. We solved Hessenberg systems using the routines

HSFA and HSSL, which are part of the package described in Gardiner et al. (1992). See pages

364-370 of Golub and Van Loan (1989) for how to compute the Hessenberg decomposition.
19 This algorithm is a slight generalization of the doubling algorithm for Lyapunov equa-

tions discussed in Anderson and Moore (1979). A Lyapunov equation is a Sylvester equation

in which S = T ′.
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To use this doubling algorithm to compute Pz

(i) initialize α0 = (Ayy−ByFy)′ , β0 = Azz , and γ0 = Qyz+(Ayy−ByFy)′PyAyz ;

(ii) iterate in accordance to (3.6.7);

(iii) form Pz as the limit of {γk} .

3.7. Concluding remarks

This chapter has focused on computational details for the optimal linear regu-

lator. Many aspects of these calculations will recur in various settings below.

Indeed, key ideas and formulas in all of the subsequent chapters of this book

build directly or indirectly on results in this chapter. Thus, in chapter 4, we

see how the Kalman filter emerges as the dual of the optimal linear regulator.

Chapter 6 uses invariant subspace methods to prove the equivalence of alterna-

tive ways of formulating a robust control problem. Chapter 16 uses a Lagrangian

formulation and invariant subspace methods to construct robust decision rules

for controlling forward looking models. As already indicated in chapter 2, the

optimal linear regulator can be induced to do all of the hard work in computing

a robust rule for such models.





Chapter 4
The Kalman filter

. . . we are always searching for something hidden or merely potential or

hypothetical, following its traces whenever they appear on the surface.

— Italo Calvino, Six Memos for the Next Millenium, 1996, p. 77.

4.1. Introduction

The Kalman filter is a recursive method for computing linear least squares es-

timates of sequences of random vectors comprising hidden states and future

observables. The states and observables are described by a known linear state-

space system that is perturbed by Gaussian shocks with zero mean and known

covariances.

Remarkably, the Kalman filter formulas are identical with those for an

optimal linear regulator, a fact that reflects the duality of filtering and control,

the subject of this chapter. Following Whittle (1990, 1996), we formulate a

filtering problem in terms of a Lagrangian. After performing minimizations

and maximizations in a particular order, an optimal linear regulator problem

emerges with the flow of time reversed. We therefore say that the linear regulator

problem is dual to the Kalman filter, and vice versa.

The Kalman filter is a powerful tool in economics and econometrics because

it accomplishes many tasks, including these: (1) it efficiently computes the Wold

and autoregressive representations associated with an economic model whose

equilibrium can be represented as a linear state space system;1 (2) By recovering

an autoregressive representation, it enables computing the likelihood function of

a linear model recursively; (3) by building upon (2), it can be used to infer the

econometric implications of aggregation over time; and (4) it is the basic tool for

estimating and forecasting hidden factors in linear models. Items (1)–(4) make

the Kalman filter an essential tool in deducing the observable implications for an

1 A common practice in the real business cycle literature is to approximate an equilibrium

as a linear state space system in logarithms of state variables. That enables the application

of the Kalman filter to obtain the vector autoregressive representation and the likelihood. ,

For examples, see Schorfveide (2000XXX) and Otrok (2001XXX).
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important class of models whose equilibria occur, or can be well approximated,

in the form of a linear state space system.2

Before getting into the details, we first state the Kalman filtering problem

and its solution, then assert the associated optimal linear regulator problem for

which it is the dual. The remaining sections of the chapter fill in the details

required to prove the duality of the filtering and control problems.

We assume throughout this chapter that the state-space model is true, so

that issues of model approximation are not in play. Chapters 13 and 14 will

formulate filtering problems in setings where the decision maker suspects model

misspecification and therefore wants a robust filter.

4.2. Review of Kalman filter and preview of main result

Throughout this chapter, we let xt denote a state vector at time t and yt

a vector of possibly noise-ridden observations on linear combinations of xt−1 .

This section uses a convention for indexing time that differs from the one used

in the remainder of the chapter. We temporarily use this timing convention

because we shall use it again in chapter 13 and because it leads to a dual control

problem in which the direction of time matches the one we used in chapters 2

and 3. To attain that familiar representation for the control problem, for the

filtering problem we have to let larger indexes t recede further into the past.

We begin with a simple and famous example.

2 So far as first and second moments are concerned, those implications are characterized by

a vector autoregression. Using the Kalman filter is the easiest way to obtain the autoregressive

representation. See Hansen and Sargent (200XXX, chapter 8).
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4.2.1. Muth’s problem as an example

John F. Muth (1960) applied classical filtering methods to discover a stochastic

process for income for which Milton Friedman’s (1956XX) adaptive expectations

scheme would be an optimal estimator of permanent income. Muth’s problem

can be formulated recursively using the Kalman filter. Where x−t is a scalar

state variable and y−t is a scalar observed variable at time −t, t ≥ 0, consider

the state space system

x−t = ax−t−1 + [ c 0 ] ǫ−t (4.2.1a)

y−t = gx−t−1 + [ 0 d ] ǫ−t (4.2.1b)

where a, g, c, d are scalars and ǫ−t is an i.i.d. (2×1) vector of Gaussian random

variables with mean zero and covariance matrix I . To analyze Milton Fried-

man’s concept of permanent income, Muth set a = 1, g = 1 and c > 0, d > 0.

He regarded x−t as a permanent component of income and dǫ2,−t as transitory

income, while y−t is measured income at −t . A consumer facing an income

process with this structure wants to estimate his permanent income. Thus,

he wants to compute x̂−t ≡ E [x−t|y−t] where y−t denotes the infinite his-

tory of [y−t, y−t−1, . . .] . That is, the consumer wants to form an estimator x̂−t

that is a measurable function of the infinite history y−t and that minimizes

E
[

(x−t − x̂−t)
2|y−t

]

.

The Kalman filter attains Muth’s solution of this problem.3 The solution

for the optimal estimator takes the recursive form x̂−t = (a−Kg)x̂−t−1 +Ky−t

x̂−t , which can also be represented as

x̂−t = K

∞
∑

j=0

(a−Kg)
j
y−t−j (4.2.2)

where K is the Kalman gain. Equation (4.2.2) expresses the consumer’s es-

timate of the permanent component of his income as a geometric weighted

sum of past income levels. The conditional variance of this estimator is Σ =

E [x−t − x̂−t|y−t]
2
. The Kalman filter gives a way to compute Σ and K .

3 Muth solved the problem using classical (i.e., non-recursive, methods.
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4.2.2. The dual to Muth’s filtering problem

The dual to Muth’s filtering problem is the optimal linear regulator

−Σλ2
0 ≡ max

{µt}
−

∞
∑

t=0

(

c2λ2
t + d2µ2

t

)

(4.2.3)

where the maximization is subject to the law of motion

λt+1 = aλt + gµt, (4.2.4)

with λ0 given, and where a, g, c, d take the same values as in Muth’s problem.

Problem (4.2.3), (4.2.4) has a solution in the form of a feedback rule

µt = −Kλt (4.2.5)

where K is the same scalar that emerges from the Kalman filter, and the ma-

trix Σ in the value function −Σλ2
0 is the state covariance matrix that emerges

from the Kalman filter. In this chapter, we shall interpret the λ ’s as Lagrange

multipliers associated with the Kalman filtering problem.

For particular values of a, g, c, d , we invite the reader to use the Matlab

program olrp.m to solve the regulator problem and kfilter.m to solve the

Kalman filtering problem, and thereby to verify numerically the duality that

we have asserted. In the next section, we verify duality analytically and in the

process tell why the adjective ‘dual’ is appropriate, in the sense of mathematical

programming. is appropriate. But first we state a more general versions of the

Kalman filter problem and the associated dual optimal linear regulator problem.
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4.2.3. The filtering problem

Consider the following optimal filtering problem that generalizes Muth’s prob-

lem. For t ≥ 0, a state vector x−t and an observation vector y−t satisfy4

x−t = Ax−t−1 + Cǫ−t (4.2.6a)

y−t = Gx−t−1 +Dǫ−t (4.2.6b)

where ǫ−t is an i.i.d. Gaussian vector with mean zero and covariance matrix I .

We want a recursive way to compute the projections x̂−t = E [x−t|y−t] , ŷ−t =

E
[

y−t|y−t−1
]

where y−t ≡ [y−t, y−t−1, . . .] .
5 Let Σ be the covariance matrix

of the state-reconstruction errors e−t = x−t − x̂−t , conditional on y−t . The

maximum-likelihood estimator x̂−t maximizes −e′−tΣ
−1e−t . The Kalman filter

constructs Σ and gives a recursive way of computing x̂−t as a function of the

infinite history y−t . In particular, the Kalman filter attains the representation

x̂−t = Ax̂−t−1 +K (y−t − ŷ−t) (4.2.7a)

ŷ−t = Gx̂−t−1 (4.2.7b)

where K is the Kalman gain. Equations (4.2.6), (4.2.7) imply that the predic-

tion errors satisfy y−t − ŷ−t = G(x−t−1 − x̂−t−1) + Dǫ−t . Define the error in

estimating x−t as e−t = x−t − x̂−t . Substitute (4.2.7) into (4.2.6) to deduce

e−t = (A−KG) e−t−1 + (C −KD) ǫ−t. (4.2.8)

Define the error covariance matrix Σ−t = Ee−te
′
−t . Then for a fixed, not

necessarily optimal K , (4.2.8) implies

Σ−t = (A−KG)Σ−t−1 (A−KG)
′
+ (C −KD) (C −KD)

′
. (4.2.9)

4 The text of this section assumes an infinite history yt . Alternatively, let s denote a

finite horizon. Then for the filtering problem with the timing convention of this section, we

would have an initial condition stating that e−s has a Gaussian distribution with mean zero

and covariance matrix Σ0 . This corresponds to setting a terminal value function for the dual

control problem with the quadratic form λ′sΣ0λs . Under the different convention about time

indexes that we shall use in section 4.3 and the rest of this chapter, for the horizon s version

of the problem, the initial condition for the filtering problem is stated in terms of a quadratic

form e′0Σ−1
0 e0 . That corresponds to a terminal condition stated in terms of λ′0Σ0λ0 . It is a

terminal condition because the flow of time is reversed.
5 Note the different conditioning information denoted by x̂−t and ŷ−1 .
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The limit of iterations on (4.2.9) satisfies

Σ = (A−KG)Σ (A−KG)
′
+ (C −KD) (C −KD)

′
. (4.2.10)

The value of K that minimizes Σ in (4.2.10) satisfies

K = (CD′ +AΣG′) (DD′ +GΣG′)
−1
. (4.2.11)

Formulas (4.2.10), (4.2.11) implement the steady state Kalman filter. An ef-

ficient algorithm for computing (K,Σ) iterates on (4.2.11), (4.2.10), starting

from the initial value Σ = 0. This is a version of the Howard policy improvement

algorithm.

Equations (4.2.11), (4.2.10) also implement the policy improvement algo-

rithm for solving a particular optimal linear regulator that is defined in terms

of a state vector λt and a control vector µt . Given the initial value of the state,

λ0 , the dual problem is

max
{µt}

{

−.5
∞
∑

t=0

z̃′tz̃t

}

(4.2.12)

where the maximization is subject to λ0 given and

z̃t = C′λt +D′µt (4.2.13a)

λt+1 = A′λt +G′µt. (4.2.13b)

Equation (4.2.13a) defines the objective function. The solution of the optimal

linear regulator is a policy rule

µt = −K ′λt (4.2.14)

that attains the optimal value function

v (λ0) = −.5λ′0Σλ0. (4.2.15)

We shall show that λ0 = Σ−1e0 and that therefore the optimized value −.5λ′0Σλ0

in (4.2.12) equals the quadratic term −.5e′0Σ−1e0 in a log-likelihood function.

The key practical insight of these findings is that we can compute the pair

(Σ,K) for the filtering problem by solving the associated optimal linear regu-

lator (4.2.12), (4.2.14). The reversal in time and the transposition of matrices
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as we move from the filtering problem to the optimal linear regulator problem

are manifestations of duality, as subsequent sections show.

The duality of optimal filtering and control brings substantial insights and

computational advantages. In chapters 13 and 14, we shall use these insights

again to pose and solve robust filtering problems.

The remainder of this chapter substantiates our claims about duality. The

reader who is willing to accept the preceding assertions about duality on faith

can proceed immediately to subsequent chapters. Though it can be skipped, we

think that the subsequent arguments convey some of the magic associated with

the duality of filtering and control.

4.3. Sequence version of primal and dual problems

This section substantiates various assertions in the previous section. We show

how the Kalman filtering problem leads to an augmented optimal linear reg-

ulator problem in terms of dual variables. We now let the time index t flow

forward. This has the consequence that a reversal of time will occur in the dual

problem. We consider the state space system for t ≥ 1:

xt = Axt−1 + Cǫt (4.3.1a)

yt = Gxt−1 +Dǫt. (4.3.1b)

Here ǫt , t ≥ 1, is an i.i.d. Gaussian disturbance vector with mean zero and

covariance matrix I . We take the initial condition x0 to be unknown with prior

distribution described by

x0 = x̂0 + e0 (4.3.2)

where e0 is a Gaussian vector with mean zero and covariance matrix Ee0e
′
0 =

Σ0. We assume that e0 is distributed independently of the ǫt ’s for t ≥ 0. For

any variable z , let zs be the vector of observations on {zt, t = 1, . . . , s} . The

joint density of (ys, xs) is Gaussian. Therefore it can be represented

f (xs, ys) ∝ exp (−Ds) ,

where

Ds =
1

2
e′0Σ

−1
0 e0 +

1

2

s
∑

t=1

ǫ′tǫt. (4.3.3)
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Whittle (1990, 1996) calls Ds the ‘discrepancy’. To see that the time t contri-

bution to Ds is (1/2)ǫ′tǫt , note that by (4.3.1)

[

xt

yt

]

=

[

A

G

]

xt−1 + C∗ǫt,

where C∗ =

[

C

D

]

. The covariance matrix of C∗ǫt is C∗C∗′ . Then the time t

contribution to the discrepancy is6

1

2
ǫ′tC

∗′ (C∗C∗′)
−1
C∗ǫt =

1

2
ǫ′tǫt.

4.3.1. Sequence version of Kalman filtering problem

Given ys , we seek estimators of the hidden state xt for t = 1, . . . , s−1. We ob-

serve ys and estimate the hidden states by maximizing the log likelihood −Ds

with respect to the unobserved states and shocks ǫs . In particular, we seek

values of e0, {ǫt, xt−1}s
t=1 that minimize (4.3.3) subject to (4.3.1), (4.3.2). Fol-

lowing Whittle (1990, 1996), we formulate this minimization problem in terms

of a Lagrangian. Letting {λt, µt+1}s
t=0 be sequences of vectors of Lagrange

multipliers, we form

J1 =
1

2
e′0Σ

−1
0 e0 +

1

2

s
∑

t=1

ǫ′tǫt + λ′0 (x0 − x̂0 − e0)

+

s
∑

t=1

λ′t (xt −Axt−1 − Cǫt) +

s
∑

t=1

µ′
t (yt −Gxt−1 −Dǫt) .

(4.3.4)

6 The matrix (C∗C∗′)−1C∗ is the Moore-Penrose generalized inverse of C∗′ .
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4.3.2. Sequence version of dual problem

We want to minimize J1 with respect to e0 , ǫt for t = 1, . . . , s , and xt for t =

0, . . . , s−1 and to maximize with respect to λt, t = 0, . . . , s , and µt, t = 1, . . . , s .

To illuminate how the Kalman filter is the dual of a linear regulator, we optimize

in a particular order, thereby eventually arriving at a reduced Lagrangian that

takes the form of an augmented linear regulator problem.

4.3.2.1. Minimizing over e0, ǫt

Following Whittle (1990, 1996), we first minimize with respect to e0, ǫt, t =

1, . . . , s . The first order conditions with respect to ǫt and e0 can be written

ǫt = C′λt +D′µt (4.3.5a)

e0 = Σ0λ0. (4.3.5b)

Condition (4.3.5a) implies that

ǫ′tǫt =

[

λt

µt

]′ [
CC′ CD′

DC′ DD′

] [

λt

µt

]

. (4.3.6)

A quick calculation also shows that

λ′tCǫt + µ′
tDǫt =

[

λt

µt

]′ [
CC′ CD′

DC′ DD′

] [

λt

µt

]

. (4.3.7)

Condition (4.3.5b) implies that

e′0Σ
−1
0 e0 = λ′0Σ0λ0 (4.3.8)

and that

λ′0 (x0 − x̂0 − e0) = λ′0 (x0 − x̂0 − Σ0λ0) . (4.3.9)

Note the presence of Σ0 rather than Σ−1
0 on the right side of (4.3.8). Substi-

tuting (4.3.6), (4.3.7), (4.3.8), and (4.3.9) into (4.3.4) gives J1 = J2 where

J2 = −1

2
λ′0Σ0λ0 −

1

2

s
∑

t=1

[

λt

µt

]′ [
CC′ CD′

DC′ DD′

] [

λt

µt

]

+ λ′0 (x0 − x̂0)

+

s
∑

t=1

λ′t (xt −Axt−1) +

s
∑

t=1

µ′
t (yt −Gxt−1) .

(4.3.10)
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By expressing the objective in terms of the dual variables (i.e., the multipliers

µt, λt ), through equation (4.3.8) the objective function in (4.3.10) involves a

quadratic form in Σ0 rather than Σ−1
0 . This feature is important for under-

standing the duality of filtering and control.

4.3.2.2. Extremizing over λt, µt;xt

We want to maximize J2 with respect to λt, t = 0, . . . , s and µt, t = 1, . . . , s ,

and to minimize it with respect to xt, t = 0, . . . , s − 1. Minimizing (4.3.10)

with respect to xt, t = 0, . . . , s− 1 yields the first-order condition

λt−1 = A′λt +G′µt. (4.3.11)

Having minimized out the xt ’s, we are left with the problem of choosing

λt, t = 0, . . . , s and µt, t = 1, . . . , s to maximize

J3 = −1

2
λ′0Σ0λ0 −

1

2

s
∑

t=1

[

λt

µt

]′ [
CC′ CD′

DC′ DD′

] [

λt

µt

]

− λ′0x̂0 +
s
∑

t=1

µ′
tyt

(4.3.12)

subject to (4.3.11) and the boundary conditions λt = 0, µt = 0 for t > s . Here

J3 = J2 . Notice how this resembles a finite horizon augmented linear regulator

problem (see page 60) with state vector λt and control vector µt . However, the

direction of time is reversed. The term − 1
2 (λ′0Σ0λ0 + 2λ′0x̂0) plays the role of

a ‘terminal’ value function once time is reversed. The optimal control takes the

form of a feedback rule

µt = −K ′
tλt + gtyt + ftx̂0, (4.3.13)

where Kt is a version of the Kalman gain, as we shall see in detail below.
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4.4. Digression: reversing the direction of time

We briefly return to a formulation of the filtering problem in which time recedes

into the past with increases in t , as in section 4.2. Supposing that s > 0 and

letting t = 0, . . . , s , the state space system is (4.2.6) where the initial condition

at time −s− 1 is

x−s−1 = x̂−s−1 + e−s−1

where e−s−1 is a Gaussian random vector with mean zero and covariance matrix

Σ−s−1 . Define the discrepancy at horizon s as

Ds =
1

2
e′−s−1Σ

−1
−s−1e−s−1 +

1

2

s
∑

t=0

ǫ′−tǫ−t. (4.4.1)

We could follow the steps in the previous section to derive the dual problem

with these timing conventions. In the limit as s → +∞ , the dual problem

would assume the form of the optimal linear regulator (4.2.12), (4.2.14).

For the remainder of this chapter, we shall use the timing conventions of

section 4.3. However, in chapter 13, we shall again use the timing convention of

section 4.2.

4.5. Recursive version of dual problem

We are sometimes interested in versions of problem (4.3.12) that condition on

infinite histories of observations, in which case there is a recursive formulation

of the problem. We seek a time invariant K , which we attain by studying the

problem as s → ∞ and then taking the limit of Kt as t → ∞ . The recursive

version of problem (4.3.12) is associated with the Bellman equation

−1

2
λ′Σλ− λ′x̂− 1

2
ι = max

µ,λ∗

{

−1

2
λ∗′Σ∗λ∗ − 1

2

[

λ

µ

]′ [
CC′ CD′

DC′ DD′

] [

λ

µ

]

+ µ′y − λ∗′x̂0

}

(4.5.1)

where the maximization on the right is subject to the law of motion

λ∗ = A′λ+G′µ (4.5.2)
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and where λ∗ now denotes last period’s value of λ and Σ∗ is last period’s value

of Σ. The term ι is a constant that we’ll explain later. This Bellman equation

induces a mapping from Σ∗ to Σ. The unique positive semi-definite matrix fixed

point Σ and the matrix K associated with the optimal feedback rule supply

the ingredients (Σ,K) that solve the infinite-history Kalman filtering problem.

Letting ψ be a vector of Lagrange multipliers on (4.5.2), the first-order

conditions with respect to λ∗, µ for maximizing (4.5.1) subject to (4.5.2) are

0 = −Σ∗λ∗ − x̂0 − ψ

0 = −DC′λ+ y +Gψ −DD′µ.

Eliminate ψ and rearrange to get the feedback rule

µ = −K ′λ+ (GΣ∗G′ +DD′)
−1

(y −Gx̂0) , (4.5.3)

where

K = (CD′ +AΣ∗G′) (DD′ +GΣ∗G′)
−1
. (4.5.4)

The matrix K is the Kalman gain. When (4.5.4) is evaluated at the station-

ary solution Σ = Σ∗ of the Riccati equation implied by the Bellman equation

(4.5.1), (4.5.3) solves the infinite-history, time-invariant filtering problem. We

now indicate how (4.5.1) implies a Riccati equation mapping Σ∗ into Σ.

Use (4.5.2) and (4.5.3) to express λ∗ as

λ∗ = (A−KG)′ λ+G′ (GΣ∗G′ +DD′)
−1

(y −Gx̂0) . (4.5.5)

Using (4.5.3) and (4.5.5) to evaluate the quadratic forms in λ0 on the first line

of the right side of (4.5.1) shows

{

λ∗′Σ∗λ∗ +

[

λ

µ

]′ [
CC′ CD′

DC′ DD′

] [

λ

µ

]

}

= λ′Σλ+ terms in (y −Gx̂0)

where

Σ = (A−KG)Σ∗ (A−KG)
′
+ (C −KD) (C −KD)

′
. (4.5.6)

Formula (4.5.6) in conjunction with formula (4.5.4) is one form of the Riccati

equation for the conditional covariance matrix Σ for the hidden state next

period.
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For the next step of the argument, we temporarily ignore the term in y−Gx̂0

appearing in (4.5.3). Then, using (4.5.5) and µ = −K ′λ , we can calculate that

µ′y − λ∗′x̂0 = −λ′ (Ax̂0 +K (y −Gx̂0)) ≡ −λ′x̂ (4.5.7)

where

x̂ = Ax̂0 +K (y −Gx̂0) (4.5.8)

is the estimator of the state for next period. Formulas (4.5.8) and (4.5.4),

evaluated at the fixed point of (4.5.6) are the standard time-invariant Kalman

filtering formulas.

Finally, we have to complete and collect the terms coming from (GΣ∗G′ +

DD′)−1(y − Gx̂0) in (4.5.3). Tedious algebra verifies that they contribute the

term

ι = (y −Gx̂0)
′ (GΣ∗G′ +DD′)

−1
(y −Gx̂0)

that appears on the left side of (4.5.1). The matrix GΣ∗G′ + DD′ is the

covariance matrix of the innovations y −Gx̂0 .

4.6. Recursive version of Kalman filtering problem

For some of our future work, it is convenient to study a recursive version of

the filtering problem using the dual variables again but to embrace a somewhat

different perspective.

We return to the original problem. In a recursive spirit, we formulate a one-

period filtering problem and seek a recursion in an optimized value function. The

state-space system is

x = Ax0 + Cǫ (4.6.1a)

y = Gx0 +Dǫ (4.6.1b)

x0 = x̂0 + e0, (4.6.1c)

where ǫ is a Gaussian random vector with mean zero and identity covariance

matrix and e0 is a Gaussian random vector distributed independently of ǫ with

mean 0 and covariance matrix Σ0 . The joint density of (x, y) is

f (x, y) ∝ exp (−D)
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where

D =
1

2

(

e′0Σ
−1
0 e0 + ǫ′ǫ

)

. (4.6.2)

Given y, x̂0 , we want to choose (ǫ, x) to maximize the log likelihood, or equiv-

alently, to minimize discrepancy D subject to (4.6.1). We will show that the

optimized value of the discrepancy (4.6.2) takes the form

1

2
e′1Σ

−1
1 e1 +

1

2
ι (4.6.3)

where e1 = x − x̂1 , x̂1 = Ax̂0 + K(y − Gx̂0), K is the Kalman gain, Σ1 is

related to Σ0 by a matrix Riccati difference equation, and ι , defined in our

discussion of (4.5.1), is the contribution to the log-likelihood function (entropy)

that cannot be influenced by the filter. Thus, we have the Bellman equation

1

2
e′1Σ

−1
1 e1 +

1

2
ι = min

ǫ,x

{

.5e′0Σ
−1
0 e0 + ǫ′ǫ

}

(4.6.4)

where the minimization is subject to (4.6.1). Further, the quadratic form

e′1Σ
−1
1 e1 on the left equals the quadratic form λ′1Σ1λ1 that appears on the

left side of the Bellman equation for the dual problem (4.5.1).

To solve the filtering problem for an additional period, we would use Σ1

to update the criterion (4.6.2) to be 1
2

(

e′1Σ
−1
1 e1 + ǫ′ǫ

)

and continue as before

with next period’s observation on y and e1 = x− x̂1 .

It is useful to solve the recursive version of the filtering problem using

Lagrangian methods. Form the Lagrangian

J =
1

2

(

e′0Σ
−1
0 e0 + ǫ′ǫ

)

+ λ′0 (x0 − x̂0 − e0)

+ λ′ (x−Ax0 − Cǫ) + µ′ (y −Gx0 −Dǫ) .

The first-order conditions for minimizing J with respect to (ǫ, e0) imply

ǫ = C′λ+D′µ (4.6.5a)

e0 = Σ0 (A′λ+G′µ) , (4.6.5b)

where we are using the first-order condition λ0 = A′λ+G′µ to get (4.6.5b).

The equality e0 = x0 − x̂0 and (4.6.1) imply

x−Ax̂0 = Cǫ+Ae0 (4.6.6a)

y −Gx̂0 = Dǫ+Ge0. (4.6.6b)
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Substitute (4.6.5) into (4.6.6) and rearrange to get

[

y −Gx̂0

x−Ax̂0

]

= Λ

[

µ

λ

]

, (4.6.7)

where

Λ =

[

GΣ0G
′ +DD′ DC′ +GΣ0A

′

CD′ +AΣ0G
′ AΣ0A

′ + CC′

]

. (4.6.8)

Then
[

µ

λ

]

= Λ−1

[

y −Gx̂0

x−Ax̂0

]

.

For reasons to be explained in chapter 14, we call the optimized value of

ǫ′ǫ+ e′0Σ
−1
0 e0 the conditional entropy of (y, x) and denote it ent(y, x). It is the

maximized value of the log likelihood function. Using (4.6.5), we can evaluate

ent(y, x) to be

ent (y, x) ≡ ǫ′ǫ+ e′0Σ
−1
0 e0 =

[

µ

λ

]′
Λ

[

µ

λ

]

=

[

y −Gx̂0

x−Ax̂0

]′
Λ−1

[

y −Gx̂0

x−Ax̂0

]

.

(4.6.9)

Let

L =

[

I 0

−K I

]

where

K = Λ21Λ
−1
11 ≡ (AΣ0G

′ + CD′) (DD′ +GΣ0G
′)
−1
. (4.6.10)

We recognize K to be the Kalman gain. It can be verified that

LΛL′ =

[

Λ11 0

0 Λ22 − Λ21Λ
−1
11 Λ′

21

]

, (4.6.11)

where

Λ11 = GΣ0G
′ +DD′ (4.6.12)

and

Σ1 ≡ Λ22 − Λ21Λ
−1
11 Λ′

21

= CC′ +AΣ0A
′ − (AΣ0G

′ + CD′) (DD′ +GΣ0G
′)
−1

(AΣ0G
′ + CD′)

′
.

(4.6.13)
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It turns out that Λ11 is the covariance matrix of the innovations y −Gx̂0 and

Λ22 − Λ21Λ
−1
11 Λ′

21 is the covariance matrix of x− x̂1 where x̂1 is the estimator

of the state x . In particular, notice that

L

[

y −Gx̂0

x−Ax̂0

]

=

[

y −Gx̂0

x−Ax̂0 −K (y −Gx̂0)

]

=

[

y −Gx̂0

x− x̂1

]

where

x̂1 = Ax̂0 +K (y −Gx̂0) . (4.6.14)

Here x̂1 is the estimate of the state next period, based on the observed value of

y . Thus, returning to (4.6.9), we have

ent (y, x) =

[

y −Gx̂0

x−Ax̂0

]′
L′ (LΛL′)

−1
L

[

y −Gx̂0

x−Ax̂0

]

=

[

y −Gx̂0

x− x̂1

]′ [
Λ11 0

0 Λ22 − Λ21Λ
−1
11 Λ′

21

]−1 [
y −Gx̂0

x− x̂1

]

= (y −Gx̂0)
′
Λ−1

11 (y −Gx̂0) + (x− x̂1)
′ (

Λ22 − Λ21Λ
−1
11 Λ′

21

)−1
(x− x̂1)

= (y −Gx̂0)
′
Λ−1

11 (y −Gx̂0) + e′1Σ
−1
1 e1.

(4.6.15)

Formula (4.6.15) inspires the updating formula (4.6.13) for the covariance

matrix of x− x̂1 . The entropy-minimizing choice of x is evidently x̂1 ; the value

of y is observed, and the value x̂0 is given, so the first term on the last line of

(4.6.15) cannot be influenced by the filter. It contributes ι in (4.6.3).

4.7. Concluding remarks

In the filtering and control problems of this chapter, the decision maker as-

sumes that his state-space model is correctly specified. Later chapters extend

the duality between filtering and control to filtering problems in which the de-

cision maker fears that the model (4.2.6) is misspecified. Chapters 6 and 7

formulate and solve a robust control problem. Chapter 13 then exploits duality

to discover a corresponding robust filtering problem. Effectively, that chapter

works backwards from a robust version of the optimal linear regulator problem

(4.2.12),(4.2.14) to get a corresponding filtering problem. Not surprisingly in

view of the time-reversal between the dual and original problems, the objective
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function of the decision maker in the dual problem is backward-looking. While

interesting, that is not always the most natural formulation for economic prob-

lems. Therefore, in chapter 14 we alter the objective function of the decision

maker to be forward-looking. That leads us to another robust filtering problem.

We cast that forward-looking robust filtering problem as a model-approximation

problem using entropy to measure model misspecification. This forward-looking

robust filtering problem has the same mathematical structure as the one studied

in section 4.6. In chapters 6 and 7, we shall also use duality theory extensively

to formulate our basic robust dynamic decision problem.





Part III

Robust control and applications





Chapter 5
Static multiplier and constraint games

5.1. Introduction

By considering static examples, this chapter takes a detour from the main con-

cern in this book, which is devising decision rules that are robust to misspecified

dynamics. To simplify some of the analytical issues, this chapter strips off all

dynamics and focuses on two types of interrelated static zero-sum two-player

games whose equilibria induce robust decisions for the maximizing player within

a one-period setting. We call them a multiplier game and a constraint game.

We take up dynamic versions of both of these games in subsequent chapters.

We begin with a simple static Phillips curve example in section 5.2. Subse-

quent sections then focus on another simple example with the aim of exposing

the role of technical assumptions that reconcile outcomes from alternative games.

We consider two classes of possible misspecifications to a static Gaussian

approximating model that might concern the decision maker. The more re-

stricted setting allows misspecifications only in the mean of a Gaussian random

variable. The more generous setting allows misspecifications in the form of ar-

bitrary alternative distributions that are absolutely continuous with respect to

the approximating model. For a Gaussian approximating model, the worse case

model from this class remains Gaussian, but it has distortions to both the mean

and the variance.1

1 Chapter 2 described two related such classes of distortions for dynamic models.

– 119 –
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5.2. Phillips curve example

To illustrate basic ideas, this section adapts Kydland and Prescott’s (1977)

model of a policy maker who sets inflation in view of an expectational Phillips

curve. We modify of Kydland and Prescott’s model2 by assuming that the policy

maker views his model as an approximation. The policy maker solves a multiplier

game as a way to compute a decision that is robust to model misspecification.

Let U, π, πe be the unemployment rate, the inflation rate, and the public’s

expected rate of inflation, respectively. The government’s approximating model

is

U = U∗ − γ (π − πe) + ǫ̂ (5.2.1)

where γ > 0 and ǫ̂ is N (0, 1). Here U∗ is the natural rate of unemployment, the

unemployment rate that on average prevails when π = πe .3 The government

sets π , the public sets πe , and nature draws ǫ̂ . The government views (5.2.1)

as an approximation in the sense that it suspects that U might actually be

governed by

U = U∗ − γ (π − πe) + (ǫ+ w) , (5.2.2)

where ǫ is another random variable that is distributed N (0, 1) and w is an un-

known distortion to the mean ǫ . Thus, the government suspects that the natural

unemployment rate might be U∗ + w for some unknown w . The government

does know that

w2 ≤ η. (5.2.3)

The parameter η bounds the square of the government’s specification error w2 .

2 We are building on Sargent’s (1999) rendition of Kydland and Prescott’s model in the

style of Stokey (1989XX).
3 To bring the setup closer to that used in dynamic settings in chapters 2 and 6, we could

have added a parameter c and expressed (5.2.2) as U = U∗ − γ(π − πe) + c(ǫ + w) , where c

is used to scale the volatility of the noise ǫ . We have set c = 1 to simplify some formulas in

this chapter.
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5.2.1. The government’s problem

The government values outcomes (U, π) according to the utility function as-

signed by Kydland and Prescott, namely,

−E
(

U2 + π2
)

(5.2.4)

where E denotes the mathematical expectation. Because it does not trust the

approximating model, the government cares about the mathematical expecta-

tion over multiple models indexed by w ’s that satisfy (5.2.3).

We proceed in the spirit of Stokey’s (1989) analysis of credible government

policies. We derive the government’s robust best response to the private sector’s

setting of πe . The appendix then uses that robust best response function to

formulate a rational expectations equilibrium. The government’s best response

function takes πe as fixed. Given πe , the government wants to set π so that

it attains satisfactory outcomes for all w2 ≤ η . The government therefore sets

π equal to the equilibrium π -component of the following two-player zero-sum

multiplier game

max
π

min
w

−E
{

U2 + π2
}

+ θw2 (5.2.5)

where both the minimization and maximization are subject to (5.2.2) and θ > 1

is a fixed penalty parameter. We shall soon explain how the penalty parameter

θ relates to η in (5.2.3) and why we impose θ > 1. We shall also discuss

conditions that let us exchange the order of maximization and minimization

in (5.2.5). The first order conditions for π and w , respectively, for problem

(5.2.5) are

(

1 + γ2
)

π − γ2πe − γ (U∗ + w) = 0 (5.2.6a)

U∗ − γπ + γπe + w (1 − θ) = 0. (5.2.6b)

Solving these equations jointly for π,w as functions of πe gives:

π (θ) =

(

γ

1 − θ−1 + γ2

)

(U∗ + γπe) (5.2.7)

w (θ) =

(

θ−1

1 − θ−1 + γ2

)

(U∗ + γπe) . (5.2.8)

Here π(θ) gives the government’s (robust) best response function for setting π

as a function of πe , while w(θ) determines the worst case model, given πe and

the government’s setting π(θ).
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Note that when θ = +∞ so that there is no concern for model misspecifi-

cation,

π (∞) =

(

γ

1 + γ2

)

(U∗ + γπe) (5.2.9)

w (∞) = 0. (5.2.10)

Note also that (5.2.6a) says that π(θ) satisfies

π (θ) =

(

γ

1 + γ2

)

[(U∗ + w (θ)) + γπe] .

This equation defines a function

π (θ) = B (πe; θ) , (5.2.11)

which is the government’s robust best response function to the state of expecta-

tions πe . Evidently the robust rule can be obtained by replacing the estimate of

the natural unemployment rate U∗ under the approximating model in (5.2.9)

with the worst case estimate of the natural rate U∗ + w(θ). Thus, one way to

achieve robustness is to distort estimates of exogenous variables in a pessimistic

way relative to the approximating model, then to proceed with ordinary deci-

sion making procedures.4 A related characterization of robust decision making

procedures will prevail in the dynamic settings to be studied in subsequent chap-

ters. However, because the models there are dynamic, the distortions become

more interesting and involve misspecifications in how state vectors feed back on

their own histories.

It is useful to compute the limiting decision π(θ) and worst case distortion

w(θ) as θ ց 1:5

π (1) = γ−1U∗ + πe (5.2.12)

w (1) = γ−2 (U∗ + γπe) . (5.2.13)

In the appendix to this chapter we show how the unit slope of the government’s

best response to πe in (5.2.12) will cause a rational expectations equilibrium

4 See the citation attributed to Fellner on page 32.
5 The value θ = 1 is the breakdown point to be discussed later. In the generalization of

the model where c(ǫ + w) replaces (ǫ + w) , the breakdown point is θ = c2 .
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inflation rate to approach +∞ as θ ց 1. That rational expectations inflation

rate satisfies π = πe , as well as having π be a robust best government response

to πe .

Given πe , we can now tell how the penalty parameter θ is related to the

constraint η . The multiplier game is in effect the Lagrangian associated with a

closely related constraint game:

sup
π

inf
|w|≤√

η
−E

(

U2 + π2
)

,

where θ will turn out to be the Lagrange multiplier on the constraint w2 ≤ η .

The associated Lagrangian is

sup
π

sup
θ≥0

inf
w

−E
(

U2 + π2
)

+ θ
(

w2 − η
)

.

If θ > 1, for the inner minimization part of this problem it is evidently optimal

to set w so that the constraint w2 ≤ η holds with equality. Then set w = ±√
η

and solve (5.2.8) for θ :

θ = 1 +
|U∗ − γ (π − πe) |√

η
. (5.2.14)

Equation (5.2.14) shows how to map η into an associated θ . As described by

equation (5.2.14), the parameter θ thus measures the set of alternative models

over which the decision maker seeks a satisfactory outcome. We shall discuss the

connection between the constraint game and the multiplier game further in the

following sections. Before that, we briefly describe the sense in which (5.2.7)

gives a decision for π that is robust to model misspecification.
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5.2.2. Robustness of robust decisions

For convenience, we define σ = −θ−1 ; σ is the risk-sensitivity parameter of

Jacobson (1973) and Whittle (1990). Fig. 5.2.1 illustrates the sense in which

a robust decision for π is robust. Let J(σ1, σ2) be the value of −E(U2 + π2)

associated with setting π = π(σ1) when w = w(σ2). Assuming γ = 1, U∗ = 5,

for three settings of inflation π(σ1), Fig. 5.2.1 plots J(σ1, ·) as a function of

σ2 , where the worst case w = w(σ2) varies along the ordinate axis. Notice

how the three payoff functions J (σ1, ·) cross. The σ = σ1 = 0 rule gives the

highest value for the government’s objective when there is no specification error

(i.e., σ2 = 0 implies that w = 0), but its performance deteriorates more quickly

than the robust (σ1 = −.25, σ1 = −.5) rules as w increases along the σ2 axis.

The robust rules sacrifice performance when the approximating model is correct.

However, they experience lower rates of deterioration in the objective J as the

specification error increases.
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Figure 5.2.1: Values of J (σ1, σ2) = −E(U2 + π2) for three

decision rules π(σ1) for σ1 = 0,−.25,−.5 for the worst-case

w(σ2) for values of σ2 on the ordinate axis. The σ1 = 0 rule

works best when w = 0, but its performance deteriorates

more rapidly as |w| increases than do the robust rules.
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Because our principal focus in this chapter is single-agent robust control

theory, we have taken πe as given. To complete the analysis of the Kydland-

Prescott model, we should describe how πe is set. Appendix A applies the notion

of a rational expectations equilibrium to make πe equal to the π(σ) chosen by

the robust monetary authority. We postpone that material to the appendix

because it involves issues that would interrupt our main line of argument. We

now turn to important technical details about our single agent decision model.

5.3. Basic setup with a correct model

This section uses a very simple static model to describe in more detail the

relationship between a static constraint game and a static multiplier game. Let

x be an endogenous variable and u a scalar control variable. The variables u

and x are linked by the approximating model

x = u+ ǫ̂ (5.3.1)

where ǫ̂ is a random variable with mean zero and variance 1. Letting E denote

the mathematical expectation and b be a scalar, a decision maker wants (u, x)

to maximize

−u
2

2
− 1

2
E (x− b)

2
(5.3.2)

or

−u
2

2
− (u− b)2

2
− 1

2
. (5.3.3)

The maximizing choice is u = b
2 .

We want to think about the situation where the decision maker treats the

model (5.3.1) not as true but as an approximation. To represent specification

error, the decision maker replaces the approximating model (5.3.1) with the

distorted model

x = u+ (ǫ+ w) , (5.3.4)

where ǫ is another random variable with mean zero and variance 1. The dis-

torted model thus has a random term with unknown mean w and known vari-

ance 1, rather than known mean 0 and variance 1 as under the approximating
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model (5.3.1). The decision maker formulates the idea that his model is a good

approximation by assuming that |w| ≤ √
η where η > 0. Substituting (5.3.4)

into (5.3.2), the criterion function becomes

−u
2

2
− (u+ w − b)

2

2
− 1

2
. (5.3.5)

The decision maker seeks a u that works well for any |w| ≤ √
η . Since the

variance 1 is constant, we can replace (5.3.5) with

−u
2

2
− (u+ w − b)

2

2
. (5.3.6)

Within this simple setting, we consider two types of zero-sum two-person

games that can be used to choose a u that is robust to misspecifications that take

the form of alternative values of w . The two games are: (1) a ‘constraint game’

that constrains the choices of u, v in (5.3.6) by |w| ≤ √
η ; and (2) a ‘multiplier

game’ that appends to the right side of (5.3.6) a penalty term θ
2 (w2−η). For an

appropriate choice of θ , these two formulations are equivalent under conditions

identified by the Lagrange multiplier theorem (see Luenberger (1969), pp. 216-

221). However, that equivalence breaks down when
√
η >|b| . As a vehicle for

exploring conditions for the equivalence between the two approaches, we start by

analyzing the pathological b = 0 case. Later parts of this chapter shed further

light on the pathological case by allowing a larger class of misspecifications.

5.4. The constraint game with b = 0

This section considers a pathological case in which variations in the decision

maker’s concern about robustness, as measured by the penalty parameter θ ,

have no effect on his decision u . To generate the pathology, we temporarily set

b = 0. To induce a robust decision u we formulate a ‘constraint game’:6

max
u

min
|w|≤√

η
−u

2

2
− (u+ w)2

2
. (5.4.1)

6 We thank Dirk Bergemann for suggesting this example and its consequences.
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Notice that the objective is concave and not convex in w (this is also true when

b 6= 0). Also notice the timing protocol implicit in the order of maximization

and minimization in (5.4.1): the maximizing player chooses first, the minimizing

player second.

The equilibrium of this zero-sum two-person game can be computed by

considering three possible sets of values for u . If u = 0, w = ±√
η solves

the inner minimization problem, with a minimized value of − η
2 . If u > 0, the

solution of the inner problem is to set w =
√
η , which makes the objective

smaller than − η
2 . Similarly, if u ≤ 0, the solution of the inner problem is to

set w = −√
η , and the objective (5.4.1) is again smaller than − η

2 . Thus the

‘robust’ decision is to set u to zero; this decision is supported by the maximizing

player’s expectation that w will respond to u by the rule w = u
|u|

√
η for u /= 0

and w = ±√
η when u is zero.

A strange feature of (5.4.1) is that a preference for robustness to model

misspecification has no effect on the decision u . The equilibrium outcome for

u is 0, independently of the value of η .

For various reasons to be explained below, we would like to be able to

exchange the order of minimization and maximization in (5.4.1). However, an-

other peculiarity of (5.4.1) is that we cannot exchange orders of the minimization

and maximization operations; neither u = 0, w =
√
η nor u = 0, w = −√

η is a

Nash equilibrium of the game with the order of maximization and minimization

exchanged. In fact, there is no pure strategy Nash equilibrium. We will compute

mixed strategy equilibria later.

5.5. Multiplier game with b = 0

We want to understand the connection between the constraint game (5.4.1)

and an associated ‘multiplier game’. To do so, in this section we study a La-

grangian formulation of the constraint game. This will eventually lead us to a

multiplier game. We reformulate the constraint in (5.4.1) as w2 ≤ η and form

a Lagrangian:

max
u

inf
w

sup
θ≥0

−u
2

2
− (u+ w)2

2
+
θ

2

(

w2 − η2
)
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or

max
u

sup
θ≥0

inf
w

−u
2

2
− (u+ w)2

2
+
θ

2

(

w2 − η2
)

. (5.5.1)

The standard sufficient conditions for the Lagrange Multiplier Theorem do not

hold here. While the constraint set for w is convex, the objective is also convex

in w . As we will see in chapter 6, with appropriate qualifications, a modified

version of the Lagrange Multiplier Theorem does apply.

Consider the inner minimization problem of (5.5.1), holding fixed θ and

u . Suppose θ ≤ 1. Then the objective is convex in w (it is affine for θ = 1),

and the infimum over w is −∞ . Therefore, we need consider only θ > 1. For

θ > 1, the first-order conditions for w are:

(θ − 1)w − u = 0,

or

w =
u

θ − 1
.

Consider next the second inner-most maximization problem in (5.5.1). Pro-

vided that u /= 0, the supremum over θ is attained by setting θ so that the

constraint is satisfied. Thus

θ = 1 +
|u|√
η

and

w =
u

|u|
√
η.

At these values of θ, v , the objective for the outer maximization problem in

(5.5.1) becomes

L (u) = −u
2

2
− u2

2

( |u| + √
η

|u|

)2

= −u
2

2
−
(

|u| + √
η
)2

2
< −η

2
.

By making u arbitrarily close to zero, we find that the right side of the above

inequality is a least upper bound. In fact, if u = 0, then w = 0 and

sup
θ>1

inf
w

−u
2

2
− (u+ w)

2

2
+
θ

2

(

w2 − η
)

= −1

2
η.

This gives the correct value of the objective of the constraint game (5.4.1), and

u = 0 is the correct robust action for that game. Since the solution is not
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attained at θ = 1, the solution of (5.5.1) must be computed as a limit of the

solution as θ ց 1. The value θ = 1 corresponds to what we shall refer to in

chapter 6 as a ‘breakdown point’ for θ .

Games (5.4.1) and (5.5.1) are pathological because neither η in the con-

straint game nor θ in the multiplier game affects the equilibrium decision u .

We show below how this pathology occurs because |b| < √
η .

5.6. The model with b 6= 0

By setting b 6= 0, we can repair the pathological outcome that variations in

the multiplier θ in (5.5.1) do not change the action u . We alter (5.4.1) to be:

max
u

min
|w|≤√

η
−u

2

2
− (u+ w − b)

2

2
. (5.6.1)

The Lagrangian is:

max
u

inf
w

sup
θ≥0

−u
2

2
− (u+ w − b)

2

2
+
θ
(

w2 − η
)

2

or

max
u

sup
θ≥0

inf
w

−u
2

2
− (u+ w − b)

2

2
+
θ
(

w2 − η
)

2
.

It is again true that for θ ≤ 1, the inner-most minimization problem has a

criterion equal to −∞ for any u . Thus θ = 1 remains a ‘breakdown point’.

Variations of θ for θ > 1 will now affect the decision u , thereby capturing how

a concern for robustness affects the decision.

For θ > 1, consider the multiplier game:

max
u

min
w

−u
2

2
− (u+ w − b)

2

2
+
θ
(

w2 − η
)

2
. (5.6.2)

The objective is concave in u and convex in w . It can be verified directly

that the order of maximization and minimization does not matter, and that the

Nash equilibrium of the game defined by (5.6.2) can be obtained by stacking
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and solving first-order conditions for the minimizing and maximizing players.7

The first-order conditions are:

u+ (u+ w − b) = 0

(u+ w − b) − θw = 0.

The equilibrium outcomes are:

u =
θb

2θ − 1

w =
−b

2θ − 1
.

(5.6.3)

We have thus established:

Theorem 5.6.1. For
√
η in the interval (0, |b|) we can find a value of θ > 1

for which the solution to the multiplier game (5.6.2) is the same as that of the

constraint game (5.6.1) and conversely. This mapping breaks down when θ = 1

and
√
η ≥ |b| .

Proof. From (5.6.3), as θ ranges from +∞ to one, the solution for w ranges

from zero to −b .

Notice that u = b
2 for the limiting θ = +∞ case, and that u converges to b as

θ declines to one.

5.6.1. Analysis of pathology

Consider now the constraint game when
√
η >|b| . Form two quadratic functions:

p− (u) = −u
2

2
−
(

u−√
η − b

)2

2

p+ (u) = −u
2

2
−
(

u+
√
η − b

)2

2
.

The robust choice of u solves:

max
u

min{p− (u) , p+ (u)}.

Notice that p−(b) = p+(b). Moreover, dp−(0)/du = b +
√
η and dp+(0)/du =

b−√
η . Because

√
η > |b| , these derivatives have opposite signs, implying that

u = b remains the robust solution for large enough values of
√
η .

7 This is a version of von Neumann’s Minimax Theorem. For example, see Dantzig (1998,

pp. 286–287).
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Figure 5.6.1: The functions p−(u), p+(u),min{p−(u), p+(u)}
for

√
η = .3, b = 0. The maximum of min{p−(u), p+(u)} oc-

curs at u = b = 0, a kink point of the function.
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Figure 5.6.2: The functions p−(u), p+(u),min{p−(u), p+(u)}
for

√
η = .3, b = .5. The maximum of min{p−(u), p+(u)} oc-

curs at u =
b+

√
η

2 = .4, where the function is differentiable.
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Figures 5.6.1 and 5.6.2 help reveal what is going on in the two cases
√
η > |b|

and
√
η < |b| . Fig. 5.6.1 plots the function min{p−(u), p+(u)} for

√
η = .3, b =

0 while Fig. 5.6.2 plots it for
√
η = .3, b = .5. In Fig. 5.6.1, which corresponds

to a pathological case in which
√
η > |b| , min{p−(u), p+(u)} has a maximum at

u = b = 0, a nondifferentiable point formed by the intersection of the p−(u) and

p+(u). In Fig. 5.6.2, for which
√
η < |b| , the maximum of min{p−(u), p+(u)}

occurs at u =
√

η+b

2 = .4, a point where the function is differentiable. Here

u depends on η , reflecting a concern for robustness that was absent in the

pathological
√
η > |b| case.

5.7. Probabilistic formulation (b = 0)

We now alter game (5.4.1) by enlarging the class of allowable perturbations

to include more than just mean shifts. In particular, we now allow random

perturbations to the approximating model. The approximating model is now

x = u+ ǫ

where ǫ ∼ fo(ǫ) and fo is the standard normal density. The distorted models

have ǫ ∼ f(ǫ) for some density f 6= fo . Corresponding to the b = 0 case above,

we now let the objective in our zero-sum two-player games be

−u
2

2
−
∫

(u+ ǫ)
2
f (ǫ) dǫ

2
. (5.7.1)

To measure model misspecification we use relative entropy, which is defined to

be the expected log likelihood ratio, where the expectation is evaluated at the

distorted model:

I (f) =

∫

[log f (ǫ) − log fo (ǫ)] f (ǫ) dǫ. (5.7.2)

This entropy measure is convex in f . We study the game:

max
u

min
f,I(f)≤ξ,

∫

f=1

−u
2

2
−
∫

(u+ ǫ)
2
f (ǫ)dǫ

2
. (5.7.3)

The objective in (5.7.3) is linear in the density f and the constraint set is

convex. Therefore, Lagrangian methods apply.
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5.7.1. Gaussian perturbations

Before relating game (5.7.3) to game (5.4.1), we calculate the entropy measure

(5.7.2) where f is a normal density with mean w and variance σ2 . Then8

I (f) =
w2

2
+
σ2 − 1

2
− logσ2

2
. (5.7.4)

Thus entropy decomposes into a part w2

2 due to a mean distortion and a part

σ2−1
2 − logσ2

2 due to a variance distortion. Because the logarithm is a concave

function, the variance distortion is nonnegative:

σ2 − 1

2
− logσ2

2
≥ 0.

To understand how game (5.7.3) relates to game (5.4.1), consider a per-

turbed density f that is normal with mean w and unit variance σ2 = 1 so

that the distortion consists solely of a mean shift. Then I(f) = w2/2 and the

objective (5.7.1) becomes

−u
2

2
− (u+ w)

2
+ 1

2
,

which matches (5.3.5) when b = 0. With the Gaussian f(ǫ), we can view (5.7.3)

as extending (5.4.1) to a larger set of perturbations. In effect, (5.4.1) admits

only perturbations that are equivalent to mean shifts in a standard normal

distribution. The η in (5.4.1) relates to the parameter ξ in (5.7.3) through the

formula:

η =
ξ

2
. (5.7.5)

In shifting the distortions from numbers w to densities f , we have made the

objective function linear in the distortion. The family of normal distributions

with a unit variance and mean w is not convex, however. An approach that we

might have but did not take is to mix w actions by allowing finite mixtures of

normal distributions. Rather than doing that, we entertain more than just finite

normal mixtures by allowing arbitrary densities; but we constrain their relative

entropy, which effectively restricts those densities to be absolutely continuous

with respect to the approximating model.

8 Simple calculations show that I(f) is the expectation of log(σ−1)− (2σ2)−1(ǫ−w)2 +

(2)−1ǫ2 evaluated with respect to f(ǫ) .
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5.7.2. Letting the minimizing agent make random perturbations
when b = 0

By appropriately choosing f , which is now the counterpart to w in (5.4.1), the

minimizing player can in effect implement a mixed strategy. This changes the

solution to the problem in a substantial way.

The Lagrange saddle-point problem is:

max
u

min
f,
∫

f=1

sup
θ≥0

−u
2

2
−
∫

(u+ ǫ)
2
f (ǫ) d ǫ

2
+ θ [I (f) − ξ]

or

max
u

max
θ≥0

inf
f,
∫

f=1

−u
2

2
−
∫

(u+ ǫ)
2
f (ǫ)d ǫ

2
+ θ [I (f) − ξ] . (5.7.6)

The first-order conditions for the inner-most minimization problem of (5.7.6)

are

θ [log f (ǫ) − log fo (ǫ) + 1] + κ =
(u+ ǫ)2

2
(5.7.7)

where κ is a constant introduced by the constraint
∫

f = 1. The solution to

this problem is:

fθ (ǫ) ∝ exp

[

(u+ ǫ)
2

2θ

]

fo (ǫ) (5.7.8)

where the constant of proportionality is chosen so that fθ(ǫ) integrates to unity.

Such a constant will exist only when

∫

exp

[

(u+ ǫ)
2

2θ

]

fo (ǫ) dǫ <∞.

The integral is finite provided that θ > 1. When θ > 1, the density fθ defined

by (5.7.8) is normal since it is the product of exponentials with quadratic terms

in ǫ . It is easy to verify that the density fθ is proportional to the exponential

of the following term:

(u+ ǫ)
2

2θ
− ǫ2

2
= − (θ − 1) ǫ2

2θ
+
uǫ

θ
+
u2

2θ

= − (ǫ− µθ)
2

2σ2
θ

+ c
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where c does not depend on ǫ and where

µθ =
u

θ − 1

σ2
θ =

θ

θ − 1
.

Thus fθ is normal with mean µθ and variance σ2
θ . Notice that the variance σ2

θ

becomes arbitrarily large as θ approaches unity. As a consequence, the relative

entropy associated with a θ that approaches unity becomes arbitrarily large.

For instance, when u = 0 (5.7.4) implies

I (fθ) =
σ2

θ − 1

2
− logσ2

θ

2
.

There is a multiplier θ associated with each positive ξ = 2η defined in (5.7.5).

The optimized choice of u remains zero in this example, and the worst case

distribution f has an increased variance (relative to the standard normal distri-

bution) that depends on ξ . Thus, in contrast to the deterministic game, values

of θ > 1 correspond to specific values of ξ = 2η . Moreover, every value of

ξ is associated with a multiplier θ that is greater than one. Finally, we can

exchange the order of the min and max, which implies that u = 0, f = fθ is

a Nash equilibrium as well, where θ is chosen to satisfy the entropy constraint

for a given value of ξ .

Thus, by expanding the set of admissible perturbations from mean shifts

to arbitrary (absolutely continuous) density shifts, we have been able to avoid

some of the complications of game (5.4.1). But we continue to be led to study

limiting decision rules as θ decreases to some critical value, namely θ = 1 in

this example. The breakdown point for θ will no longer be associated with a

finite value of ξ . The limiting solution as θ ց 1 corresponds to the H∞ control

in chapter 7.

Introducing a translation term b into the objective as in

−u
2

2
−
∫

(u− b+ ǫ)
2
f (ǫ) dǫ

2

will cause the worst-case distribution to have a nonzero mean, but there will

still be a variance enhancement. The quadratic objective makes the worst-case

distribution remain normal. The enhanced variance will not alter the decision

for u . Thus the multiplier solution for u in (5.5.1) also solves the stochastic
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game (5.7.3). However, the implied variance enhancement is needed to match

multipliers and constraints for the stochastic game.

5.8. Concluding remarks

This chapter has displayed two types of zero-sum two-player games that

induces decisions that are robust to model misspecification. Each game has

a malevolent nature choose a model misspecification to frustrate the decision

maker. The ‘constraint game’ directly constrains the distortions to the approxi-

mating model that the malevolent agent can make. The ‘multiplier game’ penal-

izes those distortions. The two games are equivalent under conditions that allow

us to invoke the Lagrange multiplier theorem. For our simple static example,

we displayed conditions under which the two games are equivalent, and explored

conditions under which they capture concern for model misspecification.

We have considered two classes of misspecifications, one that allows distor-

tions only in the mean of a Gaussian random variable, the other than allows

arbitrary alternative density functions that satisfy a constraint on entropy. In

the static setting of this chapter, for the first class of mean misspecifications

only, misspecification is confined to not knowing the mean of a random shock or

a constant term in a linear equation. Subsequent chapters take up models where

the decision maker fears misspecified dynamics, which he expresses by allowing

a distortion w to be the conditional mean of a shock vector. By allowing that

conditional mean to feed back on the history of the state, a variety of misspeci-

fications can be modelled. Thus, the following two chapters return to our main

theme of dynamic games that can be used to design robust decision rules. The

conceptual issues connecting the constraint game and the multiplier game will

carry over to the richer setting of chapters 6 and 7.
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A. Rational expectations equilibrium

The Phillips curve example of section 5.2 took πe as given. This appendix constructs a
rational expectations version of the model and shows how to compute a time-consistent
or Nash equilibrium rate of inflation. We proceed by adapting some concepts of Stokey
(1989) to this example. Thus, we define a Nash equilibrium (with robustness) for the
model as follows:

Definition 5.A.1. Given multiplier θ > 1, a Nash equilibrium is a pair (π, πe) such
that (a) π = B(πe; θ) , and (b) π = πe . Here B is the government’s best response
map (5.2.11).

Condition (a) says that given πe , the government is choosing a robust rule asso-
ciated with multiplier θ . Condition (b) imposes rational expectations. It is easy to
compute a rational expectations equilibrium by solving (5.2.7) and π = πe for πe :

πe (θ) =
θ

θ − 1
U∗γ. (5.A.1)

Notice that π′e(θ) < 0, limθր∞ πe(θ) = U∗γ , and limθց1 πe(θ) = +∞ . If the
approximating model is true, so that the government’s concern about misspecification
is misplaced, the government’s ignorance of the model causes it to set inflation higher
than if it knew the model for sure.

Notice that Definition 5.A.1 imputes a concern for model misspecification to the
government, but not to the private forecasters, who are assumed to know the π chosen
by the government. In chapter 16 we shall return to discuss an alternative version
of rational expectations that imposes more symmetry between the government and
private agents.



Chapter 6

Time domain games for robustness

6.1. Several games have identical outcomes

This chapter studies two-player zero-sum dynamic games in which a minimiz-

ing player helps a maximizing player design a decision rule that is robust to

misspecification of a dynamic approximating model that links controls today

to state variables tomorrow. We represent misspecification by allowing shocks

to feed back on the history of the state in ways that an approximating model

excludes. We generalize the static constraint and multiplier games of chapter 5

to this dynamic setting. The constraint and multiplier games differ in how they

parameterize a set of alternative specifications that surround an approximating

model. The constraint games require that the entropy of each alternative model

relative to the approximating model not exceed a nonnegative parameter η .

The multiplier games restrict relative entropy implicitly via a penalty parame-

ter θ . If the parameters η and θ are appropriately related, the constraint and

multiplier games have equivalent outcomes.

We begin the chapter by studying three multiplier games that have identical

players, payoffs, and actions but different timing protocols. Games with different

timing protocols usually have different outcomes, but because the two players’

preferences are perfectly misaligned, our games have identical outcomes. We

devote much of this chapter to verifying the equivalence of outcomes and equi-

librium representations of multiplier games for our three timing protocols. After

that, we show how the equilibrium of a multiplier game provides an equilibrium

of a constraint game.

The equivalence of outcomes of multiplier games across different timing

protocols is of substantial importance. We shall exploit it frequently in the eco-

nomic applications in subsequent chapters, for example, in the equilibrium in

a model with a Ramsey planner that we propose in chapter 16. While some

of the proofs in this chapter involve complicated arguments, they justify simple

– 138 –
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algorithms and appealing ways of interpreting robust decision rules. We sum-

marize these compactly in section 6.2.2. The reader interested only in results

can extract practical procedures from this section.

6.2. The setting

A decision maker has a unique explicitly specified approximating model but

concedes that the data might actually be generated by a member of a set of

models that surround the approximating model. One parameter, either θ or

η , measures a set of perturbations to the approximating model. Three models

within the set are especially important: the decision maker’s approximating

model; an unknown true model that generates the data; and a worst case model

that emerges as a by-product of a robust decision making procedure. Each

model specifies that an n× 1 state vector evolves according to

xt+1 = Axt +But + Cwt+1 (6.2.1)

where x0 is given, ut is a vector of controls, and wt+1 is a vector of specification

errors. The approximating model assumes that wt = 0 ∀t ≥ 1. The other

models have wt 6= 0 for some t ≥ 1.1 We assume that the matrix A has all of its

eigenvalues inside the circle Γ in the complex plane, where Γ = {ζ : |ζ| = 1√
β
} .2

Under this restriction on the eigenvalues of A ,

(I − ζA)
−1

=

∞
∑

j=0

Ajζj

1 In chapter 8, we will consider stochastic models formed by replacing wt+1 by the sum

of an i.i.d. Gaussian vector ǫ̃t+1 with mean zero and identity covariance matrix I and a

distortion wt+1 that is measurable with respect to the history of xt . The presence of ǫt+1

obscures the model misspecification with noise. This setting lets us use model detection error

probabilities to calibrate the value of θ .
2 A more general but still workable assumption is that the pair (

√

βA, B) is stabilizable,

where β ∈ (0, 1] is a discount factor. The pair (
√

βA, B) is said to be stabilizable if there

exists a matrix F̃ for which A − BF̃ has all of its eigenvalues inside Γ. (See chapter 3,

page 61 for more about stabilizability.) Under this condition, we can rewrite the system

xt+1 = Axt + But as xt+1 = (A − BF̃ )xt + Bũt , where ut = −F̃ xt + ũt , and then proceed

to view ũt as the control.
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is a convergent power series for ζ inside the circle Γ.

Define a target vector

zt = Hxt + Jut. (6.2.2)

The decision maker wants to maximize the objective function

−
∞
∑

t=0

βtz′tzt. (6.2.3)

We use the following measure of model misspecification:

R (w) =
∞
∑

t=0

βt+1w′
t+1wt+1. (6.2.4)

Hansen, Sargent, Turmuhambetova, and Williams (2005XXX) refer to R(w) as

entropy.

The decision maker believes that the data are generated by a model that

satisfies R(w) ≤ η but is otherwise ignorant about {wt+1} . The decision maker

wants a decision rule that works well for any model satisfying R(w) ≤ η .

6.2.1. Constraint and multiplier problems

Let u denote the sequence {ut}∞t=0 and w the sequence {wt+1}∞t=0 . Two types

of games induce robust decisions. First, for η ∈ Υ = {η : 0 ≤ η ≤ η} , we have:

Definition 6.2.1. The constraint robust control problem is

sup
u

inf
w

−
∞
∑

t=0

βtz′tzt (6.2.5)

subject to (6.2.1) and R(w) ≤ η .

Second, for θ belonging to a set Θ = {θ : 0 < θ < θ ≤ +∞} , we define

Definition 6.2.2. The multiplier robust control problem is

sup
u

inf
w

−
[ ∞
∑

t=0

βtz′tzt − θR (w)

]

(6.2.6)
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subject to (6.2.1).

The Lagrange multiplier theorem (see Luenberger (1969), pp. 216-221) connects

the solutions of these two problems, as we shall discuss in detail in chapter 7. In

equation (6.2.9) below, we shall describe how to determine the lower bound θ .

The upper bound η is connected to θ in a way that we describe in section 6.8.

If θ and η are appropriately related, the multiplier and constraint problems are

equivalent.

We begin by focusing on three versions of the multiplier problem (6.2.6).

Section 6.8 discusses the relation between the constraint and multiplier problems

and shows how the same pair of decision rules solves both problems.3 Section 6.9

formulates a recursive version of the constraint problem and links the derivative

of its value function to the multiplier θ .

6.2.2. Operators and decision rules

It is convenient to summarize some operators that will occur frequently in this

chapter and the next. There exists a lower bound or breakdown value θ that

describes the largest set of perturbed models against which it is possible to

acquire robustness. After we have introduced several operators, we display

condition (6.2.9), which provides a check for whether θ > θ .4 For a given

θ > θ , we can compute robust linear decision rules ut = −F ∗xt, wt+1 = K∗xt

by using the following operators:

T (P ) = H ′H −H ′J (J ′J)
−1
J ′H + β

[

A′ −H ′J (J ′J)
−1
B′
]

[

P − βPB (J ′J + βB′PB)
−1
B′P

] [

A−B (J ′J)
−1
J ′H

]

(6.2.7a)

or

T (P ) = H ′H + βA′PA− (βB′PA+H ′J)

× (J ′J + βB′PB)
−1

(βB′PA+ J ′H) (6.2.7b)

D (P ) = P + PC (θI − C′PC)
−1
C′P (6.2.7c)

F (P ) = (J ′J + βB′PB)
−1

(βB′PA+ J ′H) . (6.2.7d)

3 Hansen, Sargent, Turmuhambetova, and Williams (2001) connect these problems in the

context of an approximating model that is a continuous time diffusion.
4 Chapter 7 discusses θ and the associated upper bound η that assure that the problems

multiplier and constraint problems have finite values.
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K (P ) = (θI − C′PC)
−1
C′P (A−BF (D (P ))) (6.2.7e)

S (P ) = H ′
FHF + βA′

FD (P )AF , (6.2.7f)

where AF = A−BF and HF = H−JF . Define the fixed points of the following

two algebraic Riccati equations:

P̄ = T
(

P̄
)

(6.2.8a)

P ∗ = T ◦ D (P ∗) . (6.2.8b)

The decision rule without a concern about robustness is ut = F (P̄ )xt , while for

a given θ satisfying θ ≤ θ ≤ +∞ , the decision rule with a concern for robustness

is ut = −F (D(P ∗))xt . The worst case shock process associated with the robust

decision rule is wt+1 = K(P ∗)xt .

If we take a fixed point P ∗ = T ◦ D(P ∗), we can verify that θ > θ by

checking that

log det (θI − C′P ∗C) > −∞ (6.2.9)

or equivalently that the eigenvalues of (θI − C′P ∗C) are all positive.5 This

follows from Theorem 7.5.4. Of course, this check requires that we can compute

a fixed point of T ◦ D , which might not be possible for θ < θ . An alternative

and in a sense more practical way to assure that θ > θ is to check the condition

log det (θI − C′PjC) > −∞ (6.2.10)

for each iterate Pj , j ≥ 1, where Pj is computed as Pj+1 = T ◦ D(Pj) starting

from P0 = 0.

The T ◦ D operator can be calculated in one step as:

T ◦ D(P ) = H ′H −H ′J(J ′J)−1J ′H + β
[

A′ −H ′J(J ′J)−1B′]

×
[

P − βP (B C )

(

J ′J + βP ′BP βB′PC

βC′PB −βθI + βC′PC

)−1(
B′

C′

)

P

]

[A−B(J ′J)−1J ′H ].
(6.2.11)

For a given θ , a policy improvement algorithm for computing a robust decision

rule iterates on the operators S and F :

5 Chapter 7 calls the object on the left side of (6.2.9) ‘entropy’ and interprets it is a crite-

rion that inspires a decision player to choose a decision rule that is robust to misspecification.
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1. For a fixed decision rule F , define the associated operator S , and compute

the fixed point P = S(P ).

2. Compute a new decision rule F = F (P ).

3. Iterate to convergence on steps 1 and 2.

Step 1 computes a value function attained by using a fixed decision rule F

forever, where the ‘distortion operator’ D evaluates future utilities. Step 2 finds

an F that solves a two-period optimum problem, with D(P ) being used to form

the continuation value function. This is an efficient algorithm for computing a

robust rule.6

By providing simple algorithms for computing a robust decision rule, for-

mulas (6.2.7) and (6.2.8) completely summarize the practical content of this

chapter. We will use these operators in subsequent sections to justify the equiv-

alence of outcomes from distinct two-player zero-sum dynamic games. We shall

say more about the S operator in chapter 7.

6.3. Timing protocols in three versions of a multiplier
game

Timing protocols for three versions of the zero-sum two-player multiplier game

(6.2.6) translate into differences in the spaces to which the maximizing player’s

choice of the sequence for u and the minimizing player’s choice of the sequence

for w are confined. We restrict u and w to one of the following spaces:

W = {w :

∞
∑

t=1

βtw′
twt < +∞}

U = {u :

∞
∑

t=0

βtu′tut < +∞}

WK = {w : wt+1 = Kxt}
UF = {u : ut = −Fxt}.

By choosing from among these sets, we create three versions of problem (6.2.6):

6 Other efficient algorithms use a doubling algorithm to compute the fixed point of T ◦D .

See chapter 3.
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Game 1 (SEQ): a static multiplier game where both players choose se-

quences: u ∈ U,w ∈ W .

Game 2 (STACK): a Stackelberg multiplier game where the minimizing

player chooses a sequence but the maximizing player chooses a rule that

feeds back on the state: u ∈ UF , w ∈ W .

Game 3 (MARKOV): a Markov perfect multiplier game where both players

choose rules that feed back on the state: u ∈ UF , w ∈WK .

We apply the same standard equilibrium concept to each game.

Definition 6.3.1. A Nash equilibrium is a pair w∗, u∗ such that, given u∗ ,

w∗ is optimal for the w -choosing player and, given w∗ , u∗ is optimal for the

u -choosing player.

6.4. Score card: timing and uses of three multiplier
games

For future reference, it is useful to present Table 6.5.1. Within equilibria of

each of our three multiplier games, Table 6.5.1 summarizes the different as-

sumptions about what the u -choosing player and the w -choosing player re-

gard as exogenous. Along an equilibrium path, choices can be represented as

ut = −F ∗xt, wt+1 = K∗xt with the same (F ∗,K∗) in all three of our games.

In game 1, neither player takes the feedback rule of the other player into ac-

count and instead regards the other player’s sequence of choices as given. But

in games 2 and 3, either one or both of the players takes the other player’s

feedback rule into account. A player that recognizes the other player’s feedback

rule can influence the parts of the other player’s future decisions that feed back

on future states.

The right column of Table 6.5.1 reveals much about the structure of players’

optimum problems in the three games. That game 1 confronts each player with

an arbitrary sequence of actions requires that we formulate each player’s problem

in the space of sequences, obtain Euler equations for both players, then compute

an equilibrium by solving the system formed by stacking the two players’ Euler

equations. In game 1, neither player’s problem is recursive in the state vector

xt . In game 2, the w -player’s problem is recursive in the state vector xt , while
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in game 3, both players’ problems are recursive in xt . These recursive problems

are evidently dynamic programming problems, while both players’ problems in

game 1 are not dynamic programming problems in the physical state vector xt .

However, there does exist a recursive representation of both players’ problems

in an equilibrium of game 1: it entails augmenting the physical state vector in

a way that captures the limited power that both players have to influence the

other player’s sequence of choices in game 1.

Each of our three multiplier games has special uses: either for justifying a

particular interpretation of a robust rule, or for bringing to light a particular

aspect of the structure of a robust control problem, or for computing a robust

decision rule.

1. Because it makes both players choose best responses to sequences, game

1 justifies characterizing the equilibrium decisions of the maximizing and

minimizing players by stacking their Euler equations. We take advantage

of this structure in chapter 16 when we pose and solve robust versions of

Ramsey or Stackelberg problems. In these problems, a robust Stackelberg

leader once and for all commits himself to a sequence of decisions taking into

account the robust response of a group of followers, each of whom chooses

sequentially. Off the equilibrium path of game 1, the decision problem of

neither the maximizing nor the minimizing players in game 1 is recursive.

However, by expanding the state space to include variables that allow a re-

cursive representation of the equilibrium sequence chosen by the minimizing

player, we can give a recursive representation for the problem of the maxi-

mizing player in game 1. This representation has two important uses. First,

it justifies a ‘Bayesian’ interpretation of a robust control problem. That is,

it displays a law of motion for forcing variables that is distorted relative to

the approximating model and for which the robust decision rule is actually

an optimal (non robust) decision rule. Second, this recursive representation

of the maximizing player’s problem reveals a certainty equivalence principle

that applies to the maximizing player’s decision.

2. By making the minimizing player a Stackelberg leader who chooses a se-

quence once and for all, game 2 becomes the natural setting for studying

frequency domain representations of a robust control problem. We develop
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Table 6.5.1: Players’ constraints in three multiplier games

Game Player Exogenous Constraint

1 u {w∗
t+1} xt+1 = Axt +But + Cw∗

t+1

w {u∗t} xt+1 = Axt +Bu∗t + Cwt+1

2 u {w∗
t+1} xt+1 = Axt +But + Cw∗

t+1

w ut = −F ∗xt xt+1 = (A−BF ∗)xt + Cwt+1

3 u wt+1 = K∗xt xt+1 = (A+K∗C)xt +But

w ut = −F ∗xt xt+1 = (A−BF ∗)xt + Cwt+1

H∞ and so-called minimum entropy representations of robust control prob-

lems in chapter 7, both of which are cast in the frequency domain and rest

directly on game 2.

3. The Markov perfect game 3 justifies a very useful algorithm that computes

a robust decision rule and the matrix P in the quadratic form for the

associated value function by iterating to convergence of T ◦ D . Here the

T operator summarizes the maximizing player’s choice and the D operator

summarizes the minimizing player’s choice in their ‘two-period’ problems.

6.5. Game 1: The multiplier game in sequences

In game 1 (SEQ), the objective of the two players can be written:

C =

∞
∑

t=0

βt
(

−z′tzt + βθw′
t+1wt+1

)

, (6.5.1)

subject to the state-evolution equation (6.2.1) and the target vector relation

(6.2.2). The initial state vector x0 is given. A maximizing player chooses

u ∈ U and a minimizing player chooses w ∈ W .

Definition 6.5.1. An equilibrium of the multiplier game in sequences (SEQ)

is a pair of sequences u∗ ∈ U,w∗ ∈W that solve both players’ problems.

To make the minimization problem well posed, we must restrict the value

of θ . The penalty term θw′
t+1wt+1 is convex in wt+1 by construction, but
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the objective function contains an additional contribution from wt+1 because

wt+1 alters subsequent targets and the objective is concave in these targets.

For a sufficiently large penalty parameter θ , the first term dominates and this

assures the convexity of the entire intertemporal objective in w . A condition

that assures convexity is that θ is sufficiently large that θI − G′G is positive

definite on Γ = {ζ : |ζ| = 1√
β
} , where G = H(I − ζA)−1C. We will motivate

this restriction on θ further in chapter 7.

To find an equilibrium of game SEQ, we begin by substituting from (6.2.2)

for zt in the objective function and then form a Lagrangian for each player.

The zero-sum objective function implies that these two Lagrangians have first-

order conditions that impart identical laws of motion to the two players’ co-state

variables; the initial values of the costate variables must also be equal because

of the common value function. These features allow us to analyze the game by

forming a single Lagrangian:

L = −
∞
∑

t=0

βt{(x′tH ′Hxt + u′tJ
′Jut + 2u′tJ

′Hxt)

2βµ′
t+1 (Axt +But + Cwt+1 − xt+1) − βθw′

t+1wt+1}.
(6.5.2)

We proceed by using the first-order conditions from this single Lagrangian to

obtain a candidate equilibrium, then verify that this candidate equilibrium is

indeed the outcome of the two constrained optimization problems that appear

in Definition 6.5.1.

To generate a candidate equilibrium, notice that first-order conditions for

the Lagrangian with respect to ut, wt+1, xt+1 , respectively, are:

J ′Jut + J ′Hxt + βB′µt+1 = 0

− θwt+1 + C′µt+1 = 0

βA′µt+1 +H ′Hxt +H ′Jut − µt = 0. (6.5.3)

Assume that J ′J is nonsingular and solve for ut and wt+1 :

ut = − (J ′J)
−1
J ′Hxt − β (J ′J)

−1
B′µt+1 (6.5.4)

wt+1 =
1

θ
C′µt+1. (6.5.5)

Substitute these expressions for ut and wt+1 into the state equation to get

xt+1 =
[

A−B (J ′J)
−1
J ′H

]

xt −
[

βB (J ′J)
−1
B′ − 1

θ
CC′

]

µt+1.



148 Time domain games for robustness

Substituting the same expressions into (6.5.3) gives

β
[

A′ −H ′J (J ′J)
−1
B′
]

µt+1 +
[

H ′H −H ′J (J ′J)
−1
J ′H

]

xt − µt = 0.

Write the system as

L

[

xt+1

µt+1

]

= N

[

xt

µt

]

(6.5.6)

where

L =

(

I
[

βB (J ′J)
−1
B′ − 1

θCC
′
]

0 β
[

A′ −H ′J (J ′J)
−1
B′
]

)

and

N =

(

[

A−B (J ′J)
−1
J ′H

]

0

−
[

H ′H −H ′J (J ′J)
−1
J ′H

]

I

)

.

It can be verified that the matrix pencil ( λ√
β
L−N) is symplectic.7 It follows

that the generalized eigenvalues of (L,N) come in
√
β -symmetric pairs: for

every eigenvalue λi , there is another eigenvalue λ−i such that λiλ−i = β−1 .

To assure existence of a candidate equilibrium, we rule out generalized

eigenvalues of (L,N) on the circle Γ = {ζ : |ζ| = 1√
β
} so that half of the

generalized eigenvalues are inside the circle Γ and the other half are outside

this circle. The generalized eigenvectors associated with the eigenvalues inside

Γ generate the (
√
β )-stable deflating subspace. The dimension of this subspace

equals the number of entries in the state vector xt . We assume that there exists

a positive semidefinite matrix P ∗ such that the stable deflating subspace can be

represented as

(

I

P ∗

)

x . Under these restrictions, we can construct a candidate

equilibrium with µt = P ∗xt and a state vector sequence that satisfies

L

(

I

P ∗

)

xt+1 = N

(

I

P ∗

)

xt. (6.5.7)

That the candidate equilibrium is indeed an equilibrium can be verified under

conditions that we summarize in:

Theorem 6.5.1. Suppose that

(i) (A,B) is stabilizable.

7 See chapter 3 for the definition and properties of symplectic pencils.
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(ii) (H,A) is detectable 8 and J ′J is nonsingular.

(iii) θI −G′G is positive definite on Γ where G = H(I − ζA)−1C .

(iv) (L,N) has no generalized eigenvalues on Γ .

(v) an element of the (
√
β ) stable deflating subspace of (L,N) can be repre-

sented as

(

I

P ∗

)

x for some vector x and a given matrix P ∗ .

Then there exist K∗ and F ∗ for which an equilibrium of game SEQ is ut =

−F ∗A∗tx0 and wt+1 = K∗A∗tx0 , where A∗ = A−BF ∗ +CK∗ has eigenvalues

that are inside Γ . The matrix P ∗ is necessarily symmetric and the date zero

value of the game is −x0
′P ∗x0 . Also, F ∗ = (J ′J)−1(J ′H + βB′P ∗A∗),K∗ =

1
θC

′P ∗A∗ .

Proof. We have already computed a candidate equilibrium by stacking the state-

costate equations of the two players to get the linear difference equation system

(6.5.7). The candidate equilibrium is a
√
β stable sequence of state vectors

that satisfies (6.5.7). Given conditions (iv) and (v), from the first partition of

(6.5.7), we see that

(

I +

[

βB (J ′J)
−1
B′ − 1

θ
CC′

]

P ∗
)

xt+1 =
[

A−B (J ′J)
−1
J ′H

]

xt. (6.5.8)

It follows from Theorem 21.7 of Zhou, Doyle and Glover (1996) that P ∗ is

symmetric and that the matrix on the left side of (6.5.8) is nonsingular. Hence

we have the state evolution:

xt+1 = A∗xt

where

A∗ =

(

I +

[

βB (J ′J)
−1
B′ − 1

θ
CC′

]

P ∗
)−1

[

A−B (J ′J)
−1
J ′H

]

.

Using the same reasoning that led to equation (3.3.9), it can be shown that

(

I +

[

βB (J ′J)
−1
B′ − 1

θ
CC′

]

P ∗
)−1

= I − β (B C )

(

J ′J + βB′P ∗B βB′P ∗C

βC′P ∗B −βθI + βC′P ∗C

)−1(
B′P ∗

C′P ∗

)

.

8 Or equivalently (A′, H′) is stabilizable.
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Therefore,

A∗ = A−BF ∗ + CK∗

where F ∗ and K∗ satisfy

F ∗ = (J ′J)
−1

(J ′H + βB′P ∗A∗)

K∗ =
1

θ
C′P ∗A∗.

(6.5.9)

By (v), A∗ has eigenvalues that are inside the circle Γ. Moreover, the first-order

conditions from the Lagrangian (6.5.2) imply

wt+1 = K∗xt

ut = −F ∗xt.
(6.5.10)

More will have to be added here.

AAAAA Tom: we now reference all of the Assumptions, but I

am not sure how we use the symmetry of P. I also need to check the

Glover, Doyle, Zhou reference.

Conditions (i) and (ii) occur in the standard control theory summarized in chap-

ter 3 and assure the existence of an optimal control that stabilizes the state in

the absence of concerns about misspecification. In particular, they guarantee

that the objective of the maximizing decision maker is strictly concave in the u

sequence. Condition (iii) guarantees that the objective is strictly convex in the

w sequence.

6.5.1. Recursive formulation of maximizing player’s problem

In game 1, each player chooses a sequence, taking as given the sequence chosen

by the other player. Because an arbitrary sequence chosen by the other player

does not have a recursive representation, out of equilibrium the problem of

a player who must choose a best response to such an arbitrary sequence will

not have a recursive representation. Nevertheless, Theorem 6.5.1 indicates that

in equilibrium each player’s sequence does have a recursive representation, the

time t decision of each being a linear function of the state xt as in (6.5.10).

But (6.5.10) fails to embody the assumption that player i ’s decisions do not
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influence the sequence chosen by player −i , where −i means not i . For example,

to represent the problem of the maximizing player in game 1, it won’t work just

to confront that player with wt+1 = K∗xt coupled with the law of motion

xt+1 = Axt +But +Cwt+1 , because that would contradict the assumption that

w is taken as an exogenous sequence by the maximizing (u -choosing) player.

The way around this problem is to introduce an additional state vector x̂t

that satisfies the requirements that (1) x̂ cannot be controlled by the maximizing

player and (2) it permits a recursive representation of the equilibrium choice of

w . This can be accomplished by positing that

x̂t+1 = A∗x̂t (6.5.11a)

wt+1 = K∗x̂t (6.5.11b)

where, as in Theorem 6.5.1, the matrix A∗ = A − BF ∗ + CK∗ . If we impose

x̂0 = x0 , then (6.5.11) recursively generates the equilibrium w ∈ W given by

(6.5.10). Expressing w in terms of the uncontrollable state x̂t preserves the

game 1 assumption that w ∈ W is taken as given by the maximizing player; it

also gives w a recursive representation and thereby allows us to apply dynamic

programming to the maximizing player’s problem.

We thus use representation (6.5.11) to pose a recursive version of the max-

imizing player’s problem within the game 1 equilibrium. In particular, he max-

imizes (6.5.1) by choice of {ut} subject to the state evolution:

xt+1 = Axt +But + CK∗x̂t

x̂t+1 = A∗x̂t

wt+1 = K∗x̂t.

(6.5.12)

Notice that ut influences subsequent positions of xs but not of x̂s and therefore

not subsequent values of ws+1 . Equation (6.5.12) thereby captures the idea that

the maximizing player takes the w sequence as given.

The optimizer of problem (6.5.12) is a decision rule ut = − [ F̄ F̂ ]

[

xt

x̂t

]

where F ∗ = F̄ + F̂ . Theorem 6.5.2 below verifies this and also that if we set

x̂0 = x0 , then the outcome for this problem satisfies x̂t = xt for all t ≥ 1.

The problem of maximizing (6.5.1) subject to (6.5.12) is obviously not

useful for computing the F ∗ component of an equilibrium of game 1: to pose

the problem, we must already know the equilibrium (K∗, F ∗) that emerge in
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an equilibrium of game 1. However, the problem is useful as a tool for inter-

preting and decomposing the F ∗ component of game 1. Soon we shall discuss a

‘Bayesian interpretation’ of a robust decision rule that is based on the recursive

version of the maximizing player’s problem in an equilibrium of game 1. We

shall use that interpretation extensively in our analysis of asset pricing in chap-

ters 11 and 12. Before we discuss the Bayesian interpretation of this problem,

we state a theorem about the value function and decision rule that solve that

problem.

This theorem exploits the insight that the problem of maximizing (6.5.1)

subject to (6.5.12) takes the form of what Anderson et. al. (1996) and chapter 3

call an augmented regulator problem. This allows us to break it into subproblems,

the first of which is simply the non-robust (θ = +∞) version of the u -player’s

decision problem with ut = −F̄xt being the decision rule and −x0P̄ x0 being the

value function for the ordinary control problem. These objects are constituents

of the following:

Theorem 6.5.2. Consider an ordinary (non-robust) optimal linear regulator

with current period objective

(Hxt + Jut)
′
(Hxt + Jut) − βθ (Kx̂t) · (Kx̂t) (6.5.13)

subject to the law of motion

(

xt+1

x̂t+1

)

=

(

A Â

0 A∗

)(

xt

x̂t

)

+

(

B

0

)

ut (6.5.14)

where Â = CK∗ and A∗ = A−BF ∗ +CK∗ . Then the optimal value function

is

−
(

x0

x̂0

)′ (
P̄ P̂

P̂ ′ P̃

)(

x0

x̂0

)

.

where
P̂ = P ∗ − P̄

P̃ = P̄ − P ∗

and where P̄ is the stabilizing solution to the Riccati equation for the ordinary

(non-robust) control problem and P ∗ is the stabilizing solution to the Riccati

equation for the robust control problem. The optimal control law is

ut = −F̄ xt − F̂ x̂t
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where
F̄ =

(

J ′J + βB′P̄B
)−1 (

βB′P̄A+ J ′H
)

F̂ =
(

J ′J + βB′P̄B
)−1

(

βB′P̄ Â+ βB′P ∗A∗
)

.

Moreover, ut = −F̄xt is the control law for the ordinary (non-robust) problem

and F̂ + F̄ = F ∗ where ut = −F ∗xt is the control law for the robust control

problem.

Proof. The matrices P̄ and P ∗ are fixed points for the Riccati equations for

the ordinary and robust linear regulators, respectively, so that P̄ = T (P̄ ) and

P ∗ = T ◦D(P ∗). The proof proceeds by solving the augmented linear regulator

defined by the problem (6.5.13), (6.5.14), which leads us to compute P̄ , P̂ , P̃

recursively; and then by verifying that these matrices solve the following equa-

tions P̄ = T (P̄ ), P̄ + P̂ = T ◦ D(P̄ + P̂ ), P̃ − P̄ = T ◦ D(P̃ − P̄ ),

Because the optimization problem (6.5.13), (6.5.14) is an augmented linear

regulator problem (see chapter 3), we can solve it in three steps. In the first

step, we set x̂0 = 0. This makes the sequence x̂t disappear from the problem.

Let P̄ denote the matrix that stabilizes the corresponding deflating subspace

so that P̄ solves the algebraic Riccati equation P̄ = T (P̄ ) or

β
[

A′ −H ′J (J ′J)
−1
B′
] [

P − βPB (J ′J + βB′PB)
−1
B′P

] [

A− B (J ′J)
−1
J ′H

]

+H ′H −H ′J (J ′J)
−1
J ′H = P.

Let F̄ denote the control law for the ordinary (non-robust) control problem

given by:

F̄ =
(

J ′J + βB′P̄B
)−1 (

βB′P̄A− J ′H
)

.

Define Ā = A−BF̄ . The matrix P̄ also solves the Sylvester equation:

P =
(

H − JF̄
)′ (

H − JF̄
)

+ βĀ′PĀ.

In the second step, we activate the uncontrollable state x̂t and compute

P̂ . The optimal control law is

ut = −F̄ xt − F̂ x̂t

and P = P̂ solves the Sylvester equation:

β
(

A−BF̄
)′ (

P̄ Â+ PA∗
)

= P.
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Equivalently, P = P̂ solves

β
[

A′ −H ′J (J ′J)
−1
B′
] [

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
]

Â

+ β
[

A′ −H ′J (J ′J)
−1
B′
] [

P − βP̄B
(

J ′J + βB′P̄B
)−1

B′P
]

A∗ = P.

The matrix P̂ that solves this Sylvester equation equals P̂ = P ∗− P̄ where P ∗

solves the Riccati equation P ∗ = T ◦ D(P ∗) that is associated with the robust
control problem, which from (6.2.11) or (6.B.15) is

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

[

P ∗ − βP ∗ (B C )

(

J ′J + βB′P ∗B βB′P ∗C
βC′P ∗B −βθI + βC′P ∗C

)−1(
B′

C′

)

P ∗
]

[

A−BJ
(

J ′J
)−1

J ′H
]

+H ′H −H ′J
(

J ′J
)−1

J ′H = P ∗.

In appendix C, we verify that P̂ = P ∗− P̄ . The portion of the control law that

feeds back onto x̂ is

F̂ =
(

J ′J + βB′P̄B
)−1

(

βB′P̄ Â+ βB′P̂A∗
)

.

In the third step, we compute P̃ , which solves the Sylvester equation:

P = −θK∗′K∗ + βA∗′PA∗ + βÂ′
[

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
]

Â

+ βA∗′
[

P̂ − βP̂B
(

J ′J + βB′P̄B
)−1

B′P̄
]

Â+ βÂ′
[

P̂ − P̄B
(

J ′J + βB′P̄B
)−1

B′P̂
]

A∗.
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6.5.2. ‘Bayesian’ interpretation of robust control

In Theorem 6.5.2, the maximizing player’s decision problem takes the form of

an ordinary (non-robust) control problem in which the law of motion for the

state x is distorted by adding CK∗x̂t to the right side of the law of motion

for xt+1 in the approximating model. In stochastic versions of this decision

problem, the existence of such a representation for the robust decision maker’s

decision problem assures us that there is a ‘Bayesian’ interpretation of a robust

decision rule in the sense that there exists some law of motion for the augmented

state (xt, x̂t) for which the robust decision rule would be optimal. This estab-

lishes that the robust decision rule is ‘undominated’ and so can be said to be

‘admissible’ in the Bayesian sense.8

6.5.3. Recursive version of minimizing player’s problem

We could proceed in a symmetric way to pose a recursive version of the mini-

mizing player’s problem in game 1. In particular, that player would minimize

(6.5.1) by choice of {wt+1} subject to the state evolution:

xt+1 = Axt + Cwt+1 −BF ∗x̂t

x̂t+1 = A∗x̂t

ut = −F ∗x̂t.

(6.5.15)

This problem also takes the form of an augmented regulator problem. The min-

imizer is a decision rule wt+1 = [ K̄ K̂ ]

[

xt

x̂t

]

.

8 Appendix B of chapter 13 gives a related Bayesian interpretation of a robust Kalman

gain for a filtering problem.
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6.6. Game 2: the Stackelberg multiplier game

We now turn to game 2 (STACK), which relative to game 1 has a timing pro-

tocol that gives the minimizing player more power to influence the choice of the

maximizing player. We continue to withhold from the maximizing player any

power to influence subsequent values of the minimizing player’s decision.9

Section 6.5.3 posed a recursive version of the problem of the minimizing

player within an equilibrium of game 1 (SEQ). As emphasized in section 6.5.1,

what mattered for attaining a recursive representation of player i ’s problem

in equilibrium is having a recursive representation of player not-i ’s decision

sequence. In an equilibrium of game 2, the constraints facing the minimizing

player have a recursive representation but differ substantially from (6.5.15). In

game 2 (STACK), the maximizing player chooses sequentially and in equilibrium

chooses a decision rule ut = −F ∗xt that feeds back on the state. Given the

maximizing player’s choice of feedback rule, the minimizing player chooses a

sequence w ∈ W . Therefore, in equilibrium, the minimizing player faces the

law of motion

xt+1 = Axt + Cwt+1 −BF ∗xt, (6.6.1)

which should be compared with the law of motion (6.5.15) that the minimizing

player faces in the recursive version of game 1. Under (6.5.15), the w player

regards the u sequence as fixed. But under (6.6.1), the w -setting player rec-

ognizes that he can influence future u ’s because ut = −F ∗xt . Despite their

different timing protocols, identical objects (K∗, F ∗) characterize the equilibria

of both games 2 (STACK) and 1 (SEQ).

Theorem 6.6.1. Let AF = A−BF , HF = H − JF , and

K (F ) = (θI − C′PC)
−1
C′P (A−BF ) , (6.6.2)

where P is the positive semidefinite solution to the Riccati equation

P = H ′
FHF + βA′

FPAF + βA′
FPC (θI − C′PC)

−1
C′PAF (6.6.3)

for which AF + CK has eigenvalues that are inside the circle Γ . Suppose

(i) J ′J is nonsingular and J +Hζ(I − ζA)−1B has full column rank on Γ ;

9 The maximizing player has to wait until game 3 to acquire such power.
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(ii) The matrix pencil defined by (L,N) in (6.5.6) has no generalized eigenvalues

on Γ ;

(iii) Any element of the (
√
β ) deflating subspace of (L,N) can be represented

as

(

I

P

)

x for some vector x where P is a symmetric, positive semidefinite

matrix;

(iv) θI − C′PC is positive definite.

Then there exists an equilibrium of the Stackelberg multiplier game in which

F = F ∗ and K = K(F ∗) ; consequently wt+1(F
∗) = K∗(A∗)tx0 , where F ∗ ,

K∗ and A∗ are the same matrices that represent the equilibrium of game SEQ.

Conditions (ii) and (iii) are assured when βB(J ′J)−1B′− 1
θCC

′ is positive

semidefinite. However, this positive semidefiniteness condition is much stronger

than what is actually needed for many applications.

Proof. In the Stackelberg multiplier game, the maximizing player submits a

decision rule ut = −Fxt . The minimizing player chooses a sequence {wt+1(F )}
to minimize (6.5.1). For some F ’s, the infimum may not be attained. We can

form the criterion C(F, x0), noting that it may be −∞ for some choices of F .

We wish to show that

C (F ∗, x0) ≥ C (F, x0)

for any F ∈ F .

To verify this inequality, we first show that {wt+1(F
∗)} coincides with

{w∗
t+1} of the equilibrium of game SEQ. Thus, we study the problem of mini-

mizing (6.5.1) by choice of w ∈W subject to

xt+1 = (A−BF ∗)xt + Cwt+1. (6.6.4)

This differs from the optimum problem of the malevolent agent (over w ) within

a game 1 SEQ equilibrium because now the malevolent agent does not regard

the control sequence u as an exogenous element of W but instead knows that

ut feeds back on the state via ut = −F ∗xt , a description that is embedded in

(6.6.4), and therefore does not carry along x̂t as a separate component of the

state vector as he did in (6.5.12) for game STACK. Here the malevolent agent

knows that xt = x̂t when solving his optimization problem.

To show that the minimizing {wt+1(F
∗)} coincides with {w∗

t+1} from the

SEQ equilibrium, we form the discrete-time Hamiltonian system for choosing
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{wt+1} as a function of F ∗ , as required in the Stackelberg multiplier equilib-

rium. Recalling that HF = H − JF , from (6.5.3) the first-order conditions for

wt+1 collapse to:
−θwt+1 + C′µt+1 = 0

βAo
′µt+1 +HF

′HFxt − µt = 0.

check the above for HF versus H . Next impose that ut = −F ∗xt and

let H∗
F = H − JF ∗ and A∗

F = A − BF ∗ . Then from (6.5.4) BF ∗xt =

−B(J ′J)−1J ′H∗xt − βB(J ′J)−1B′µt+1. The state equation becomes xt+1 =

A∗
Fxt + θ−1(C′C)µt+1 . Note also from (6.5.4) that

−F ∗′J ′Jut = F ∗′J ′HFxt + βF ∗′B′µt+1.

The modified co-state equation becomes βA∗′
Fµt+1 +H∗′

F H
∗
Fxt −µt = 0, so that

(

I − 1
θCC

′

0 βA∗′
F

)(

I

P

)

xt+1 =

(

A∗
F 0

−H∗
F ′H∗

F I

)(

I

P

)

xt. (6.6.5)

It follows that P satisfies Riccati equation

βA∗′
FP

(

I − 1

θ
CC′P

)−1

A∗
F − P +H∗′

F H
∗
F = 0 (6.6.6)

and therefore also satisfies10

P = H∗′
F H

∗
F + βA∗′

FPA
∗
F + βA∗′

FPC (θI − C′PC)
−1
C′PA∗

F .

This value of P gives the unique solution in (6.6.5) that implies that the state

vector sequence is
√
β stable. From the proof of Theorem 6.5.1 it follows that

K = K∗ and the positive definiteness of θI −G′G follows from the restriction

that θI−C′PC is positive definite. From this result, we can compute C(F ∗, x0)

by simply evaluating the objective in game SEQ.

Now evaluate C(F, x0) for some other choice of F in F . We can bound

this criterion as follows. First, recursively generate the game 1 SEQ equilibrium

{w∗
t+1} sequence as

x̂t+1 = A∗x̂t

w∗
t+1 = K∗x̂t

10 This is verified in the proof of Theorem 7.5.4.
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where x̂0 = x0 . Then form the state equation

xt+1 = (A−BF )xt + CK∗x̂t

zt = (H − JF )xt.

Do we want K or K∗ in the first equation? Using these recursions to

evaluate (6.5.1), we obtain an upper bound Ĉ(F, x0) on C(F, x0).

A convenient feature of this upper bound is that we can dominate Ĉ(F, x0)

by solving the following augmented regulator problem: maximize (6.5.1) by

choice of a stabilizing control sequence {ut} for the state evolution

xt+1 = Axt +But + CK∗x̂t

x̂t+1 = A∗x̂t

with w∗
t+1 = K∗x̂t . But this is just the problem of the player who sets ut in

game SEQ. As in chapter 3, we solve this problem by stacking a state-costate

system with the composite state (xt, x̂t) and the costate corresponding to xt .

The costate for x̂t can be omitted because x̂t is an uncontrollable state vector.

Thus we form a system

La





xt+1

µt+1

x̂t+1



 = Na





xt

µt

x̂t





where:

La =





I βB (J ′J)−1B′ 0

0 β
[

A′ −H ′J (J ′J)
−1
B′
]

0

0 0 I





Na =





A−B (J ′J)
−1
J ′H 0 CK∗

−
[

H ′H −H ′J (J ′J)
−1
JH
]

I 0

0 0 A∗



 .

To solve the problem we now look for the
√
β deflating subspace of (La, Na)

parameterized as





x

P2x+ P̂ x̂

x̂



 =





I

P2

0



 (x− x̂) +





I
(

P2 + P̂
)

I



 x̂.
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We can simplify the problem to that of locating two
√
β deflating subspaces of

reduced dimension. The first deflating subspace is for the pair (L2, N2) with

L2 =

(

I βB (J ′J)
−1
B′

0 β
[

A′ −H ′J (J ′J)−1B′
]

)

N2 =

(

A−B (J ′J)
−1
J ′H 0

−
[

H ′H −H ′J (J ′J)
−1
JH
]

I

)

.

This is the subspace associated with the component of xt − x̂t that must be

set to zero to solve the control problem. Notice that (L2, N2) defines the state-

costate system for the ordinary (non-robust) control problem. Thus we can

restrict xt − x̂t to reside in the
√
β stable deflating subspace of (L2, N2) using

the matrix P for the ordinary control problem.

To study the second subspace, we seek a solution to:

La





I
(

P2 + P̂
)

I



 x̂t+1 = Na





I
(

P2 + P̂
)

I



 x̂t.

It is more convenient to pose this problem as being (a) to find a matrix P̂ such

that we can represent the
√
β deflating subspace of (L̂, N̂) as parameterized

by:




I
(

P2 + P̂
)

I



 x̂

where

L̂ =

(

I βB (J ′J)
−1
B′

0 β
[

A′ −H ′J (J ′J)
−1
B′
]

)

N̂ =

(

A−B (J ′J)
−1
J ′H + CK∗ 0

−
[

H ′H −H ′J (J ′J)−1 JH
]

I

)

,

and (b) to show that the implied law of motion for x̂t+1 agrees with

x̂t+1 = A∗x̂t. (6.6.7)

In constructing the deflating subspace in part (a), we will show that

P2 + P̂ = P.
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This can be done by imitating the argument that {wt+1(F
∗)} = {w∗

t+1} but

reversing the roles of {wt+1} and {ut} . So we impose wt+1 = K∗xt . It follows

that P can indeed be used to represent the
√
β deflating subspace and that the

implied evolution for {x̂t+1} is given by (6.6.7) as required by part (b).

Thus we have shown that the
√
β deflating subspace can indeed be uncou-

pled. By initializing x̂0 = x0 , it follows that x̂t = xt . Moreover, the optimized

objective coincides with C(F ∗, x0). Thus

C (F, x0) ≤ Ĉ (F, x0) ≤ C (F ∗, x0) .

Theorem 6.6.1 imposes different assumptions from those in Theorem 6.5.1 in

order to reflect the change in the minimizing player’s view about the maximizing

player when we move from game 1 (SEQ) to the Stackelberg game 2 (STACK).

Nevertheless, formulas (6.5.9) for the equilibrium objects (K∗, F ∗) of game

SEQ describe the equilibrium of the Stackelberg multiplier game, and the same

notion of stability prevails.

6.7. Game 3: Markov perfect multiplier game

Relative to game 1, game 2 increased the minimizing player’s power over the

maximizing player by confronting the minimizing player with the law of motion

xt+1 = (A− BF ∗)xt + Cwt+1

ut = −F ∗xt.
(6.7.1)

This tells the minimizing player that he can influence future us ’s by choice of

ws+1 . Meanwhile in game 2, the maximizing player still faces a sequence w that

is exogenous to its choices.

Game 3 continues to confront the minimizing player with (6.7.1) as in game

2, but enhances the power of the maximizing player by confronting him with

xt+1 = (A+ CK∗)xt +But

wt+1 = K∗xt.
(6.7.2)

This lets the maximizing player influence future ws ’s. This timing protocol

leads to what we refer to as a Markov perfect multiplier game (MARKOV).11

11 As we shall see, this game connects directly to the discounted risk-sensitivity criterion

of Hansen and Sargent (1995) that is described in chapter 7 on page 195.
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Although we have augmented the maximizing player’s power, the equilibrium

outcome of our game 3 matches that of the Stackelberg multiplier game 2.

Definition 6.7.1. An equilibrium of the Markov perfect multiplier game

(MARKOV) is a pair of strategies ut = −F ∗xt , wt+1 = K∗xt such that

(a) Given K∗ , ut = −F ∗xt maximizes (6.5.1), subject to

xt+1 = Axt +But + Cwt+1. (6.7.3)

(b) Given F ∗ , wt+1 = −K∗xt minimizes (6.5.1) subject to (6.7.3).

Associated with a Markov perfect multiplier game is the following pair of Bell-

man equations

−x′P ∗x = max
u

[

− (Hx+ Ju)′ (Hx+ Ju) + βθw∗′w∗ − βy′P ∗y
]

(6.7.4a)

y = (A+ CK∗)x+Bu (6.7.4b)

w∗ = K∗x (6.7.4c)

−x′P ∗x = min
w

[

− (Hx+ Ju∗)′ (Hx+ Ju∗) + βθw′w − βy′P ∗y
]

(6.7.5a)

y = (A−BF ∗) x+ Cw (6.7.5b)

u∗ = −F ∗x, (6.7.5c)

The (P ∗,K∗, F ∗) that form an equilibrium of the MARKOV game also solve

the following closely related zero-sum game:

−x′P ∗x = max
u

min
w

[

− (Hx+ Ju)′ (Hx+ Ju) + βθw′w − βy′P ∗y
]

(6.7.6)

where the maximization is subject to

y = Ax+Bu+ Cw.

Equilibrium strategies are

u = −F ∗x,

and

w = K∗x.
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Though it yields the same equilibrium strategies and outcome path xt+1 =

(A − BF ∗ + CK∗)xt , notice that game (6.7.6) has a slightly different timing

protocol from game (6.7.4)–(6.7.5). In (6.7.6), within each period, the w -player

moves after the u -player, while (6.7.4)-(6.7.5) incorporates simultaneous moves

within periods.

The (P ∗,K∗, F ∗) associated with the equilibrium of the Stackelberg mul-

tiplier game solves (6.7.4) and (6.7.5), and thereby determines an equilibrium

of the MARKOV game. We summarize the connections between an equilibrium

of game MARKOV and an equilibrium of game STACK in

Theorem 6.7.1. The (P ∗,K∗, F ∗) associated with the equilibrium of the

Stackelberg multiplier game also describe the equilibrium of the Markov perfect

multiplier game (MARKOV).

Proof. The required marginal conditions match.

The functional equation (6.7.6) leads directly to computing the equilibrium

by iterating to convergence on Hansen and Sargent’s (1995) composite operator

T ◦D . The T operator represents the maximization over u and the D operator

the minimization over w in (6.7.6).

6.8. Relation between multiplier and constraint problems

Our three multiplier games have identical outcomes and equilibrium represen-

tations. The following two propositions link the multiplier game to a constraint

formulation.

Theorem 6.8.1. Suppose that there exists a solution u∗, w∗ to the robust

multiplier problem in Definition 6.2.2. Then u∗ also solves the constraint robust

control problem with η = η∗ = R(w∗) , where R(w) is defined by (6.2.4).

Theorem 6.8.2. Suppose that u∗, w∗ solve the constraint robust control

problem in Definition 6.2.1 for η = η∗ . Then there exists a θ∗ such that the

robust multiplier and constraint problems have the same solution.

The propositions follow from the Lagrange multiplier theorem (Luenberger

(1969), pp. 216-221). Chapter 7 develops this connection in more detail in
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the context of a frequency domain specification of Stackelberg multiplier and

constraint games.12

Theorem 6.8.1 shows how to construct the specification error η associated

with a given multiplier θ . In the next section, we use this finding to describe a

sense in which the constraint problem is recursive.

6.9. Recursivity of the constraint game

The Bellman equation (6.7.6) indicates directly that the solution of the mul-

tiplier problem is time consistent. It requires more of an argument to verify a

sense in which the solution of the constraint problem is time consistent because

we must identify an additional state variable and describe its law of motion.

This section describes a recursive formulation of the constraint problem stated

in Definition 6.2.1.13 We define a time t version of continuation entropy (6.2.4)

as an additional state variable:

Rt (w) =

∞
∑

τ=1

βτw′
t+τwt+τ .

Evidently, Rt(w) satisfies the recursion

Rt (w) = βw′
t+1wt+1 + βRt+1 (w) .

Let V (x, η) be the value function for the constraint problem (6.2.5) starting

from initial state x = x0 and initial value of entropy η . For the constraint

problem, the counterpart to Bellman equation (6.7.6) is14

V (x, η) = sup
u

inf
w,η̌

[−z′z + βV (x̌, η̌)] (6.9.2)

12 Also see Hansen, Sargent, Turmuhambetova, and Williams (2001).
13 See Hansen, Sargent, Turmuhambetova, and Williams (2001) for an extended discussion

of the subject of this section.
14 If a random vector ǫ is present in the transition law, the Bellman equation becomes

V (x, η) = sup
u

inf
w,η̌(ǫ)

[

−z′z + βEV (x̌, η̌)
]

(6.9.1)

where the extremization is subject to

x̌ = Ax + Bu + C (ǫ + w)

η = βw′w + βη̌ (ǫ) ,
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where (̌·) denotes next period’s value and the extremization is subject to

z = Hx+ Ju

x̌ = Ax+Bu+ Cw

η = βw′w + βη̌.

(6.9.3)

The last equation of (6.9.3) is a ‘promise keeping’ constraint on the allocation

of entropy η between today’s model distortion w′w and the distortion from

tomorrow on η̌ . The minimizing agent can allocate η over time, but must

respect constraint (6.9.3).

The first order necessary condition with respect to η̌ and the envelope

condition for η imply that

Vη (x, η) = Vη (x̌, η̌) . (6.9.4)

Further, Vη(x, η) equals minus θ , interpreted as the Lagrange multiplier on the

last constraint in (6.9.3). Equation (6.9.4) implies that there is a time-invariant

relationship between x and η , which in turn implies that the extremizing choices

(u,w) for the right side of (6.9.3) can be expressed as functions of x alone.

These equal the functions u = −F ∗x and w = K∗x that we computed for the

multiplier games for θ being set equal to Vη(x, η).

6.10. Summary and concluding remarks

A robust decision maker fears that his approximating model is misspecified and

assumes that misspecification takes the form of nonzero shocks {wt+1} . To

attain a robust decision rule, the decision maker modifies the usual Bellman

equation by adding another player (‘nature’) who, by choosing a nearby model

to hurt the decision maker, assists the decision maker to find a robust decision

rule. Thus, the decision maker devises a robust decision rule by finding a value

function v(x) that solves:

v (x) = max
u

min
w

{

− (Hx+ Ju)
′
(Hx+ Ju) + βθw′w + βv (y)

}

(6.10.1)

where E is the mathematical expectation with respect to the distribution of ǫ and continua-

tion entropy η̌(ǫ) is now a function of ǫ .
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where

y = Aox+Bu+ Cw (6.10.2)

and θ satisfies 0 < θ < θ < ∞ , where a formula for the ‘breakdown point’

θ is reported on page 184. When θ = ∞ , the decision maker has no concern

about model misspecification and we are back with the ordinary control problem.

When θ < +∞ , the decision maker wants a robust rule. The optimum value

function is v(x) = −x′P ∗x and is attained by a pair of decision rules u =

−F ∗x,wt+1 = K∗x , where P ∗ solves an adjusted Riccati equation P ∗ = T ◦
D(P ∗) and F ∗ and K∗ depend on P ∗ .

The robust rule F ∗ is as easy to compute as a rule without robustness

because the Bellman equation (6.10.1) is so simple.

The Bellman equation (6.10.1) embeds the timing protocol of the Markov

perfect game, one of three two-player zero-sum games with identical payoffs but

differing timing protocols. A remarkable outcome is that all three games have

identical equilibrium outcomes and identical recursive equilibrium representa-

tions ut = −F ∗xt , wt+1 = K∗xt , and xt+1 = (A − BF ∗ + CK∗)xt . The

zero-sum feature of the games is the essential element in giving all three games

the same equilibrium outcomes and representations. The different games justify

alternative algorithms for computing F ∗ and K∗ .

Subsequent chapters make ample use of the identity of outcomes from the

three multiplier games with different timing protocols. For example, chapter

7 will focus exclusively on a Stackelberg multiplier game in order to deduce

some frequency domain characterizations of robust decision rules. That those

frequency domain characterizations apply to our other timing protocols rests on

the results of this chapter. By appealing to a version of the Stackelberg problem,

chapter 9 characterizes the distortion in the endowment process that allows a

permanent income consumer to attain a robust decision rule by engaging in a

form of precautionary saving. As another example, chapter 16 will formulate a

Ramsey problem by using the freedom that the results in this chapter give us to

use stacked system of Euler equations formed from the first-order conditions of

game 1 (SEQ) to characterize the best response of the robust decision makers

who compose the competitive private sector. The validity of that approach

depends on the identity of outcomes across our three timing protocols.

Chapter 7 analyzes a multiplier game in the frequency domain under a

Stackelberg timing protocol. Working in the frequency domain is equivalent



Certainty equivalence 167

with working in a space of sequences, so in chapter 7 we are compelled to adopt

the Stackelberg formulation.

A. Certainty equivalence

A certainty equivalence result that we shall use extensively, especially in chapter 9,
has a very similar structure to Theorem 6.5.2. A wide class of decision problems in
macroeconomics automatically take the form of a discounted augmented linear regu-
lator where the objective function is

−
[

x1t

x2t

]′ [
P11 P12

P21 P22

][

x1t

x2t

]

−ρ = E

∞
∑

t=0

βt

{

−
[

x1t

x2t

]′ [
R11 R12

R21 R22

] [

x1t

x2t

]

− utQut

}

(6.A.1)
and the transition law is

[

x1t+1

x2t+1

]

=

[

A11 A12

0 A22

][

x1t

x2t

]

+

[

0
C2

]

ǫt+1 (6.A.2)

where ǫt+1 is an i.i.d. random vector with mean zero and identity covariance matrix.
The optimal (non robust) decision rule is

ut = −F1x1t − F2x2t (6.A.3)

where F1 can and F2 can be computed recursively as in the augmented linear regulator
in chapter 3; F1 is the feedback part and F2 is the feedforward part.

For a given θ ∈ (θ,∞) , we can solve a robust linear regulator and obtain another
decision rule

ut = −F̃1x1t − F̃2x2t (6.A.4)

of the form (6.A.3) where now F̃1 and F̃2 depend on θ and C2 . Let wt+1 =

[ K̃1 K̃2 ]

[

x1t

x2t

]

be the associated worst case shock. We can apply the method used

in Theorem 6.5.2 to construct a law of motion that is distorted relative to the approx-
imating model (6.A.2) and for which an ordinary (non robust) decision rule matches
the robust rule (6.A.4) for a given θ . Form the law of motion for the synthetic variable

[

x̂1t+1

x̂2t+1

]

=

[

A11 −B1F1 A12 −B1F2

C2K1 A22 + C2K2

][

x̂1t

x̂2t

]

(6.A.5)

Now alter the law of motion for x1 in problem (6.A.1)-(6.A.2) to be

x1t+1 = A11x1t + A12x̂2t +B1ut (6.A.6)
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and use x̂2t to replace x2t in the objective (6.A.1). Solve the ordinary control problem
with (6.A.5), (6.A.6) replacing (6.A.2). This again is a discounted augmented linear
regulator problem. The decision rule is

ut = −F1x1t − F̂21x̂1t − F̂22x̂2t. (6.A.7)

Equating x̂t to x̂t , we obtain

ut = −
(

F1 + F̂21

)

x1t − F̂22x2t. (6.A.8)

Then
F̃1 = F1 + F̂21, F̃2 = F̂22. (6.A.9)

Notice the presence of role of the feedback component F1 from the ordinary control
problem. Robustness appears because of the distortion of the law of motion for the
x2t component, which enters through the F̂2i, i = 1, 2 terms.

B. Useful formulas

This appendix uses game (6.10.1) to provide two sets of convenient formulas for com-
puting the robust decision rule. For the purpose of displaying these formulas, notice
that the one-period loss function in (6.10.1) can be represented as

r (x, u) ≡ (Hx+ Ju)′ (Hx+ Ju)

=

[

x
u

]′ [
H ′H H ′J
J ′H J ′J

][

x
u

]

≡
[

x
u

]′ [
Q W
W ′ R

] [

x
u

]

,

where Q = H ′h,W = H ′J,R = J ′J . As in chapter 3, we transform the problem to
one that eliminates cross-products between states and controls. Define

Q = Q−WR−1W ′

Ã = A−BR−1W ′

ũt = ut +R−1W ′xt.

(6.B.1)

Then
xt+1 = Ãxt +Bũt + Cwt+1 (6.B.2)

and

r̃ (x, ũ) = r (x, u) =

[

x
ũ

]′ [
Q 0
0 R

] [

x
ũ

]

. (6.B.3)
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The Bellman equation (6.10.1) is equivalent with

−x′Px = max
ũ

min
w

{

−r̃ (x, ũ) + βθw′w − βy′Py
}

(6.B.4)

where
y = Ãx+Bũ+ Cw. (6.B.5)

In the problem on the right of (6.B.4), the minimizing agent moves second, taking
as given the feedback rule ũ = −Fx chosen by the maximizing agent. By working
backwards, we break the problem on the right of (6.B.4) into these two parts:

1. The problem for the minimizing agent reduces to

J = min
w

[

θw′w − y′Py
]

(6.B.6)

subject to
y = Ǎx+Cw (6.B.7)

where Ǎ = Ã − BF and F is to be chosen in the problem in part 2. The
minimizing w is

w = θ−1
(

I − θ−1C′PC
)−1

C′PǍx. (6.B.8)

Let
D (P ) = P + PC

(

θI −C′PC
)−1

C′P. (6.B.9)

The minimized value of the problem can be expressed as

J = −x′Ǎ′D (P ) Ǎx

or as
J = −y′D (P ) y (6.B.10)

where in (6.B.10), y is to be evaluated under the approximating model y = Ax ,
not under the distorted model (6.B.7). Under the approximating model, (6.B.10)
is a conservative continuation value for the problem of the maximizing agent.15

2. Part 2 of the problem hands this conservative valuation function and the approx-
imating model to the maximizing agent. Working backwards, the problem of the
maximizing agent can be expressed as

max
ũ

[

−x′Qx− ũ′Rũ− βy′D (P ) y
]

(6.B.11)

subject to
y = Ãx+Bũ. (6.B.12)

15 In chapter 7, the operator D is used again to characterize risk-sensitive preferences. See

page 195.
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Notice that (6.B.12) is the approximating model and that allowance for distor-
tions occurs only through the presence of D(P ) on the right side of (6.B.11).
The solution to this problem is found by taking one step on the usual Riccati
equation, with D(P ) as the terminal value function. Thus, define the operators

F (Ω) = β
[

R+ βB′ΩB
]−1

B′ΩÃ (6.B.13)

T (P ) = Q+ βÃ′
(

P − βPB
(

R+ βB′PB
)−1

B′P
)

Ã. (6.B.14)

Substituting in the definitions of Q and R , T can also be expressed as

T (P ) = H ′H −H ′J
(

J ′J
)−1

J ′H + β
(

A−B
(

J ′J
)−1

J ′H
)′

×
(

P − βPB
(

J ′J + βB′PB
)−1

B′P
)(

A−B
(

J ′J
)−1

J ′H
)

.

(6.B.15)
Then the solution of problem (6.B.11) is ũ = −Fx where F = F ◦ D(P ) . The
maximizing value of (6.B.11) is −x′T ◦D(P )x. Notice that ut = ũt−R−1Wxt =
−(F + (J ′J)−1J ′H)xt .

We can iterate on these two sub problems to find the solution to (6.B.4).16 Let
P be the fixed point of iterations on T ◦ D :

P = T ◦ D (P) . (6.B.16)

Then the solution of (6.B.4), (6.B.5) is

ũ = −Fx (6.B.17)

w = Kx, (6.B.18)

where

F = F ◦ D (P ) (6.B.19)

K = θ−1 (I − θ−1C′PC
)−1

C′P
[

Ã−BF
]

. (6.B.20)

Here T is the usual operator associated with taking one-step on the Bellman equation
without a preference for robustness; it represents optimization with respect to u . The
operator D reflects minimization with respect to w . When θ = +∞ , D(P ) = P ,
and we get the usual optimal rule for a linear-quadratic dynamic program. When
θ ≤ θ < ∞ , we get a robust decision rule, where θ is a lower bound on admissible
parameters θ . We shall give a formula for θ in formula (7.3.13) on page 184.

16 In chapter 7 we show how the two operators are related to the discounted risk-sensitivity

criterion of Hansen and Sargent (1995).
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6.B.1. A single Riccati equation

A robust decision rule can also be computed simply by solving an optimal linear
regulator problem.17 This can be established in the following way.

By writing iterations Pk+1 = T ◦ D(Pk) and rearranging, the matrix P in the
value function −x′Px can be expressed as the fixed point of iterations on the Riccati
equation18

Pk+1 = Ã′ ((βPk)−1 +BR−1B′ − θ−1β−1CC′) Ã+Q. (6.B.21)

This equation can also be represented as

Pk+1 = Q+ Ã∗′ (P−1
k + J̃

)−1
Ã∗, (6.B.22)

where J̃ = B∗R−1B∗′ − θ−1CC′, B∗ = β.5B, Ã∗ = β.5Ã . Equation (6.B.22) is in a
form to which the doubling algorithm described in chapter 3 applies.19 Notice that
(6.B.21) is the Riccati equation associated with an ordinary optimal linear regulator

problem with controls

[

u
w

]

and penalty matrix on those controls appearing in the

criterion function of

[

R 0
0 −βθI

]

. Therefore, the robust rules for ut and the asso-

ciated worst case shock can be computed directly from the associated ordinary linear
regulator problem. It can be checked that the right side of (6.B.21) implements one
step on T ◦D . The Riccati equation (6.B.21) is the one associated with the modified
linear regulator used in chapter 2 on page 37 to compute a robust rule and the worst
case shock.

6.B.2. Robustness bound

The inner problem (6.B.6) inspires a robustness bound for continuation values. Thus,
(6.B.6) implies

−x′A′D (P )Ax = min
w

[

θw′w − y′Py
]

≤ θw′w − y′Py (6.B.23)

where y is evaluated under the distorted model y = Ax+ Cw . Inequalities (6.B.23)
imply

−y′Py ≥ −x′A′D (P )Ax− θw′w. (6.B.24)

The left side is evaluated under a distorted model y = Ax+ Cw while the quadratic
form in x on the right is a conservative estimate of the continuation value of the state

17 See chapter 2, page 37.
18 See Hansen and Sargent (2004, Recursive models).
19 The Matlab program doublex9.m computes the solution using the doubling algorithm.
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y under the approximating model y = Ax .20 Inequality (6.B.24) says that the con-
tinuation value is at least as great as a conservative estimate of the continuation value
under the approximating (w = 0) model, minus θ times the measure of model mis-
specification w′w . The parameter θ influences the conservative-adjustment operator
D and also determines the rate at which the bound deteriorates with misspecification.
Lowering θ lowers the rate at which the bound deteriorates with misspecification.
Thus, (6.B.24) provides a sense in which lower values of θ provide more conservative
and also more robust estimates of continuation utility.

6.B.3. Special case: a pure forecasting problem

Here is an example of a pure forecasting problem in which the absence of a control
eliminates the maximization part of (6.B.4). The following state space system governs
consumption and bliss consumption:

xt+1 = Axt + Cwt+1

ct = Hcxt

bt = Hbxt

(6.B.25)

where ct is an exogenous scalar consumption process, bt is a bliss level of consumption,
and wt+1 is a specification error sequence. To attain a conservative way of evaluating
−
∑∞

t=0 β
t(ct − bt)

2 , we compute

−x′0Px0 = min
{wt+1}

−
∞
∑

t=0

βt [x′tH
′Hxt − βθw′

t+1wt+1

]

(6.B.26)

subject to (6.B.25), where H = Hc − Hb . For this special case, the absence of a
control causes the operator T defined in (6.B.14) to simplify to

T (P ) = H ′H + βA′PA. (6.B.27)

The matrix P in (6.B.26) is the fixed point of iterations on T ◦D . The minimizer of
(6.B.26) is given by (6.B.8), or w = Kx , where K is defined implicitly by (6.B.8).
It follows from our earlier characterizations of K and P = T ◦ D(P ) that

−x′0Px0 = −
∞
∑

t=0

βtx′tH
′Hxt

where the right side is computed using the distorted law of motion

xt+1 = (A+KC) xt.

20 That is, when w = 0, −y′D(P )y understates the continuation value.
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C. Details of a proof of Theorem 6.5.2

This appendix verifies a key assertion made in the proof of Theorem 6.5.2.21 To verify
that P̂ = P ∗ − P̄ , we make use of the following identities that characterize P̂ , P ∗,
and P̄ :

1. The matrix P̂ solves:

β
(

A′ −H ′J
(

J ′J
)−1

B′
)(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
)

Â

+ β
(

A′ −H ′J
(

J ′J
)−1

B′
)(

P̂ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̂
)

A∗ = P̂

where:

A∗ =
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

Â =
1

θ
CC′P ∗A∗

Therefore, the matrix P̂ solves:

β
(

A′ −H ′J
(

J ′J
)−1

B′
)[

P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗

+ P̂ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̂
]

A∗ = P̂

which yields:

β
(

A′ −H ′J
(

J ′J
)−1

B′
)

[

P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗ + P̂ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̂
]

×
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

= P̂

(6.C.1)

2. The matrix P ∗ solves:

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

P ∗
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

+H ′H −H ′J
(

J ′J
)−1

J ′H = P ∗

(6.C.2)
where:

(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1

=
[

I − β ([B C ])

([

JJ ′ + βB′P ∗B βB′P ∗C
βC′P ∗B −βθI + βC′P ∗C

])−1([
B′

C′

])

P ∗
]

21 We are very grateful to Tomasz Piskorski for his help in verifying these equalities.
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3. The matrix P̄ solves:

β
(

A′ −H ′J
(

J ′J
)−1

B′
)(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
)

×
(

A−B
(

J ′J
)−1

J ′H
)

+H ′H −H ′J
(

J ′J
)−1

J ′H = P̄ .
(6.C.3)

We weave together these three facts to compose the following

Proof. Subtracting (6.C.3) from (6.C.2) yields:

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

(

P ∗
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1

−
(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
))[

A−B
(

J ′J
)−1

J ′H
]

= P ∗ − P̄

which is equivalent to:

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

×
(

P ∗ −
(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
)(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
))

×
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

= P ∗ − P̄

or

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

Y

×
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

= P ∗ − P̄

(6.C.4)

where:

Y = P ∗ −
(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
)(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)

.

Note that:

Y = P ∗ −
(

P̄ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
)(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)

=
(

P ∗ − P̄
)

− P̄βB
(

J ′J
)−1

B′P ∗ + P̄
1

θ
CC′P ∗ + βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄

+ βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ βB
(

J ′J
)−1

B′P ∗ − βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗

= P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗ +

(

P ∗ − P̄
)

+ βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ + βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ βB
(

J ′J
)−1

B′

− P̄βB
(

J ′J
)−1

B′P ∗
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So we have

Y = P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗ +

(

P ∗ − P̄
)

+ Z (6.C.5)

where:

Z = βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ + βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ βB
(

J ′J
)−1

B′

− P̄ βB
(

J ′J
)−1

B′P ∗

Now note

Z = βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ + βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ βB
(

J ′J
)−1

B′

− P̄ βB
(

J ′J
)−1

B′P ∗ = −βP̄B
(

J ′J + βB′P̄B
)−1

B′ (P ∗ − P̄
)

+ βP̄B
(

J ′J + βB′P̄B
)−1

B′P ∗ + βP̄B
(

J ′J + βB′P̄B
)−1

B′P̄ βB
(

J ′J
)−1

B′P ∗

− P̄ βB
(

J ′J
)−1

B′P ∗ = −βP̄B
(

J ′J + βB′P̄B
)−1

B′ (P ∗ − P̄
)

+
[

βP̄B
(

J ′J + βB′P̄B
)−1

(

I + βB′P̄B
(

J ′J
)−1
)

− βP̄B
(

J ′J
)−1
]

B′P ∗.

(6.C.6)
Using the fact that I + βB′P̄B(J ′J)−1 = (J ′J + βB′P̄B)(J ′J)−1 gives us that:

[

βP̄B
(

J ′J + βB′P̄B
)−1

(

I + βB′P̄B
(

J ′J
)−1
)

− βP̄B
(

J ′J
)−1
]

B′P ∗ =
[

βP̄B
(

J ′J + βB′P̄B
)−1 (

J ′J + βB′P̄B
) (

J ′J
)−1 − βP̄B

(

J ′J
)−1
]

B′P ∗ =
(

βP̄B
(

J ′J
)−1 − βP̄B

(

J ′J
)−1
)

P ∗ = 0.

(6.C.7)
Substituting (6.C.7) back to (6.C.6) yields:

Z = −βP̄B
(

J ′J + βB′P̄B
)−1

B′ (P ∗ − P̄
)

. (6.C.8)

Substituting (6.C.8) into (6.C.5) yields:

Y P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗ +

(

P ∗ − P̄
)

− βP̄B
(

J ′J + βB′P̄B
)−1

B′ (P ∗ − P̄
)

.

(6.C.9)

Finally substituting (6.C.9) into (6.C.4) yields:

β
[

A′ −H ′J
(

J ′J
)−1

B′
]

×
[

P̄
1

θ
CC′P ∗ − βP̄B

(

J ′J + βB′P̄B
)−1

B′P̄
1

θ
CC′P ∗ +

(

P ∗ − P̄
)

−βP̄B
(

J ′J + βB′P̄B
)−1

B′ (P ∗ − P̄
)

]

×
(

I +
[

βB
(

J ′J
)−1

B′ − 1

θ
CC′

]

P ∗
)−1 [

A−B
(

J ′J
)−1

J ′H
]

= P ∗ − P̄ .

(6.C.10)
But this is just Riccati equation (6.C.1) with P̂ = P ∗ − P̄ , therefore (P ∗ − P̄ ) solves
the Riccati equation for P̂ , so P̂ = P ∗ − P̄ .





Chapter 7
Frequency domain games and criteria for robust-
ness

7.1. Three frequency domain criteria indexed by (x0, η)

In the two-player zero-sum games of chapter 6, the minimizing player helps the

maximizing player analyze the fragility of his decision rule ut = −Fxt . In this

chapter, we take the fruitful point of view that an indirect utility function of the

minimizing player forms an intertemporal valuation function that when used by

the maximizing player produces a robust decision rule. We use frequency do-

main decompositions to express two such alterations of the maximizing player’s

objective function. Frequency domain decompositions of variances and other in-

ner products are widely used in the analysis of covariance-stationary time series.

Frequency domain decompositions of objective functions like those in this chap-

ter have been used creatively in dynamic macroeconomic models by Whiteman

(1985a, 198XXX) and Otrok (2001bXX).

In the interests of evaluating ‘steady state’ performance of a maximizing

player’s rule, we require the maximizing player to choose a time-invariant policy

rule ut = −Fxt . However, our frequency domain calculations allow the mini-

mizing player to choose a sequence of shocks w ∈ W , putting us into the setting

of our Stackelberg game of chapter 6.

By minimizing over W for alternative settings of the initial condition x0

and the magnitude of the constraint η measuring the size of the specification

error, we obtain three different frequency domain criteria that the maximizing

agent can use to evaluate alternative time-invariant F ’s. The first criterion

eschews robustness by setting η = 0, and leads to a discounted version of the

so-called H2 criterion, the maximization of which leads to an algebraic Riccati

equation associated with the steady state of a time-invariant, infinite horizon

optimal linear regulator problem. Other assumptions about x0 and η lead to

discounted versions of what are known as the H∞ criterion and an ‘entropy’

criterion. Each of these promotes robust decision rules. The entropy criterion

has the same multiplier parameter θ that played such a key role in chapter 6.

– 177 –
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Indeed, for the same fixed admissible θ , maximizing the entropy criterion leads

to the same decision rule F associated with the robust version of the linear

regulator that we obtained in chapter 6.

The frequency domain provides an interesting perspective on fear of model

misspecification. By analyzing the entropy criterion, we can show that activating

a concern about misspecification of the approximating model yields what looks

like ‘risk-aversion across frequencies’ that manifests a preference for smoothness

across frequencies. The H∞ criterion can be viewed as a limiting version of

the entropy criterion approached when the multiplier θ approaches the critical

‘breakdown’ value θ that we mentioned in chapter 6. The H∞ criterion is

expressed in terms of the largest eigenvalue across frequencies of that same

frequency-domain decomposition of discounted utility and embodies an extreme

preference for smoothness across frequencies.

Undiscounted versions of both the H∞ and the entropy criteria exist in

the control literature. Our analysis of discounting is an innovative part of this

chapter. Accommodating discounting requires that, relative to arguments in the

control literature, we must pay special attention to initial conditions.1

Key findings of this chapter are these: (1) the H2 criterion gives rise to

the optimal linear regulator without robustness; (2) for a given θ > θ , the

entropy criterion leads to an infinite-horizon time-invariant discounted robust

linear regulator with a value function matrix P associated with the limit of

iterations on the composite operator T ◦ D described in chapter 6; (3) the

break-down value θ equals the squared value of the H∞ criterion.

1 Our derivation of the entropy criterion will also provide a link to the discounted risk-

sensitivity criterion of Hansen and Sargent (1995).
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7.2. The Stackelberg game in the time domain

Throughout this chapter we adopt a timing protocol associated with the Stack-

elberg robust multiplier problem from chapter 6. After recalling this game in

the time domain, we shall describe a frequency domain version.

The game requires the maximizing player to choose a time-invariant decision

rule of the form ut = −Fxt . To attain representations that build in ut = −Fxt ,

we substitute this decision rule into (6.2.1) to get the closed-loop law of motion

for the state:

xt+1 = AFxt + Cwt+1, (7.2.1)

where

AF = A−BF. (7.2.2)

Under ut = −Fxt , the target becomes

zt = HFxt

where HF = H − JF . From chapter 6, recall the spaces

W = {w :

∞
∑

t=1

βtw′
twt < +∞}

F = {F : A−BF has eigenvalues with moduli strictly less than
1√
β
}.

Definition 7.2.1. The Stackelberg robust constraint problem is to find (F, {wt}∞t=1)

that attain

max
F∈F

inf
w∈W

−
∞
∑

t=0

βtz′tzt (7.2.3)

subject to (7.2.1) and

∞
∑

t=0

βtw′
twt ≤ η + w′

0w0 (7.2.4a)

x0 = Cw0. (7.2.4b)

We use maxF as a shorthand for maxF∈F , and so on. This game is indexed by

two parameters (w0, η).
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Three versions of the Stackelberg robust constraint problem correspond to

different settings of η, w0 :

1. The H2 problem: set η = 0, with arbitrary w0 .

2. The H∞ problem: set w0 = 0, but let η > 0 be arbitrary.

3. The entropy problem: set arbitrary w0 6= 0 and arbitrary η > 0.

The first version makes the inf part trivial, turns the game into a standard

single-person linear-quadratic optimum problem, and leads to the so-called H2

criterion in the frequency domain. The second and third versions induce robust

decision rules.

To justify an analysis in the frequency domain, (7.2.4b) restricts the initial

condition. The solution of the game under this restriction can be represented

recursively as a pair of feedback rules wt+1 = Kxt, ut = −Fxt .
2

7.3. Stackelberg game in frequency domain

7.3.1. Fourier transforms

To formulate the game in the frequency domain, define one-sided Fourier trans-

forms:

X (ζ) ≡
∞
∑

t=0

xtζ
t,

W (ζ) ≡
∞
∑

t=0

wtζ
t,

Z (ζ) ≡
∞
∑

t=0

ztζ
t,

(7.3.1)

where ζ is a complex variable. Then (7.2.1) and (7.3.1) imply that ζ−1[X(ζ)−
x0] = AFX(ζ) + ζ−1C [W (ζ) − w0] . Using (7.2.4b) and solving for X(ζ) gives

2 As can be verified by inspecting the formulas for K, F that we derive later, the solution

also solves the multiplier games from chapter 6. The time domain representation of the solution

of this multiplier game is therefore valid for an arbitrary initial x0 .
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X(ζ) = (I − ζAF )−1CW (ζ), and hence

Z (ζ) = GF (ζ)W (ζ) (7.3.2)

where

GF (ζ) ≡ HF (I − ζAF )
−1
C

is the transfer function from shocks to targets.

Applying Parseval’s equality to (7.3.2) gives the following representation:

∞
∑

t=0

βtzt
′zt =

∫

Γ

W (ζ)′GF (ζ)′GF (ζ)W (ζ) dλ (ζ) , (7.3.3)

where the operation ′ denotes both matrix transposition and complex conjuga-

tion, where the measure λ has a density given by

dλ (ζ) ≡ 1

2πi
√
βζ
dζ,

and where the region of integration is the following circle in the complex plane

Γ ≡ {ζ : |ζ| =
√

β}.

The region Γ can be parameterized conveniently in terms of ζ =
√
β exp(iω)

for ω in the interval (−π, π] . Here the measure λ satisfies

dλ (ζ) =
1

2π
dω.

Thus the contour integral on the right side of (7.3.3) can be expressed as:
∫

Γ

W (ζ)′GF (ζ)′GF (ζ)W (ζ) dλ (ζ)

=
1

2π

∫ π

−π

W
(

√

β exp (iω)
)′{

GF

[

√

β exp (iω)
]′
GF

[

√

β exp (iω)
]

}

W
(

√

β exp (iω)
)

dω.

(7.3.4)

We use the contour integral on the left of (7.3.4) to simplify notation.

Parseval’s equality also implies

∞
∑

t=0

βtw′
twt =

∫

Γ

W (ζ)′W (ζ) dλ (ζ) . (7.3.5)
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7.3.2. H2 criterion

When η = 0 in (7.2.4a), W (ζ) = w0 and

−
∞
∑

t=0

βtz′tzt = −w′
0

[∫

Γ

GF (ζ)
′
GF (ζ) d λ (ζ)

]

w0.

For an arbitrary w0 , the H2 problem is to maximize this expression by choosing

a feedback rule F . The H2 criterion can be expressed as

H2 ≡ −
∫

Γ

trace
[

GF (ζ)
′
GF (ζ)

]

dλ (ζ) . (7.3.6)

The same F that maximizes H2 also solves the standard optimal linear regulator

problem. Thus, the H2 criterion gives a frequency domain expression to the

preferences embodied in the optimal linear regulator. We turn next to frequency

domain criteria that express a concern about model misspecification.

7.3.3. The Stackelberg game in the frequency game

To represent the Stackelberg game in the frequency domain, we define the fol-

lowing two sets of admissible W (ζ)’s:

Wa ={W (ζ) : W (ζ) is analytic on the interior of Γ with coefficients

wt that are vectors of real numbers and W (0) = w0}

W ={W (ζ) ∈ Wa :

∞
∑

t=0

βtw′
twt <∞}

We use (7.3.3) and (7.3.5) to represent the time-domain Stackelberg robust

constraint problem of Definition 7.2.1 as:

Three frequency domain games: Find (F,W (ζ)) that attain

max
F

inf
W

−
∫

Γ

W (ζ)
′
GF (ζ)

′
GF (ζ)W (ζ) dλ (ζ) (7.3.7)

subject to
∫

Γ

W (ζ)
′
W (ζ) dλ (ζ) ≤ η + w′

0w0. (7.3.8)
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In the frequency domain, our three versions of the Stackelberg multiplier game

are:

1. H2 : set η = 0, with W (0) = w0 arbitrary.

2. H∞ : set arbitrary η > 0 but W (0) = w0 = 0.

3. Entropy: set W (0) = w0 6= 0 and arbitrary η > 0.

We have observed that version 1 leads to the H2 criterion (7.3.6) and how under

it the best feedback rule F is independent of the initial condition x0 = Cw0 .

Version 2 has the side condition that W (0) = 0, but otherwise leaves W (ζ)

free. Version 3 requires W (0) = w0 6= 0 and also restricts W (ζ) to keep the

associated {wt} sequence zero for t < 0.

7.3.4. Version 2: the H∞ Criterion

Let ρ(ζ) denote the eigenvalues of GF (ζ)′GF (ζ). The following theorem tells

how version 2 of the game leads to the H∞ criterion defined as:

H∞ ≡ − sup
ζ∈Γ

[ρ (ζ)]
1/2

. (7.3.9)

Theorem 7.3.1. For any F ∈ F ,

inf
W

−
∫

Γ

W (ζ)
′
GF (ζ)

′
GF (ζ)W (ζ) dλ (ζ) = −H2

∞η (7.3.10)

where the infimization is subject to (7.3.8).

Proof. Given GF (ζ), for each ζ =
√
β exp(iω) solve the following eigenvalue

problem3

GF (ζ)
′
GF (ζ) v = ρ (ζ) v

3 It may be useful to remind the reader of the principal components problem. Let a be

an (n × 1) random vector with covariance matrix V . The first principal component of a is

a scalar b = p′a where p is an (n × 1) vector with unit norm (i.e., p′p = 1), for which the

variance of b is maximal. Thus, the first principal component solves the problem:

max
p

p′V p

subject to

p′p = 1.
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for the largest eigenvalue ρ(ζ). This problem has a well defined solution with

eigenvalue ρ(ω) for each ζ =
√
β exp(iω). Then

∫

Γ

W (ζ)
′
GF (ζ)

′
GF (ζ)W (ζ) dλ (ζ) ≤

∫

Γ

ρ (ζ)W (ζ)
′
W (ζ) dλ (ζ)

≤ sup
ζ∈Γ

ρ (ζ)

∫

Γ

W (ζ)
′
W (ζ) dλ (ζ)

≤ sup
ζ∈Γ

ρ (ζ)η.

The bound on the right side is attained by the limit of a sequence of approxi-

mating {wt} sequences described in appendix A.

For technical reasons described in appendix A, the infimum in (7.3.10) is

not necessarily attained by an analytic function W ∈ W .

The square of the optimized H∞ criterion equals the lower bound on the

set of admissible θ ’s alluded to in condition (6.2.9) in chapter 6:

θ =
(

inf
F
H∞ (F )

)2

; (7.3.13)

θ is called the ‘breakdown’ value of θ .4

If version 2 has a maximizer F , that F maximizes (7.3.9). We can drop

η from the performance criterion (7.3.9) because it becomes a positive scale

factor that is independent of the control law F . This feature emerges from our

having imposed the initial condition w0 = 0.

Putting a Lagrange multiplier λ on the constraint, the first order conditions for this problem

are

(V − λI) p = 0, (7.3.11)

with the value of the variance of p′b evidently from (7.3.11) being

p′V p = λp′p = λ. (7.3.12)

Thus (7.3.11) and (7.3.12) indicate that p is the eigenvector of V associated with the largest

eigenvalue; and that the variance of b equals the largest eigenvalue λ .
4 Whittle (1990) calls θ the point of ‘utter psychotic despair’.
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7.4. A multiplier game for version 3

The H2 criterion emerged from ignoring concern about model misspecification

by setting η = 0. Under discounting, the H∞ control problem came from

allowing model misspecification while setting w0 to zero. We now consider an

intermediate case that allows misspecification but also constrains the malevolent

agent to respect the initial condition w0 . This intermediate case will lead to

the following ‘entropy criterion’ for the maximizing agent:
∫

Γ

log det (θI −G′
FGF ) dλ (ζ) .

We shall explain the appellation ‘entropy’ in section 7.7. To analyze this case,

we formulate the multiplier version of the Stackelberg game in the frequency

domain. We let θ be a Lagrange multiplier on the constraint and obtain:

Definition 7.4.1. Lagrangian formulation of Stackelberg constraint game:

Find (θ, F,W (ζ)) that attain

sup
θ

sup
F

inf
W

[∫

Γ

W ′ (θI −G′
FGF )Wdλ− θ (η + w′

0w0)

]

. (7.4.1)

Here η > 0 and w0 /= 0.5

In appendix C, we establish the following things about (7.4.1).

i. Let θ∗ be the optimal multiplier for (7.4.1). It satisfies:

θ∗ ≥ θ. (7.4.2)

If (7.4.2) does not hold, the inner infW∈W in (7.4.1) is −∞ independently

of the control law F .

ii. When the optimal multiplier θ∗ satisfies θ∗ > θ, we are led to study the

inner two-player zero-sum Stackelberg multiplier game:

sup
F

inf
W

∫

Γ

W ′ (θ∗I −G′
FGF )Wdλ (7.4.3)

This game connects to the single agent decision problem

sup
F

∫

Γ

log det
[

θ∗I −GF (ζ)
′
GF (ζ)

]

dλ (ζ) , (7.4.4)

5 We have already studied the η = 0 (H2 ) and w0 = 0 (H∞ ) cases.
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because the F ∗ that attains (7.4.4) is the F component of the solution of

the two-player multiplier game (7.4.3).

7.5. The multiplier problem and the entropy criterion

To study the infW part of game (7.4.3), we take θ∗ , F , and therefore GF as

given.6 We refer to the resulting optimization problem as the multiplier problem

and state it as:

The multiplier problem:

inf
W,W (0)=w0

∫

Γ

W (ζ)
′ [
θ∗I −GF (ζ)

′
GF (ζ)

]

W (ζ) dλ (ζ) . (7.5.1)

For this problem to have an optimized value that exceeds −∞ , we require that

θ∗I −G′
FGF be positive semidefinite. As a consequence,

θ∗ ≥ [H∞ (F )]2 ,

which is a sharper restriction than7

θ∗ ≥ θ =
[

inf
F
H∞ (F )

]2

.

In what follows we strengthen the restriction that θ∗I − G′
FGF be positive

semidefinite by requiring entropy to be finite:

∫

Γ

log det (θ∗I −G′
FGF ) dλ (ζ) > −∞. (7.5.2)

It is necessary to check this condition only at

θ∗ = [H∞ (F )]
2
,

because for larger values of θ∗ , (7.5.2) is satisfied automatically. We shall show

that for any value of θ∗ that exceeds the threshold θ = [H∞(F )]2 , the entropy

6 Recall that GF ≡ HF (I − ζ(A − BF ))−1C .
7 It is sharper because of the absence of an inf operator over F .
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measure on the left side of (7.5.2) is closely related to the minimized value of

the multiplier problem.

If condition (7.5.2) holds, we can associate choices of θ∗ with restrictions

on the specification errors. That is, consider the following constrained worst

case minimization problem:

Constrained worst case problem:

min
W

−
∫

Γ

W ′G′
FGFWdλ

subject to
∫

Γ

W ′Wdλ ≤ w′
0w0 + η.

Theorem 7.5.1. For any θ∗ > [H∞(F )]2 , there exists an η such that

the multiplier problem and the constrained worst case problem have the same

solution.

Proof. See Appendix C.

If the infimum of the multiplier problem is attained for θ∗ = [H∞(F )]2 ,

then there is a finite η such that the two problems continue to have the same

solution. If the infimum is not attained, then any finite η is associated with

a multiplier θ∗ that exceeds [H∞(F )]2 . Thus we can think of the θ∗ ’s in the

multiplier problem as measuring the size of allowable specification errors.

7.5.1. A robustness bound

For a given decision rule F , the multiplier problem yields an inequality that

bounds the rate at which the criterion function deteriorates as specification

errors increase. Let J denote the minimized value of the objective (7.5.1) for

the multiplier problem. Then

−
∫

Γ

W ′G′
FGFWdλ ≥ J − θ∗

∫

Γ

W ′Wdλ. (7.5.3)

Inequality (7.5.3) shows that in the absence of specification errors, J under-

states the performance of the policy. It also shows how θ∗ sets the rate at which
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the objective function −
∫

ΓW
′G′

FGFWdλ deteriorates with model misspecifi-

cation as measured by
∫

W ′Wdλ . Note how lowering θ∗ gives more robustness

in the sense of less sensitivity of the objective function to misspecifications W .

In the remainder of this section, we study the existence of a solution to the

multiplier problem and its relation to the entropy criterion. We return to the

Stackelberg multiplier game in the following section.

7.5.2. Entropy is the indirect utility function of the multiplier
problem

For establishing our next result, it is convenient to rewrite the multiplier problem

as

inf
W (ζ)∈W

∫

Γ

W (ζ)
′ [
θ∗I −GF (ζ)

′
GF (ζ)

]

W (ζ) dλ (ζ) (7.5.4)

subject to
∫

Γ

W (ζ) dλ (ζ) = w0 6= 0, (7.5.5)

and ∫

Γ

W (ζ) ζjdλ (ζ) = 0, (7.5.6)

for j = 1, 2, . . .. Constraint (7.5.5) can be restated as W (0) = w0 . Constraint

(7.5.6) states that wj = 0 for j < 0. From the definition of W , the infimum

in (7.5.4) is over W (ζ) that have coefficients such that
∑∞

t=−∞ βtw′
twt <∞ .

Theorem 7.5.2. Assume that F and θ∗ are such that
∫

Γ logdet(θ∗I −
G′

FGF )dλ > −∞ . Then multiplier problem (7.5.1) has an optimized value

function w′
0D(0)′D(0)w0 , where D(0) is nonsingular and independent of w0 .

The minimized value is attained if θ∗I −G′
FGF is nonsingular on Γ .

Proof. The solution to the multiplier problem can be found using techniques

from linear prediction theory.8 We must factor a spectral-density-like matrix:

[

θ∗I −GF (ζ)
′
GF (ζ)

]

= D (ζ)
′
D (ζ) (7.5.7)

where D is rational in ζ , has no poles inside or on the circle Γ, is invertible

inside Γ, and the matrix coefficients of its power series expansion inside Γ can

8 Appendix B displays a linear prediction problem that leads to the spectral factorization

problem here.
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be chosen to be real. The matrix analytic function D is unique only up to

premultiplication by an orthogonal matrix but can be chosen to be independent

of w0 . The existence of this factorization follows from results about the linear

extrapolation of covariance stationary stochastic processes. In particular, it is

known from Theorems 4.2, 6.2 and 6.3 of Rozanov (1967) that the infimum of

the objective is given by:

w′
0D (0)

′
D (0)w0. (7.5.8)

When θ∗I − G′
FGF is nonsingular on Γ, the infimum is attained. To verify

this, write the first-order conditions for maximizing (7.5.4) subject to (7.5.5)

and (7.5.6) as
[

θ∗I −GF (ζ)
′
GF (ζ)

]

W (ζ) = L (ζ)
′
, (7.5.9)

where L is the Lagrange multiplier on (7.5.5) and (7.5.6). Then the matrix D

in the factorization (7.5.7) is nonsingular with an inverse that is rational and

well defined on and inside the circle Γ. Substituting the factorization (7.5.7)

into (7.5.9) gives

D (ζ)
′
D (ζ)W (ζ) = L (ζ)

′
, (7.5.10)

where D(ζ),W (ζ), being analytic inside Γ, have expansions in nonnegative

powers of ζ , and D(ζ)′ and L(ζ)′ have expansions in nonpositive powers of

ζ in the interior of Γ. If D(ζ)′ is invertible, then following Whittle (1983, p.

100), W (ζ) satisfies

D (ζ)W (ζ) =
[

D (ζ)
′−1 L (ζ)

′
]

+
,

where [·]+ is the annihilation operator that sets negative powers of ζ to zero.

Because D(ζ)′−1 and L(ζ)′ are both one-sided in nonpositive powers of ζ ,

[D(ζ)′−1L(ζ)′]+ = D(0)′−1L(0)′ . Therefore, the solution is

D (ζ)W (ζ) = D (0)
′−1 L (0)

′
. (7.5.11)

Then from (7.5.10), L(0)′ = D(0)′D(0)W (0). Substituting into (7.5.11) gives

D (ζ)W (ζ) = D (0)w0. (7.5.12)

In addition, the infimum is attained by9

W ∗ (ζ) = D (ζ)
−1
D (0)w0. (7.5.13)

9 The factorization is also the key for calculating the projection of yt on the semi-infinite

history xs, s ≤ t where {yt, xt} is a covariance stationary process (see Whittle (1983, pp.

99-100)). Condition (7.5.10) corresponds to the solution of Whittle’s projection problem

where D(ζ)′D(ζ) is interpreted as the spectral density of x and L(ζ) is interpreted as the

cross-spectral density between y and x .
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Substituting into (7.5.4) confirms that the minimized solution is (7.5.8).

As is evident from the proof, the infimum in (7.5.4) may not be attained

when θ∗I − G′
FGF is singular somewhere on Γ. But this problem can be

remedied by enlarging the space from W to Wa .

Corollary 7.5.1. Assume that F is such that
∫

Γ logdet(θI − G′
FGF )dλ >

−∞ . Then the problem

min
Wa

∫

Γ

W (ζ)
′ [
θ∗I −GF (ζ)

′
GF (ζ)

]

W (ζ) dλ (ζ)

has a solution and the minimized value is w′
0D(0)′D(0)w0 .

Proof. Solution (7.5.13) is in Wa even when θ∗I−G′
FGF is singular somewhere

on Γ.

Corollary 7.5.1 shows that a solution exists for the multiplier problem,

provided that the entropy restriction (7.5.2) is satisfied. But unless the matrix

(θ∗I −G′
FGF ) is nonsingular at all frequencies, the minimizing shock sequence

may not be stable and may not stabilize the state vector sequence. Problems

occur when W ∗(ζ) = D(ζ)−1D(0)w0 has a pole on Γ, or equivalently when

D(ζ)−1 has a pole on Γ that is not annihilated by D(0)w0 . Nevertheless,

even these destabilizing solutions for W ∗ can be approximated by a sequence of

W ’s, each of which is in W and hence each of which stabilizes the state vector

sequence.

The multiplier problem depends on the initial condition W (0) = w0 . We

now seek to replace this multiplier problem by an entropy criterion that does

not depend on the initial condition. To accomplish this, we will eventually have

to show that for a given θ∗ , the control law that solves the multiplier game does

not depend on the choice of initial condition w0 and is the same control law

that solves the entropy control problem. We shall do this in section 7.5.4.

The entropy criterion is motivated by the following representation:

Theorem 7.5.3. Assume that θ∗ and F are such that
∫

Γ logdet(θ∗I −
G′

FGF )dλ > −∞ . The criterion logdet[D(0)′D(0)] can be represented

logdet
[

D (0)
′
D (0)

]

=

∫

Γ

logdet
[

θ∗I −GF (ζ)
′
GF (ζ)

]

dλ (ζ) . (7.5.14)

Proof. D(0)′D(0) can be regarded as a ‘one-step’ prediction error covariance

matrix for a vector process D(L)ǫt , where L is the lag operator and ǫt is an
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i.i.d. random process with mean zero and identity contemporaneous covariance

matrix, and D(ζ) originates in the spectral factorization (7.5.7). We can use

a result from linear prediction theory to verify the representation (7.5.14). See

Theorem 6.2 of Rozanov (1967, page 76).

Theorem 7.5.2 and Theorem 7.5.3 both require that
∫

Γ log det(θ∗I−G′
FGF )dλ >

−∞ but permit θ∗I −G′
FGF to be singular at isolated points in Γ.

Evaluating the right-hand side of (7.5.14) requires no spectral factoriza-

tion, just integration over frequencies. The contour integral on the right side of

(7.5.14) is the entropy criterion. In the undiscounted case, it coincides with the

measure of entropy used by Mustafa and Glover (1988).10 When β = 1, the F

that maximizes (7.5.14) is often motivated as an approximation of the F that

maximizes the H∞ criterion, one that maintains analyticity of W .

Next we show that when W ∗ stabilizes the state vector sequence, wt+1 can

be represented as a function of the time t state xt .

Theorem 7.5.4. Assume θ∗ and F are such that θ∗I−G′
FGF is nonsingular

on Γ . Then the solution to the multiplier problem can be represented recursively

as

wt+1 = Kxt (7.5.15)

where

K = (θ∗I − C′PC)
−1
C′PAF , (7.5.16)

and P is the positive semidefinite solution to the Riccati equation

P = H ′
FHF + βA′

FPAF + βA′
FPC (θ∗I − C′PC)

−1
C′PAF (7.5.17)

for which AF + CK has eigenvalues that are inside the circle Γ . Moreover,

∫

Γ

logdet [θ∗I −G′
FGF ]dλ = logdet (θ∗I − C′PC) . (7.5.18)

Proof. We use a recursive formulation and solution of the spectral factorization

problem (7.5.7) to prove the theorem. To compute D in the spectral factor-

ization Iθ∗ − G′
FGF = D′D , we apply the factorization result given by Zhou,

10 It coincides with their measure of entropy at s0 = ∞ .
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Doyle, and Glover (1996). Recall that GF = HF (I − ζAF )−1C . The spectral

density matrix to be factored is:

θ∗I −G′
FGF = θ∗I − C′

[

I −
√

β exp (−iω)A′
F

]−1

H ′
FHF

[

I −
√

β exp (iω)AF

]−1

C

= θ∗I − C′
[

exp (iω) I −
√

βA′
F

]−1

H ′
FHF

[

exp (−iω) I −
√

βAF

]−1

C,

where we have used the parameterization: ζ =
√
β exp(iω). From Theorem

21.26 of Zhou, Doyle, and Glover (1996, pages 557 and 558), we obtain the

factorization:

θ∗I−C′
[

exp (iω) I −
√

βA′
F

]−1

H ′
FHF

[

exp (−iω) I −
√

βAF

]−1

C

=

(

I − C′
[

exp (iω) I −
√

βA′
F

]−1√

βK ′
)

R

(

I −
√

βK
[

exp (−iω) I −
√

βAF

]−1

C

)

=
(

I − ζ′C′ [I − ζ′A′
F ]

−1
K ′
)

R
(

I − ζK [I − ζAF ]
−1
C
)

(7.5.19)

where

R = θ∗I − C′PC, (7.5.20)

K = R−1C′PAF , (7.5.21)

and P ≥ 0 is the stabilizing solution of the Riccati equation

βA′
FP

(

I − 1

θ∗
CC′P

)−1

AF − P +H ′
FHF = 0. (7.5.22)

We establish that formula (7.5.22) is equivalent with (7.5.17) by showing that

(

I − 1

θ∗
CC′P

)−1

= I + C (θ∗I − C′PC)
−1
C′P.

We verify this result by post multiplying the matrix I− 1
θ∗
CC′P by the matrix

I + C(θ∗I − C′PC)−1C′P :
(

I − 1

θ∗
CC′P

)

[

I + C (θI − C′PC)
−1
C′P

]

= I − 1

θ∗
CC′P + C

(

I − 1

θ∗
C′PC

)

(θI − C′PC)
−1
C′P

= I − 1

θ∗
CC′P +

1

θ∗
CC′P

= I.
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For the stabilizing solution, K from (7.5.21) is such that I − ζ
√
βK[I −√

βζAF ]−1C has zeros outside the unit circle of the complex plane (Zhou, Doyle,

and Glover (1996)). As a consequence, I − ζK[I − ζAF ]C has zeros outside of

the circle Γ. Therefore, (7.5.19) and (7.5.7) imply that

D∗ (ζ) = R1/2
(

I − ζK [I − ζAF ]−1 C
)

(7.5.23)

has zeros outside Γ, and

θ∗I −G′
FGF = D∗′D∗.

Furthermore,

D∗ (0)′D∗ (0) = R = θ∗I − C′PC.

The entropy criterion (7.4.4) can thus be represented as log det(θ∗I − C′PC).

From formula (7.5.12), the solution for W (ζ) can be represented as

D∗ (ζ)W (ζ) = D∗ (0)w0.

Using (7.5.23) gives

ζ−1 [W (ζ) − w0] = K (I − ζAF )
−1
CW (ζ)

and using X(ζ) = (I − ζAF )−1CW (ζ) gives the recursive formula

wt+1 = Kxt.

Theorem 7.5.4 can be extended to allow for isolated singularities. In Ap-

pendix E we show that the entropy formula (7.5.18) of Theorem 7.5.4 continues

to hold if θ∗I −G′
FGF is positive semidefinite and nonsingular at either

√
β or

−√
β .

Formula (@Eq.riccati2@) can also be written P = H ′
FHF +A′

FD(P )AF =

S(P ) where the operators D and S are defined in (6.2.7c) and (6.2.7f ) on page

141. Note also that (7.5.16) matches (6.2.7e).
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7.6. Relation of Stackelberg multiplier game to entropy
criterion

One step remains to show that the Stackelberg multiplier game justifies the

entropy criterion (7.4.4). The extra step is needed because criterion (7.5.8)

depends on w0 while (7.4.4) does not. But Theorem 6.6.1 showed that the F

that solves (7.4.3) is independent of w0 . Therefore, we will attain the same

decision rule F by maximizing a criterion defined in terms of D(0)′D(0) alone,

ignoring w0 . Thus, let w′
0D̂(0)′D̂(0)w0 denote criterion (7.5.8) for another

control law, say F̂ . If

w′
0D (0)′D (0)w0 ≥ w′

0D̂ (0)′ D̂ (0)w0

for all w0 , then

D (0)
′
D (0) ≥ D̂ (0)

′
D̂ (0)

where ‘≥ ’ is the standard partial ordering of positive semidefinite matrices. As

a consequence,

trace
[

D (0)
′
D (0)

]

≥ trace
[

D̂ (0)
′
D̂ (0)

]

,

or alternatively

log det
[

D (0)
′
D (0)

]

≥ log det
[

D̂ (0)
′
D̂ (0)

]

.

Because we want the criterion to apply for all initial conditions w0 , we take our

criterion to be

logdetD (0)
′
D (0) .

Theorem 7.5.3 shows that this is the entropy criterion used to define (7.4.4).
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7.7. Etymology of ‘entropy’

The criterion (7.4.4) acquires the name ‘entropy’ via formula (7.5.14), which

links (7.4.4) to the log det of a one-step ahead prediction error covariance matrix

for a process with moving average representation D(L)εt , where εt is an i.i.d.

process with mean zero and identity covariance matrix. For a filtering problem,

we also applied the term entropy to a closely related criterion that appears in

(4.6.9) and (4.6.15) on pages 113 and 114, respectively. There the connection

to a prediction problem was immediate, but here it is only indirect via the link

revealed in formula (7.5.14) and the arguments in the proof of Theorem 7.5.2.11

7.8. Risk sensitivity

This section explores the connection between the entropy criterion (7.5.18) and

the discounted risk-sensitive criterion described by Hansen and Sargent (1995).

Hansen and Sargent consider a situation where a decision maker is interested

in evaluating fixed rules ut = −Fxt from the point of view of minimizing a

cost-criterion defined recursively as

C (x) = x′H ′
FHFx+ βR (C (y) |x) (7.8.1)

where

R (Υ|x) = −
(

2

σ

)

logE

(

exp

(−σΥ

2

)

∣

∣

∣x

)

, (7.8.2)

where HF = H − JF and

y = AFx+ Cw (7.8.3)

where w is now an i.i.d. Gaussian sequence with mean zero and covariance

matrix I . In (7.8.2), σ is the ‘risk-sensitivity’ parameter. When σ < 0, R
adds an additional aversion to risk beyond that embodied in the cost function

C(y).

Define the operator12

D (V ) = V − σV C (I + σC′V C)
−1
C′V. (7.8.4)

11 Also, the presence of discounting compels us to use the change of measure associated

with λ to reveal the connection to the log det of what looks like a prediction error covariance

matrix.
12 This operator also appears in chapters 2 and 6.
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Drawing on results of Jacobson (1973), Hansen and Sargent (1995) show that

R (Υ|x) = x′A′
FD (Υ)AFx (7.8.5)

and that the cost function C(x) that is the fixed point of (7.8.1) has the form

C (x) = x′V ∗x+ c∗ (7.8.6)

where V ∗ is the fixed point of recursions on the operator

S (V ) = H ′
FHF + βA′

FD (V )AF (7.8.7)

and

c∗ =
β

1 − β

1

σ
log det (I + σC′V ∗C) . (7.8.8)

The connection between risk-sensitive preferences and a preference for ro-

bustness can be seen by letting σ = −θ−1 and noting that

D (V ) = V + θ−1V C
(

I − θ−1C′V C
)−1

C′V (7.8.9)

which makes (7.8.7) the same operator that appears on the right of (7.5.17).

Also, c∗ is

c∗ = −1

θ

β

1 − β
log det

(

I − θ−1C′V ∗C
)

. (7.8.10)

This can also be written

c∗ = −1

θ

β

1 − β
[−n log θ + log det (θI − C′V ∗C)] . (7.8.11)

Consider representation (7.8.6) for the cost function. Here x′V ∗x is the

part of the cost function contributed by the initial condition, while the log det

term is contributed by the stochastic steady state. Consider minimizing the cost

function starting from x = 0, so that only the log det term is relevant. The

log det(θI − C′V C) term can be interpreted as the log determinant of a one-

step-ahead prediction error covariance matrix and so can be expressed as the

right side of (7.5.14) for some stationary process with a particular associated

spectral density matrix. From (7.5.17) and the definitions of the S(V ) and

D(V ) operators, it follows that the appropriate spectral density is identical

with that used in defining (7.5.14). In the case that x = 0, minimizing cost

amounts to minimizing c∗ . Because θ > 0, this comes down to maximizing

log det (θI − C′V ∗C) . (7.8.12)

This is equivalent with maximizing entropy defined by (7.5.14).
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7.9. Risk aversion across frequencies

This section shows how the entropy criterion adjusts the H2 criterion to express

a concern about model misspecification by putting additional concavity into a

utility function. We thereby develop a sense in which the entropy criterion

represents model misspecification by inducing risk aversion across frequencies.

The H2 criterion is

H2 = −
∫

Γ

trace
[

GF (ζ)′GF (ζ)
]

dλ (ζ) ,

and the entropy criterion is

ent =

∫

Γ

log det
[

θI −GF (ζ)
′
GF (ζ)

]

dλ (ζ) .

Take a symmetric negative semidefinite matrix V with eigenvalues −δ1, . . . ,−δn .

Let θ > maxi −δi . Then trace(V ) =
∑

j −δj and

log det (θI + V ) =
∑

j

log (θ − δj) .

Note that log(θ − δ) is a concave function of −δ .
Associated with each ζ is a set of eigenvalues of GF (ζ)′GF (ζ) that we

denote δ1(ζ), . . . , δn(ζ). Let them be ordered according to their magnitude.

Then we can write the H2 criterion as

H2 =
∑

j

∫

Γ

−δj (ζ) dλ (ζ) .

The entropy criterion is formed from H2 be putting a concave transformation

inside the integration:

ent =
∑

j

∫

Γ

log [θ − δj (ζ)] dλ (ζ) . (7.9.1)

Thus the entropy criterion puts more curvature into the return function. This

has effects that could also be represented as enhanced risk aversion. Notice that

here the ‘risk aversion’ seems to be across frequencies: in (7.9.1) we average

over eigenvalues and frequencies instead of states of nature. Big eigenvalues

have relatively more weight in the entropy criterion because of the concavity of

the log function.
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7.10. Concluding remarks

The decision maker’s approximating model asserts that the Fourier transform

of a target vector Z(ζ) is

Z (ζ) = GF (ζ)w0

where GF (ζ) is the transfer function GF (ζ) = HF (I−(A−BF )ζ)−1C and F is

the decision maker’s feedback rule. The approximating model sets W (ζ) = w0 ,

but the misspecified models assert that

Z (ζ) = GF (ζ)W (ζ) .

Deviations of W (ζ) from w0 represent the approximating model’s misspecifica-

tion of the temporal properties of the shock process.13

Without fear of model misspecification, the decision maker would choose

F to maximize H2 defined in equation (7.3.6). A preference for robustness to

model misspecification can be expressed by having the decision maker replace

H2 by either H∞ or an entropy criterion. The H∞ criterion induces a robust

decision rule via the following thought process. The decision maker considers

perturbations to the temporal properties of the shocks and wants decisions that

will work well across a broad set of such patterns. To promote robustness, the

decision maker investigates the consequences of his rule under the worst shock

process. But what is worst depends on his decision rule. Given his decision rule,

the worst serial correlation pattern focuses spectral power at the frequency that

attains the highest weight in the frequency domain representation of Z(ζ)′Z(ζ).

The contribution of that frequency to discounted costs is measured by the max-

imal eigenvalue of GF (ζ)′GF (ζ). The decision maker achieves a robust rule by

optimizing against that worst serial correlation pattern, in particular by selecting

the feedback rule that minimizes the maximum eigenvalue across all frequencies.

Under the entropy criterion the decision maker responds in a similar but less

severe way by flattening the response GF (ζ) across ζ ’s. We study an example

of such behavior in chapter 9, where we use such insights from the frequency

domain to interpret how a form of precautionary savings is called for by a robust

decision rule for a permanent income model.

13 See appendix E for an interpretation of W (ζ) in terms of the spectral density matrix of

a random vector of shocks.
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A. Infimization of H∞

To verify that we have found the infimum of version 2 of (7.3.7)-(7.3.8) , let ω∗

be the frequency associated with the maximum value of ρ and let v(ω∗) denote the
corresponding eigenvector. This eigenvector can be complex. We can find a W ∗(ζ)
with all real coefficients, with an initial coefficient zero, and that coincides with v(ω∗)
for ζ =

√
β exp(iω∗) . We accomplish this while setting all values of wt to zero except

possibly those for w1 and w2 . In particular, that the coefficients of W ∗(ζ) be real
requires symmetry, i.e., W ∗(

√
β exp(iω))′ = W ∗(

√
β exp(−iω))⊤, where ⊤ denotes

transposition. This leads to two equations of the form W ∗(ζ∗) = w1ζ
∗ + w2ζ

∗2,
W ∗(ζ∗

′

) = w1ζ
∗′ + w2ζ

∗′2 , where here ′ denotes the complex conjugate, and ζ∗ =√
β exp(iω) . These two equations determine real valued vectors w1, w2 . To form the

infimizing W (ζ) , we shall construct an approximating sequence of ‘distributed lags’
of W ∗(ζ) that converge to it. To get distributed lags of the desired form, create a
sequence of continuous positive scalar functions {gn} such that:

(i) gn(ω) = gn(−ω) ;
(ii) 1

2π

∫ π

−π
gn(ω)dω = 1;

(iii) {gn(ω∗)} diverges;
(iv) {gn} converges uniformly to zero outside any open interval containing ω∗ ;
(v)

∫ π

−π
log gn(ω)dω > 0.

Then associated with each gn is a real scalar (one-sided) sequence with transform
bn(ζ) such that bn(ζ)∗bn(ζ) = gn(ω) for ζ =

√
β exp(iω) .

Construct Wn(ζ) ∝ bn(ζ)W ∗(ζ) , where the constant of proportionality makes
the resulting Wn satisfy constraint (7.3.8). We have designed the sequence {Wn}
to approximate the direction v(ω∗) . The sequence of transforms {gn} converges
to a generalized function, namely a Dirac–delta function with mass concentrated at
frequency ω∗ . It is straightforward to show that:

lim
n→∞

∫

Γ

Wn (ζ)′GF (ζ)′GF (ζ)Wn (ζ) dλ (ζ) = η (H∞)2 .
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B. A dual prediction problem

A prediction problem is dual to maximizing (7.5.4) subject to (7.5.5)–(7.5.6). Let
[θI −GF (ζ)′GF (ζ)] for ζ =

√
β exp(iω) denote a spectral density matrix for a covari-

ance stationary process {yt} . The purpose is to predict (w0)′yt linearly from past
values of yt . A candidate forecast rule of the form

−
∞
∑

j=1

(

wj

)′
yt−j (7.B.1)

has forecast error ∞
∑

j=0

(

wj

)′
yt−j .

Then criterion (7.5.4) is interpretable as the forecast-error variance associated with
this prediction problem. The constraints (7.5.6) prevent the forecast from depending
on yt+j for j ≥ 1.

C. Duality

7.C.1. Evaluating a given control law

For a given control law F form the corresponding GF and define:

θF = H2
∞ (F ) .

It follows that for all W (ζ)

θF

∫

Γ

W ′Wdλ ≥
∫

Γ

W ′G′
FGFWdλ.

Therefore, for all θ ≥ θF ,
∫

Γ
W ′ [θI −G′

FGF

]

Wdλ is well defined for all θ ≥ θF
but not for θ < θF .

For fixed F , consider the inf part of Game 2 (7.3.7):

Original (Worst Case) Minimization Problem Lars: let’s double check that we

mean W and not Wa as the set over which we min. See the definitions on

page 182.

Problem 1 min
W

−
∫

Γ

W ′G′
FGFWdλ
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subject to
∫

Γ

W ′Wdλ ≤ w′
0w0 + η.

This problem minimizes a concave function subject to a convex constraint set, so
standard duality theory does not apply. In the interests of applying duality theory, we
study the following alternative problem:

A Related Constrained Problem:

Problem 2 min
W

∫

Γ

W ′ (θF I −G′
FGF

)

Wdλ

subject to:
∫

Γ

W ′Wdλ ≤ η + w0
′w0.

This problem is to minimize a convex function subject to a convex constraint set, so
duality theory applies to it. We shall first show that a solution of Problem 2 with
binding constraint also solves Problem 1. Then we shall apply standard duality theory
to problem 2.

Theorem 7.C.1. A solution to problem 2 with binding constraint solves problem 1.

Proof. Let W ∗ solve Problem 2 with the magnitude constraint binding:

∫

Γ

W ∗′W ∗dλ = η + w0
′w0

and

W ∗ (0) = w0.

Consider any other W such that

∫

Γ

W ′Wdλ ≤ η + w0
′w0.

and

W (0) = w0.

Then
∫

Γ

W ′ (θF I −G′
FGF

)

Wdλ ≥
∫

Γ

W ∗′ (θF I −G′
FGF

)

W ∗dλ,

and

θF

∫

Γ

W ′Wdλ ≤ θF

∫

Γ

W ∗′W ∗dλ.
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Therefore

−
∫

Γ

W ′G′
FGFWdλ ≥ −

∫

Γ

W ∗′G′
FGFW

∗dλ,

which implies that W ∗ also solves Problem 1.

Thus a way to solve Problem 1 is to solve Problem 2 and verify the solution satisfies
the magnitude constraint with equality.

We now apply duality theory to problem 2 by forming:

Saddle Point Version of Problem 2:

inf
W

sup
θ≥θF

[∫

Γ

W ′ (θI −G′
FGF

)

Wdλ− (θ − θF )
(

η + w′
0w0

)

]

.

We interpret θ − θF as the Lagrange multiplier for Problem 2 and θ as the Lagrange
multiplier for Problem 1. Because Problem 2 entails minimizing a convex function
subject to a convex constraint set, standard duality theory applies to it. The conjugate
problem is obtained by switching the order of the inf and sup operations:

sup
θ≥θF

inf
W

[∫

Γ

W ′ (θI −G′
FGF

)

Wdλ− (θ − θF )
(

η +w0
′w0

)

]

. (7.C.1)

We can use this problem to construct the Lagrange multiplier θ for each η > 0.
By construction the saddle-point value for the conjugate problem coincides with

the optimized value for Problem 2. When the specification-error constraint is binding
for Problem 2, we can obtain the optimized value for Problem 1 by subtracting the
constant θF (η + w′

0w0) from (7.C.1). The resulting conjugate problem is

sup
θ≥θF

inf
W

[∫

Γ

W ′ (θI −G′
FGF

)

Wdλ− θ
(

η + w′
0w0

)

]

. (7.C.2)

Thus we have eliminated the influence of θF on the objective of the saddle-point
problem. But θF still affects the constraint set limiting the choice of θ (through the
appearance of θF under the sup operator). This dependence can also be removed by
virtue of the following theorem.

Theorem 7.C.2. If the value of (7.C.2) is finite, then θ ≥ θF .

Proof. Suppose that θ < θF , and consider the inner infimum part of the saddle-point
problem (7.C.2):

inf
W

∫

Γ

W ′ (θI −G′
FGF

)

Wdλ. (7.C.3)

Given the construction of θF , (θI −G′
FGF ) has negative eigenvalues for some |ζ∗| =√

β . Parameterize Γ by forming ζ =
√
β exp(iω) , and let ω∗ be the frequency asso-

ciated with ζ∗ . Thus there exists a complex vector v such that

v′
(

θI −G′
FGF

)

v < 0
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on a nondegenerate interval of ω ’s containing ω∗ . Imitating the argument in Appendix
A, we can form a W ∗(ζ) = w1ζ + w2ζ such that W ∗(ζ∗) = v . We can then use the
Appendix A construction to form: Wn(ζ) ∼ bn(ζ)W ∗(ζ) . Then it is straightforward
to show that:

lim
n→∞

∫

Γ

W ′
n

(

θI −G′
FGF

)

Wndλ = v′
[

θI −GF

(

ζ∗
)′
GF

(

ζ∗
)

]

v < 0.

By construction Wn(0) = 0 and hence fails to satisfy the constraint for problem
(7.C.3). Also problem (7.C.3) does not constrain the magnitude of W . We now form
the sequence:

W̃n = nWn + w0,

which by construction satisfies W̃n(0) = w0 . Given our multiplication of Wn by n ,
it clearly follows that

lim
n→∞

∫

Γ

W ′
n

(

θI −G′
FGF

)

Wndλ = −∞.

Therefore, the optimized value of problem (7.C.3) is −∞ whenever θ < θF .

Given what the theorem establishes about the behavior of the inner infimum
part of saddle-point problem (7.C.2) when θ < θF , we can state that (7.C.2) equals
(7.C.3) defined as:

Conjugate Saddle Point Version of Problem 1

sup
θ

inf
W

[∫

Γ

W ′ (θI −G′
FGF

)

Wdλ− θ
(

η + w′
0w0

)

]

. (7.C.4)

Whenever this problem has a solution for W that satisfies the specification-error con-
straint with equality, the resulting W also solves Problem 1 and the value of the
conjugate saddle-point problem coincides with that of Problem 1. This conjugate
problem provides the Lagrange multiplier θ ≥ θF associated with Problem 1. Armed
with this multiplier, consider the inner infimum problem, which we call the multiplier
problem:

(Problem 3) inf
W

[∫

Γ

W ′ (θI −G′
FGF

)

Wdλ

]

.

The solution of Problem 3 coincides with that of the prediction problem described in
Appendix B and analyzed in the text.

Given any η , we have just shown how to find the multiplier θ . We now suppose
that the multiplier θ ≥ θF is given and want to deduce the corresponding value of η .
Thus, suppose that we have a solution of the multiplier problem (Problem 3). It is
sufficient for this problem to have a solution with θ > θF . (Later we shall discuss the
case in which θ = θF .) We assume that:

∫

log det
(

θF I −G′
FGF

)

dλ > −∞. (7.C.5)

Later we will describe what happens when this condition is violated.
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Theorem 7.C.3. Suppose that θ > θF and that W (ζ) solves the multiplier Problem
3. Then there exists η > 0 such that W (ζ) solves Problem 1.

Proof. From the dual prediction problem of Appendix B, we know that when θ > θF ,
the solution to the multiplier problem is:

W (ζ) = D (ζ)−1D (0)w0 (7.C.6)

where
D′D =

(

θI −G′
FGF

)

and D is continuous and nonsingular on the region |ζ| ≤ √
β . Notice that D de-

pends implicitly on θ The resulting objective function is: w′
0D(0)′D(0)w0. The η

corresponding to this choice of θ satisfies:

η =

∫

w′
0D (0)′

(

θI −G′
FGF

)−1
D (0)w0dλ− w′

0w0. (7.C.7)

7.C.2. When θ = θF

Next consider the possibilities when θ is equal to the lower threshold value θF . Con-
dition (7.C.5) implies that we can still obtain the factorization:

D′D = θF I −G′
FGF ,

where D is nonsingular on the region |ζ| <
√
β , but now it is singular at some points

|ζ| =
√
β . Thus the candidate solution for W given by (7.C.6) may not be well defined,

and the infimum in the multiplier Problem 3 may not be attained. Nevertheless, the
infimum is still given by the quadratic form: w′

0D(0)′D(0)w0 and the implied ηF

satisfies (7.C.7), and will typically be infinite.
When ηF = ∞ , we can find a θ > θF that yields any positive η . Sometimes

ηF is finite for a small (Lebesgue measure zero) set of initializations w0 . When this
happens, we may only find θ ≥ θF for values of η ≤ ηF .
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7.C.3. Failure of entropy condition

Finally, we consider what happens when

∫

log det
(

θF I −G′
FGF

)

dλ = −∞.

Since GF is a rational function of ζ with no poles in the region |ζ| ≤
√
β , θF I−G′

FGF

is singular for all |ζ| =
√
β . Factorizations still exist now take the form:

D′D = θF I −G′
FGF

where D has fewer rows than columns and has full rank on the region |ζ| <
√
β (see

Rozanov (1967) pages 43–50). This makes it possible to have a variety of solutions to
Problem 2, including solutions for which the specification-error is slack.

To understand better the multiplicity, note that it is now possible to find a W̃
such that:

DW̃ = 0 (7.C.8)

and for which W̃ (0) = 0. Given any solution W ∗ to Problem 2, we may form W ∗+rW̃
for any real number r without altering the objective of Problem 2. The value of r
is restrained by the specification-error constraint, but it possible for this range to be
nondegenerate.

When the specification-error constraint for Problem 2 can be slack at an optimum,
the Lagrange multiplier, θ − θF , is zero, or equivalently θ = θF . Problem 2 will then
have solutions in which the specification-error constraint is binding (but with a zero
multiplier), and it is only these solutions that also solve Problem 1. As a consequence,
solving the multiplier problem (Problem 3) for choices of θ greater than θF may not
correspond to fixing an η for Problem 1. We illustrate this possibility in the following
example.

Exceptional Example
In this example, we construct a W̃ satisfying (7.C.8) and W̃ > 0 ∀ζ ∈ Γ. Suppose

that A−BF = 0 and hence GF = HFC , which is constant across frequencies. Then
θF is the largest eigenvalue of the symmetric matrix C′H ′

FHFC , and det[θF I −
G′

FGF ] = 0 for all ζ ∈ Γ. Let µ be an eigenvector associated with θF with norm
one. Solutions W ∗ to Problem 2 are given by:

w∗
0 = w0

w∗
t = αtµ

for t > 0 and the real numbers αt chosen so that the magnitude constraint is satisfied.
The resulting objective for Problem 2 is:

w0
′ (θF I − C′H ′

FHFC
)

w0.
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Provided that η > 0, the magnitude constraint can be made slack (say by letting αt

be zero).
A solution to Problem 1 is obtained by setting αt to make the magnitude con-

straint be satisfied with equality. Then the objective for Problem 1 is:

−θF η − w0
′C′H ′

FHFCw0.

Finally, the Lagrange multiplier obtained from the conjugate problem is given by its
lower threshold θF .

Optimizing the Control Law

We next study what happens when the control law is chosen among a family of
admissible laws. The choice of F alters the transfer function GF , and we are led to
study the game:

max
F

inf
W

−
∫

Γ

W ′G′
FGFWdλ

subject to
∫

Γ

W ′Wdλ ≤ η +w′
0w0.

Again it is fruitful to analyze a conjugate formulation. With this in mind, first solve:

C (θ, F ) = inf
W

[∫

Γ

W ′ (θI −G′
FGF

)

W dλ− θ
(

η + w′
0w0

)

]

for a given (θ, F ) pair. Then solve the conjugate game:

max
F ,θ

C (θ, F ) = max
F

sup
θ
C (θ, F ) = max

θ
sup
F
C (θ, F ) .

Therefore given a solution F ∗ to the original game we can find a corresponding θ∗ such
that (F ∗, θ∗) solves the conjugate game. Moreover, if F ∗ is optimal for all nonzero
initializations w0 , then F ∗ solves the entropy criterion associated with this θ∗ .

We want to show the converse.

Theorem 7.C.4. Fix a θ∗ . Find the F ∗ that solves the entropy problem for θ∗ .
Compute θ̂ = H∞(F ∗)2 and verify that the control law F ∗ satisfies:

∫

Γ

log det
(

θ̂I −G∗′
FG

∗
F

)

dλ > −∞ (7.C.9)

where G∗
F is the transfer function associated with the control law F ∗ . Then there

exists W ∗ and an η∗ > 0 such that F ∗,W ∗ solves Game 2.

Proof. If inequality (7.C.9) is satisfied, factor θ∗I −G∗′
FG

∗
F

θ∗
(

I −G∗′
FG

∗
F

)

= D∗′D∗,
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and construct the W ∗ :
W ∗ (ζ) = D∗ (ζ)−1D∗ (0)w0.

Then find η∗ that solves

η∗ =

∫

Γ

W ∗′W ∗dλ−w0
′w0.

D. Proof of theorem 7.5.4

This appendix restates a version of Theorem 7.5.4 under weaker assumptions about
the nonsingularity of [θI −GF (ζ)′GF (ζ)] .

Theorem 7.D.1. Suppose that
i AF has eigenvalues that are inside the circle Γ ;
ii θI −G′

FGF ≥ 0 on Γ ;
iii Either θI −GF (−

√
β)′GF (−

√
β) or θI −GF (

√
β)′GF (

√
β) is nonsingular.

Then the Hentropy(θ) criterion can be represented as

log detD (0)′D (0) = log det
(

θI − C′PC
)

where P is defined implicitly by equation (7.D.3) below.

Proof. We prove this theorem by referring to results from Zhou, Doyle, and Glover
(1996). We outline the proof in four steps.

Step One: Transform the discrete discounted formulation into continuous undiscounted
formulation. Suppose that θI−GF (−√

β)′GF (−√
β) is nonsingular. Define the linear

fractional transformation:

ζ = −
√

β

(

s+
√
β

s−√
β

)

. (7.D.1)

This transformation maps s = −√
β into ζ = 0, s = 0 into

√
β , s = ∞ into −√

β .
The transformation maps the imaginary axis into the circle Γ and points on the left
side of the complex plane into points inside the circle.

Note also that

βζ−1 = −
√

β

(

−s+
√
β

−s−
√
β

)

.

In the case that θI − GF (
√
β)′GF (

√
β) is singular, we replace linear fractional

transformation (7.D.1) with:

ζ =
√

β

(

s+
√
β

s−
√
β

)

. (7.D.2)
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In what follows we will use (7.D.1) but the argument for (7.D.2) is entirely similar.

Step Two: Use parameterization (7.D.1) to write:

GF (ζ) =
(

s−
√

β
)

HF

[(

s−
√

β
)

I +
(

s+
√

β
)

√

βAF

]−1

C

=
(

s−
√

β
)

HF

[

s
(

I +
√

βAF

)

−
√

β
(

I −
√

βAF

)]

C

=
(

s−
√

β
)

HF

(

sI − Â
)−1

Ĉ

= ĜF (s)

where

Â =
√

β
(

I +
√

βAF

)−1 (

I −
√

βAF

)

Ĉ =
(

I +
√

βAF

)−1

C

.

Rewrite ĜF as

ĜF (s) = sHF

(

sI − Â
)−1

Ĉ −
√

βHF

(

sI − Â
)−1

Ĉ

= HF

(

sI − Â
) (

sI − Â
)−1

Ĉ +HF Â
(

sI − Â
)−1

Ĉ −
√

βHF

(

sI − Â
)−1

Ĉ

= HF Ĉ − ĤF

(

sI − Â
)−1

Ĉ,

where

ĤF = HF

(

√

βI − Â
)

.

Notice that

HF Ĉ = HF

(

I +
√

βAF

)−1

C = ĜF (∞) = GF

(

−
√

β
)

.

Step Three: Write for s imaginary

θI−Ĝ′
F ĜF =

(

Ĉ′ (−sI − Â′)−1
I
)

(

−Ĥ ′
F ĤF Ĥ ′

FHF Ĉ

Ĉ′H ′
F ĤF θI − Ĉ′H ′

FHF Ĉ

)(

(

sI − Â
)−1

Ĉ
I

)

.

Notice that

θI − Ĉ′H ′
FHF Ĉ = θI −GF

(

−
√

β
)′
GF

(

−
√

β
)

is nonsingular and in fact positive definite.

Step Four: Apply Corollary 13.20 of Zhou, Glover, and Doyle (1996) to conclude that
there exists a matrix F such that:

θI − Ĝ′
F ĜF =

[

I − Ĉ′ (−sI − Â′)−1
F ′
]

(

θI − Ĉ′H ′
FHF Ĉ

)

[

I − F
(

sI − Â
)−1

Ĉ
]

.
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Now inverse transform from s to ζ . The following are useful formulas for carrying out
this transformation. First

Â =
√

β
(

I +
√

βAF

)−1 (

I −
√

βAF

)

.

Invert this relation to find that:
(

I +
√

βAF

)

Â =
√

βI − βAF

or
√

β
(

Â+
√

βI
)

AF = −
(

Â−
√

βI
)

or

AF =
1√
β

(

√

βI + Â
)−1 (√

βI − Â
)

.

Similarly,
(

s−
√

β
)

ζ = −
√

β
(

s+
√

β
)

or
(

ζ +
√

β
)

s =
√

β
(

ζ −
√

β
)

or

s =
√

β

(

ζ −√
β

ζ +
√
β

)

Write:

I − F
(

sI − Â
)−1

Ĉ = I −
(

ζ +
√

β
)

F
[

√

β
(

ζ −
√

β
)

I −
(

ζ +
√

β
)

Â
]−1

Ĉ

= I −
(

ζ +
√

β
)

F
[

ζ
(

√

βI − Â
)

−
√

β
(

√

βI + Â
)]−1

Ĉ

= I +
(

ζ +
√

β
)

F (I − ζAF )−1 1√
β

(

√

βI + Â
)−1

Ĉ

= I +

(

ζ +
√
β
)

2
√
β

F (I − ζAF )−1 C

= G̃F (ζ) .

Note that

I +

(

ζ +
√
β
)

2
√
β

F (I − ζAF )−1 C = I +
1

2
FC +

ζ

2
√
β
F
(

I +
√

βAF

)

(I − ζA)−1 C.

Define P implicitly by:

θI − C′PC =
(

I +
1

2
C′F ′

)

[

θI − C′
(

I +
√

βA′
F

)−1

H ′
FHF

(

I +
√

βAF

)−1

C

]

(

I +
1

2
FC
)

.

(7.D.3)
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E. Stochastic interpretation of H2

This appendix displays another game that implies H2 where the shocks wt are per-
mitted to be nonzero for t > 0. Recall that wt is m × 1, where m is the number of
shocks. We continue to assume that wt = 0 for all t < 0. We state

Game 1a: Choose (F, {wt}) to attain

max
F

inf
{wt}

−
∞
∑

t=0

βtz′tzt (7.E.1)

subject to

x0 = Cw0 (7.E.2a)
∞
∑

t=0

βtwtw
′
t = σ2I (7.E.2b)

∞
∑

t=0

(

β
t
2wt

)(

β
t−j

2 wt−j

)′
= 0 ∀j 6= 0 (7.E.2c)

σ2 ≤ η (7.E.2d)

Equations (7.E.2b), (7.E.2c) imply that

W (ζ)W (ζ)′ = σ2I, |ζ| =
√

β, (7.E.3)

Further, (7.E.3) implies (7.E.2b), (7.E.2c).
Game 1a has the following counterpart in the frequency domain:

Game 1b: Find
(

F, σ2
)

that attain

max
F

inf
σ2

−σ2

∫

Γ

trace
[

GF (ζ)′GF (ζ)
]

dλ (ζ) , (7.E.4)

subject to
σ2 ≤ η. (7.E.5)

We have substituted (7.E.3) into (7.3.7) to obtain (7.E.4). The solution of game
1b sets σ2 at its upper bound η , and sets F to maximize the H2 criterion (7.3.6).
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7.E.1. Stochastic counterpart

Criterion (7.3.6) emerges when the shock process {wt}∞t=1 is taken to be a martingale
difference sequence adapted to Jt , the sigma algebra generated by x0 and the history
of w , where Ewt+1w

′
t+1|Jt = I . The martingale difference specification implies

E

∞
∑

t=0

(

β
t
2wt

)(

β
t−j

2 wt−j

)′
=
{

σ2 (1 − β)−1 I if j = 0;
0 otherwise.

(7.E.6)

Equation (7.E.6) is equivalent with EW (ζ)W (ζ)′ = σ2(1 − β)−1I for ζ ∈ Γ. With
this representation, (7.3.6) is proportional to −(1 − β)−1E

∑∞
t=0 β

tztz
′
t .14

14 See Whiteman (1985b).





Chapter 8
Calibrating θ with detection probabilities

8.1. The role of randomness

Though we are really interested in random processes, most of our calculations

have been cast in terms of deterministic models. This has been true even when

we studied filtering problems. In omitting explicit mention of randomness, we

have exploited the mathematical structure of models with quadratic objective

functions, linear transition laws, and Gaussian disturbances. Control and fil-

tering of such models involve, after mathematical expectations have been taken

appropriately, deterministic manipulations of moment matrices. Thus, the cer-

tainty equivalence principle stated on page 27 implies that we would derive the

same decision rules had we included i.i.d. Gaussian shocks in the models.

In this chapter we explicitly include randomness in order to characterize

models that are difficult to distinguish from the approximating model using

moderate amounts of data. The presence of randomness in the transition law

conceals the distortion of the alternative model relative to the approximating

model and makes it statistically difficult to detect if the distortion is not too

big.

We use a statistical theory of detection to define a mapping from θ to a

detection error probability for discriminating between the approximating model

and the endogenous worst case model associated with that θ . We use that

detection error probability to determine a context-specific θ that is associated

with a set of alternative models against which it is reasonable to want to be

robust.1

1 In the context of continuous time models, Anderson, Hansen, and Sargent (2001) in-

vestigate the connection among detection error probabilities, a preference for robustness, and

alterations of market prices for risk.

– 213 –
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8.1.1. Approximating and distorting models

For a given decision rule ut = −Fxt , we assume that the approximating model

makes the state evolve according to the stochastic difference equation

xt+1 = Aoxt + Cǫ̌t+1, (8.1.1)

where now ǫ̌t+1 is an i.i.d. sequence of Gaussian disturbances with mean zero

and identity contemporaneous covariance matrix. We’ll represent a distorted

model as
xt+1 = Aoxt + C (ǫt+1 + wt+1) ,

= Âxt + Cǫt+1

(8.1.2)

where Â = Ao + Cκ(θ), wt+1 = κ(θ)xt , and ǫt+1 is another i.i.d. Gaussian

vector with mean 0 and identity covariance matrix. The transition densities

associated with models (8.1.1) and (8.1.2) are absolutely continuous with re-

spect to each other, i.e., they put positive probabilities on the same events.2

Models that are not absolutely continuous with respect to each other are easy

to distinguish empirically.

8.2. Detection error probabilities

Detection error probabilities can be calculated using likelihood ratio tests. Thus,

consider two alternative models. Model A is the approximating model (8.1.1),

and model B is the distorted model (8.1.2) associated with the context specific

worst case shock implied by θ . Consider a fixed sample of observations on the

state xt, t = 0, . . . , T − 1. Let Lij be the likelihood of that sample for model j

assuming that model i generates the data. Define the log likelihood ratio

ri ≡ log
Lii

Lij
,

where j 6= i and i = A,B. When model i generates the data, ri should be

positive. Now consider the probabilities of two kinds of mistakes. First, assume

that model A generates the data and calculate

pA = Prob (mistake|A) = freq (rA ≤ 0) .

2 The two models (i.e., the two infinite-horizon stochastic processes) are locally absolutely

continuous in the sense defined in Hansen, Sargent, Turuhambetova, and Williams (2001).

The stochastic processes are not mutually absolutely continuous.
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Thus, pA is the frequency of negative log likelihood ratios rA when model A

is true. Similarly, pB = Prob(mistake|B) = freq(rB < 0) is the frequency of

negative log likelihood ratios rB when model B is true. Call the probability of

a detection error

p (θ) =
1

2
(pA + pB) .

Here, θ is the robustness parameter used to generate a particular model B by

taking the associated worst case perturbation of model A in light of a particular

objective function for a decision maker. The following section shows in detail

how to estimate the detection error probability by using simulations. In a given

context, we propose to set p(θ) to a reasonable number, then invert p(θ) to find

a plausible value of θ .

8.3. Details

We now describe how to compute detection error probabilities in some detail.

8.3.1. Likelihood ratio under the approximating model

Define wA as the worst case shock assuming that the underlying data generating

process is the approximating model, i.e., wA = κxA where xA is generated

under (8.1.1)). Define Â = Ao + Cκ . Then we can express the innovation

under the worst case model as:

ǫt+1 = (C′C)
−1
C′
(

xt+1 − Âxt

)

,

= ǫ̌t+1 − κxt,

= ǫ̌t+1 − wA
t+1.

(8.3.1)

The log likelihood function under the approximating model is

logLAA = − 1

T

T−1
∑

t=0

{log
√

2π +
1

2
(ǫ̌t+1 · ǫ̌t+1)}
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The log likelihood function for the distorted model, given that the approximating

model (8.1.1) is the data generating process, is

logLAB = − 1

T

T−1
∑

t=0

{log
√

2π +
1

2
(ǫt+1 · ǫt+1)},

= − 1

T

T−1
∑

t=0

{log
√

2π +
1

2

(

ǫ̌t+1 − wA
t+1

)′ (
ǫ̌t+1 − wA

t+1

)

}.
(8.3.2)

Hence, assuming that the approximating model is the data generating process,

the likelihood ratio rA is:

rA ≡ logLAA − logLAB,

=
1

T

T−1
∑

t=0

{1

2
wA

t+1

′
wA

t+1 − wA
t+1

′
ǫ̌t+1}.

(8.3.3)

The second term can be expected to vanish as T → ∞ , so the log likelihood ratio

converges to the average value of the one-step measure of entropy .5wA′
t+1w

A
t+1 .

8.3.2. Likelihood ratio under the distorted model

Now suppose that the data generating process is the distorted model (8.1.2).

The innovations in the approximating model are linked to those in the distorted

model by ǫ̌t+1 = ǫt+1 + wB
t+1, where wB

t+1 = κxB
t and xB

t is generated under

(8.1.2).

Assuming that the distorted model generates the data, the log likelihood

function logLBB for the distorted model is

logLBB = − 1

T

T−1
∑

t=0

{log
√

2π +
1

2
(ǫt+1 · ǫt+1)}. (8.3.4)

The log likelihood function logLBA for the approximating model, assuming that

the distorted model (8.1.2) generates the data is,

logLBA = − 1

T

T−1
∑

t=0

{log
√

2π +
1

2
(ǫ̌t+1 · ǫ̌t+1)},

= − 1

T

T−1
∑

t=0

{log
√

2π +
1

2

(

ǫt+1 + wB
t+1

)′ (
ǫt+1 + wB

t+1

)

}.
(8.3.5)
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Hence, the likelihood ratio rB , assuming that the distorted model is the data

generating process is

rB ≡ logLBB − logLBA,

=
1

T

T−1
∑

t=0

{1

2
wB

t+1

′
wB

t+1 + wB
t+1

′
ǫt+1}.

(8.3.6)

As T → ∞ , this converges to the average value of one-period entropy .5wB′
t+1w

B
t+1 .

8.3.3. The detection error probability

Attach equal prior weights to model A and B . Then the detection error prob-

ability is

p (θ) =
1

2
(pA + pB) , (8.3.7)

where pi = freq(ri ≤ 0), i = A,B. To compute p(θ), we simulate a large number

of trajectories and calculate the empirical detection error probability.

8.3.4. Ball’s model

We now illustrate the use of detection error probabilities to discipline the choice

of θ in the context of the simple dynamic model that Ball (1999) designed

to study alternative rules by which a monetary policy authority might set an

interest rate.3 Ball’s is a ‘backward looking’ macro model with the structure

yt = −βrt−1 − δet−1 + ǫt (8.3.8)

πt = πt−1 + αyt−1 − γ (et−1 − et−2) + ηt (8.3.9)

et = θrt + νt, (8.3.10)

where y is the log of real output, r is the real interest rate, e is the log of the

real exchange rate, π is the inflation rate, and ǫ , η , ν are serially uncorrelated

and mutually orthogonal disturbances. As an objective, Ball assumed that the

monetary authority wants to maximize

C = −E
(

π2
t + y2

t

)

.

3 See Sargent (1999) for further discussion of Ball’s model from the perspective of robust

decision theory.
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The government sets the interest rate rt as a function of the current state at t ,

which Ball shows can be reduced to yt, et .

Ball motivates (8.3.8) as an open-economy IS curve and (8.3.9) as an open-

economy Phillips curve; he uses (8.3.10) to capture effects of the interest rate

on the exchange rate. Ball set the parameters γ, θ, β, δ at the values .2, 2, .6, .2.

Following Ball, we set the innovation shock standard deviations equal to 1, 1,
√

2.

To discipline the choice of the parameter expressing a preference for ro-

bustness, we calculated the detection error probabilities for distinguishing Ball’s

model from the worst-case models associated with various values of σ ≡ −θ−1 .

We calculated these taking Ball’s parameter values as the approximating model

and assuming that T = 142 observations are available, which corresponds to

35.5 years of annual data for Ball’s quarterly model. Fig. 8.3.1 shows these

detection error probabilities p(σ) as a function of σ . Notice that the detection

error probability is .5 for σ = 0, as it should be, because then the approximating

model and the worst case model are identical. The detection error probability

falls to .1 for σ ≈ −.085. If we think that a reasonable preference for robust-

ness is to want rules that work well for alternative models whose detection error

probabilities are .1 or greater, then σ = −.085 is a reasonable choice of this

parameter. In the next section, we’ll compute a robust decision rule for Ball’s

model with σ = −.085 and compare its performance to the σ = 0 rule that

expresses no preference for robustness.

8.3.5. Robustness in a simple macroeconomic model

We briefly illustrate how the detection error probabilities for Ball’s model from

Fig. 8.3.1 can be used to guide plausible the selection of defensible values of θ .

We show a graph that quantifies the robustness attained by different settings of

θ .

We use Ball’s model to illustrate the robustness attained by alternative

settings of the parameter θ . For Ball’s model, we present Fig. 8.3.2 to show

that while robust rules do less well when the approximating model actually

generates the data, their performance deteriorates more slowly with departures

of the data generating mechanism from the approximating model.

Fig. 8.3.2 plots the value C = −E(π2 + y2) attained by three rules under

the alternative data generating model associated with the worst case model for
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Figure 8.3.1: Detection error probability (coordinate axis)

as a function of σ = −θ−1 for Ball’s model.

the value of σ on the ordinate axis.4 The rules are those for the three values

σ = 0,−.04,−.085. Recall how the detection error probabilities computed above

associate a value of θ = −0.085 with a detection error probability of about

.1. Notice how the robust rules (those computed with preference parameter

σ = −.04 or −.085) have values that deteriorate at a lower rate with model

misspecification (they are flatter). Notice that the rule for σ = −.085 does

worse than the σ = 0 or σ = −.04 rules when σ = 0, but is more robust in

deteriorating less when the model is misspecified.

4 Following the risk-sensitive control literature, we transform θ into the risk-sensitivity

parameter σ ≡ −θ−1 .
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Figure 8.3.2: Value of C = −E(π2 + y2) for three decision

rules when the data are generated by the worst-case model

associated with the value of σ on the horizontal axis: σ = 0

rule (solid line), σ = −.04 rule (dashed-dotted line), σ =

−.085 (dashed) line.



Chapter 9

A permanent income model

9.1. Introduction

Because economists have so much intuition about it, the permanent income

model is a good laboratory for exploring the consequences of fears about model

misspecification. A decision maker who distrusts his specification of his en-

dowment process engages in a kind of precautionary savings that comes from

his worst-case slanting of the probability law for the endowment process.1 We

use the Stackelberg multiplier game of chapter 6 to help us interpret how this

probability slanting manifests itself in the permanent income model.

The permanent income model is also a good vehicle for gathering intuitions

from the frequency domain approach of chapter 7. A permanent income con-

sumer is patient enough to smooth high frequency fluctuations in income. But

he is not be patient enough to smooth low frequency (i.e., very persistent) in-

come fluctuations. Recognizing that low frequency income fluctuations cause

the consumer the most trouble, the minimizing agent makes the worst case

shocks persistent, an outcome that informs the consumer that his decision rule

is most fragile with respect to low frequency misspecifications of the income pro-

cess. The robust permanent income consumer responds to those more persistent

worst case shocks by saving more than he would if he had no doubts about his

endowment process. He engages in a form of precautionary savings that pre-

vails even when he has quadratic preferences, which distinguishes it from the

ordinary form of precautionary savings that emerges only with preferences that

have convex marginal utilities.

We apply the label ‘precautionary’ because the effect increases with the

volatility of innovations to endowments under the consumer’s approximating

model and because it also depends on the parameter θ that indexes his concern

1 This context-specific slanting corresponds to that mentioned by Fellner in the passage

cited on page 32 of chapter 1.

– 221 –
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about robustness. Our model of precautionary savings exhibits the usual symp-

tom that it modifies the certainty equivalence present in the linear-quadratic

permanent income model. However, our model keeps the marginal propensity

to save out of financial wealth equal to that out of human wealth, in contrast

to models like those of Cabellero (XXXX) and BLANK (XXXX), where pre-

cautionary saving makes the marginal propensity to save out of human wealth

exceed that out of financial wealth.2

To explore these issues, this chapter uses an equilibrium version of a per-

manent income model that Hansen, Sargent, and Tallarini (1999) (HST) esti-

mated for U.S. consumption and investment data.3 We restate (and extend

in appendix B) an observational equivalence result of HST, who showed that a

concern about robustness increases saving just as would increasing the discount

factor. Therefore, there exists an appropriate alteration of the discount factor

that can offset the effect on the consumption and investment allocation of a

change in the robustness parameter θ . HST thereby established that consump-

tion and investment data alone are insufficient to identify both the robustness

parameter θ and the subjective discount factor β .4 We use the Stackelberg mul-

tiplier game from chapter 6 to shed more light on the observational equivalence

proposition and the impact on decision rules of distortions in the conditional

expectations under the worst case model. We also state another observational

equivalence result for a new baseline model and use it to show that activating

a concern about robustness still equalizes the marginal propensities to save out

of human and nonhuman wealth.

In addition, this chapter illustrates how the detection error probabilities

of chapter 8 can discipline plausible choices of θ and provides some numerical

examples of how much robustness can be achieved by rules designed with various

settings of θ . In chapter 11, we describe how to decentralize the allocation

chosen by the planner in the economy of this chapter. Then in chapter 12, we

2 See Neng Wang (XXXX) for a treatment of how precautionary saving without robustness

separates the marginal propensities to consumer out of financial and non-financial wealth.
3 Hall (1978), Campbell (1987), Heaton (1993), and Hansen, Roberds, and Sargent (1991)

have applied versions of this model to aggregate U.S. time series data on consumption and

investment.
4 Despite their failure to affect the consumption allocation, HST showed that such vari-

ations in (σ, β) do affect the relevant stochastic discount factor and therefore the valuation

of risky assets. We shall take up asset pricing implications of the robust permanent income

model in chapter 12.
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use that decentralized economy as a laboratory for studying ways to represent

the effects on asset prices of a concern about robustness.

9.2. A robust permanent income theory

HST’s model features a planner with preferences over consumption streams

{ct}∞t=0 , intermediated through service streams {st}∞t=0 .5 Let b be a prefer-

ence shifter in the form of a utility bliss point. The Bellman equation for the

robust planner is

−x′Px− p = sup
c

inf
w

{

− (s− b)2 + β (θw′w − Ey′Py − p)
}

["income1"](9.2.1)

where the maximization is subject to

s = (1 + λ) c− λh ["income1a;a "](9.2.2a)

h∗ = δhh+ (1 − δh) c ["income1a;b "](9.2.2b)

k∗ = δkk + i ["income1a;c "](9.2.2c)

c+ i = γk + d ["income1a;d "](9.2.2d)
[

d

b

]

= Uzt ["income1a;d "](9.2.2d)

z∗ = A22z + C2 (ǫ+ w) ["income1a;e "](9.2.2e)

x = [h k z ] . ["income1a;f "](9.2.2f)

Here ∗ denotes next period’s value, E is the expectation operator, c is consump-

tion, s denotes a scalar service measure, and the law of motion mapping this

period’s state x into next period’s state y will be defined below. As usual, the

penalty parameter θ > 0 governs concern about robustness to misspecification

of the endowment process d and the preference shock process b embedded in

(9.2.2d) and (9.2.2e). HST assumed that the eigenvalues of A22 are bounded in

modulus by unity. We transform θ to the risk-sensitivity parameter σ = −θ−1 .

In (9.2.1), a scalar household service st is produced by the scalar consumption

ct via the household technology (9.2.2a) and (9.2.2b), namely,

st = (1 + λ) ct − λht−1 ["income3;a"](9.2.3a)

ht = δhht−1 + (1 − δh) ct ["income3;b"](9.2.3b)

5 The model fits within the framework described in chapter 10. See page 256 for an

additional stability condition that must be imposed.
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where λ > 0 and δh ∈ (0, 1). System (9.2.3) accommodates habit persistence

or durability as in Ryder and Heal (1973), Becker and Murphy (1988), Sundare-

san (1989), Constantinides (1990) and Heaton (1993). By construction, ht is

a geometric weighted average of current and past consumption. Setting λ > 0

induces intertemporal complementarities. Consumption services depend posi-

tively on current consumption, but negatively on a weighted average of past

consumption, a reflection of ‘habit persistence’.

There is a linear production technology (9.2.2d) where the capital stock

k∗ at the end of period t evolves according to (9.2.2e), where it is time t

gross investment, and {dt} is an exogenously specified endowment process. The

parameter γ is the (constant) marginal product of capital, and δk is the de-

preciation factor for capital. HST specified a bivariate (‘two-factor’) stochastic

endowment process: dt = µd +d∗t + d̂t.
6 They assumed that the two endowment

processes are orthogonal and that both obey second order autoregressions:

(1 − φ1L) (1 − φ2L) d∗t = cd∗

(

ǫd
∗

t + wd∗

t

)

(1 − α1L) (1 − α2L) d̂t = cd̂

(

ǫd̂t + wd̂
t

)

where the vector ǫt is i.i.d. Gaussian with mean zero and identity covariance

matrix, and wd∗

t , wd̂
t are distortions to the means of ǫd

∗

t , ǫd̂t . HST estimated

values of the φj ’s and αj ’s that imply that the d∗t process is more persistent

than the d̂t process, as we see below.

Solving the capital evolution equation for investment and substituting into

the linear production technology gives

ct + kt = Rkt−1 + dt ["income4"](9.2.4)

where

R ≡ δk + γ

which is the physical gross return on capital, taking into account that capital

depreciates over time.7

6 For two observed time series (ct, it) , HST’s econometric specification needed at least

two shock processes to avoid ‘stochastic singularity’.
7 For HST’s decentralized economy, R coincided with the gross return on a risk free asset.
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The state vector can be taken to be x′t = [ht−1 kt−1 dt−1 1 dt d∗t d∗t−1 ]′

(see Hansen, Sargent, and Wang (2002)). There is a set of state transition equa-

tions indexed by a {wt+1} process:

xt+1 = Axt +But + C (wt+1 + ǫt+1) ["law0 "](9.2.5)

where ut = ct and w′
t+1 = [wd∗

t+1 wd̂
t+1 ]

′
is the distortion to the conditional

mean of ǫt+1 . Let Jt be the sigma algebra induced by {x0, ǫs, 0 ≤ s ≤ t} . We

impose that the components of the solution for {ct, ht, kt} belong to L2
0 , the

space of stochastic processes {yt} defined as:

L2
0 = {y : yt is in Jt for t = 0, 1, . . . and E

∞
∑

t=0

R−t (yt)
2 | J0 < +∞}.

Given x0 , the planner chooses a process {ct, kt} with components in L2
0 to

solve the Bellman equation (9.2.1) subject to versions of (9.2.3), (9.2.4).8 Soon

we’ll discuss HST’s parameter values and some properties of their numerical

solution. But first we show that in terms of its effects on consumption and

investment, more concern about robustness works just like an increase in the

discount factor.9

8 We can convert this problem into a special case of the control problem posed in chapter

6 as follows. Form a composite state vector xt as described above, and let the control be

given by st − bt . Solve (9.2.3a) for ct as a function of st − bt , bt and ht−1 and substitute

into equations (9.2.3b) and (9.2.4). Stack the resulting two equations along with the state

evolution equation for zt to form the evolution equation for xt+1 .
9 However, in chapter 12, we show that (β, σ) pairs that are observationally equivalent for

consumption and investment nevertheless imply different prices for risky assets.
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9.3. Solution when σ = 0

We apply results from chapter 6 to show that the robust decision rule for σ < 0

also solves a σ = 0 version of the model in which the maximizing agent in

(9.2.1) replaces the approximating model with a particular distorted model for

[dt, bt] . We shall eventually use that insight to study the identification of σ and

β . To begin, this section solves the σ = 0 model.

9.3.1. The σ = 0 benchmark case

This subsection computes a solution of the planning problem in the σ = 0 case.

Though we shall soon focus on the case when βR = 1, we also want the solution

when βR 6= 1. Thus, for now we allow βR 6= 1. When σ = 0, the decision

maker’s objective reduces to

E0

∞
∑

t=0

βt{− (st − bt)
2}. ["income5"](9.3.1)

Formulate the planning problem as a Lagrangian by putting random Lagrange

multiplier processes 2βtµst on (9.2.3a), 2βtµht on (9.2.3b), and 2βtµct on

(9.2.4). First-order necessary conditions are

µst = bt − st ["income6;a"](9.3.2a)

µct = (1 + λ)µst + (1 − δh)µht ["income6;b"](9.3.2b)

µht = βEt [δhµht+1 − λµst+1] ["income6;c"](9.3.2c)

µct = βREtµct+1 ["income6;d"](9.3.2d)

and also (9.2.3), (9.2.4). Equation (9.3.2d) implies that Etµct+1 = (βR)−1µct .

Then (9.3.2b) and (9.3.2c) solved forward imply that µst, µht must satisfy

Etµst+1 = (βR)−1µst and Etµht+1 = (βR)−1µht . Therefore, µst has the rep-

resentation

µst = (βR)
−1
µst−1 + ν′ǫt ["martingale"](9.3.3)

for some vector ν . The endogenous volatility vector ν will play an important

role below, and we shall soon tell how to compute it.

Use (9.3.2a) to write st = bt − µst , substitute this into the household

technology (9.2.3), and rearrange to get the system

ct =
1

1 + λ
(bt − µst) +

λ

1 + λ
ht−1 ["income7;a"](9.3.4a)
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ht = δ̃hht−1 +
(

1 − δ̃h

)

(bt − µst) ["income7;b"](9.3.4b)

where δ̃h = δh+λ
1+λ . Equation (9.3.4b) can be used to compute

Et

∞
∑

j=0

R−jht+j−1 =
(

1 −R−1δ̃h
)−1

ht−1+
R−1

(

1 − δ̃h
)

(

1 −R−1δ̃h
) Et

∞
∑

j=0

R−j
(

bt+j − µst+j

)

.

["income8"](9.3.5)

For the purpose of solving the first-order conditions (9.3.2), (9.2.3), (9.2.4)

subject to the side condition that {ct, kt} ∈ L2
0 , treat the technology (9.2.4) as

a difference equation in {kt} , solve forward, and take conditional expectations

on both sides to get

kt−1 =

∞
∑

j=0

R−(j+1)Et (ct+j − dt+j) . ["income9"](9.3.6)

Use (9.3.4a) to eliminate {ct+j} from (9.3.6), then use (9.3.3) and (9.3.5).

Solve the resulting system for µst to get

µst = Ψ1kt−1 + Ψ2ht−1 + Ψ3

∞
∑

j=0

R−jEtbt+j + Ψ4

∞
∑

j=0

R−jEtdt+j , ["income10"](9.3.7)

where

Ψ1 = − (1 + λ)R
(

1 −R−2β−1
)





1 −R−1δ̃h

1 −R−1δ̃h + λ
(

1 − δ̃h

)





Ψ2 =
λ
(

1 −R−2β−1
)

1 −R−1δ̃h + λ
(

1 − δ̃h

)

Ψ3 =
(

1 −R−2β−1
)

Ψ4 = R−1Ψ1.

["income100 "](9.3.8)

Equations (9.3.7), (9.3.4), and (9.2.4) represent the solution of the planning

problem when σ = 0.10

10 When βR = 1, (9.3.7) makes µst depend on a geometric average of current and future

values of bt . Therefore, the optimal consumption service process and optimal consumption

both depend on the difference between bt and a geometric average of current and expected

future values of b . So there is no ‘level effect’ of the preference shock on the optimal decision

rules for consumption and investment. However, the level of bt will affect equilibrium asset

prices.
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To compute ν in (9.3.3), it is useful to notice that formula (9.3.7) can be

rewritten as

µst = (βR)
−1
µst−1 + Φ3

∞
∑

t=0

R−j (Etbt+j − Et−1bt+j)

+ Φ4

∞
∑

t=0

R−j (Etdt+j − Et−1dt+j)

["murepresentation "](9.3.9)

where

µst−1 = Φ1kt−1 + Φ2ht−1 + Φ3

∞
∑

t=0

R−jEt−1bt+j + Φ4

∞
∑

t=0

R−jEt−1dt+j .

The terms Φ3

∑∞
t=0 R

−j(Etbt+j−Et−1bt+j) and Φ4

∑∞
t=0R

−j(Etdt+j−Et−1dt+j)

are scalars Ψ3 and Ψ4 times the innovations at t in the present values of bt

and dt , respectively. Let the moving average representations for bt and dt be

bt = ζb (L) ǫt ["mab "](9.3.10)

dt = ζd (L) ǫt, ["mad "](9.3.11)

where from (9.2.2e) ζb(L) = Ub(I−A22L)−1C2 and ζd(L) = Ud(I−A22L)−1C2 .

By applying a formula of Hansen and Sargent (1980XXX), it is easy to show

that the innovations in the present values of bt and dt , respectively, equal

the present values of the moving average coeffients in these moving average

representations.11 Therefore, representation (9.3.9) can be rewritten as

µst = (βR)−1 µst−1 +
[

Ψ3ζb
(

R−1
)

+ Ψ4ζd
(

R−1
)]

ǫt. ["murep2"](9.3.12)

Comparing this with (9.3.3), we see that

ν = Ψ3ζb
(

R−1
)

+ Ψ4ζd
(

R−1
)

. ["hsoffset1"](9.3.13)

An equivalent way to compute ν is to note that formula (9.3.7) for µst can

be represented in matrix notation as

µst = Msxt ["muslaw "](9.3.14)

xt = Aoxt−1 + Cǫt ["xlaw "](9.3.15)

11 The present value of the moving average coefficients plays an important role in linear

quadratic permanent income models. See Flavin (XXX) , Campbell (XXX), and Hansen,

Roberds, and Sargent (xXXX).
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where xt is the state vector kt−1, ht−1, zt , where zt = [ dt−1 1 dt d∗t d∗t−1 ]
′

the matrix Ms is determined by equations (9.3.7) and the laws of motion for

bt, dt , and Ao, C tell the law of motion for the entire state under the optimal

rule for ct .
12 It follows that µst = MsAoxt−1 +MsCǫt , which must agree with

(9.3.3), so that µs,t−1 ≡MsAoxt−1 and

ν′ ≡MsC ["hsoffset2 . "](9.3.16)

The scalar α =
√
ν′ν plays an important role in the argument below. It obeys

α =
√

MsCC′M ′
s. ["MsC"](9.3.17)

In the widely studied special case that λ = δh = 0, so that st = ct and

µst = bt − ct , (9.3.7), (9.3.8) imply that the marginal propensity to consume

out of “non-human wealth” defined as Rkt−1 and the marginal propensity to

consume out of “human wealth” defined as
∑∞

j=0 R
−jEtdt+j both equal −Ψ1 .

It is a well known feature of the linear-quadratic model that these marginal

propensities to consume are equal. Notice that human wealth is formed by

discounting expected future endowments at the risk-free rate.

9.3.2. Observational equivalence (for quantities) of σ = 0 and σ 6= 0

In the σ = 0 case, HST followed Hall (1978) and imposed that βR = 1. HST

then showed that for fixed values of all other parameters, there is a set of (β, σ)

pairs that leave the consumption-investment plan unaltered. In particular, if as

we vary σ we also vary β according to13

β̂ (σ) =
1

R
+

σα2

R− 1
, ["obseq "](9.3.18)

then we leave unaltered the decision rules for (ct, it). Here α2 = ν′ν , where

ν as defined in (9.3.13) is a vector in the following martingale representation

for the marginal utility of services µst that prevails as a special case of (9.3.3)

when σ = 0 and βR = 1:

µst = µst−1 + ν′ǫt.

12 Here C is the matrix that appears in (9.2.5) above. See Hansen and Sargent (20XX)

for fast ways to compute Ao, Ms, C for a class of models that includes that of this chapter.
13 See footnote 22.
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(Also see equation (9.3.12)). This section explains how HST constructed the

locus identified by (9.3.18).

9.3.3. Observational equivalence: intuition

Here is the basic idea underlying the observational equivalence proposition. A

single factor µst effectively summarizes all of the endogenous state variables in

the model. When βR = 1 and σ = 0, it has the law of motion

µst = µst−1 + ν′ǫt

which can also be represented as

µst = µst−1 + αǫ̃t ["reversee1 "](9.3.19)

where ǫ̃t is a scalar i.i.d. process with zero mean and unit variance and α

verifies αǫ̃t = ν′ǫt . We generate our observational equivalence result by reverse

engineering. We activate a concern about robustness by setting σ < 0, but

insist that (9.3.19) continue to be the approximating model for µst . In this

way, we freeze the (ct, it) allocation. For σ < 0, the worst-case model for µst

is evidently then

µst = µst−1 + α (ǫ̃t + w̃t) ["reversee2 "](9.3.20)

or

µst = (1 + αK (σ))µst−1 + αǫ̃t ["reversee3 "](9.3.21)

where wt = K(σ)µst−1 . Now with a concern about robustness, the decision

maker’s choices conform to the Euler equation Êtµst+1 = (β̂R)−1µst where Êt

is evaluated with respect to the distorted model (9.3.21) and β̂ is a new value

for β . We want this distorted model to be associated with the approximating

model (9.3.19). But according to (9.3.21), if the approximating model is to be

(9.3.19), then Êtµst+1 = (1+K(σ)α)µst . Thus, we want to find a replacement

β̂ for β that enables us to verify (β̂R)−1 = (1 + αK(σ)), where K(σ) solves

the minimization problem that gives rise to the worst case shock. In effect, we

want to solve (β̂R)−1 = 1 + αK(σ) for β̂ as a function of σ . The formal proof

of observational equivalence shows that a β̂ that satisfies (9.3.18) does the job.
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9.3.4. Observational equivalence: formal argument

Following HST, we begin by assuming that βR = 1 when σ = 0. We state

Theorem 9.3.1. (Observational Equivalence, I) Fix all parameters, includ-

ing R , except (β, σ) . Suppose βR = 1 when σ = 0 . There exists a σ < 0 such

that for any σ ∈ (σ, 0) , the optimal consumption-investment plan for (β, 0) is

also chosen by a robust decision maker when parameter values are (β̂(σ), σ) and

where β̂(σ) < β satisfies (9.3.18).

Proof. The proof of the proposition is constructive. Begin with a solution

{s̄t, c̄t, k̄t, h̄t} for a benchmark σ = 0, βR = 1 economy, then form a comparison

economy with a σ ∈ [σ, 0], where σ is the lowest value for which the solution of

(9.3.25) reported below is real. The comparison economy fixes all parameters

except (σ, β) at their values for the benchmark economy. We then construct

a discount factor β̂ < β for which {s̄t, c̄t, k̄t, h̄t} is also the allocation for the

σ < 0 economy.

When βR = 1, (9.3.3) becomes

µst = µst−1 + ν′ǫt. ["neng3 "](9.3.22)

The optimality of the allocation under the original (0, β) implies that (9.3.22)

is satisfied, which in turn implies that Etµct+1 = µct and (9.3.7) are satisfied

where Et is the expectation operator under the approximating model. We seek

a new value σ < 0 and an associated value β̂(σ) for which: (1) (9.3.22) remains

satisfied under the approximating model; (2) the robust decision maker chooses

the (̄·) allocation, which requires that β̂RÊtµct+1 = µct ,
14 where Ê is the

expectation with respect to the worst case model associated with (σ, β̂) when

the approximating model obeys (9.3.22). However, when the approximating

model satisfies (9.3.22), the worst case model associated with (σ, β̂) implies that

Êtµct+1 = ζ̂(β̂)µct , where ζ̂ > 1 can be found by solving the pure forecasting

problem15 associated with law of motion (9.3.22), one-period return function

−µ2
st = −(bt − st)

2 , and discount factor β̂ . If the σ -robust decision maker is to

choose a decision rule that sustains (9.3.22) under the approximating model, so

that (1) and (2) both prevail, β̂ must verify

β̂Rζ̂
(

β̂
)

= 1. ["eulerdist"](9.3.23)

14 This is the robust decision maker’s Euler equation for capital.
15 See page 172 for the definition of a pure forecasting problem.
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To complete the argument, we compute ζ̂(β̂) by solving a pure forecasting

problem to find the distorted expectation operator Êt . We use the recipe

given in formulas (6.B.9) on page 169 and (6.B.25) and (6.B.26) on page

172. Taking (9.3.22) as given under the approximating model and noting that

µ2
st = (bt−st)

2 , the evil agent in the pure forecasting problem seeks to minimize

−∑∞
t=0 β

t(µ2
st + β 1

σw
2
t+1) under the distorted law µst = µst−1 + αwt , where

α =
√
ν′ν (see (9.3.22)). Taking µs as the state, the evil agent’s Bellman

equation (6.B.26) is16

−Pµ2
s = −µ2

s + βmin
w

(

− 1

σ
w2 − P (µs + αw)

2

)

. ["pess1"](9.3.24)

The scalar P that solves (9.3.24) is

−P (β) =
β − 1 + σα2 +

√

(β − 1 + σα2)2 + 4σα2

−2σα2
. ["distortcons"](9.3.25)

Let ζ̂ = A+ CK = 1 + αK , where w = Kµs is the formula for the worst case

shock and A+CK is the state transition matrix for the distorted law of motion

in chapter 6. Applying formula (6.B.20) for K in chapter 6 to the current

problem gives

Êtµst+1 = ζ̂µst ["income11"](9.3.26)

where

ζ̂ = ζ̂ (β) = 1 +
σα2P (β)

1 − σα2P (β)
=

1

1 − σα2P (β)
. ["distort2"](9.3.27)

Hansen, Sargent, and Wang (2002) solve (9.3.23), (9.3.25), and (9.3.27) to

obtain

β̂ (σ) =
1

R
+

σα2

R− 1
. ["obseqtheorem"](9.3.28)

For σ ∈ [σ, 0], equation (9.3.28) defines a locus of (σ, β̂)’s, each point of which

is observationally equivalent to (0, β) for observations on (ct, kt) because each

supports the benchmark (σ = 0) allocation.

This proposition means that with the appropriate adjustments in β given by

β̂(σ), the robust decision maker chooses precisely the same quantities {ct, kt} as

16 We exploit certainty equivalence and ignore the stochastic parts of the Bellman equation

and the law of motion for µs .
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a decision maker without a concern for robustness. Thus, as far as these quantity

observations are concerned, the robust (σ < 0) version of the permanent income

model is observationally equivalent to the benchmark (σ = 0) version.17

9.3.5. Precautionary savings interpretation

The consumer’s concern about model misspecification activates a particular kind

of precautionary savings motive that underlies our observational equivalence

proposition. A concern about robustness inspires the consumer to save more.

Decreasing his discount factor induces the consumer to save less . The obser-

vational equivalence proposition asserts that these two effects can be forced to

offset each other.

The following experiment highlights the precautionary motive for savings.

Take the base model with σ = 0 used in our proof of Theorem 9.3.1. Then

activate a concern about robustness by setting σ < 0, but offset its effect on

consumption by setting β equal to β̂(σ). Notice that β̂(σ) depends on the

volatility parameter α . Consider a (σ, β̂(σ)) pair corresponding to a given

α > 0. The innovation volatility associated with a positive α means that fu-

ture endowments are forecast with error. If future endowments and preference

shifters could be forecast perfectly, then at the value β = β̂(σ), the consumer

would choose to make his capital stock, and therefore also his consumption, drift

downward because discounting is large relative to the marginal productivity of

capital. Investment would be sufficiently unattractive that the optimal linear

17 The asset pricing theory developed by HST which is encoded in (9.3.23) implies that the

price of a sure claim on consumption one period ahead is R−1 for all t and for all (σ, β̂) in the

locus (9.3.18). Therefore, these different parameter pairs are also observationally equivalent

with respect to the risk-free rate. In this model, the technology (9.2.4) ties down the risk-free

rate. For a version of the model with quadratic costs of adjusting capital, the risk-free rate

comes to depend on σ , even though the observations on quantities are nearly independent of

σ . See Hansen and Sargent (1996).
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rule would eventually send both consumption and capital below zero.18 , 19 How-

ever, when randomness is activated (i.e., the innovation variances are positive),

this downward drift is arrested or even completely offset, as it is in our obser-

vation equivalence proposition. Thus our robust control interpretation of the

permanent income decision rule delivers a form of precautionary savings.

The precautionary savings coming from a concern about robustness differs

in structure from another, perhaps more familiar, kind of precautionary savings

that has attracted much attention in the macroeconomics literature and that

emerges when a positive variance of the innovations to the endowment process

interacts with a convex derivative of the marginal utility of consumption.20

In contrast, the precautionary savings induced by a concern about robustness

emerges because the consumer wants to protect himself against mistakes in

specifying conditional means of shocks to the endowment. Thus, a concern for

robustness inspires precautionary savings because of the way fears of misspec-

ification are expressed in conditional first moments of shocks. This type of

precautionary saving does not require that the marginal utility of consumption

be convex and occurs even in models with quadratic preferences.

A concern about robustness affects consumption by slanting probabilities

in the way described by Fellner in the passage cited on page 32 of this book.

The household saves more for a given β because it makes pessimistic forecasts

of future endowments. Precisely how pessimism manifests itself depends on the

detailed structure of the permanent income model and the temporal properties

of the endowment process, as we shall discuss in the next section.

18 Introducing nonnegativity constraints in capital and/or consumption would induce non-

linearities into the consumption and savings rules, especially near zero capital. But investment

would remain unattractive in the presence of those constraints for experiments like the one we

are describing here. See Deaton (1991) for a survey and quantitative assessment of consump-

tion models with binding borrowing constraints.
19 As emphasized by Carroll (1992), even when the discount factor is small relative to the

interest rate, precautionary savings can emerge when there is a severe utility cost for zero

consumption. Such a utility cost is absent in our formulation.
20 Take the Euler equation EtβRu′(ct+1) = u′(ct) and assume that βR = 1 so that

Etu
′(ct+1) = u′(ct) . If u′ is a convex function, then applying Jensen’s inequality implies

Etct+1 > ct , so that consumption is expected to grow when the conditional distribution of

ct+1 is not concentrated at a point. Such consumption growth reflects precautionary savings.

See Ljungqvist and Sargent (2004XXXX, chapter 16) for an analysis of these precautionary

savings models.
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9.4. Observational equivalence and distorted expecta-
tions

In this section, we use insights from the Stackelberg multiplier game on page

155 to interpret Theorem 9.3.1. In the Stackelberg multiplier game, decisions

for the maximizing player can be computed by solving his Euler equations using

a particular distorted law of motion to form conditional expectations of the

shocks.21

In the benchmark σ = 0, βR = 1 case that is contemplated in Theo-

rem 9.3.1, the solution of the planning problem is determined by equations

(9.3.4), (9.2.4), and (9.3.7) where the Ψj ’s satisfy (9.3.8) with βR = 1. For

a σ ∈ [σ, 0) and a β = β̂(σ), the decision rule for the robust planner is char-

acterized by equations (9.3.4), (9.2.4), and the following modified version of

(9.3.7):

µst = Ψ̂1kt−1 + Ψ̂2ht−1 + Ψ̂3

∞
∑

j=0

R−jÊtbt+j + Ψ̂4

∞
∑

j=0

R−jÊtdt+j , ["income101"](9.4.1)

where Ψ̂j are determined by (9.3.8) with β = β̂(σ); and Êt is the conditional

expectation operator with respect to the distorted law of motion for the state xt .

The observational equivalence Theorem 9.3.1 implies that (9.4.1) and (9.3.7)

are identical solutions for µst . By eliminating the terms in expected future

values, the solutions (9.3.7) and (9.4.1) can also be expressed as µst = Msxt

and µst = M̂sxt . Observational equivalence requires that Ms = M̂s . This

requires that the Ψ̂j ’s and Ê mutually adjust to keep Ms fixed.22

To expand on this point, consider the special case that λ = δh = 0, so that

we need not retain ht−1 as a state variable. Also, assume for simplicity that

bt = b , so that the preference shock is constant. Shutting down the volatility

of b prevents distortions in it from affecting the robust decision rule. Then

21 While the timing protocol for the Stackelberg multiplier game differs from the Markov

perfect timing embedded in game (9.2.1), chapter 6 showed that identical equilibrium out-

comes and recursive representations of equilibria prevail under the two timing protocols.
22 Note from formula (@Eq.hsoffset2@) that Ms determines α , a key parameter defining

the observational equivalence locus (9.3.18). Thus, because Ms remains fixed, so does α so

long as (β̂, σ) respect (9.3.18).
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equating the right sides of (9.3.7) and (9.4.1) gives

0 =
(

Ψ4 − Ψ̂4

)

Rkt−1 +
(

Ψ3 − Ψ̂3

)

(

1 −R−1
)−1

b

+ Ψ4

∞
∑

j=0

R−jEtdt+j − Ψ̂4

∞
∑

j=0

R−jÊtdt+j

["newequiv "](9.4.2)

where Ψj without hats denotes values of Ψj that satisfy (9.3.8) and those with

hats satisfy (9.3.8) evaluated at β = β̂(σ). Equation (9.4.2) shows how the

observational equivalence result asserts offsetting alterations in the coefficients

Ψj and the distorted expectations operator Êt used to form the expected sum

of discounted future endowments that defines human wealth.23

The distorted expectations operator is to be interpreted in terms of the

recursive formulation of the maximizing player’s problem in game 1 of chapter

6, the multiplier game game in sequences. (see section 6.5.1, pages 150–155).

The Euler equation approach used to derive (9.3.7) or (9.4.1) presumes the fol-

lowing timing protocol. After the minimizing player has committed to an entire

path for the wt+1 process, the maximizing agent faces the following recursive

representation of the motion for the endowment and preference shocks:

Xt+1 = (A−BF (σ) + CK (σ))Xt + Cǫ̃t+1 ["sys2;a "](9.4.3a)
[

bt

dt

]

= SXt ["sys2;b "](9.4.3b)

where ǫ̃t+1 is an i.i.d. shock identical in distribution to that of ǫt+1 .24 Because

the minimizing player has committed himself to a stochastic process for {wt+1}
that implies the recursive representation (9.4.3) of the endowment and prefer-

ence shock processes, the maximizing player takes the Xt process as exogenous

and uses the forecasting rule ÊtXt+j = (A−BF (σ)+CK(σ))jXt to form fore-

casts of (bt+j , dt+j) in (9.4.1). These forecasts, together with (9.4.1), (9.3.4),

and (9.2.4) can be solved as in chapter 6 for a decision rule ct = −F
[

xt

Xt

]

.

After computing the decision rule as a function of xt, Xt , we equate xt = Xt ;

that gives the maximizing agent’s decision rule in the form ct = −Fxt .
25

23 XXXXX We confirmed this in the program hst4.m in the subdirectory hst.
24 In (9.4.3), Xt is used to attain a recursive representation of the distorted endowment

and preference shock process and to keep it exogenous to the maximizer’s decisions.
25 The procedure of first optimizing, then setting xt = Xt to eliminate Xt is a common

way of formulating rational expectations equilibria in macroeconomics, where it is sometimes

called the ‘Big K , little k ’ method.
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9.4.1. Distorted endowment process

Fig. 9.4.1 and Fig. 9.4.2, illustrate the probability slanting that leads to pre-

cautionary savings. The figures assume HST’s parameter values (see Appendix

A)26 and record impulse response functions for the total endowment dt under

the approximating model and a worst-case model associated with σ = −.0001,

where β is adjusted according to (9.3.18) as required under our observational

equivalence proposition to preserve the same decision rule F (σ) for different

σ ’s.27

For the approximating and the worst case model for σ = −.0001, the

figures report the response of the total endowment dt to innovations ǫ∗t and

ǫ̂t in the relatively permanent and transitory components of the endowment,

d∗t , d̂t , respectively. Under the distorted model, the impulse response functions

diverge and the eigenvalue of A−BF (σ)+CK(σ) that has maximum modulus

increases from its value of unity under the approximating model to 1.0016.

The distorted endowment processes respond to innovations with more per-

sistence than they do under the approximating model. With a fixed β , the

increased persistence makes the agent save more than under the approximating

model, which the observational equivalence proposition offsets by decreasing the

household’s patience via (9.3.18).

Fig. 9.5.1 and Fig. 9.5.2 record impulse response functions for the total en-

dowment dt under the approximating model and a worst case model associated

with σ = −.0001, where β is held fixed at HST’s benchmark value. Because

these figures do not adjust the discount factor according to (9.3.18) as was done

for Fig. 9.4.1 and Fig. 9.4.2, the distorted impulse response functions deviate

from those of the approximating model even more than those of these earlier

figures. The reduction in β from (9.3.18) works through two channels to make

the σ < 0 decision rule equal to that for a σ = 0 rule: (1) it brings the distorted

impulse response functions closer to those of the approximating model, and (2)

more impatience combats the precautionary savings motive.

26 XXX These figures are computed by hst4.m.
27 The observational equivalence proposition makes the decision rules equivalent under the

approximating model.
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Figure 9.4.1: Response of total endowment dt to innovation

in ‘permanent’ component d∗t under the approximating model

(dotted line) and the distorted model associated with the

worst case shock (dashed line) for the σ = −.0001, β = β(σ)

model.

9.5. Another view of precautionary savings

As an aid to interpret the precautionary savings motive inherent in our model,

appendix B asserts another observational equivalence proposition. Theorem 9.B.1

takes a baseline case where βR = 1 and shows that in its effects on (c, i), ac-

tivating a concern for robustness operates just like an increase in the discount

factor. This result is useful because the βR = 1 case forms a benchmark in

the permanent income literature (for example, see Hall (1978)). Theorem 9.B.1

shows that the effects of raising a concern for robustness by putting σ < 0 are

replicated by simply raising β so that βR > 1.

To use this result to shed more light on how the precautionary motive

manifests itself in the decision rule for consumption, we consider the important

special case that δ = λ = δ̃ = 0. Then µst = µct = b− ct and the consumption

Euler equation (9.3.2d) without a concern about robustness becomes

b− ct = Et [(βR) (b− ct+1)] .
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Figure 9.4.2: Response of total endowment dt to innovation

in ‘transitory’ component d̂t under the approximating model

(solid line) and the distorted model associated with the worst

case shock (dotted line) for the σ = −.0001, β = β(σ) model.

If βR > 1, this equation implies that b − ct > Et(b− ct+1) or

ct < Etct+1, ["nengtrick "](9.5.1)

so that the optimal policy is to make consumption grow on average.

Theorem 9.B.1 shows that when βR = 1, a concern about robustness (σ <

0) has the same effect on ct, it as setting σ = 0 and setting a particular β for

which βR > 1. Therefore, when βR = 1, the precautionary saving that occurs

when σ < 0 is follows from (9.5.1). Activating a concern about robustness

imparts an upward drift to the expected consumption profile.

We can also use Theorem 9.B.1 to say some things about the decision rule

for consumption in our special case that λ = δ = δ̃ = 0. The solution (9.3.8)

for σ = 0 implies the consumption rule

ct =
(

1 −R−2β−1
)



Rkt−1 + Et

∞
∑

j=0

R−jdt+j



+

(

(Rβ)
−1 − 1

R− 1

)

b. ["consfunction "](9.5.2)
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Notice that the marginal propensity to consume out financial wealth Rkt−1

equals that out of human wealth Et

∑∞
j=0 R

−jdt+j .28 Further, an increase in

β decreases the constant +
(

(Rβ)−1−1
R−1

)

b and increases the marginal propensity

to consume 1 − R−2β . Relative to the baseline βR = 1 case, raising β raises

the marginal propensity to consume out of wealth by R−1(1 − (Rβ)−1). This

increase in the marginal propensity to consume still allows wealth to have an

upward trajectory because of the reduction in the second term (Rβ)−1−1
R−1 b .

Tom: expand this transition

The following section views the precautionary savings motive from the fre-

quency domain.
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Figure 9.5.1: Response of total endowment dt to innovation

in ‘permanent’ component d∗t under the approximating model

(solid line) and the distorted model associated with the worst

case shock (dotted line) for σ = −.0001, with β at benchmark

value.

28 This implication of precautionary savings coming from robustness differs from that com-

ing from convex marginal utility functions, where precautionary savings reduces the marginal

propensity to consume out of endowment income relative to that from financial wealth. See

Wang (2002XXX).
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Figure 9.5.2: Response of total endowment dt to innovation

in ‘permanent’ component d∗t under the approximating model

(solid line) and the distorted model associated with the worst

case shock (dotted line) for σ = −.0001 with β at benchmark

value.

9.6. Frequency domain representation

This section uses HST’s estimated permanent income model to illustrate features

of the frequency domain decompositions of the consumer’s objective function

and of the worst case shocks for different values of σ .

To imnport some notation from chapter 7, denote the transfer function from

shocks ǫt to the ‘target’ st − bt as G(ζ). For the baseline model with habit

persistence, recall formula (7.3.6) for the frequency decomposition of H2

H2 = − 1

2π

∫ π

−π

trace

[

G
(

√

β exp (iω)
)′
G
(

√

β exp (iω)
)

]

dω

A reinterpretation of formula (7.3.5) also gives us the frequency domain repre-

sentation

E

∞
∑

t=0

βtw′
twt =

1

2π

∫ π

−π

W
(

√

β exp (iω)
)′
W
(

√

β exp (iω)
)

dω.
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For the baseline (σ = 0) line,29 Fig. 12.5.1 shows G(
√
β exp(iω))′G(

√
β exp(iω))

as a function of frequency ω ; G′G is larger at lower frequencies. Remember

that G(ζ) = (I − (Ao − BF )ζ)−1C embodies the consumer’s optimal decision

rule F . The noise process ǫt upon which G(ζ) operates is i.i.d. under the ap-

proximating model, so that the spectral density matrix of ǫt is constant across

frequencies. But seeing that the consumer’s policy makes him most vulnerable

to the low frequency components of ǫt , the minimizing player makes the con-

ditional mean of the worst-case shock wt+1 highly serially correlated. For two

values of σ , Fig. 12.5.2 shows frequency decompositions of trace W (ζ)′W (ζ)

for ζ =
√
β exp(iω). Notice how most of the power is at the lowest frequencies.

As we varied σ from zero to the two values in Fig. 12.5.2, we adjusted β = β̂

according to (9.3.18), which keeps the robust σ < 0 decision rule for consump-

tion equal that to that for the baseline no robustness (σ = 0) model. Notice

that [trace W (ζ)′W (ζ)] varies directly with the absolute value of σ .
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Figure 9.6.1: Frequency decomposition of criterion func-

tion; G(ζ)′G(ζ) plotted as a function of ω where ζ =
√
β exp(iω).

29 XXXX These figures were computed by hst3.m in the hst directory.
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Figure 9.6.2: Frequency decomposition of volatility of worst

case shocks for −θ−1 = σ = −.0001 (solid line) and σ =

−.00005 (dotted line); trace[W (ζ)′W (ζ)] plotted as a func-

tion of ω where ζ =
√
β exp(iω).
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Figure 9.6.3: Detection error probabilities as a function of

σ .
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9.7. Detection error probabilities

For HST’s parameter values, Fig. 9.6.3 reports detection error probabilities as-

sociated with various values of σ , adjusting β according to (9.3.18) to keep

the decision rule fixed. These detection error probabilities were calculated by

the method of chapter 8 for a sample of the same length that HST used to

estimate their model and for HST’s initial condition. To calculate the detection

error probabilities, all other parameter values were frozen at the values in Ta-

ble 9.A.1. Then the formula for the worst-case distortions wt+1 = K(σ)xt was

used to compute an alternative law of motion for the endowment process.

For different values of σ , Fig. 9.6.3 records the detection error probabilities

for distinguishing an approximating model from a worst-case model associated

with that value of σ . The approximating model is

xt+1 = (A− BF (0)) xt + Cǫt+1

while the distorted model associated with σ is

xt+1 = (A−BF (0) + CK (σ)) xt + Cǫ̃t+1

where both ǫt and ǫ̃t are i.i.d. processes with mean zero and identity covariance

matrix, and where F (0) = F (σ) by the observational equivalence proposition.

The detection error probability equals .5 for σ = 0 because then the models

are identical and so cannot be distinguished. The detection error probability

falls with σ because the two models spread from one another. In the following

section, we use Fig. 9.6.3 to guide a choice of σ as measuring the size of a set

of models against which it is plausible for the consumer to want to be robust.
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9.8. Robustness of decision rules

For σ = −θ−1 , express the equilibrium decision rules of game (9.2.1) as

ct = −F (σ)xt ["soln1;a "](9.8.1a)

wt+1 = K (σ)xt ["soln1;b "](9.8.1b)

and express st − b as H(σ)xt . For possibly different values σ1, σ2 , consider the

law of motion of the state under the consumption plan F (σ2)xt and the worst

case shock process K(σ1)xt :

xt+1 = (A−BF (σ2) + CK (σ1))xt + Cǫt+1. ["soln2 "](9.8.2)

For x0 given, we evaluate the expected payoff

π (σ1;σ2) = −E0,σ1

∞
∑

t=0

βtx′tH (σ2)
′
H (σ2)xt ["soln3 "](9.8.3)

under the law of motion (9.8.2). That is, we want to evaluate the performance

of the rule designed by setting σ2 when the data are generated by the distorted

model associated with σ1 . For three values of σ2 , Fig. 9.6.3 plots π(σ1;σ2) as a

function of the parameter σ1 that indexes the magnitude of the distortion in the

model generating the data. By construction, the σ2 = 0 does better than the

other rules when σ1 = 0. But its performance deteriorates faster with decreases

in σ1 below zero than do the more robust σ1 = −.00004, σ1 = −.00008 rules.

From Fig. 9.6.3, σ = −.00004 is associated with a detection error probabil-

ity of over .3, and σ = −.00008 with a detection error probability about .2. It is

plausible for the consumer to want decisions that are robust against alternative

models as close as the worst case models associated with those values of σ .
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Figure 9.8.1: π(σ1;σ2) = −E0,σ1

∑∞
t=0 β

tx′tH(σ2)
′H(σ2)xt

as a function of σ1 on the ordinate axis for decision rules

F (σ2) associated with three values of σ2 .

9.9. Concluding remarks

Different observationally equivalent (σ, β) pairs identified by Theorem 9.3.1 bear

different implications about (i) pricing risky assets; (ii) the amounts required

to compensate the planner for confronting different amounts of risk; (iii) the

amount of model misspecification used to justify the planner’s decisions if risk

sensitivity is reinterpreted as reflecting concerns about model misspecification.

Hansen, Sargent, and Tallarini (1999) and Hansen, Sargent, and Wang (2002)

have extracted some asset pricing implications of the model in this chapter. They

show that although movements along the observational equivalence locus laid out

by (9.3.18) don’t affect consumption and investment, they put an adjustment for

fear of model misspecification into asset prices and boost measured market prices

of risk. In chapter 12, we shall describe how standard asset pricing formulas are

altered when a representative agent is concerned about robustness. There we

shall describe an asset pricing theory under a concern about robustness in the

context of a class of general equilibrium models of which the model of this

chapter can be viewed as a special case.
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Table 9.A.1: HST’s parameter estimates

object habit no habit

Persistence Persistence

risk free rate .025 .025

β .997 .997

δh .682

λ 2.443 0

α1 .813 .900

α2 .189 .241

φ1 .998 .995

φ2 .704 .450

µd 13.710 13.594

c
d̂

.155 .173

cd∗ .108 .098

2 × LogLikel 779.05 762.55

A. Parameter values

HST calibrated a σ = 0 version of their permanent income model by maximizing
a likelihood function conditioned only on U.S. post-war quarterly consumption and
investment data. They used U.S. quarterly data on consumption and investment for
the period 1970I–1996III. They measured consumption by nondurables plus services
and investment by the sum of durable consumption and gross private investment.30

They estimated the model from data on (ct, it) , setting σ = 0, then deduced pairs
(σ, β) that are observationally equivalent, using formula (9.3.18).

The forcing processes are governed by seven free parameters: (α1, α2, cd̂, φ1,
φ2, cd∗ , µd) . The parameter µb set a bliss point. While µb alters the marginal utilities,
it does not influence the decision rules for consumption and investment. HST fixed µb

at an arbitrary number, namely 32, for estimation.
Four parameters govern the endogenous dynamics: (γ, δh, β, λ) . HST set δk =

.975, and imposed the permanent income restriction, βR = 1. The restrictions that
βR = 1, δk = .975 pin down γ once β is estimated. HST imposed β = .9971, which
after adjustment for the effects of the geometric growth factor of 1.0033 implies an
annual real interest rate of 2.5%.

Table 9.A.1 reports HST’s estimates for the parameters governing the endogenous
and exogenous dynamics. Fig. 9.A.1 and Fig. 9.A.2 report impulse response functions
for consumption and investment to innovations in both components of the endowment
process. For comparison, Table 9.A.1 reports estimates from a no habit persistence
(λ = 0) model.

30 They estimated the model from data that had been scaled through multiplication by

1.0033−t .
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Figure 9.A.2: Impulse response of investment (circles) and con-
sumption (line) to innovation in persistent shock (d∗ ), at maxi-
mum likelihood estimate of habit persistence.

Notice that the persistent endowment shock process contributes much more to
consumption and investment fluctuations than does the transitory endowment shock
process.
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Figure 9.A.1: Impulse response of investment (circles) and con-
sumption (line) to innovation in transitory endowment process ( d̂),
at maximum likelihood estimate of habit persistence.
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B. Another observational equivalence result

To shed more light on the form of precautionary savings, we state another observational
equivalence result that takes as its benchmark an initial allocation associated with
parameter settings βR = 1 and σ < 0. Then we find another value of β that implies
the same decisions for ct, it as the base model when σ = 0, so that the decision
maker fears model misspecification. This entails working backwards from the worst
case model that is reflected in the σ < 0 decision rule to the associated approximating
model.

Theorem 9.B.1. (Observational Equivalence, II) Fix all parameters except (β, σ) .
Consider a consumption-investment allocation for (β̂, σ̂) where β̂ satisfies β̂R = 1 and
σ̂ < 0 and σ̂ < σ̂ . Then there exists a β̃ > β̂ such that the (β̂, σ̂) allocation also
solves the (β̃, 0) problem.

Proof. We suppose that σ̂ < 0, so that the worst case model differs from the approx-
imating model. We want to find the approximating model and a value β̃ of β for
which a σ = 0 decision maker would choose the β̂, σ̂ allocation. Under the model
with σ̂ < 0, where Êt denotes a conditional expectation under the worst case model,
we have

Êtµc,t+1 = µc,t ["nobseq3 "](9.B.1)

because β̂R = 1. Let
Êtµs,t+1 = ξ

(

β̃
)

µs,t. ["nobseq4 "](9.B.2)

Equation (9.B.1) implies that we want

1 = ξ
(

β̃
)

["nobseq5 "](9.B.3)

where the projection coefficient ξ(β̃) emerges from the multiplier problem for the evil
agent for σ̂ < 0, which can be cast as

min
{wt+1}

[

−
∞
∑

t=0

β̂t{µ2
st + β̂

1

σ̂
w2

t+1}
]

subject to the law of motion

µst = δ
(

β̃
)

µs,t−1 + αwt ["nobseq6 "](9.B.4)

where δ(β̃) = 1
β̃R

and α is given by (9.3.17), (9.3.14), (9.3.15) under the (β̂, σ̂)

model. (Remember that the decision rule for ct and therefore the law for µst will be
the same under our two observationally equivalent β, σ pairs, so we can use the bench-
mark case to compute α .) We freeze all parameters except β, σ . The approximating
model would be µst = δµs,t−1 +αǫt , so that (9.B.4) adds a perturbation αwt to the
law of motion of µst under a deterministic version of the approximating model. The
Bellman equation for the minimizing agent is evidently

−Pµ2
s = −µ2

s + β̂min
w

[

− 1

σ̂
w2 − P (δµs + αw)2

]

. ["bellmanneng "](9.B.5)



250 A permanent income model

Notice the presence of both β̂ and β̃ , via δ and α . The first-order condition is

w = Kµs,

where

K = − αδσ̂P

1 + α2σ̂P
.

Notice that
ξ
(

β̃
)

= A+KC = δ +Kα = 1

which implies that

1 = ξ
(

β̃
)

= δ +Kα =
δ

1 + α2σ̂P
.

Therefore,
δ = 1 + σ̂α2P < 1. ["delta1 "](9.B.6)

Equation (9.B.5) implies that

−P = −1 + β̂
[

− 1

σ̂
K2 − P (δ +Kα)2

]

.

Simplifying the above identity leaves

P =
1

1 − β̂

[

1 +
β̂

σ̂

(

1 − δ

α

)2
]

. ["P "](9.B.7)

Equations (9.B.6) and (9.B.7) together imply that

0 = β̂
(

1 − δ
(

β̃
))2

+
(

1 − β̂
) (

1 − δ
(

β̃
))

+ α
(

β̃
)2
σ̂.

A solution of this equation determines β̃ . The solution of this quadratic equation is

δ = 1 −
−
(

1 − β̂
)

±
√

(

1 − β̂
)2 − 4β̂σα2

2β̂
.

If σ = 0, this equation implies δ = 1. When σ < 0, the appropriate root is

δ = 1 −
−
(

1 − β̂
)

+

√

(

1 − β̂
)2 − 4β̂σα2

2β̂
.

Using β̂R = 1, this is equivalent to

β̃ (σ) =
β̂
(

1 + β̂
)

2 (1 + σα2)



1 +

√

1 − 4β̂
1 + σα2

(

1 + β̂
)2



 . ["obsequivn2 "](9.B.8)



Chapter 10

Competitive equilibrium models

10.1. Introduction

The next three chapters study prices and quantities in a dynamic competitive

equilibrium model when a representative agent fears model misspecification.

This chapter sets the stage by describing competitive equilibria when the repre-

sentative agent has no concern about model misspecification. It introduces the

basic objects and equilibrium representations of prices and quantities that will

be modified when we add concerns about model missspecification in chapters 11

and 12.

10.2. Pricing risky claims

In an economy with complete markets, history-date prices equal intertemporal

marginal rates of substitution times conditional probabilities evaluated at an

equilibrium allocation. Complete markets assure that intertemporal rates of

substitution are equated across all consumers, making it possible to speak un-

ambiguously of the intertemporal rate of substitution and thereby allowing us

to synthesize a representative agent.1

In a pure endowment economy that directly specifies the preferences of

a representative consumer, like the economy studied by Robert E. Lucas, Jr.

(1978), it is trivial to compute the equilibrium history-date prices. They equal

the representative consumer’s intertemporal marginal rates of substitution, eval-

uated at the endowment, times the exogenous conditional probabilities. These

1 Hansen and Sargent (XXXX, chapter YYYY) extend methods for calculating a repre-

sentative household in a heterogenous agent economy to situations where households can have

different dynamic technologies for transforming consumption goods into household services

(e.g., different degrees of habit persistence).

– 251 –
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prices can be used to evaluate risky claims that consist of bundles of history-date

contingent commodities.

Brock (1982XXX) extended this pricing strategy to representative house-

hold economies that have endogenous state variables such as capital stocks that

produce goods and household services. Household capital stocks can be used to

represent non-separabilities over time in the household’s preferences. Brock’s

procedure for pricing risky claims has these steps:

1. Compute optimal allocations by solving a planning problem. The optimal

allocations can be represented recursively as functions of a state vector, the

endogenous components of which are influenced by the planner’s decisions.

2. Compute shadow prices of the history-date contingent consumption goods

as conditional probabilities times intertemporal marginal rates of substitu-

tion evaluated at the optimal allocation. Take the shadow prices to be the

history-date contingent prices.

3. Represent a security as a stochastic process of pay outs, i.e., as a sequence

of measurable functions of the economy’s history of shocks.

4. Price a security by multiplying the history-date payouts by the history-date

prices computed in step (2), then sum over time and across histories.

Chapter 12 relies heavily on the four step strategy (1)-(4) for pricing assets.

Here and in chapter 11, we lay out alternative decentralizations of our planning

problem. Our four step strategy is powerful partly because it allows us to price

assets using the state vector xt for the planning problem. However, to express

the idea that the household is a price taker in a recursive competitive equilib-

rium, we have to augment the state xt with additional components Xt that

are comparable in dimension to xt ; Xt becomes a part of the state vector that

the household takes as exogenous and in terms of which we express prices.2 In

a competitive equilibrium, we impose Xt = xt , but only after the household

has optimized while taking Xt as beyond its control. Setting Xt = xt after

optimization is what makes the representative household be representative. Af-

ter we have set Xt = xt , we can cast asset pricing formulas solely in terms of

the state xt in the planning problem, provided that we adopt the assumption

of time-zero trading that is embedded in the standard Arrow-Debreu model of

2 In related contexts, this idea was used by Lucas and Prescott (1971) and Prescott and

Mehra (1982XXX).
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competitive equilibrium. The Arrow-Debreu timing is contained in one of the

three types of competitive equilibrium models to be described in this chapter.

10.3. Types of competitive equilibria

We study a class of economic environments that fit the optimal linear regulator.3

Three types of competitive equilibrium share common specifications of informa-

tion, preferences, and technologies, but have different market structures. They

are (1) an “Arrow-Debreu equilibrium” with trades at time 0 in a complete set

of state-contingent dated commodities; (2) an “equilibrium with Arrow securi-

ties” that has a sequence of complete markets in current period commodities

and one-period ahead state-contingent claims; and (3) a “partial equilibrium”

model in which a competitive representative firm acts as a price taker and prices

lie along a system of demand equations perturbed by shocks. The allocations in

all of the competitive equilibria solve a common planning problem. The three

types of competitive equilibria provide alternative decentralized ways of attain-

ing the same allocation by confronting households and firms with different price

systems and trading opportunities. For applications, it is useful to know how to

transform one type of equilibrium into another.

10.4. Information, preferences, and technology

3 Hansen (1987) and Hansen and Sargent (200X) have studied such economies.
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10.4.1. Information

An exogenous information vector zt is governed by

zt+1 = A22zt + C2ǫt+1, (10.4.1)

where {ǫt} is an i.i.d. Gaussian vector with mean 0 and covariance matrix I ,

and the eigenvalues of Ã22 ≡ √
βA22 are bounded by unity in modulus. The

vector zt determines a time t preference shock bt and a time t endowment

shock dt via
dt = Ud zt

bt = Ub zt.
(10.4.2)

To account for the flow of information in the economy, we define the space

Jt = [ǫt, x0] , where J0 = [x0] and ǫt = [ǫt, ǫt−1, . . . , ǫ1] . We say that a stochastic

process is ‘adapted to Jt ’ if its time t component is a measurable function of

Jt .

10.4.2. Preferences

A representative household has preferences ordered by

− (1/2)E

( ∞
∑

t=0

βt
(

|st − bt|2 + ℓ2t
)

∣

∣

∣

∣

J0

)

, (10.4.3)

where ℓt is a scalar process that constrains a vector gt of intermediate activities

(designed to capture generalized adjustment costs) in equation (10.4.6) below,

and st is a vector of household services produced at time t via the household

technology
st = Λht−1 + Πct

ht = ∆hht−1 + Θhct.
(10.4.4)

Sometimes we interpret ℓt in (10.4.3) as labor input. In (10.4.4), ht is a vector

of stocks of household durable goods at t, ct is a vector of consumption flows,

and Λ, Π, ∆h, Θh are matrices.
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10.4.3. Technology

There is a constant returns to scale production technology

Φcct + Φiit + Φggt = Γkt−1 + dt

kt = ∆kkt−1 + Θkit,
(10.4.5)

where kt is a vector of capital goods used in production, it is a vector of

investment goods, ∆k is a matrix, and gt is constrained by4

gt · gt ≤ ℓ2t . (10.4.6)

10.4.4. Planning problem

The planning problem is to maximize (10.4.3) over choices of processes for

{st, ct, it, gt, kt, ht}∞t=0 that are adapted to Jt subject to (10.4.1), (10.4.2),

(10.4.4), and (10.4.5) with given initial conditions for (z0, h−1, k−1). The plan-

ning problem takes the form of an optimal linear regulator. Let

xt ≡





ht−1

kt−1

zt



 .

The two components h and k of the state vector are endogenous and z is

exogenous. If the matrix Φ ≡ [ Φc Φg ] is nonsingular, the control vector ut

can be chosen to be investment it because5

[

ct

gt

]

= Φ−1 (Γkt−1 + Udzt − Φiit) . (10.4.7)

Using this relation, the constraints (10.4.4) and (10.4.5) can be rewritten

xt+1 = Axt +But + Cǫt+1 (10.4.8)

4 Under the constant returns to scale interpretation, dt is taken as an additional input

available in fixed supply.
5 The matrix Φ can usually be rendered nonsingular by augmenting the control vector to

include some components of consumption or the labor-using intermediate activities.
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for appropriately chosen matrices A,B,C . The matrix A is block triangular

and the bottom row block of B is zero as required for the discounted stochastic

linear regulator problem (see page 64). Moreover, using (10.4.7) and (10.4.4),

the time t terms |st − bt|2 and |gt|2 in the objective function (10.4.3) of the

planner can both be expressed as quadratic forms in the control ut = it and the

augmented state xt .

The planner’s optimal decision rule is ut = −Fxt . Under this rule, the

state evolves according to

xt+1 = Aoxt + Cǫt+1, (10.4.9)

where Ao = A−BF .

10.4.5. Imposing stability

In permanent income economies, optimality does not automatically imply sta-

bility of the state vector process. For example, the economy of chapter 9 has a

single consumption good, a single capital good, and no labor-using intermediate

activities gt . The counterpart to equation (10.4.7) is

ct = Γkt−1 + Udzt − it.

The chapter 9 model constrains the subjective discount factor to be the recip-

rocal of the physical return to capital: β = 1
Γ+∆k

. Without imposing stability

as an additional constraint, the optimal sequence of capital stocks diverges to

minus infinity at a rate that is not dominated by 1√
β

. We want to impose sta-

bility because solutions that require xt not to explode at a rate exceeding 1√
β

are much better approximations to models that impose debt limits or various

non-negativity constraints. We therefore impose stability as an additional con-

straint, with the consequence that the solution of the resulting infinite-horizon

control problem equals the limit of a sequence of solutions to the corresponding

finite-horizon problems, each of which imposes a zero terminal capital stock.

We now describe competitive equilibria with three different types of trad-

ing structures, each of which supports an allocation that solves the planning

problem.
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10.5. Arrow-Debreu equilibrium

10.5.1. The price system at time 0

An Arrow-Debreu equilibrium has complete markets at time 0 in claims to

history-contingent dated commodities. We follow Harrison and Kreps (1979)

and Hansen and Sargent (XXXX) in re-scaling the Arrow-Debreu prices. The

re-scaled prices are the ordinary Arrow-Debreu history-date prices divided by

probabilities times discount factors. Using the scaled prices converts present

values into expected discounted geometric sums of quadratic forms that are

easy to compute by solving Sylvester equations (see chapter 3).
We use a price system with components {p0

ct, p
0
it, p

0
ℓt, p

0
dt, p

0
rt}∞t=0 , each

element of which resides in a space L2
0 defined by

L2
0 =

[

{yt}∞t=0: yt is a random variable in Jt for t ≥ 0, and E

[ ∞
∑

t=0

βt y2
t | J0

]

< +∞
]

.

That ‘yt is in Jt ’ means that yt can be expressed as a measurable function of

Jt . The square summability requirement, E[
∑∞

t=0 β
ty2

t | J0] <∞ , imposes that

yt not grow too fast in absolute value.

Our price system contains the following prices: p0
ct is an nc × 1 stochastic

process that prices the consumption process ct; p
0
ℓt is a scalar stochastic process

that prices ℓt ; p
0
dt is a vector stochastic process that prices the process {dt}; p0

it

is an nk × 1 vector stochastic process that prices new investment goods; and

p0
rt is an nk × 1 vector stochastic process of capital rental rates. A time t

component of the price system is a random vector that is a function of Jt . The

price system is a sequence of vector-valued measurable functions of the time t

histories Jt .

Prices and quantities are stochastic processes. We require the stochastic

processes for both prices and quantities to reside in L2
0 . By virtue of a Cauchy-

Schwartz inequality, this makes the conditional inner products to be used in

the budget constraints and objective functions below well defined and finite in

equilibrium. Later it will be convenient to obtain recursive representations for

both prices and quantities.

We now describe the choice problems faced by a household and a firm within

a competitive equilibrium in which all trades occur at time 0. The household
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and firm act as price takers. The allocations chosen by the household and the

firm must be “realizable” in the sense that time t decisions depend only on

information available at time t , i.e., they must reside in L2
0 .

10.5.2. The household

We let E denote the mathematical expectation evaluated with respect to the

joint probability distribution of [ǫt, x0] . We also let Et denote E(·|Jt). The

household chooses stochastic processes for {ct, st, ht, ℓt it, kt}∞t=0 , each element

of which is in L2
0 , to maximize

− 1

2
E0

∞
∑

t=0

βt
[

(st − bt) · (st − bt) + ℓ2t
]

(10.5.1)

subject to

E

∞
∑

t=0

βt
(

p0
ct · ct + p0

it · it
)

| J0

= E

∞
∑

t=0

βt
(

p0
ℓtℓt + p0

rt · kt−1 + p0
dt · dt

)

| J0 (10.5.2a)

st = Λht−1 + Πct (10.5.2b)

ht = ∆hht−1 + Θhct (10.5.2c)

kt = ∆kkt−1 + Θkit (10.5.2d)

bt = Ubzt (10.5.2e)

dt = Udzt (10.5.2f)

zt+1 = A22zt + C2ǫt+1 (10.5.2g)

with h−1, k−1, z0 given.
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10.5.3. The firm

A firm rents capital and labor and buys the realization of the endowment pro-

cess dt . It uses these inputs to produce consumption goods and investment

goods that it sells to the household. The firm chooses stochastic processes for

{ct, it, kt, ℓt, gt, dt} , each element of which is in L2
0 , to maximize

E0

∞
∑

t=0

βt
(

p0
ct · ct + p0

it · it − p0
rt · kt−1 − p0

ℓtℓt − p0
dt · dt

)

(10.5.3)

subject to

Φc ct + Φg gt + Φi it = Γkt−1 + dt (10.5.4)

− ℓ2t + gt · gt = 0. (10.5.5)

10.5.4. Competitive equilibrium with time-zero trading

A competitive equilibrium has all trades being made at time 0.

Definition 10.5.1. A competitive equilibrium is a price system {p0
ct, p

0
ℓt, p

0
dt,

p0
it, p

0
rt}∞t=0 and an allocation {ct, it, st, kt, ht, ℓt, gt}∞t=0 that satisfy the following

conditions:

a. The allocation and each component of the price system and reside in

the space L2
0 .

b. Given the price system, the allocation solves the problems of the house-

hold and firm.
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10.5.5. Equilibrium computation

A strategy for computing an equilibrium is first to solve the planning problem

for equilibrium quantities, then to compute shadow prices that we transform

into equilibrium prices.

The optimal linear regulator can be used to solve a planning problem. The

optimal law of motion for the state xt and the value function for the planning

problem contain enough information to compute competitive equilibrium prices.

Let V (x) = −x′Px − p be the optimal value of the planning problem starting

from initial state x = [h′ k′ z′ ]′ . The Bellman equation for the planning

problem is

−x′Px− p = max
c,i,g

{−.5 [(s− b) · (s− b) + g · g] + βE (−x∗′Px∗ − p)} (10.5.6)

subject to the linear constraints

Φcc+ Φgg + Φii = Γk + d

k∗ = ∆kk + Θki

h∗ = ∆hh+ Θhc

s = Λh+ Πc

z∗ = A22z + C2ǫ

b = Ubz

d = Udz,

(10.5.7)

where ∗ denotes a next period value. The time-invariant character of the plan-

ning problem makes the optimal decision rules time invariant. Time t decision

rules are linear in the state vector xt . We denote these rules ct = Scxt, gt =

Sgxt, ht = Shxt, it = Sixt, kt = Skxt, st = Ssxt .

The law of motion for the state vector is linear:

xt+1 = Aoxt + Cǫt+1 (10.5.8)

where

Ao ≡
[

Ao
11 Ao

12

0 A22

]

, C ≡
[

0

C2

]

. (10.5.9)

The partitioning of the Ao and C matrices is according to the endogenous state

vector [h′t−1 k′t−1 ]
′

and the exogenous state vector zt . The zero restriction
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on the (2,1) partition of Ao reflects the fact that the exogenous component of

the state vector at time t + 1 does not depend on the endogenous state vector

at time t . The zero restriction on the first rows in the partition of C reflects

the fact that the endogenous state vector at time t + 1 is predetermined (i.e.,

depends only on time t information). The contingency plans for ht and kt are

embedded in the part of (10.5.9) that determines the endogenous state vector

[h′t k
′
t]
′ as a function of xt . In particular,

[

Sh

Sk

]

= [Ao
11 Ao

12 ] . (10.5.10)

The planner’s decision rules are recursive in the sense that the time t decision

depends on the state vector at time t , which in turn depends on the state vector

at time t− 1.

10.5.6. Shadow prices

Equilibrium prices can be found by appropriately reinterpreting shadow prices

as prices. Formulas for shadow prices corresponding to the elements of the price

system {p0
ct, p

0
ℓt, p

0
dt, p

0
it, p

0
rt}∞t=0 can be extracted from Ao and the matrix P

in the quadratic form in the value function. Evaluating these shadow prices at

the equilibrium allocation recovers prices.

The time t component of these shadow prices are linear functions of xt . In

particular, the vector of shadow prices P 0
ct for ct is given by6

p0
ct = Mcxt

where

Mc = Θ′
hMh + Π′Ms. (10.5.11)

Here Mhxt is the shadow price of consumer durables and Msxt is the shadow

price of household services. These shadow prices satisfy

Mhxt = E

[ ∞
∑

τ=1

βτ (∆′
h)

τ−1
Λ′Msxt+τ |Jt

]

(10.5.12)

Msxt = (st − bt) , (10.5.13)

6 Quantities Mjxt emerge from derivatives of the planner’s value function and are mea-

sured in units of marginal utility.
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where the mathematical expectation is evaluated with respect to the model

(10.5.8) and where bt = Sbxt and st = Ssxt is the planner’s solution for st as

a function of xt . Also, let the planner’s solution for intermediate inputs gt be

gt = Sgxt . Hansen and Sargent (XXXX) show that these other components of

the shadow price system have representations7

p0
ct = Mcxt

p0
it = Mixt

p0
rt = Γ′Mdxt

p0
dt = Mdxt

p0
ℓt = |Mℓxt|.

(10.5.14)

where Hansen and Sargent (200XXX) give the following formulas for the Mj ’s

in terms of P and Ao :
Mk = 2β [0 I 0]PAo

Mh = 2β [I 0 0]PAo

Ms = (Sb − Ss)

Md =

[

Φ′
c

Φ′
g

]−1 [Θ′
hMh + Π′Ms

−Sg

]

Mc = Θ′
hMh + Π′Ms

Mi = Θ′
kMk.

Mℓ = Sg

(10.5.15)

Here the partitions [0 I 0] and [I 0 0] are conformable with the partition

[h′t−1, k
′
t−1, zt]

′ of xt .

7 Hansen and Sargent also compute a shadow price of capital, which they show is p0
kt

=

(Γ′Md + ∆′
k
Mk)xt .



Arrow-Debreu equilibrium 263

10.5.7. Recursive representation of time 0 prices

Formulas (10.5.8) and (10.5.14) imply that we can regard the price system as

consisting of sequences of measurable functions of the histories Jt = [ǫt, x0] .

Equations (10.5.8) and (10.5.14) give a recursive representation of this price

system in terms of the planner’s state vector xt . Although this representation

of the price system turns out to be very convenient for asset pricing, it is not

an appropriate representation for posing a recursive version of the household’s

optimization problem in a competitive equilibrium. We can obtain a recursive

representation of the price system that will serve this purpose by introducing

an additional state vector designed to keep track of the histories Jt for t ≥ 0.

In particular, define a new state vector Xt with components Ht−1,Kt−1 that

have the same dimensions as ht−1, kt−1 , respectively:

Xt =





Ht−1

Kt−1

zt



 .

The exogenous state vector zt is a common component of xt and of Xt . Impose

an initial condition

X0 =





H−1

K−1

z0



 =





h−1

k−1

z0



 = x0.

Take the law of motion for X to be

Xt+1 = AoXt + Cǫt+1 (10.5.16a)

where Ao is the same matrix that appears in the representation (10.4.9) for the

evolution of xt under the planner’s optimal control. Then we can represent the

shadow price system as

p0
t = MXt. (10.5.16b)

What is the purpose of this “big X ” representation for prices?8 First, note

that by setting X0 = x0 , we assure that (10.5.16) reproduces the planner’s

shadow prices. But by expressing them in terms of Xt rather than xt , we

8 In their concept of a recursive competitive equilibrium, Prescott and Mehra (1980) dis-

tinguished between the market wide level of capital k and the level chosen by an individual

k in order to represent price-taking behavior. Our purpose is somewhat different than theirs,

which was not to get a recursive representation of time-0 Arrow-Debreu prices.
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make these prices depend only on a state variable that is beyond the control of

the household. The role of Xt is to account for the history Jt = [ǫt, x0] . In a

competitive equilibrium, we want households and firms to influence the evolution

of ht and kt , the endogenous components of xt , but still to be price takers.

Therefore, in expressing the choices facing households and firms in a competitive

equilibrium, we use Xt to provide a recursive representation of prices.

10.5.8. Recursive representation of household’s problem

The household chooses an allocation to maximize (10.5.1) subject to (10.5.2)

and the price system (10.5.16a), (10.5.16b), which the household regards as

exogenous. Thus the household maximizes

E0

∞
∑

t=0

βt
{

−.5
[

(st − bt) · (st − bt) + ℓ2t
]}

(10.5.17)

subject to

E

∞
∑

t=0

βt
(

p0
ct · ct + p0

it · it
)

| J0

= E
∞
∑

t=0

βt
(

p0
ℓtℓt + p0

rt · kt−1 + p0
dt · dt

)

| J0 (10.5.18a)

st = Λht−1 + Πct (10.5.18b)

ht = ∆hht−1 + Θhct (10.5.18c)

kt = ∆kkt−1 + Θkit (10.5.18d)

bt = Ubzt (10.5.18e)

dt = Udzt (10.5.18f)

p0
t = M0Xt (10.5.18h)

Xt+1 = A0Xt + Cǫt+1. (10.5.18i)

with h−1, k−1, z0 given. For a given Lagrange multiplier µw
0 attached to (10.5.18a),

problem (10.5.17), (10.5.18) takes the form of an optimal linear regulator. (See

section 11.4 for details and also for a way to compute µw
0 from the solution of

the planning problem.)
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The maximizing choice of the household makes the time t component of

at = [ ct it ellt ]
′

a function of the composite state





ht−1

kt−1

Xt



 :

at = − [ f1 f2 f3 ]





ht−1

kt−1

Xt



 . (10.5.19)

The solution of the planning problem makes at a function of the state Xt :

at = −FXt. (10.5.20)

In an equilibrium, xt = Xt in (10.5.19), so that the following equality prevails

for all xt = Xt : s − [ f1 f2 f3 ]





ht−1

kt−1

Xt



 = −FXt .

10.5.9. Units of prices and reopening markets

Prices have the units of time 0 marginal utilities of the representative agent.

We can choose a numeraire to express prices in terms of one of the consumption

goods. In particular, denote the time t marginal utility of the first consumption

good e1uc,t and assume that e1uc,t 6= 0 with probability one for all t . This

assumption makes the first consumption good at time t a legitimate numeraire.

We choose to express the price system at time 0 in units of the first consumption

good. Therefore, we set

p0
t =

Mxt

e1uc,0
. (10.5.21)

More generally, for t ≥ τ where τ ≥ 0, we could define a time τ price system9

pτ
t =

M

e1uc,τ
(10.5.22)

To convert the tail of the time 0 price system for t ≥ 1 to the time 1 price

system we can use

p1
ct = p0

ct

e1uc,0

e1uc,1
,

9 This time τ price system would prevail if we were to reopen markets at time τ , subject

to appropriate initial conditions being inherited from earlier trading at time 0 prices.
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and so on.

10.6. Sequential markets with Arrow securities

We noted in section 10.5.7 that the time 0 prices for an Arrow-Debreu time

0 competitive equilibrium have a recursive representation based on (10.5.16a),

(10.5.16b). This fact makes it easy to construct equilibrium prices for trading

in a sequence of one-period markets. Following Arrow (1954XXX), we can

use (10.5.16) to form competitive equilibrium prices with sequential trading

of all current dated commodities and one-period state-contingent claims to a

composite commodity called wealth. In this setting, the decision problem of

the household is recursive and that of the firm is static. Though the trading

arrangement differs, the equilibrium allocation is the same as the one attained

in the equilibrium of the Arrow-Debreu model with time 0 trading of all history-

contingent commodities for all dates.

10.6.1. Arrow securities

To explain why it is natural to move from an equilibrium with time 0 trad-

ing to an equilibrium with sequential trading, represent the consumer’s budget

constraint (10.5.2) as

E0

∞
∑

t=1

βt
(

p0
ct · ct + p0

it · it − p0
ℓtℓt − p0

rt · kt−1 − p0
dt · dt

)

+ p0
c0 · c0 + p0

i0 · i0

= p0
ℓ0ℓ0 + p0

r0 · k−1 + p0
d0 · d0.

Express the expected discounted sum on the left side as

E0β

(

e1uc,1

e1uc,0

) ∞
∑

t=1

βt−1
(

p1
ct · ct + p1

it · it − p1
ℓtℓt − p1

rt · kt−1 − p1
dt · dt

)

≡ E0β

(

e1uc,1

e1uc,0

)

a1 (X1) =

∫

q (X1|X0) a1 (X1) dX1,

(10.6.1)

where a1 = a1(X1) measures wealth at time 1 in state X1 in units of the

time 1 consumption good, and the one-step ahead pricing kernel q(X1|X0) ≡
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β
e1uc,1

e1uc,0
f(X1|X0). Here f(X1|X0) is the transition density of X defined by

(10.5.16a). Use (10.6.1) to express the budget constraint as

∫

q (X1|X0)a1 (X1) dX1 + p0
c0 · c0 + p0

i0 · i0

= p0
ℓ0ℓ0 + p0

d0 · d0 + p0
r0 · k−1 + a0 (X0)

(10.6.2)

where a0(X0) is the value of the household’s initial wealth, namely, the capital

stock k−1 . More generally, take prices without superscripts to be denominated

in units of time t consumption of the first good and write

∫

q (Xt+1|Xt)at+1 (Xt+1) dXt+1 + pct · ct + pit · it

= pℓtℓt + pdt · dt + prt · kt−1 + at (Xt)

(10.6.3)

where

q (Xt+1|Xt) = β
e1uc,t+1

e1uc,t
f (Xt+1|Xt) (10.6.4)

is the kernel for pricing claims of the first consumption good at time t + 1 in

terms of time t consumption of the first good.

The spot prices p·t are given by the appropriate time t components of

our original time 0 prices defined in (10.5.16). Together with the pricing kernel

defined as (10.6.4), they allow us to support the solution of the planning problem

by a competitive equilibrium with sequential markets. Within that equilibrium,

the problem of the household is recursive and the problem of the firm is static,

as we now proceed to show.

10.6.1.1. The household’s problem in the sequential equilibrium

The household’s Bellman equation is

W (at, ht−1, kt−1, Xt) = max
ct,it,ℓt,a(Xt+1)

{

−
(

|st − bt|2 + ℓ2t
)

+β

∫

W (a (Xt+1) , ht, kt, Xt+1) f (Xt+1|Xt) dXt+1

}

(10.6.5)

where the maximization is subject to

st = Λht + Πct (10.6.6a)
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ht = ∆hht−1 + Θhct (10.6.6b)

kt = ∆kkt−1 + Θkit (10.6.6c)

Xt+1 = AoXt + Cǫt+1 (10.6.6d)

pt = MXt (10.6.6e)

bt = SbXt (10.6.6f)

dt = SdXt (10.6.6g)
∫

a (Xt+1) q (Xt+1|Xt) dXt+1 = at + pℓtℓt + pdt · dt + prt · kt−1

− pct · ct − pit · it, (10.6.6h)

and bt = SbXt ≡ Ubzt . The optimal policy functions express ct, it, ℓt , and

a(Xt+1) each as functions of (at, ht−1, kt−1, Xt).

10.6.1.2. The firm

The problem of a firm is static:

max
ct,it,ℓt,gt,dt,kt−1

(pct · ct + pit · it − prt · kt−1 − pdt · dt − pℓtℓt) (10.6.7)

subject to the technology (10.5.4), (10.5.5).

10.6.2. Recursive competitive equilibrium

We call a competitive equilibrium with Arrow securities a recursive competitive

equilibrium. In a recursive competitive equilibrium, the household takes the law

of motion for Xt as given. However, the household and the firm choose elements

hs, ks of the state xs+1 that correspond to the elements Hs,Ks of Xs+1 . A

recursive competitive equilibrium requires that Xt = xt for t ≥ 1, starting

from x0 = X0 , which means that the laws of motion chosen by firms and the

household must be consistent with the law of motion (10.5.16) that inspires the

household’s decisions.

It can be verified that the quantities that solve the planning problem are

recursive competitive equilibrium quantities at the candidate prices described

above. See Hansen and Sargent (20XXX) for some of the details.
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10.7. Asset pricing in a nutshell

It is a significant practical convenience that we can dispense with Xt as a state

variable when we actually compute asset prices. After we have computed the

equilibrium quantities and prices, for the purpose of computing asset prices, it

is sufficient to express streams of payouts and prices both as functions of the

state vector xt that appears in the planning problem.10 As an example, let

an endowment shock be a linear function of the exogenous component zt , and

let the endogenous component ht−1 track movements in the intertemporal rate

of substitution that drives the prices. Let {yt}∞t=0 be a stochastic process of

‘dividends’, i.e., claims on the vector of consumption goods with representation

yt = Scxt . In units of the first time t consumption good, let ayt denote the

price at time t of a claim on the tail of the dividend process {ys}∞s=t . The price

ayt of a claim on the dividend stream from t onward can be represented as

xt+1 = Aoxt + Cǫt+1 (10.7.1a)

yt = Syxt (10.7.1b)

pcs = (e1Mcxt)
−1
Mcxs (10.7.1c)

ayt = Et

∞
∑

t=0

βtpct+j · yt+j . (10.7.1d)

Equation (10.7.1d) can be evaluated by solving a Sylvester equation.

Equations (10.7.1) capture the spirit of Brock’s (1982) extension of Lucas’s

asset pricing formulas in which equilibrium history-date prices are the pertinent

probabilities times the intertemporal marginal rate of substitution evaluated at

the equilibrium allocation. The single state vector xt tracks both the history-

date prices and the dividend process.

10 We view this as a manifestation of Brock’s (1982) idea of evaluating history-date prices

by multiplying the relevant conditional probabilities by the representative consumer’s marginal

rates of substitution evaluated at the allocation that solves the planning problem. Incidentally,

another perspective on Brock’s insight is Mehra and Prescott’s (1985) observation that the

cross-equation restrictions between asset prices and consumption are not affected by whether

consumption is regarded as exogenous or endogenous. Making consumption endogenous adds

restrictions across consumption and yet other processes.
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10.8. Partial equilibrium interpretation

Another decentralization of the planning problem makes contact with partial

equilibrium models in the style of Lucas and Prescott (1971), Rosen, Murphy,

and Scheinkman (1994), Rosen and Topel (199??), Ryoo and Rosen (2003), and

Sargent (1987, chapter XIV). These models have a representative firm that acts

as a price taker within an industry that faces a stochastically shifting linear

demand schedule.

Within the environment of this chapter, consider a representative firm that

chooses stochastic processes {ct, gt} to maximize

E0

∞
∑

t=0

βt {pt · ct − gt · gt} (10.8.1)

subject to the constraints

kt = ∆kkt−1 + Θkit (10.8.2a)

Φcct + Φggt + Φiit = Γkt−1 + dt (10.8.2b)

Xt+1 = AoXt + Cǫt+1 (10.8.2c)

dt = UdXt (10.8.2d)

pt = McXt. (10.8.2e)

Here (10.8.2c), (10.8.2e) are used to represent a dynamic demand curve, where

Mc and the state Xt are defined as above. The Ht component of Xt can

express high order dynamics in demand.11 The Bellman equation is

V (kt−1, Xt) = max
ct,kt,it,gt

{pt · ct − gt · gt + βEV (kt, Xt+1)} (10.8.3)

where the maximization is subject to (10.8.2). The optimal decision rule ex-

presses ct, gt as functions of kt, Xt , so that the firm chooses to make kt follow

a law that can be expressed as

kt = k (kt−1, Xt) = k (kt−1, Ht−1,Kt−1, zt) . (10.8.4)

Embedded in (10.8.2c) is the firm’s perceived law of motion for Kt , namely,

Kt = K (Xt) = K (Ht−1,Kt−1, zt) . (10.8.5)

11 See Hansen and Sargent (XXXX, chapters XXX) for an analysis.
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A competitive equilibrium requires that ks ≡ Ks for all s and all zs , or

k (Kt−1, Ht−1,Kt−1, zt) = K (Ht−1,Kt−1, zt) . (10.8.6)

The left side of (10.8.6) is the actual law of motion for K that emerges from

optimization (this is the content of the function k(·)) and equilibrium (this is

the content of the condition k = K that makes the representative firm repre-

sentative). The right side of (10.8.6) is the representative firm’s perceived law

of motion for K . Thus, (10.8.6) imposes equality between the ‘perceived’ law

of motion for K and the ‘actual’ law of motion implied by those perceptions.

Equality between these two laws imposes rational expectations and respects the

price taking behavior of the firm.12

10.9. Concluding remarks

This chapter has set forth a class of dynamic linear quadratic economies and

described three types of competitive equilibria. We have made the standard

rational expectations assumption that a planner and the agents all trust their

common model. The next chapter alters that assumption by instilling in both

the household and a planner the same degree of preference for robustness of

decision rules with respect to deviations of the actual data generation mecha-

nism from a common approximating model. Thus, the next chapter will contain

modifications of the Bellman equation (10.5.6), (10.5.7) for the planner and the

Bellman equation (10.6.5), (10.6.6) for the household trading Arrow securities.

With a preference for robustness, these will be replaced by Bellman equations

for two-player, zero-sum games. Decentralizing the robust planning problem will

then require checking that the choices of both the maximizing and the minimiz-

ing players for the planning problem and the household within a competitive

equilibrium, respectively, are mutually consistent. Here agents choose an alloca-

tion as well as worst case shocks. To decentralize the economy, we shall require

that these worst case shocks be appropriately aligned with those chosen by the

planner.

12 Marcet and Sargent (1989) and Evans and Honkapohja (2001) extensively exploit the def-

inition of a rational expectations equilibrium as the fixed point of a mapping from a perceived

to an actual law of motion.





Chapter 11
Competitive equilibrium under robustness

11.1. Introduction

This chapter puts fear of model misspecification into the mind of the representa-

tive household in the model of chapter 10. The analysis parallels that of chapter

10 except that we replace Bellman equations for the maximizing agents in chap-

ter 10 with ones that pertain to two-player zero-sum games. In each game, a

minimizing player helps the decision maker explore the fragility of a decision

rule with respect to various difficult-to-detect perturbations of the approximat-

ing model. To decentralize an allocation that solves the planning problem, we

specify two-player zero sum games for the representative household in a decen-

tralized economy and describe how at the equilibrium prices both the allocation

and the worst case model chosen by the household are aligned with counterparts

that are chosen by the planner. Equilibrium quantities solve a robust planning

problem. Competitive equilibrium prices can be computed from shadow prices

for the robust planning problem. Chapter 12 uses these results to price assets

when agents fear model misspecification. Appendix A describes a partial equi-

librium decentralization of a robust planning problem with adjustment costs.

Before describing competitive equilibria with the more general household

and production technologies of chapter 10, we begin with a pure endowment

economy.

– 273 –
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11.2. A pure endowment economy

11.2.1. The planning problem

We consider a nonstochastic pure endowment economy. Two sequences bt, dt

are governed by

xt+1 = Axt + Cwt+1 ["simple1;a "](11.2.1a)

bt = Ubxt ["simple1;b "](11.2.1b)

dt = Udxt. ["simple1;c "](11.2.1c)

Here xt, bt, dt, wt are each vectors; dt is an exogenous endowment and bt is an

exogenous preference shock sequence; wt+1 is a distortion to the state xt that

determines the endowment and preference shock processes. A representative

household receives consumption ct = dt . Because the endowment is exogenous,

the robust planning problem becomes

−x′0Px0 = min
{wt+1}

∞
∑

t=0

βt
{

−|ct − bt|2 + βθw′
t+1wt+1

}

["simple2 "](11.2.2)

where θ ∈ (θ,+∞] measures the planner’s fear that (11.2.1a) is misspecified.

The planner minimizes criterion (11.2.2) subject to (11.2.1) and ct = dt . The

planning problem is an optimal linear regulator. Let R = (Ud − Ub)
′(Ud − Ub).

The Bellman equation for the planning problem is

−x′Px = min
w

{−x′Rx+ w′ (βθI)w − y′Py} ["simple3;a "](11.2.3a)

where the minimization is subject to

y = Ax+ Cw. ["simple3;b "](11.2.3b)

The solution of the planning problem is a feedback rule

w = Kx. ["simple4 "](11.2.4)

The law of motion for the state x under the worst case rule is

xt+1 = (A+KC)xt
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and the worst-case endowment and preference sequences can be represented

ct = Ud (A+ CK)
t
x0 ["simple5;a "](11.2.5a)

bt = Ub (A+ CK)
t
x0. ["simple5;b "](11.2.5b)

The worst case processes in (11.2.5) generate a shadow price sequence qt = βtpt

associated with the robust planning problem, where

pt = Mxt ["simple6 "](11.2.6)

and where M = 2(Ub − Ud) or

pt = 2 (Ub − Ud) (A+ CK)t x0. ["simple7 "](11.2.7)

11.2.2. Household problem

We confront the representative household with the sequence of scaled (Harrison-

Kreps) prices {pt}∞t=0 from (11.2.7). It is convenient to represent the price

system recursively as

Xt+1 = (A+ CK)Xt ["simplep;a "](11.2.8a)

pt = MXt ["simplep;b "](11.2.8b)

where X0 = x0 . The household’s problem is

min
{wt+1}∞

t=0

max
{ct}∞

t=0

∞
∑

t=0

βt{−|ct − bt|2 + βθw′
t+1wt+1} ["simple8 "](11.2.9)

subject to (11.2.1) and the budget constraint

∞
∑

t=0

βt [pt · dt − pt · ct] = 0 ["simple9 "](11.2.10)

To solve this problem, we formulate a Lagrangian

L =

∞
∑

t=0

βt{−|ct − bt|2 + βθw′
t+1wt+1

+ µw
0 [pt · dt − pt · ct]}

["simple10 "](11.2.11)
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where µw
0 is a Lagrange multiplier on (11.2.10). Formula (11.4.11) below im-

plies that µw
0 = 1. We are to maximize (11.2.11) with respect to ct and

minimize it with respect to wt+1 . The first-order condition with respect to ct

is static:

µw
0 pt = 2(bt − ct) ["simple11 "](11.2.12)

which using µ2
0 = 1 leads to the demand curve

ct = bt − .5pt. ["simple12 "](11.2.13)

Using (11.2.12) or (11.2.13) and (11.2.8b), we deduce that −|ct−bt|2 = −.25X ′
tM

′MXt ,

pt · dt = X ′
tM

′Udxt , and pt · ct = X ′
tM

′Ubxt − .5X ′
tM

′MXt . Therefore

the current period term in the objective (11.2.11) becomes .25XtM
′MXt +

w′
t+1(βθI)wt+1 +X ′

tM
′(Ud−Ub)xt . Note that M ′(Ud −Ub) = −.5M ′M . Thus,

we have that the Bellman equation for the household’s problem reduces to

[

X

x

]′ [
P11 P12

P21 P22

] [

X

x

]

= min
w

{

[

X

x

]′ [
.25M ′M −.25M ′M

−.25M ′M 0

] [

X

x

]

+ w′(βθI)w + β

[

Y

y

]′ [P11 P12

P21 P22

] [

Y

y

]

}

["simple13"](11.2.14)

where the minimization is subject to

[

Y

y

]

=

[

A+ CK 0

0 A

] [

X

x

]

+

[

0

C

]

w. ["simple14"](11.2.15)

The solution of the robust household’s Bellman equation (11.2.14), (11.2.15) is

attained by a policy rule

w = [ K̃1 K̃2 ]

[

X

x

]

. ["simple15 "](11.2.16)

For the worst case shock chosen by the household to be aligned with the

one chosen by the planner requires that

K̃1 + K̃2 = K. ["simple16 "](11.2.17)

It can be proved that this equality holds, and furthermore that in this simple

example that K̃2 = 0, so that the household feeds back only on the part of the

aggregate state that drives the scaled price process pt .
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As an example, set β = .99, θ = .001−1, dt − .7dt−1 = (1− .7)5+ .05wt, bt =

30. Let the state be xt =

[

1

dt

]

. We computed that K̃1 = K = [−0.0044 0.0001 ]

and K̃2 = 0.1

11.3. A robust planning problem

When the representative consumer fears model misspecification, the planning

problem takes the form of a robust linear regulator problem. Let V (x) =

−x′Px − p be the value of the robust planning problem starting from initial

state x . The Bellman equation is

−x′Px− p = min
w

max
c,i,g

{

−.5[(s− b) · (s− b) + g · g]

+ βθw′w + βE (−x∗′Px∗ − p)
}

["rod13 "](11.3.1)

where the extremization is subject to the linear constraints

Φcc+ Φgg + Φii = Γk + d ["rod14;a "](11.3.2a)

k∗ = ∆kk + Θki ["rod14;b "](11.3.2b)

h∗ = ∆hh+ Θhc ["rod14;c "](11.3.2c)

s = Λh+ Πc ["rod14;d "](11.3.2d)

z∗ = A22z + C2(ǫ+ w) ["rod14;e "](11.3.2e)

b = Ubz ["rod14;f "](11.3.2f)

d = Udz, ["rod14;g "](11.3.2g)

where ∗ denotes a next period value. Problem (11.3.1), (11.3.2) differs from

(10.5.6), (10.5.7) in the following respects: (1) the addition of the distortion

C2w to the law of motion for z , (2) the appearance of βθw′w in the continuation

value function in (11.3.1), and (3) the minimization over w . As usual, θ > 0 is

a robustness parameter.

A Markov perfect equilibrium of the two-player zero-sum game (11.3.1),

(11.3.2) is a pair of decision rules u = −F (θ)x,w = K(θ)x . The equilibrium

determines two laws of motion for the state, namely,

xt+1 = Aoxt + Cǫt+1 ["nasset3 "](11.3.3)

1 The Matlab program decentr.m computes an example.
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and

xt+1 = (Ao + CK(θ))xt + Cǫt+1, ["nasset4 "](11.3.4)

where Ao = A − BF (θ). Equation (11.3.3) is the approximating model under

the robust rule, while (11.3.4) is the worst case model under the robust rule.

In chapter 12, we show that both of these models can be used to price assets by

appropriately adjusting the stochastic discount factor.

11.4. Min-max representation of the household’s problem in
an Arrow-Debreu equilibrium

As in chapter 10, the value function and the robust law of motion for the

state xt contain information about competitive equilibrium prices (see formulas

(10.5.14) and (10.5.21)). To decentralize the solution of the robust planning

problem, we must verify that when the robust representative household faces

those prices as a price-taker, he chooses the allocation that solves the planning

problem. In checking that claim, we also verify that the representative household

chooses a worst case model that is aligned with the planner’s worst case model.

An Arrow-Debreu setting makes it natural to formulate the household’s

problem as a game in which the maximizing and minimizing players both commit

to sequences, as in the sequence games of chapter 6. We find it convenient to

embrace a recursive representation of each player’s problem (see section 6.5.1).

The maximizing player chooses an allocation, taking as given the law of motion

for X chosen by the minimizing player. We use a guess-and-verify strategy.

First we take up the problem of the maximizing player, having guessed that the

minimizing player has chosen as the law of motion for X the same worst case

law that is chosen by the robust planner. Second, setting the allocation equal

to the one chosen by the planner, we verify that the minimizing player chooses

the same distorted law of motion as does the planner.
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11.4.1. Sequence problem of maximizing player

We first pose the problem of the maximizing player in a sequence formulation

of the household’s robust decision problem. As in chapter 10, we use a recursive

representation of prices in the Arrow-Debreu equilibrium. This enables us to

give a recursive representation of the maximizing player’s decision problem.

The maximizing player in the robust household chooses stochastic processes for

{ct, it, st, ht, kt, ℓt}∞t=0 , each element of which is in L2
0 , to maximize

E0

∞
∑

t=0

βt
{

−.5
[

(st − bt) · (st − bt) + ℓ2t
]

+ βθX ′
t+1K

′KXt+1

}

["rof1 "](11.4.1)

subject to

E0

∞
∑

t=0

βt
(

p0
ct · ct + p0

it · it
)

| J0

= E0

∞
∑

t=0

βt (p0
ℓtℓt + p0

rt · kt−1 + p0
dt · dt) | J0 ["rof2;a "](11.4.2a)

st = Λht−1 + Πct ["rof2;b"](11.4.2b)

ht = ∆hht−1 + Θhct ["rof2;c "](11.4.2c)

kt = ∆kkt−1 + Θkit ["rof2;d "](11.4.2d)

bt = Ubzt ["rof2;e "](11.4.2e)

dt = Udzt ["rof2;f "](11.4.2f)

p0
t = MXt ["rof2;h "](11.4.2h)

Xt+1 = (Ao + CK)Xt + Cǫt+1 ["rof2;i "](11.4.2i)

Tom and Lars: do we want to include the law of motion for zt+1 here?

with h−1, k−1, z0 given, and where the mathematical expectation is evaluated

with respect to the distribution over histories ǫt . In (11.4.2i), K = K(θ) is

the matrix that defines the decision rule for the worst case shock in the robust

planning problem. To compute the pricing matrix M in (11.4.2h), we use

the counterparts to formulas (10.5.14), (10.5.21) in which Ao is the now the

matrix A − BF that solves the robust planning problem and P is the matrix

in the value function for the robust planning problem that appears on the left

side of (11.3.1). In the household’s problem (11.4.1), (11.4.2), E0 denotes the

expectation evaluated with respect to the ǫt ’s that together with the distorted
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law of motion (11.4.2i) for the state Xt+1 generate the distribution used to

evaluate the present values in the budget constraint as well as the component of

the state zt that drives the preference shock bt and the endowment process dt .

A convenient feature of problem (11.4.1), (11.4.2) is that the same distribution

is used to evaluate future prospects both in the objective function (11.4.1) and

in the budget constraint (11.4.2a). Putting a multiplier µw
0 on the household’s

budget constraint, we can combine (11.4.1) and (11.4.2a) into a Lagrangian

L = E0

∞
∑

t=0

βt
{

−.5
[

(st − bt) · (st − bt) + ℓ2t
]

+ βθX ′
t+1K

′KXt+1

+ µw
0 (p0

ℓtℓt + p0
rt · kt−1 + p0

dt · dt − p0
ct · ct + p0

it · it)
}

["rof1lagrange "](11.4.3)

The household’s problem is to choose an allocation to maximize (11.4.3) and a

multiplier µw
0 to minimize it, subject to (11.4.2b)–(11.4.2c). For a given µw

0 ,

this problem takes the form of an optimal linear regulator. In the following

subsection 11.4.2, we give a formula that allows us to compute µw
0 in advance

directly from the allocation that solves the robust planning problem and the

price system (11.4.2h), (11.4.2i). Being a linear regulator problem, it follows

that the solution of the maximizing player’s problem is a decision rule that can

be expressed

[ c′t i′t ℓ′t ]
′
= S





ht−1

kt−1

Xt



 . ["rof22 "](11.4.4)

For (11.4.4) to confirm the solution of the planning problem it must be

true that

S





ht−1

kt−1

Xt



 ≡ SXt, ["rof24"](11.4.5)

when we set ht−1 = Ht−1 and kt−1 = Kt−1 , where SXt is the decision rule

that solves the planning problem. Equality (11.4.5) assures that the robust

household in the competitive equilibrium chooses the allocation that solves the

planning problem.

The role of the pair (11.4.2h), (11.4.2i) is to provide a recursive represen-

tation of the prices that appear in the household’s budget constraint (11.4.2a).

In particular, notice how (11.4.2i) makes sure that in (11.4.2a) the conditional

expectation is taken with respect to the ‘twisted’ or worst case distribution that



Recursive representation 281

emerges from the robust planning problem.2 Equality (11.4.5) assures that

the allocation that solves the planning problem satisfies the household’s budget

constraint (11.4.2a).

Another role of (11.4.2i) is to force the household to accept the twisted

probability distribution chosen by the robust planner in evaluating conditional

expectations of the shocks bt, dt . This streamlines the problem because it allows

us to use a common distribution to express the conditional expectations E0

that appear both in the objective function (11.4.1) and in the Harrison-Kreps

representation of the budget constraint (11.4.2a).

11.4.2. Digression about computing µw
0

To solve problem (11.4.1), (11.4.2), it is useful to have a formula for the La-

grange multiplier µw
0 on the household’s budget constraint (11.4.2a) in a com-

petitive equilibrium.3 Hansen and Sargent derive the following convenient for-

mula for µw
0 . They define the implicit price of consumption services as

ρ0
t ≡ Π−1′

[

p0
ct − Θ′

hEt

∞
∑

τ=1

βτ (∆′
h − Λ′Π−1′Θ′

h)τ−1Λ′Π−1′p0
c,t+τ

]

. ["oi8"](11.4.6)

To compute µw
0 , Hansen and Sargent (200XX) partition household capital and

service sequences into two components. One is a service sequence obtained

from the initial endowment of household capital h−1 . The other is the service

sequence obtained from market purchases of consumption goods. The service

sequence {si,t} obtained from the initial endowment of household capital evolves

according to:
si,t = Λhi,t−1

hi,t = ∆hhi,t−1

["oi9"](11.4.7)

where hi,−1 = h−1 . The service sequence {sm,t} obtained from purchases of

consumption satisfies

sm,t = bt − si,t − µw
0 ρ

0
t . ["oi10"](11.4.8)

2 Recall also that the Ao, P that are used in forming the prices via formulas (10.5.14),

(10.5.21) pertain to the solution of the robust planning problem.
3 Counterparts of the same formulas would work for computing µw

0 of the chapter 10

models without fear of model misspecification.
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There are two ways to compute the time zero cost of the sequence {sm,t} . One

is to compute the time zero cost of the consumption sequence {ct} needed to

support the service demands using the price sequence {p0
ct} . Another is to use

the implicit rental sequence {ρ0
t} directly to compute the time zero costs of

{sm,t} . Hansen and Sargent (200XXX) verify that the two measures of costs

agree:

E0

∞
∑

t=0

βtρ0
t · sm,t = E0

∞
∑

t=0

βtp0
t · ct. ["oi11"](11.4.9)

It follows from (11.4.8) that

E0

∞
∑

t=0

βtρ0
t · sm,t = E0

∞
∑

t=0

βtρ0
t · (bt − si,t) − µw

0 E0

∞
∑

t=0

βtρ0
t · ρ0

t . ["oi12"](11.4.10)

Substitute (11.4.9) and (11.4.10) into the consumer’s budget constraint (6.2),

and solve for the time zero marginal utility of wealth µw
0 :

µw
0 =

E0

∑∞
t=0 β

tρ0
t · (bt − si,t) −W0

E0

∑∞
t=0 β

tρ0
t · ρ0

t

, ["oi13"](11.4.11)

where W0 denotes initial period wealth given by

W0 = E0

∞
∑

t=0

βt(p0
ℓtℓt + prt · kt−1 + p0

dt · dt). ["oi14"](11.4.12)

The geometric sums in (11.4.10) and (11.4.12) can be computed by solving

Sylvester equations.
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11.4.3. Sequence problem of minimizing player

Our next task is to pose the problem of the minimizing player in a sequence

version of the zero-sum two-player game that describes the robust household. We

freeze the allocation chosen by the maximizing player at the one described in the

last section, which equals that chosen by a robust planner. As remarked in the

previous subsection, that guarantees that the allocation satisfies the household’s

budget constraint (11.4.2a). We have to verify that the household chooses the

same twisted law of motion that the robust planner did.

It simplifies things that the preceding argument allows us to drop the con-

sumer’s budget constraint because we know that it is satisfied at the allocation

that solves the robust planning problem. The minimizing player within the

household chooses a sequence {wt+1}∞t=0 to minimize

E0

∞
∑

t=0

βt
{

−.5[(st − bt) · (st − bt) + ℓ2t ] + βθwt+1 · wt+1

}

["mp101 "](11.4.13)

subject to

st = Λht−1 + Πct ["mp2;a "](11.4.14a)

ht = ∆hht−1 + Θhct ["mp2;b "](11.4.14b)

kt = ∆kkt−1 + Θkit ["mp2;c "](11.4.14c)

[ c′t i′t ℓ′t ]
′
= SX̃t ["mp2;d "](11.4.14d)

X̃t+1 = (Ao + CK)X̃t + Cǫt+1 ["mp2;e "](11.4.14e)

bt = Ubzt ["mp2;f "](11.4.14f)

dt = Udzt ["mp2;g "](11.4.14g)

zt+1 = A22zt + C2(ǫt+1 + wt+1). ["mp2;h "](11.4.14h)

Here X̃t is a state vector with components comparable to those in xt , A
o =

A − BF (θ) is the robust decision rule that the robust planner would choose,

and we impose the initial condition X̃0 = x0 . Also, the conditional expectation

is evaluated with respect to the distribution of future values of the joint state

h, k, z, X̃ that is generated by the distribution for the ǫt+1 ’s together with the

given laws of motion for the state variables. The role of (11.4.14d), (11.4.14e)

is to freeze the household’s allocation at the solution of the planning problem.

The solution of the minimizing player’s problem is a decision rule of the form

wt+1 = K̃

[

X̃t

xt

]

. ["mp3 "](11.4.15)
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We want verify that

K̃

[

X̃t

xt

]

= KX̃t ["mp4 "](11.4.16)

when xt = X̃t . But problem (11.4.13), (11.4.14) is a recursive representation

of the sequence version of the minimizing part of the robust planner’s problem.

Thus, (11.4.16) follows directly from results in chapter 6, section 6.5.1.

11.5. A decentralization with Arrow securities

11.5.1. A robust consumer trading Arrow securities

This section adapts the equilibrium with sequential trading of one-period

Arrow securities, as in section 10.6, to the situation where the representative

household is concerned about model misspecification.

As a price taker, the household faces the one-step ahead pricing kernel

q(Xt+1, Xt) that obeys the following version of (10.6.4)

q(Xt+1|Xt) = β
e1uc,t+1

e1uc,t
f̂(Xt+1|Xt) ["arrow6R;a "](11.5.1a)

where the conditional density f̂(Xt+1|Xt) is induced by the difference equation

Xt+1 = (Ao + CK)Xt + Cǫt+1 ["arrow6R;b "](11.5.1b)

where ǫt+1 ∼ N (0, I), Ao = A−BF (θ), and where Ao +CK is the worst-case

transition matrix for the autonomous law of motion for xt that emerges from

the robust planning problem for a given θ .4

We obtain the household’s Bellman equation by replacing (10.6.5), (10.6.6)

with a two-player, zero-sum game. We generate a recursion in a value function

W (at, ht−1, kt−1, Xt) by posing an ‘inner problem’ by which a maximizing player

chooses ct, it, ℓt, a(Xt), taking as given the feedback rule for wt+1 ; and an ‘outer

4 Notice that f̂(Xt+1|Xt) is the transition density under the planner’s worst case model

and the robust rule. See chapter 12 for representations of pricing functions in terms of the

approximating model.
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problem’ in which a minimizing player who chooses wt+1 takes as given the

decision rule for ct, it, ℓt, a(Xt) chosen by the maximizing player.

11.5.2. The inner problem

The maximizing player solves

max
ct,it,ℓt,a(Xt+1)

{

−(|st − bt|2 + ℓ2t ) + βθw′
t+1wt+1

+βEt

∫

W (a(Xt+1), ht, kt, Xt+1)
}

["arrow10R "](11.5.2)

where the maximization is subject to

st = Λht + Πct ["arrow11R;a "](11.5.3a)

ht = ∆hht−1 + Θhct ["arrow11R;b "](11.5.3b)

kt = ∆kkt−1 + Θkit ["arrow11R;c "](11.5.3c)

Xt+1 = AoXt + C(ǫt+1 + wt+1) ["arrow11R;d "](11.5.3d)

wt+1 = KXt ["arrow11R;e "](11.5.3e)

pt = MXt ["arrow11R;f "](11.5.3f)

bt = SbXt ["arrow11R;f "](11.5.3f)

dt = SdXt ["arrow11R;h "](11.5.3h)
∫

a(Xt+1)q(Xt+1|Xt)dXt+1 = at + pℓtℓt + prt · kt−1

+ pdt · dt − pct · ct − pit · it. ["arrow11R;i "](11.5.3i)

Here Et denotes the mathematical expectation generated with respect to (11.5.3d),

(11.5.3e). In (11.5.2), (11.5.3), the maximizing player takes for granted that

wt+1 conforms to the decision rule chosen by the robust planner, namely,

wt+1 = KXt ["wrobplanner "](11.5.4)

and chooses a decision rule of the form

[ ct it ℓt a(Xt) ] = S





ht−1

kt−1

Xt



 . ["arrow12R "](11.5.5)
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11.5.3. The outer problem

The problem of the minimizing player is

W (at, ht−1, kt−1, Xt) = min
wt+1

{

−(|st − bt|2 + ℓ2t ) + βθw′
t+1wt+1

+βEt

∫

W (a(Xt+1), ht, kt, Xt+1)
}

["arrow10R "](11.5.6)

where the maximization is subject to equation (11.5.5) and

st = Λht + Πct ["arrow11R;a "](11.5.7a)

ht = ∆hht−1 + Θhct ["arrow11R;b "](11.5.7b)

kt = ∆kkt−1 + Θkit ["arrow11R;c "](11.5.7c)

Xt+1 = AoXt + C(ǫt+1 + wt+1) ["arrow11R;d "](11.5.7d)

bt = SbXt ["arrow11R;f "](11.5.7f)

The minimizing player also takes as given the decision rule (11.5.5) emerging

from the inner problem and chooses a decision rule for wt+1 of the form

wt+1 = K̃





ht−1

kt−1

Xt



 .

We have not included the budget constraint (11.5.3h) in the outer problem be-

cause we know that it is satisfied from the way the inner problem has constructed

decision rule (11.5.5). The optimal decision rule of the minimizing player has

the form wt+1 = K̃





ht−1

kt−1

Xt



 . This structure can be shown to affirm the identity

K̃





ht−1

kt−1

Xt



 ≡ KXt , which aligns the worst case shock in a recursive competitive

equilibrium with that emerging from a robust planning problem.
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11.6. An ex post Bayesian planning problem

There is also an ex post Bayesian version of the planning problem like the one

described in chapter 6. It endows the planner with a belief about the law of

motion that is distorted relative to his approximating model in just such a way

that he attains a robust rule by solving an ordinary Bellman equation without

a concern for robustness.

We can apply an idea of chapter 6 to confront the planner with a distorted

law of motion for z that will inspire him to choose a robust decision rule. This

leads to what is known as an ex post Bayesian problem because the robust

rule cannot be dominated in the sense of statistical decision theory. Rather

than assigning the planner the approximating model, we endow him with a

model that has been twisted to promote robustness. Taking that model as

given, the planner then behaves as an ordinary planner without concern about

misspecification.

To formulate this ex post Bayesian problem, we can augment the state

variable x by a vector X of the same dimension. The Bellman equation is

−x′Px− p = max
c,i,g

{

−.5[(s− b) · (s− b) + g · g]

+ βE (−x∗′Px∗ − p)
}

["rod15 "](11.6.1)

subject to the linear constraints formed by (11.3.2) and the following additional

exogenous law of motion for w :

X∗ = AoX + C(ǫ+ w) ["rod16;a "](11.6.2a)

w = KX. ["rod16;b "](11.6.2b)

Three features are noteworthy relative to equations (11.3.2). First, (11.6.1)

is an ordinary (non-robust) dynamic programming problem. Second, through

equation (11.3.2e), the w determined by equation (11.6.2) feeds back on the

z process that governs the shocks impinging on the consumer’s preference and

endowment shock processes, (b, d). Third, we have augmented the state by ‘big

X ’ in order to have the ex post Bayesian planner take w as exogenous and

beyond his control. Where ut is the control, the planner chooses a decision rule

u = −F̃
[

x

X

]

. Chapter 6 shows how, after equating X = x , this decision rule

satisfies

−F̃
[

x

x

]

= −Fx
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where u = −Fx solves the robust planning problem (11.3.1), (11.3.2).

11.6.1. Remarks on practicality

The direct way of solving the robust planning problem is obviously the more

useful one computationally, not only because it has a lower dimensional state

vector (x as compared with (x,X)), but also because in order to find the

distorted model (11.6.2), we have first to solve a robust planning problem.

Nevertheless, the ex post Bayesian method is a useful reinterpretation of the

allocation associated with the robust planning problem, one that we shall use

when we turn to asset pricing.

11.7. Two asset pricing strategies

Under a preference for robustness, there are two counterparts to the strategy

described in section 10.7 that express asset prices in terms of the state vector xt

of the planner. The first uses the robust planning problem (11.3.1), (11.3.2),

and the second uses the ex post Bayesian planning problem (11.6.1), (11.6.2).

11.7.1. Pricing from the robust planning problem

Hansen, Sargent, and Tallarini (1999) used the following three step method to

compute asset prices:

1. Solve the robust planning problem.

2. Obtain representations for the planner’s shadow prices, based on marginal

utilities of consumption evaluated at the allocation that solves the planning

problem.

3. Use the appropriate shadow prices to price assets as conditional expecta-

tions of inner products of (scaled) history-date prices, computing the con-

ditional expectation by taking the distorted law of motion cast in terms

of little x that emerges from the robust planning problem and the corre-

sponding sequence of information Jt .
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This method leads to a representation for asset prices corresponding to (10.7.1)

of the following form:

xt+1 = Âoxt + Cǫt+1 ["nutshell2;a "](11.7.1a)

yt = Syxt ["nutshell2;b "](11.7.1b)

pt
cs = (e1Mcxt)

−1Mcxs ["nutshell2;c "](11.7.1c)

ayt = Et

∞
∑

t=0

βtpt
ct+j · yt+j , ["nutshell2;d "](11.7.1d)

where E is the expectation evaluated with respect to Âo = Ao + CK , the

transition matrix for the worst-case transition law under the robust decision rule

F , where Ao = A − BF ; and Mc also incorporates the worst case transition

law through the presence of Ao +CK in (10.5.12), (10.5.11) (also see formulas

(10.5.14) and (10.5.21)).

11.7.2. Pricing from the ex post Bayesian planning problem

An alternative strategy is based on the following four step procedure:

1. Solve a robust planning problem.

2. Obtain a representation of the worst case shock process in terms of the new

state variable Xt as on page 263.

3. Solve the ordinary (i.e., non-robust) planning problem with the distorted

law of motion for the augmented state

[

xt

Xt

]

as in (11.6.1), (11.6.2).

4. Use either of the complete-market decentralizations presented in chapter 10

for our economies without robustness and price assets using the standard

(non-robust) asset pricing formulas.
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11.8. Concluding remarks

Chapter 10 showed that without a preference for robustness, the pricing kernel

for Arrow securities has the representation

q(Xt+1|Xt) = β
e1uc,t+1

e1uc,t
f(Xt+1|Xt)

where f(Xt+1|Xt) is the transition density under the approximating model.

In this chapter, we have shown that a representative consumer’s fear that the

approximating model is misspecified makes the pricing kernel for one-period

Arrow securities become

q(Xt+1|Xt) = β
e1uc,t+1

e1uc,t
f̂(Xt+1|Xt)

where f̂(Xt+1|Xt) is the planner’s worst-case model. The price of Arrow secu-

rities under a preference for robustness can also be written as

q(Xt+1|Xt) = β
e1uc,t+1

e1uc,t

(

f̂(Xt+1|Xt)

f(Xt+1|Xt)

)

f(Xt+1|Xt). ["keyassetformula "](11.8.1)

In chapter 12, we shall use representations like (11.8.1) to price assets under the

approximating model. The term
(

f̂(Xt+1|Xt)
f(Xt+1|Xt)

)

can be viewed as a multiplicative

adjustment to the usual stochastic discount factor β
e1uc,t+1

e1uc,t
that is contributed

by the representative household’s concern about model misspecification.5 When

the likelihood ratio
(

f̂(Xt+1|Xt)
f(Xt+1|Xt)

)

is volatile under the approximating model, it

serves to boost the market price of macroeconomic risk.

5 The likelihood ratio ( f̂
f ) that adjusts the stochastic discount factor for robustness also

governs the detection error probability statistics described in chapter 8. See chapter 12 and

Anderson, Hansen, and Sargent (2003) for more about the connection between detection error

statistics and theoretical values of market prices of risk.
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A. Decentralization of partial equilibrium

For a partial equilibrium model with adjustment costs, this appendix studies a

recursive competitive equilibrium in which the representative firm has a pref-

erence for robust decisions. We show that the standard trick of computing

an equilibrium by solving the fictitious planning problem of maximizing a dis-

counted sum of consumer plus producer surplus extends to a setting where the

firm wants robustness. In this case, the planning problem becomes a robust

planning problem in which the planner extremizes over decision, model distor-

tion pairs.

Consider an adaptation for robustness of Sargent’s (1987, chapter XVI)

version of Lucas and Prescott’s model of investment under uncertainty. Demand

for a single good is governed by an inverse demand function

pt = A0 − A1qt + vt ["lpr1 "](11.A.1)

where

vt+1 = ρvt + Cvwt+1. ["lpr2 "](11.A.2)

A representative firm has one-period quadratic cost function σ(qt, qt+1) and

one-period profits πt = ptqt − σ(qt, qt+1). The firm acts as a price taker and

wants to extremize
∑∞

t=0 β
t(ptqt − σ(qt, qt+1)) with respect to sequences for

{qt+1, wt+1}∞t=0 . The firm believes that the law of motion for aggregate output

is

qt+1 = ℓq(qt, vt) ["lpr3 "](11.A.3)

where ℓq is a linear function. The representative firm solves the two-player

zero-sum game

min
{wt+1}

max
{qt+1}

∞
∑

t=0

βt{ptqt − σ(qt, qt+1) + βθw2
t+1} ["lpr3a "](11.A.4)

where the extremization is subject to (11.A.1), (11.A.2), (11.A.3). An equilib-

rium of the representative agent’s two-player zero-sum game is a pair of decision

rules

qt+1 = φq(qt, vt, qt) ["oli111;a "](11.A.5a)

wt+1 = φw(qt, vt, qt). ["oli111;b "](11.A.5b)
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The representative agent’s extremization problem induces a mapping from ℓq

in (11.A.3) to (φq , φw). When the representative firm perceives the law of

motion for qt to be (11.A.3), it acts to make the actual law of motion to be

qt+1 = φq(qt, vt, qt). A competitive equilibrium under robustness is a fixed point

of the mapping from ℓq(q, v) to φq(q, v, q). That is, for the representative firm

to be representative, it must be true that ℓq satisfies

φq(qt, vt, qt) = ℓq(qt, vt). ["lpr5 "](11.A.6)

Fortunately, by extending lines of argument of Lucas and Prescott (1972)

and Sargent (1987), it is not necessary to attack this fixed point problem directly.

In particular, we can compute ℓq and an associated ℓw directly by solving a

fictitious robust planning problem. The fictitious planning problem is

min
{wt+1}

max
{qt+1}

∞
∑

t=0

βt{S(qt, vt) − σ(qt, qt+1) + βθw′
t+1wt+1} ["lpr6 "](11.A.7)

where S(q, v) is consumer surplus defined as

S(q, v) =

∫ q

0

(A0 −A1x+ v)d x

= A0q −
A1

2
q2 + qv.

The state of the market is qt, vt . A solution of this two-player zero-sum game

is

qt+1 = ℓq(qt, vt) ["partial1;a "](11.A.8a)

wt+1 = ℓw(qt, vt) ["partial1;b "](11.A.8b)

It turns out that ℓj(q, v) = φj(q, v, q) for j = q, w . This assertion can be proved

by extending the proof in Sargent (1987, ch. XIV). The proof strategy is to ob-

tain the Euler equations for extremizing (11.A.4), then to use the demand curve

(11.A.1) to eliminate price, rearrange, and note that these Euler equations-cum

equilibrium conditions match the Euler equations for extremizing the fictitious

planning criterion (11.A.7).



Chapter 12
Asset pricing

12.1. Introduction

This chapter explores how a fear of model misspecification affects prices of risky

securities. Without fear of misspecification, the price of a claim to a random fu-

ture payoff equals the conditional expectation of the inner product of a stochastic

discount factor and the random future payoff, evaluated using the representa-

tive agent’s model.1 When the representative agent fears misspecification of

his approximating model, two such inner-product representations of asset prices

are available. They differ in what they take as the model with respect to which

the conditional expectation is evaluated. In one, the conditional expectation is

evaluated with respect to the representative agent’s worst case model, a model

that depends on the parameter θ that calibrates his fear of misspecification.

A second representation of the same prices exists because the approximating

model and the worst case model put positive probabilities on the same events.

This second representation evaluates the conditional expectation with respect to

the approximating model. The first representation captures a concern about ro-

bustness by adjusting the probability distribution relative to the approximating

model, while the second representation instead adjusts the stochastic discount

factor (a.k.a. pricing kernel). In particular, to represent asset prices in terms

of conditional expectations under the approximating model, the second rep-

resentation multiplies the ordinary stochastic discount factor without fear of

misspecification by the likelihood ratio, or Radon-Nikodym derivative, of the

endogenous worst case distorted model relative to the approximating model.

The expected value of that likelihood ratio is the entropy measure that we used

in chapter 2 to measure the proximity of models. It also governs the detection

statistics of chapter 8.

After reviewing asset pricing formulas in a standard model without a fear

of misspecification, this chapter modifies those formulas to express a representa-

tive agent’s fear of misspecification. By way of examples, we study asset pricing

1 Without fear about misspecification, an agent can discard the adjective ‘approximating’.

– 293 –
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in the permanent income economy of chapter 9 and a partial equilibrium occu-

pational choice model of Jaewoo Ryoo and Sherwin Rosen (2003).

12.2. Approximating and distorted models

Chapters 10 and 11 describe planning problems and competitive equilibria for

a class of linear-quadratic models of which the consumption smoothing model

of chapter 9 and the occupational choice model of section 12.6 are special cases.

The environment of chapter 10 is arranged so that without a fear of misspec-

ification, the planning problem fits into the optimal linear regulator problem.

Chapter 11 then uses a robust linear regulator to create a model in which the rep-

resentative household’s fear of misspecification is indexed by parameter θ > 0.

Equilibrium representations for prices and quantities can be determined from

the solution of the robust linear regulator.

Chapter 10 describes matrices that portray the preferences, technology, and

information structure of the economy. These can be assembled into matrices

that define the robust linear regulator for a planning problem. The solution of

the planning problem determines competitive equilibrium prices and quantities.

Associated with the robust planning problem is the Bellman equation

−x′Px− p = max
u

min
w

{r(x, u) + θβw′w + βE(−x∗′Px∗ − p)} (12.2.1)

where the extremization is subject to

x∗ = Ax+Bu+ C(ǫ+ w), (12.2.2)

where ǫ ∼ N (0, I) and θ ∈ (θ,+∞] . A Markov perfect equilibrium of this

two-player zero-sum game is a pair of decision rules u = −F (θ)x,w = K(θ)x .

The equilibrium determines the following two laws of motion for the state that

interest us:

xt+1 = Aoxt + Cǫt+1 (12.2.3)

and

xt+1 = (Ao + CK(θ))xt + Cǫt+1, (12.2.4)

where Ao = A−BF (θ). For a given θ ∈ [θ,∞), (11.3.3) is the approximating

model under the robust rule for u , while (12.2.4) is the distorted worst case

model under the robust rule.
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Where there is no fear of misspecification, θ = +∞ . Chapter 10 describes

a class of economies whose equilibria can be presented in the form (12.2.4)

together with selector matrices that determine equilibrium prices and quantities

as functions of the state xt . In particular, quantities Qt and scaled state-

contingent prices pt are linear functions of the state:

Qt = SQxt (12.2.5a)

pt = pQxt. (12.2.5b)

We shall soon remind the reader what we mean by ‘scaled prices’. We showed

how to compute these in chapter 10; see formulas (10.5.14), (10.5.21).

To get equilibria under a fear of misspecification, we simply set θ < +∞ in

(12.2.1). Formulas for equilibrium prices and quantities from chapter 10 (i.e.,

the SQ,MQ in (12.2.5)) apply directly. Associated with an equilibrium under

a fear of misspecification are the approximating transition law (12.2.3) and the

distorted transition law (12.2.4) for the state xt , as well as auxiliary equations

for prices and quantities of the form (12.2.5).

The approximating and distorted equilibrium laws of motion (12.2.3) and

(12.2.4) induce Gaussian transition densities2

f(xt+1|xt) ∼ N (Aoxt, CC
′) (12.2.6a)

f̂(xt+1|xt) ∼ N ((Ao + CK)xt, CC
′), (12.2.6b)

where we use f without a (̂·) to denote a transition density under the ap-

proximating model and f with a (̂·) to denote a probability associated with

the distorted model (12.2.4). These transition densities induce joint densities

f (t)(xt) on histories xt = [xt, xt−1, . . . , x0] via

f (t)(xt) = f(xt|xt−1)f(xt−1|xt−2) . . . f(x1|x0)f(x0),

and similarly for f̂ (t)(xt). Let ft(xt|x0) denote the t–step transition densities

ft(xt|x0) ∼ N (Aotx0, Vt) (12.2.7a)

f̂t(xt|x0) ∼ N ((Ao + CK)tx0, V̂t), (12.2.7b)

2 An alternative formulation on page 399 allows a broader set of perturbations of a

Gaussian approximating model by letting the minimizing agent choose an arbitrary den-

sity. Under that formulation, the minimizing agent would still choose a Gaussian transi-

tion density with the same conditional mean as (12.2.6b) but with conditional covariance

ĈĈ′ = C(I − θ−1C′PC)−1C′ .
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where Vt satisfies the recursion Vt = Ao′Vt−1Ao + CC′ initialized from V1 =

CC′ , and V̂t satisfies the recursion V̂t = (Ao + CK)′V̂t−1(Ao + CK) + CC′

initialized from V̂1 = CC′ .

12.3. Asset pricing without robustness

In section 10.7, we explained how the value of claims on risky streams of returns

can be represented as the inner product of price and payout processes, where

both the price and payout are expressed as functions of the planner’s state

vector xt . In portraying the household’s problem in a recursive competitive

equilibrium, we needed to distinguish between the individual household’s xt and

its ‘market wide’ counterpart Xt that drives prices. Nevertheless, we showed

that for the purpose of computing asset prices, we can exclude Xt from the state

vector and simply use xt as the state vector. Accordingly, in the remainder of

this chapter, we express prices in terms of xt and histories xt .3

When θ = +∞ , there is no discrepancy between the distorted and worst

case models and the following standard representative agent asset pricing theory

applies. Let ct denote a vector of time–t consumption goods. The price of a

unit vector of consumption goods in period t contingent on the history xt is4

q(t)(xt|x0) = βt u′(ct(xt))

e1 · u′(c0(x0))
f (t)(xt|x0), (12.3.1)

where ct(x
t) is a possibly history-dependent state-contingent consumption pro-

cess, u′(c) is the vector of marginal utilities of consumption, and e1 is a se-

lector vector that pulls off the first consumption good, the time-zero value of

which we take as numeraire. To make (12.3.1) well defined, we assume that

e1 · u′1(c0(x0)) 6= 0 with probability one. If we assume that the consumption

allocation is not history-dependent, so that ct(x
t) = c(xt), as is true in the

models that occupy us, then we can use the t–step pricing kernel

qt(xt|x0) = βt u′(c(xt))

e1 · u′(c(x0))
ft(xt|x0). (12.3.2)

3 The household in a competitive economy would face prices that are the same functions

of Xt and Xt .
4 We denote by u′(ct) the vector of marginal utilities of the consumption vector ct . In

our model, u′(ct) = Mcxt .
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Let an asset entitle its owner to {y(xt)}∞t=0 , a stream of a vector of con-

sumption goods whose state-contingent price is given by (12.3.2). The time-0

price of the asset is

a0 =
∞
∑

t=0

∫

xt

qt(xt|x0) · y(xt)d xt

or

a0 =

∞
∑

t=0

∫

xt

βt u′(c(xt))

e1 · u′(c(x0))
y(xt)ft(xt|x0)d xt. (12.3.3)

We can represent (12.3.3) as

a0 =
E0

∑∞
t=0 β

tu′(c(xt)) · y(xt)

e1 · u′(c(x0))
. (12.3.4)

In linear-quadratic general equilibrium models, u′(c(xt)) and y(xt) are

both linear functions of the state. This means that the price of an asset is the

conditional expectation of a geometric sum of a quadratic form, as portrayed in

(12.3.4). Equation (12.3.4) implies a Sylvester equation (see page 93). Thus,

let

pc(xt) =
u′(c(xt))

e1 · u′(c(x0))
.

Then the asset price can be represented

a0 = E0

∞
∑

t=0

βtpc(xt) · y(xt). (12.3.5)

We can regard pc as a scaled Arrow Debreu price: it equals the Arrow-Debreu

state price divided by βt times a conditional probability. Scaling the price

system in this way facilitates computation of asset prices as conditional expec-

tations of an inner product of state prices and pay outs. Often βtpc(xt) is called

a t-period stochastic discount factor. Below we shall also denote the stochastic

discount factor as m0,t ≡ βtpc(xt), so that (12.3.5) becomes

a0 = E0

∞
∑

t=0

m0,t · y(xt).

Hansen and Sargent (200XX) provide a complete treatment of asset pricing

within linear-quadratic general equilibrium models. They show that: (1) equilib-

rium scaled Arrow-Debreu prices and quantities have representations (12.2.5);
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(2) the information required to form the matrix SQ is embedded in F,A,B

from the optimal linear regulator problem; and (3) the matrices Mp that pin

down the scaled Arrow-Debreu prices can be extracted from the matrix P in

the value function −x′Px− p and the matrix Ao = A−BF that emerge from

the planner’s problem (see formulas (10.5.14), (10.5.21)). Thus, in such models

pc(xt) = Mcxt/e1Mcx0. (12.3.6)

See formulas (10.5.11), (10.5.13) in chapter 10 for a formula for Mc and more

details.

12.4. Asset pricing with robustness

We activate a fear of misspecification by setting θ < +∞ , which causes the

transition densities (12.2.6a), (12.2.6b) under the approximating and distorted

models to disagree. In addition, the formulas for SQ and MQ in (12.2.5)

respond to the setting for θ , via the dependence of SQ on F (θ) and the depen-

dence of MQ on the P that solves the Bellman equation (12.2.1). Again, see

(10.5.14), (10.5.21). We give an example in section 12.6.

The price system that supports a competitive equilibrium can be repre-

sented in the forms (12.3.1) and (12.3.2), with the distorted densities f̂ (t) and

f̂t replacing the corresponding densities for the approximating model in (12.3.1)

and (12.3.2). Thus, with a fear of misspecification, the time 0 price of the asset

corresponding to (12.3.3) is

a0 =
∞
∑

t=0

∫

xt

βtpc(xt) · y(xt)f̂t(xt|x0)d xt. (12.4.1)

We can represent (12.4.1) as

a0 = Ê0

∞
∑

t=0

βtpc(xt) · yt (12.4.2)

where Ê denotes mathematical expectation using the distorted model (12.2.4),

and u′(c(xt)) must be computed using the MQ in representation (12.2.5b) as-

sociated with θ .
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12.4.1. Adjustment of stochastic discount factor for fear of model
misspecification

Formula (12.4.2) represents the asset price in terms of the distorted mea-

sure that the planner uses to evaluate future utilities in the Bellman equation

(12.2.1). To compute asset prices using this formula, we must solve a Sylvester

equation using transition matrix Ao +CK(θ) from equation (12.2.4) to reflect

that we are evaluating the expectation using the distorted transition law. We

can also evaluate asset prices by computing expectations under the approximat-

ing model, but this requires that we adjust the stochastic discount factor to

make the asset price satisfy (12.4.1). By dividing and multiplying by ft(xt|x0),

we can represent (12.4.1) as

a0 =

∞
∑

t=0

∫

xt

βtpc(xt)

(

f̂t(xt|x0)

ft(xt|x0)

)

· y(xt)ft(xt|x0)d xt. (12.4.3)

or

a0 = E0

∞
∑

t=0

βtpc(xt)

(

f̂t(xt|x0)

ft(xt|x0)

)

· y(xt), (12.4.4)

where the absence of a (̂·) from E denotes that the expectation is evaluated

with respect to the approximating model (12.2.3).5

In summary, with a fear of misspecification, if we want to evaluate asset

prices under the approximating model, we have to adjust the ordinary t-period

stochastic discount factor m0,t = βtpc(xt) for a concern about model misspeci-

fication and use the modified stochastic discount factor:

m0,t

(

f̂t(xt|x0)

ft(xt|x0)

)

.

Such a multiplicative adjustment to the stochastic discount factor m0,t car-

ries over to nonlinear models. For our linear-quadratic-Gaussian setting, the

likelihood ratio is

Lt =
f̂t(xt|x0)

ft(xt|x0)
= exp

[

t
∑

s=1

{ǫ′sws − .5w′
sws}

]

.

5 Notice the appearance of the same likelihood ratio in (12.4.4) used to define entropy in

chapters 2 and 17 and to describe detection error probabilities in chapter 8.
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12.4.2. Reopening markets

This section describes how to extend our asset pricing formulas to allow us to

price ‘tail assets’ that are traded at time t and that pay vectors of consumption

{yτ}∞τ=t for t > 0. We want the price to be stated in time t units of the

numeraire good.

Letting the t-step discount factor at time 0 be m0,t ≡ βtpc(xt), (12.4.2)

can be portrayed as

a0 = Ê0

∞
∑

t=0

m0,t · yt (12.4.5)

where m0,t is a vector of time-0 stochastic discount factors for pricing a vector

of time-t payoffs. Define mt,τ as the vector of corresponding time-t stochastic

discount factors for pricing time-τ ≥ t payoffs:6

mt,τ = βτ−tpc(xτ )/e1pc(xt). (12.4.6)

Then in time t units of the numeraire consumption good, the vector of payoffs

{yτ}∞τ=0 is

at = Ê

∞
∑

τ=0

mt,τyτ . (12.4.7)

Equation (12.4.7) is equivalent with

at = Et

∞
∑

τ=0

(mt,τm
u
t,τ ) · yτ , (12.4.8)

where the appropriate multiplicative adjustment mu
t,τ to the stochastic discount

factor is the likelihood ratio

mu
t,τ =

f̂τ−t(xτ |xt)

fτ−t(xτ |xt)

= exp

[

τ
∑

s=t

{ǫ′sws − .5w′
sws}

]

.

(12.4.9)

6 We assume that e1pc(xt) 6= 0 with probability 1.
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12.5. Pricing single period payoffs

For the purpose of using the permanent income model of chapter 9 to shed

light on the implications of a fear of misspecification for the equity premium, let

consumption be a scalar process and yt+1 a scalar random payoff at time t+1.

Without a fear of misspecification, the price at time t of a time t+ 1 payout is

at = Etmt,t+1yt+1. (12.5.1)

Applying the definition of a conditional covariance to (12.5.1) and using the

Cauchy-Schwartz inequality implies

(

at

Etmt,t+1

)

≥ Etyt+1 −
(

σt(mt,t+1)

Etmt,t+1

)

σt(yt+1). (12.5.2)

The bound is attained by payoffs on the efficient frontier. The left side is the

price of the risky asset relative to the price Etmt,t+1 of a risk-free asset that

pays off 1 for sure next period. The term
(

σt(mt,t+1)
Etmt,t+1

)

is the ‘market price of

risk’: it tells the rate at which the price ratio at/Etmt,t+1 deteriorates with

increases in the conditional standard deviation of the pay out yt+1 .

Without imposing any theory about mt,t+1 , various studies have esti-

mated the market price of risk
(

σt(mt,t+1)
Etmt,t+1

)

from data on (at, yt+1) For post

WWII quarterly data, estimates of the market price of risk hover around .25.

Hansen, XXX, and XXX’s characterization of the equity premium puzzle is

that .25 is much higher than would be implied by many theories that explicitly

link mt,t+1 to aggregate consumption. A standard benchmark is the theory

mt,t+1 = βu′(ct+1)/u
′(ct) where u(·) is a power utility function with power γ .

That specification makes mt,t+1 = β
(

ct+1

ct

)γ

. But aggregate consumption is a

smooth series, so that the growth rate of consumption has a standard deviation

so small that unless γ is implausibly large, the market price of risk implied

by this theory of the stochastic discount factor mt,t+1 remains far below the

observed value of .25. Similarly, the permanent income model of chapter 9 that

sets mt,t+1 = Mcxt+1/Mxxt also implies too low a value of the market price of

risk, again because the volatility of consumption growth is too small.

When the representative household is concerned about robustness, we have

at = Et(mt,t+1m
u
t,t+1)yt+1 (12.5.3)
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where from (12.4.9)

mu
t,t+1 = exp

[

ǫ′t+1wt+1 − .5w′
t+1wt+1

]

. (12.5.4)

By construction, Etm
u
t,t+1 = 1. Hansen, Sargent, and Tallarini computed that

Et(m
u
t+1,t)

2 = exp(w′
t+1wt+1) so that

σt(m
u
t,t+1) =

√

exp(w′
t+1wt+1 − 1) ≈ |w′

t+1wt+1|. (12.5.5)

HST refer to σt(m
u
t,t+1) as the one-period market price of Knightian uncer-

tainty. Similarly, the τ − t–period market price of Knightian uncertainty is the

conditional standard deviation of mu
t,τ defined by (12.4.9). A fear of misspec-

ification can boost the market price of risk by increasing these multiplicative

adjustments to stochastic discount factors.
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Figure 12.5.1: Market price of Knightian uncertainty for

one-period securities σt(mt,t+1)
u as function of detection er-

ror probability in HST model.
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Figure 12.5.2: Market price of Knightian uncertainty for

four-period securities σt(mt,t+4)
u as function of detection er-

ror probability in HST model.

12.5.1. Calibrated market prices of Knightian uncertainty

As in chapter 9, we follow HST and use the parameterization σ ≡ −θ−1 . HST

computed one-period market prices of risk for a calibrated version of the per-

manent income model described in chapter 9. In particular, they proceeded as

follows:

1. Setting σ = 0 and βR = 1, HST used the method of maximum likelihood

to estimate the remaining free parameters of chapter 9’s permanent income

model.

2. HST used those maximum likelihood parameter estimates as the approxi-

mating model of the endowment processes d∗t , d̂t for a representative agent

whose continuation values they used to price risky assets. Thus, HST took a

particular stand on how the representative agent created his approximating

model, something that our robust control theory is silent about.

3. To study the effects of a fear of misspecification on asset prices while leaving

the consumption–investment allocation (ct, it) intact, HST lowered σ below

zero, but adjusted the discount factor according to the relation β = β̂(σ)

given by equation (9.3.18), which defines a locus of (β, σ) pairs that freeze

{ct, it} . For each (β, σ) thereby selected, HST calculated market prices

of Knightian uncertainty and the detection error probabilities associated
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with distinguishing the approximating model from the worst case model

associated with σ . Figure 9.6.3 in chapter 9 reports those detection error

probabilities as a function of σ . We are interested in the relation between

the detection error probabilities and the j -period market prices of Knight-

ian uncertainty.

4. For one and four period horizons, Figures 12.5.1 and 12.5.2 report the

calculated market prices of Knightian uncertainty plotted against the de-

tection error probabilities. These graphs have two salient features. First,

there appear to be approximately linear relationships between the detec-

tion error probabilities and the market prices of Knightian uncertainty. In

a continuous time, diffusion specification, Anderson, Hansen, and Sargent

(2003) establish an exact linear relationship between the market price of

risk and a bound on the detection error probabilities. To the extent that

their bound is informative, their finding explains the striking pattern in

these figures. Second, the market price of Knightian uncertainty is sub-

stantial even for values of the detection error probability sufficiently high

that it seems plausible to seek robustness against models that close to the

approximating model. Thus, a detection error probability of .3 leads to

a one-period market price of uncertainty of about .15, which can explain

about half of the observed equity premium.

In chapter 14, we shall return to the relationship between detection error

probabilities and the market price of Knightian uncertainty in a version of a

permanent income model in which the representative agent must use a Kalman

filter because he does not observe the state variables that drive our two-factor

endowment process.
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12.6. A model of occupational choice and pay

Aloyisius Siow (1984) and Jaewoo Ryoo and Sherwin Rosen (2003) have used

pure time-to-build structures to represent price and quantity cycles in markets

for occupations under rational expectations. In their models, prospective new

entrants into an occupation respond to optimal forecasts of the present value of

a stream of wages that will begin accruing only after a period of schooling. We

want to study how in equilibrium those forecasts and workers’ decisions would

behave under a concern for model misspecification.

Siow and Ryoo and Rosen used partial equilibrium models cast in terms

of dynamic supply and demand curves. To analyze how a concern for model

misspecification affects demand and supply, we first find the representative agent

whose preferences induce the demand curve and the technology that generates

the supply curve. It is straightforward to cast Ryoo and Rosen’s model within

the class of general equilibrium models of Chapter 10. Then the methods of

section 12.2 and 12.4 can be used to construct a version of the model in which

the representative agent has a concern about model misspecification indexed by

θ ∈ (θ,∞] .

12.6.1. A one-occupation model

For concreteness, let the occupation be called engineering.Rosen (1995)’s model

determines the stock of engineers Nt ; the number of new entrants into engineer-

ing school, nt ; and the wage Wt of engineers. It takes k periods of schooling to

become an engineer. We’ll set k = 4 in our example. Ryoo and Rosen’s model

consists of the following equations: first, an inverse demand curve for engineers

Wt = ηd − αdNt + udt , αd > 0; (12.6.1)

second, a description of the education process as a time-to-build structure

Nt+k = δNNt+k−1 + nt , 0 < δN < 1; (12.6.2)

third, a definition of the expected present value of each new engineering student

vt = βkEt

∞
∑

j=0

(βδN )jWt+k+j ; (12.6.3)
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and fourth, a supply curve of new students as a function of vt

nt = ηs + αsvt + ust , αs > 0. (12.6.4)

Here ut = [udt ust ]
′
is a stochastic process of labor demand and supply shocks.

Under a potentially distorted model indexed by wt+1 , the shocks ust, udt are

given by

ust = Uszt

udt = Ud1zt

(12.6.5)

where

zt+1 = A22zt + C2(ǫt+1 + wt+1) (12.6.6)

the eigenvalues of A22 are bounded in modulus by 1√
β

, Us, Ud1 are selector

vectors, ǫt+1 is an i.i.d. vector stochastic process with mean zero and covariance

matrix I , and wt+1 is a vector of perturbations to the conditional means of the

innovations to the approximating model. As usual, the approximating model

assumes that wt+1 ≡ 0. Specification (12.6.5)–(12.6.6) allows the demand and

supply shocks to be serially correlated.

We use the following:

Definition 12.6.1. A rational expectations equilibrium without a fear misspec-

ification is a stochastic process {Wt, Nt, vt, nt}∞t=0 satisfying (12.6.1), (12.6.2),

(12.6.3), (12.6.4), (12.6.5) and (12.6.6), wt+1 ≡ 0, the stability condition

E0

∑∞
t=0 β

tN2
t < +∞ , and the initial conditions for N−1, n−s, s = 1, . . . ,−k+1.

12.6.2. Equilibrium with no concern about robustness

In the model in which the representative agent is not concerned about robust-

ness, Et in (12.6.3) is the mathematical expectation evaluated with respect to

the distribution under the approximating (wt+1 ≡ 0) model. With a concern

about robustness, the mathematical expectation under the distorted model Êt

replaces Et in (12.6.3). But the distorted model is endogenous. Discovering it

requires knowing the common preferences of the malevolent agent and the repre-

sentative agent. To put a fear of misspecification into Ryoo and Rosen’s model,

it is thus necessary first to map the model without a fear of misspecification
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into the equilibrium framework of chapter 10. This will identify the prefer-

ences of a representative agent that the malevolent agent also uses to formulate

perturbations that promote robustness.

In terms of the class of general equilibrium models of chapter 10, we repre-

sent Ryoo and Rosen’s model by sweeping the time-to-build structure into the

household technology and the demand for engineers into the preference specifica-

tion, while putting the supply of new engineers into the technology for producing

goods. Here is how. Take the household technology to be

st = [αd 0 0 0 ]









Nt

nt−1

nt−2

nt−3









+ 0nt









Nt+1

nt

nt−1

nt−2









=









δN 0 0 1

0 0 0 0

0 1 0 0

0 0 1 0

















Nt

nt−1

nt−2

nt−3









+









0

1

0

0









nt.

In the notation of chapter 10, these equations can be represented as7

st = Λht−1 + Πct

ht = ∆hht−1 + Θhct,
(12.6.7)

where we have set nt in Ryoo and Rosen’s model to ct and [Nt nt−1 nt−2 nt−3 ]
′

to ht−1 in the model of chapter 10. To complete the representation of (12.6.1),

we set the preference shock bt = ηd + udt .

We represent the supply of entering students by using the technology side

of the model. In particular, we assume

[

1

0

]

ct +

[ −1

α−1
s

]

it +

[

0

−1

]

gt =

[

0

0

]

kt−1 +

[

ust

0

]

.

This equation matches the representation of technology in chapter 10

Φcct + Φiit + Φggt = Γkt−1 + dt.

7 In the language of Hansen and Sargent (200XX), this preference representation is not

canonical , meaning that it must be transformed to a canonical representation in order to get

convenient representations of dynamic demand functions.
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Associated with this model is a representative agent who has preferences over

ct paths that are ordered by

−E0

∞
∑

t=0

βt {.5(st − bt) · (st − bt) + .5gt · gt} , (12.6.8)

where the mathematical expectation is taken with respect to the approximating

model. Hansen and Sargent use the shadow prices from a planning problem to

construct a competitive equilibrium, as described in chapter 10. The shadow

prices Ms
t ,Mc

t ,Mh
t for st, ct, ht , respectively, satisfy

Ms
t = bt − st (12.6.9a)

Mh
t = Et

∞
∑

τ=1

βτ (∆′
h)τ−1Λ′Ms

t (12.6.9b)

Mc
t = Θ′

hMh
t + Π′Ms

t . (12.6.9c)

Since Π = 0 for the present example, we have

Mc
t = Θ′

hEt

∞
∑

τ=1

βτ (∆′
h)τ−1Λ′Ms

t . (12.6.10)

It can be verified that the wage Wt in Ryoo and Rosen’s model matches the

shadow price Ms
t and that the present value vt matches αd

−1Mct (compare

(12.6.3) with (12.6.10)). Where xt is the state,8 Hansen and Sargent show

that Mc
t = Mcxt and Ms

t = Msxt and give formulas for the matrices Mc,Ms .

We can use these objects to compute the equilibrium values of Wt = Msxt, vt =

Mcxt in Ryoo and Rosen’s model. The solutions for the quantities can be

determined from the representation for the equilibrium in the state space form

xt+1 = Aoxt + Cǫt+1.

The next section computes examples of equilibria of the model both without

and without a fear of misspecification. Appendix A solves the model by hand

and describes some its analytical features.

8 The state xt equals [ Nt nt−1 nt−2 1 zst zdt ]′ , where zs is the supply shock

and zd is the demand shock. The presence of zs and zd means that we can accommodate

demand and supply shocks that are first-order autoregressive processes.
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12.6.3. Example

A version of the model with a fear of misspecification replaces (12.6.3) by

vt = βkÊt

∞
∑

j=0

(βδN )jWt+k+j , (12.6.11)

where Êt is the mathematical expectation with respect to the distorted model.

Representation (12.4.8) above implies that an equivalent representation of vt

in the model with a fear of misspecification is

vt = βkEt

∞
∑

j=0

(βδN )jmu
t,t+k+jWt+k+j (12.6.12)

where mu
t,τ is the Radon-Nikodym derivative defined in (12.4.9). In (12.6.12),

the expectation is evaluated under the approximating model. Equation (12.6.12)

shows how a fear of misspecification puts an adjustment for model uncertainty

into vt . That adjustment gets reflected in the behavior of Nt, nt,Wt in ways

that the following example illustrates.

For alternative versions of the same model without a concern robustness

(the solid lines) and with a concern for robustness with −θ−1 = −.5 (the dotted

lines), Fig. 12.6.1 shows impulse responses to an i.i.d. supply shock where the

inverse demand shock is also i.i.d. Both of these impulse responses are evaluated

under the approximating model.9 We set the covariance matrices of the two

shocks to be I and the remaining parameter values at δN = .95, αs = 1, αd =

.1, ηs = 10, ηd = 30, β = 1/1.05.10

The effects of a fear of misspecification operate through the forecasting

equation (12.6.11). The bottom left panel of Fig. 12.6.1 shows that when there

is fear of misspecification, the initial adverse effect on vt of a supply shock is

greater in absolute value (more negative) than when there is no concern for

robustness. The top right panel shows how, because of its more adverse im-

plications for vt , the supply shock causes a lower entry rates under a fear of

9 Thus, for the robust version of the model the agents inside the model are basing their

decisions on the distorted model, but we are assuming that the data are actually generated

by the approximating model.
10 See appendix A for a description of the role of the ratio αsαd of the slopes inverse

demand and supply function in influencing the solution, and for under the i.i.d. specification

an inverse demand shock has no persistent effects on any variable in the model.
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misspecification. This means that under the approximating model, the wage

actually declines less in response to a supply shock under a fear of misspecifica-

tion (see the top left panel). The top left panel shows wages declining less while

the bottom left panel shows the expected present value declining more under a

fear of misspecification. This discrepancy reflects the pessimistic forecasts that

emanate from the worker’s use of the distorted model to form Êt . Wages decline

less under a fear of misspecification because the lower entry rate induced by the

pessimistic forecast vt causes the actual stock of engineers Nt to increase less

under a fear of misspecification (see the bottom right panel).11
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Figure 12.6.1: Impulse responses to supply shock without

a fear of misspecification (solid lines) and with a fear of mis-

specification with σ = −.5.

11 Appendix A gives analytical expressions that help provide more intuition about the

shapes of the impulse response functions and the relations among them.
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12.7. Concluding remarks

The asset pricing example of HST indicate how a little bit of concern about

model misspecification can potentially substitute for a substantial amount of

risk aversion when it comes to boosting theoretical values of market prices

of risk. The boost in the market price of risk emerges from a form of pes-

simism relative to the representative agent’s approximating model. The form

that the pessimism takes is endogenous, depending both on the transition law

and the representative agent’s discount factor and one-period return function.

Pessimism has been proposed by several researchers as an explanation of asset

pricing puzzles, e.g., Reitz (XXXX) and Abel (20XXX). The contribution of

the robustness framework is to discipline the appeal to pessimism by restricting

the direction in which the approximating model is twisted, and by how much,

through the detection probability statistics that we use to restrict θ .

A. Solving Ryoo and Rosen’s model by hand

Using methods described by Sargent (1987), we can solve Ryoo and Rosen’s model
by hand and thereby discover a reduced description of the state. Substituting equations
(12.6.1), (12.6.3), and (12.6.4) into (12.6.2) and rearranging yields

(

1 + βδ2N + αsαdβ
k − δNL− βδNL

−1
)

Nt+k

= Et

[

(1 − βδNL
−1)(ηs + ust) + αsβ

k(ηd + ud,t+k)
]

,
(12.A.1)

where L is the backward shift operator. Notice the appearance in the characteristic
polynomial of αdαs = αd

α−1
s

, the ratio of the slope of the inverse demand schedule to

the slope of the inverse supply schedule. The polynomial in L on the left side evidently
can be factored as f0f(βL−1)f(L) where f(L) = (1 − ψL) and |ψ| < 1. Then the
stabilizing solution of (12.A.1) is

Nt+k = ψNt+k−1+Et

{(

f−1
0

1 − ψβL−1

)

[(1 − βδNL
−1)(ηs + ust) + αsβ

k(ηd + ud,t+k)]

}

.

(12.A.2)
It follows from (12.A.2) that Nt+k−1 is a complete description of the endogenous
part of the state vector at the beginning of time t . We could have guessed this from
(12.6.2) because Nt+k−1 is independent of decisions or shocks that occur before time
t .

When ust, udt are i.i.d., (12.A.2) simplifies to

Nt+k = ψNt+k−1 + ηs + αsβ
k + ust. (12.A.3)
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In the i.i.d. case, it follows from (12.6.2) and (12.A.3) that the decision rule for nt is

nt = (ψ − δN )Nt+k−1 + ηs + αsβ
k + ust. (12.A.4)
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Robust filtering





Chapter 13
A robust filtering problem

13.1. Filtering

Chapter 4 described the Kalman filter, a recursive method for estimating a

hidden state vector that can be computed as the dual of the optimal linear reg-

ulator. The Kalman filter assumes that a decision maker knows the statistical

model linking the hidden state to observables. If he regards the statistical model

only as approximating an unspecified true generating mechanism, he may want

estimators of the hidden state that are robust to model misspecification. This

chapter describes such robust estimators and how they embody another mani-

festation of Fellner’s observation about how probability slanting depends on the

‘prize’ (see page 32): a robust filter depends partly on the decision maker’s cri-

terion function. In this chapter we assume that the decision maker cares about

a weighted sum of current and past errors in estimating the state. An alterna-

tive but equivalent way of thinking about this criterion is that at some initial

date, the decision maker commits himself to a particular estimator that he will

eventually evaluate according to a weighted sum of state estimation errors over

the entire horizon. Duality arguments that correspond to ones encountered in

chapter 4 naturally lead us to this ‘commitment’ way of specifying the decision

maker’s criterion. Although this criterion is plausible for some economic prob-

lems, for others it is not, as we shall argue in chapter 14. We adopt it now partly

because it of how it illuminates the duality of robust control and filtering.

– 315 –
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13.1.1. Warning about recycling of notation

As is typical in some presentations of filtering and control, we have recycled

some notation. For example, we use the matrices A and K to denote different

objects in the robust filtering and control problems.

13.2. Summary of robust filtering and duality

The duality described in chapter 4 doubles the usefulness of the optimal linear

regulator problem because to each control problem there corresponds a filtering

problem, and vice versa. There is also a filtering problem that is dual to the

robust linear regulator problem studied in chapters 6 and 7. This section displays

that problem but postpones a formal derivation of it to section 13.3. We begin by

recalling the duality of control and filtering presented in chapter 4, then indicate

how it can be extended to incorporate concerns about model misspecification.

13.2.1. Duality of ordinary filtering and control

Let z̃t = C′λt +D′µt . Consider the optimal linear regulator problem

−λ′0Σλ0 = max
{µt}

∞
∑

t=0

−z̃′tz̃t (13.2.1)

where the maximization is subject to an initial condition for λ0 and the transi-

tion law

λt+1 = A′λt +G′µt. (13.2.2)

Here λt is the state vector and µt is the control vector.

Chapter 4 displayed a filtering problem that is dual to this regulator prob-

lem and interpreted the λt ’s and µt ’s of the control problem as Lagrange mul-

tipliers associated with that filtering problem. For t ≥ 0, the filtering problem

has a state vector x−t and an observation vector y−t that satisfy

x−t = Ax−t−1 + Cǫ−t (13.2.3a)

y−t = Gx−t−1 +Dǫ−t (13.2.3b)
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where ǫ−t is an i.i.d. Gaussian vector with mean zero and covariance matrix I .

The recursive estimator of the hidden state is:

x̂−t = Ax̂−t−1 +K(y−t −Gx̂−t−1), (13.2.4)

where K is the Kalman gain matrix. The error in reconstructing the state at t

is

e−t = x−t − x̂−t. (13.2.5)

The decision maker wants to construct an estimator ẑ−t of a linear combination

z−t ≡ Hx−t of the state at each t and so poses the minimization problem

min
K

E lim
T→∞

T−1
T
∑

t=0

(z−t − ẑ−t)
′(z−t − ẑ−t) (13.2.6)

or

min
K

trace(H ′HΣ)

subject to (13.2.3), (13.2.4), (13.2.5) and where again Σ = E(e−te
′
−t). The Σ

that minimizes trace(H ′HΣ) is independent of H . Define the operators

K(Σ) = (CD′ +AΣG′)(DD′ +GΣG′)−1 (13.2.7)

T ∗(Σ) = (A−K(Σ)G)Σ(A −K(Σ)G)′

+ (C −K(Σ)D)(C − K(Σ)D)′. (13.2.8)

The minimized value of Σ solves the Riccati equation

Σ = T ∗(Σ) (13.2.9)

and the minimizing K satisfies

K = K(Σ). (13.2.10)

In chapter 4, we established that (K,Σ) also solve the linear regulator (13.2.1),

(13.2.2), and that µt = −K ′λt is the optimal decision rule.
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13.2.2. A robust linear regulator

We now describe a multiplier robust control problem that corresponds to (13.2.1),

(13.2.2) and whose dual is a robust filtering problem. For θ ∈ (θ,+∞] , consider

an undiscounted robust linear regulator corresponding to (13.2.1), (13.2.2):

−λ′0Σλ0 = max
{µt}

min
{φt+1}

∞
∑

t=0

{

−z̃′tz̃t + θφ′t+1φt+1

}

(13.2.11)

where again z̃t = C′λt +D′µt and the maximization is subject to

λt+1 = A′λt +G′µt +H ′φt+1 (13.2.12)

and an initial condition λ0 . The solution of this robust control problem is a

pair of decision rules

µt = −K ′λt (13.2.13a)

φt+1 = K ′
φλt. (13.2.13b)

13.2.3. A dual robust filtering problem

We can now state the filtering problem that is dual to (13.2.11), (13.2.12). The

robust filtering problem surrounds the approximating model (13.2.3) with a set

of perturbed models of the form

x−t = Ax−t−1 + C(ǫ−t + w−t) (13.2.14a)

y−t = Gx−t−1 +D(ǫ−t + w−t) (13.2.14b)

where ǫ−t is another i.i.d. Gaussian vector with mean zero and covariance matrix

I and w−t is a vector of measurable functions of [y−t, x−t] . The w−t process

represents specification errors that feed back on histories of both the unobserved

state and the observed variables, thereby representing misspecified dynamics.

The decision maker constructs a robust filter by solving the following two-player

zero-sum multiplier game:1

trace(H ′HΣ) = max
{w−t}∞

t=0

min
K

E lim
T→∞

T−1
T
∑

t=0

(

z′−tz−t − θw′
−tw−t

)

(13.2.15)

1 When H is such that the decision maker cares about unobserved components of the

state, the solution to this problem will depend on H , so that the Σ associated with the

solution depends on H (which it did not for the ordinary Kalman filter).
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where z−t = He−t and subject to (13.2.14), (13.2.4), (13.2.5) and where

Σ = E(e−te
′
−t). For H ′H of full rank, the extremizing Σ is the fixed point

of iterations on T ∗ ◦ D∗ , where T ∗ is the operator (13.2.10) associated with

iterations on the Riccati equation for the ordinary Kalman filter, and

D∗(Σ) = Σ + θ−1ΣH ′(I − θ−1HΣH ′)−1HΣ. (13.2.16)

Lars: is there a direct (in terms of filtering) interpretation of this as

a distorted expectations operator? The only interpretation I could

figure out was a dual one. The robust Kalman gain K then satisfies

K = K ◦ D∗(Σ), (13.2.17)

where

Σ = T ∗ ◦ D∗(Σ) (13.2.18)

and K is defined in (13.2.7). The maximizing w−t sequence has the recursive
representation

w−t = −θ−1 [I + θ−1(C −KD)′Σ−1(C −KD)
]−1

(C −KD)′Σ−1(A−KG)e−t−1,

which shows how the worst case mean distortions w feed back on e−t−1 =

x−t−1 − x̂−t−1 , which means that they feed back on both the unobserved state

x−t−1 and the history of the observed signal as summarized by x̂−t−1 . This

formula shows how the malevolent (i.e., error-maximizing) agent exploits his

information advantage over the decision maker, who cannot observe x−t−1 .

13.2.4. The robust filter when Hx−t is observable

Formulas (13.2.16), (13.2.17), and (13.2.18) show that the robust filter is con-

text specific, depending on the criterion z′−tz−t = x′−tH
′Hx−t that the maxi-

mizing player cares about. In many problems, x−tH
′Hx−t plays the role of the

maximizing player’s one-period return function. When the decision maker cares

only about observable components of the state, formulas (13.2.16), (13.2.17),

and (13.2.18) imply that D∗(Σ) ≡ Σ because HΣH ′ = 0. In this case, the

robust filter is equivalent with the ordinary Kalman filter.
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13.3. The robust filtering problem

We now substantiate these claims about the robust filter and its duality with

the robust linear regulator. Because chapters 6 and 7 study discounted optimal

linear regulators, we extend (13.2.11), (13.2.12) to make it into a discounted

optimal linear regulator, and seek a filtering problem that is dual to that dis-

counted problem.

As we saw in chapter 4, though the filtering problem is typically applied

in stochastic contexts, because the mathematics merely manipulates moment

matrices, we can present what seems to be a nonstochastic derivation of a robust

Kalman filter. Thus, we shall appeal to a version of certainty equivalence to

drop the random process ǫ−t from the state space system and also shall drop

mathematical expectations from the prediction error criterion that the decision

maker seeks to minimize. We let the random vector ǫ−t ≡ 0 in the decision

maker’s approximating model and allow for specification errors to be of the

form:2

x−t =Ax−t−1 + Cw−t (13.3.1a)

y−t =Gx−t−1 +Dw−t. (13.3.1b)

Here t ≥ 0. Let y−t denote the history of y up to −t . Let Ê[ · |y−t−1] denote

a filtered value conditioned on the history of y up to time −t − 1. We seek

filtered values x̂−t = Ê[x−t|y−t], ŷ−t = Ê[y−t|y−t−1] , where Ê(·) is a distorted

expectations operator. Note the differences in the conditioning sets. See (13.3.2)

and (13.3.4) for confirmation of these different conditioning sets.

We construct a robust filter by solving a non-stochastic zero-sum two-player

game in which an evil prediction-error-maximizing agent chooses a sequence of

shocks {w−t} to maximize the same prediction error criterion that a decision

maker wants to minimize. We restrict the robust Kalman gain to be time-

invariant. For now, we take as given the choice K by the prediction-error-

minimizing decision maker, and focus on the decision of an evil maximizing

agent. To set the problem facing the evil agent, we form an observer system

(see Kwakernaak and Sivan (1972)). Emulating the measurement equation, we

require the estimator of y to take the form:

ŷ−t = Gx̂−t−1. (13.3.2)

2 See the discussion in section 4.2 for an explanation for why we make time recede into

the past with increases in t .
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It follows that the prediction error for y−t is:

y−t − ŷ−t = G(x−t−1 − x̂−t−1) +Dw−t.

We consider updating schemes for x̂ that are parameterized by a fixed gain

matrix K . The forecast-error-minimizing agent chooses K in an updating rule

of the form:3

x̂−t = Ax̂−t−1 +K(y−t − ŷ−t) (13.3.3)

or

x̂−t = Ax̂−t−1 +K(y−t −Gx̂−t−1). (13.3.4)

Subtracting (13.3.3) from (13.3.1a) gives

x−t − x̂−t = (A−KG)(x−t−1 − x̂−t−1) + (C −KD)w−t. (13.3.5)

Define the state reconstruction error:

e−t = x−t − x̂−t. (13.3.6)

Then (13.3.5) can be expressed

e−t = (A−KG)e−t−1 + (C −KD)w−t. (13.3.7)

The filter K is designed to minimize a quadratic form in the following linear

combination of the forecast errors in the state:

z−t = He−t. (13.3.8)

3 The reader of Başar and Bernhard (1995) will notice that their predictor (e.g, 6.62 on

page 273) appears to have a somewhat different form than ours, there being an extra term

in x̂t in theirs. However, if we apply their formulas to the problem in our text, it can be

shown that that extra term vanishes. The relevant part of their analysis occurs on their pages

272 and 273. Their approach is to solve two Riccati equations. Take the first one, that in

Mk on page 272. Define Gk = −I which makes the target Hx − u so that we have a pure

forecasting problem where the goal is to forecast Hx , and B = 0, Ā = A , and Q̄ = 0, so that

the Riccati equation for M implies that Mk = 0 as a solution when the equation is stated in

a form that does not require nonsingularity. The full information control problem has a zero

value function and the optimal control is to set u = Hx , so that the control portion of the

problem is degenerate. The nontrivial part of their solution in our case is the Γk component

and Başar and Bernhard refer to this as the dual quantity. Their equation for Σkk will have

a nondegenerate solution. Substituting ûk = Hx̌ into their equations (6.62) and (6.63) gives

the result that the extra x̌ term drops out of (6.62).
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The criterion of the multiplier form of a two-person game for a robust filter is

.5

∞
∑

t=0

βt(z′−tz−t − θw′
−tw−t), β ∈ (0, 1) (13.3.9)

Notice how βt weights forecast errors from the more recent past more heavily.

The decision maker minimizes this criterion by choosing K , while the evil agent

maximizes it by choosing w−t ’s subject to (13.3.7) and (13.3.8). Here θ > 0

penalizes the w′
−tw−t sequence. Given K , the maximized value of (13.3.9) is

.5e′0Σ
−1e0 (13.3.10)

where Σ satisfies a Riccati equation for a dual problem to be stated shortly

and the maximizing w−t sequence can be represented in the recursive form

w−t = Oe−t−1 , where e−t evolves according to (13.3.7) and where a formula

for O will be given in (13.3.13) below.

13.3.1. The evil agent’s problem

We now focus on the evil agent’s problem. As in chapter 7, we can use the

optimal value function that emerges from this problem as a criterion function

that the minimizing agent can use to devise a robust K . Recall that in posing

the problem of the evil agent in chapter 7, we frequently took the control law

u = −Fx as fixed and let the evil agent respond. We now take K as fixed

and study the problem of maximizing (13.3.9) by choice of {wt} . We form the

conjugate problem associated with choosing the w−t ’s to maximize (13.3.9).

Let βtλ′t denote the vector of Lagrange multipliers on (13.3.7), let βtφ′t be

the vector of multipliers on (13.3.8), and form a Lagrangian. Among the first-

order conditions for the problem of maximizing the Lagrangian with respect to

{w−t, e−t}∞t=0 and minimizing it with respect to {λt, φt}∞t=0 are:

w−t : w−t = −1

θ
(C −KD)′λt (13.3.11a)

z−t : z−t = −φt (13.3.11b)

e−t−1 : βλt+1 = (A−KG)′λt + βH ′φt+1 (13.3.11c)

e−0 : λ0 = H ′φ0 (13.3.11d)
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We can use (13.3.11a) to get a convenient formula for the distortion w−t . First,

note that λt is the vector of shadow prices of e−t , so that λt = Σ−1e−t where

Σ appears in the value function (13.3.10). This equation and (13.3.11a) imply

w−t = −θ−1(C −KD)′Σ−1e−t. (13.3.12)

To compute the feedback rule for the worst-case shock w−t , substitute (13.3.7)
into (13.3.12) and solve for w−t to get

w−t = −θ−1 [I + θ−1(C −KD)′Σ−1(C −KD)
]−1

(C −KD)′Σ−1(A−KG)e−t−1

(13.3.13)

Below, we shall show how both Σ and K can be computed by solving the linear

regulator (13.2.11), (13.2.12).

13.3.2. The dual to the evil agent’s problem

To form the dual to the error-maximizing agent’s problem, use (13.3.11a) and

(13.3.11b) to write

w′
−tw−t =

1

θ2
λ′t(C −KD)(C −KD)′λt

z′−tz−t = φ′tφt.

Substituting these into (13.3.9) gives the dual criterion

1

2θ

∞
∑

t=0

βt {−λ′t(C −KD)(C −KD)′λt + θφ′tφt} . (13.3.14)

The dual problem is to minimize (13.3.14) by choice of {φt}∞t=0 , subject to

(13.3.11c) and (13.3.11d). For convenience, rewrite (13.3.11c), (13.3.11d) as

λt+1 = β−1(A−KG)′λt +H ′φt+1 (13.3.15a)

λ0 = H ′φ0. (13.3.15b)

This is a discounted linear regulator problem with state λt and control φt+1 .

The optimized value of the objective functions of the original and dual problems

are equal.
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We can reinterpret the dual problem in terms of a time-domain version of

the multiplier problem associated with (7.2.3), (7.2.4), which for convenience

we repeat here:

min
{wt}

∞
∑

t=0

βt {−x′t(H0 − JF )′(H0 − JF )xt + θw′
twt} (13.3.16)

subject to

xt+1 = (Ao −BF )xt + Cwt+1 (13.3.17a)

x0 = Cw0. (13.3.17b)

Notice that the dual filtering problem (13.3.14), (13.3.15a), (13.3.15b) corre-

sponds to (13.3.16), (13.3.16), (13.3.17) with the settings in Table 13.3.1. This

means that all of the computational methods that apply to the control problem

can be used to solve the filtering problem, as we describe in the following section.

Table 13.3.1: Duality of filter and control

Filter Σ φt λt A′/β G′/β H ′ C′ K′ D′

Control P wt xt Ao B C H0 F J

13.3.3. Computing K

By using the duality relations listed in Table 13.3.1, we can formulate a two-

person zero-sum game that can be used to compute a robust filter K . We simply

use analogies from chapters 6 and 7 to take advantage of what we know about

the analogous game for the control problem.

The two-player zero-sum game associated with the robust control problem

is

max
{ut}

min
{wt}

∞
∑

t=0

βt {−z′tzt + θw′
twt} (13.3.18)

subject to

zt = H0xt + Jut (13.3.19a)

xt+1 = Aoxt +But + Cwt+1 (13.3.19b)

x0 = Cw0. (13.3.19c)
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The ut component of the solution is a time-invariant feedback rule

ut = −Fxt, (13.3.20)

where formulas for F are given in chapters 2, 6, and 7.

Using Table 13.3.1, it follows that the two-player zero-sum game for the

dual filtering problem is

max
{µt}

min
{φt}

∞
∑

t=0

βt{−z̃′tz̃t + θφ′tφt} (13.3.21)

subject to

z̃t = C′λt +D′µt (13.3.22a)

λt+1 = β−1A′λt + β−1G′µt +H ′φt+1 (13.3.22b)

λ0 = H ′φ0. (13.3.22c)

This problem (13.3.21), (13.3.22) can also be formulated as an optimal linear

regulator. Equilibrium choices of µt, φt+1 have representations of the forms

given in (13.2.13), namely, µt = −K ′λt and φt+1 = K ′
φλt , where K ′,K ′

φ can

be calculated with formulas analogous to those used to solve the corresponding

control problem (13.3.18), (13.3.19).

The beauty of these findings is that we can solve for the robust Kalman

gain by solving a robust optimal linear regulator problem.

13.3.4. Matlab programs

We can induce our matlab program doublex9.m for solving the robust linear

regulator to compute K , Σ, and D∗(Σ) by exploiting the duality displayed in

section 13.3.3. We accomplish this in the following steps.4

1. Input the objects A,C,G,D that form the state-space system, H and β

in the decision maker’s criterion function, and θ ; A is n× n , C is n× p ,

G is m× n , D is m× p , and H is r× n , where n is the dimension of the

state, p the number of shocks, m the number of observables, and r the

number of variables entering the decision maker’s criterion function.

4 The Matlab program rfilter.m performs these steps. .
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2. Prepare the robust linear regulator formulated in (13.3.21) and (13.3.22)

by setting Q = CC′, R = DD′,W = CD′, A = β−1A′, B = β−1G′, D =

H ′ . These are the objects in a discounted robust linear regulator problem

with cross-products between states and controls. Therefore, if we want to

use doublex9.m, which is for undiscounted problem without cross-products

between states and controls, we have to use the trick described in chapter

3 on page 65 for converting to such a problem. We accomplish this in step

3.

3. Form As =
√
β(A−BR−1W ′), Bs=

√
βB , Qs= Q−WR−1W ′ . The Matlab

program trick.m accomplishes these tasks.

4. Set sig= −θ−1 and issue the command [F,K,P,Pt]=doublex9(As,Bs,D,Qs,R,sig).

To complete the trick begun in step 3, set F̄ = F +R−1W , as described in

chapter 3 on page 66.

5. Finally, K = F̄ , Σ =P, and D∗(Σ) =Pt.

Given K , the feedback rule for the worst case mean w can be computed by

using either formula (13.3.13) or (13.A.2). Appendix A describes an optimal

linear regulator problem that can be used to compute this feedback rule and

that leads to formula (13.A.2). Appendix B describes a worst-case distorted

transition law for the state for which the ordinary Kalman gain equals the

robust Kalman filter for the transition law under the approximating model.

13.4. Robustifying Muth’s filter

As an example, we set β = 1 and consider Muth’s (1960) problem of estimating

the position of a random walk disturbed by measurement error. We set H = 1

(so that the decision maker cares about the hidden state), and assume the

approximating model:

xt+1 = xt + αǫ̂1,t+1 (13.4.1a)

yt+1 = xt + ǫ̂2,t+1 (13.4.1b)

where α is the signal to noise ratio and ǫ̂t+1 = [ ǫ̂1,t+1 ǫ̂2,t+1 ]′ is an i.i.d.

Gaussian process with mean zero and identity covariance matrix. The state xt
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is to be estimated from current and past values of yt . Setting H = 1 makes the

decision maker’s criterion equal to the variance of the error in reconstructing

the state x from past signals y . We consider the filter

x̂t+1 = x̂t +K(yt+1 − x̂t) (13.4.2)

where x̂t+1 is the estimate of the state using the history of ys through t + 1.

We want K to be robust to misspecification of (13.4.1).

We use the program rfilter.m described in section 13.3.4 to compute the

robust K . To illuminate the perturbations to the approximating model that

the decision maker is considering, we also display the following calculations.

To attain robustness, the decision maker considers a family of perturbed

models:

xt+1 = xt + α(ǫ1,t+1 + w1,t+1) (13.4.3a)

yt+1 = xt + ǫ2,t+1 + w2,t+1 (13.4.3b)

where ǫt+1 = [ ǫ1,t+1 ǫ2,t+1 ]
′

is another i.i.d. Gaussian process with mean

zero and identity covariance matrix, and [w1,t+1, w2,t+1] are distortions to the

conditional means of the two shocks ǫ̂t+1 in (13.4.1). Subtracting (13.4.2) from

(13.4.3a) and using (13.4.3b) gives

et+1 = (1 −K)et + αǫ1,t+1 −Kǫ2,t+1 + αw1,t+1 −Kw2,t+1, (13.4.4)

where et ≡ xt − x̂t . Using formula (13.3.13), we can represent the worst case

mean distortions as
w1,t+1 = −N1et

w2,t+1 = −N2et,
(13.4.5)

where N1 and N2 are computed using formula (13.3.13) or (13.A.2). Please

notice that N1, N2 are functions of θ and K .

For arbitrary K and fixed w1,t+1 = −N1et, w2,t+1 = −N2et , the error in

reconstructing the state when the model associated with (N1, N2) prevails is

et+1 = (1 −K)et − αN1et +KN2et + αǫ1,t+1 −Kǫ2,t+1 (13.4.6)

or

et+1 = χet + αǫ1,t+1 −Kǫ2,t+1, (13.4.7)
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where

χ = 1 −K − αN1 +KN2. (13.4.8)

Equation (13.4.7) gives the law of motion of the error et in reconstructing the

state for filter K when the conditional means of the shocks are feeding back on

et via N1, N2 . Denote the variance of et by vare(K;N1, N2). From (13.4.7) it

follows directly that

vare(K;N1, N2) =
α2 +K2

1 − χ2
. (13.4.9)

The spectral density of e is

Se(ω;K,N1, N2) = g1(ω)g1(−ω) + g2(ω)g2(−ω) (13.4.10)

where g1(ω) = α
1−χ exp(−iω) , g2(ω) = K

1−χ exp(−iω) ; Se achieves the decomposi-

tion of vare across frequencies:

vare =
1

2π

∫ π

−π

Se(ω;K,N1, N2)dω.

Consider vare as a function of K . Let K̂(θ) be the robust filter associated

with θ . When N1(θ), N2(θ) deliver the worst case distortions w1 and w2 to the

conditional means of the two components of ǫ for a given θ , vare(K;N1, N2) is

minimized at K = K̂(θ).

13.4.1. Ordinary Kalman filter

Let K∗ = K̂(+∞) denote the standard Kalman filter. If θ = +∞ , then N1 =

N2 = 0 and the variance of et simplifies to:

vare(K; 0, 0) =
α2 +K2

1 − (1 −K)2

=
α2 +K2

2K −K2
.

(13.4.11)

Minimizing (13.4.11) with respect to K gives a formula for K that agrees with

that produced by the ordinary Kalman filter: K∗ =
√

α4+4α2−α2

2 .5

5 When α = 1, this equals
√

5−1
2 , the golden ratio.
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Figure 13.4.1: Variance of et(K;N1, N2) as function of K

for N1 and N2 evaluated at θ = 108 . Here the ordinary

Kalman gain K∗ satisfies K∗ ≈ K̂(θ), and both K∗ and

K̂(θ) are denoted by asterisks. The two curves are for two

values of the signal-noise ratio α = 1 and α = 1.78.
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Figure 13.4.2: Variance of et(K;N1(θ), N2(θ)) as function

of K for N1 and N2 evaluated at θ = 7. Here the ordinary

Kalman gain K∗ satisfies K∗ < K̂(θ) (where K̂ is denoted

by the x and K∗ by the small vertical line on the vare(K)

curves ). The two curves are for two values of the signal-noise

ratio α = 1, 1.78.

13.4.2. Illustrations
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Figure 13.4.3: Frequency decomposition of the reconstruc-

tion error variance vare(K;N1(θ), N2(θ)) for θ = 108 for

K̂(θ) and K∗ , α = 1. The two curves for K̂(θ) and K∗

approximately coincide.
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Figure 13.4.4: Frequency decomposition of the reconstruc-

tion error variance vare(K;N1(θ), N2(θ)) for θ = 7 for K̂(θ)

and K∗ , α = 1. The solid curve is for the robust gain K̂ ,

the dotted one for the ordinary Kalman gain K∗ . The robust

gain K̂ flattens the decomposition of variance across frequen-

cies.
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Figure 13.4.5: Frequency decomposition of the reconstruc-

tion error variance vare(K;N1, N2) for θ = 7 for K̂(θ) and

K∗ , α = 1.78. The solid curve is for the robust gain K̂ , the

dotted one for the ordinary Kalman gain K∗ .
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Figure 13.4.6: The robust Kalman gain K̂(θ) as a function

of log(θ) and α .

For fixed θ < ∞ , we can determine K̂(θ) by solving the two player game

(13.3.21), (13.3.22). We can also find the associated feedback rules for the

shocks N1(θ), N2(θ) using formula (13.3.13).

In Fig. 13.4.1, we have fixed θ = 108 and derived the associated K̂,N1, N2

(all three are functions of θ ) and have plotted vare(K;N1, N2), the variance

of et(K), as a function of K . It has a minimum at K̂(θ). We have also
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Figure 13.4.7: The robust Kalman gain K̂(θ) as a function

of log(θ), given α = 1.78.

put K∗ = K̂(+∞) and K̂(θ) on the graph. For this large value of θ , K∗ is

indistinguishable from K̂(θ).

Fig. 13.4.2 contains the same information as Fig. 13.4.1, except for the

value of θ = 7. Now K̂(7) > K∗ = K(∞), though the state reconstruction

error variances vare associated with them are close.

Fig. 13.4.3 displays the frequency decomposition of vare(K
∗; 0, 0). Because

N1 = N1 = 0, this is the frequency decomposition of the variance of et under

the assumption of no specification error, using the ordinary Kalman gain K∗

with α = 1. (See (13.4.7), (13.4.8).) Fig. 13.4.4 displays the frequency decom-

position of vare(K;N1(7), N2(7)) for two values of K : K∗ and K̂(7). Here

7 is the value of θ . Thus, the dotted line is the frequency decomposition of

vare(K
∗;N1(7), N2(7)), while the solid line is the frequency decomposition of

vare(K̂(7);N1(7), N2(7)). Because they are computed using (13.4.7), (13.4.8)

evaluated at N1(7), N2(7), these spectral densities describe the frequency de-

compositions of the variances of the reconstruction errors associated with K∗

and K̂(θ) under the worst case model associated with θ = 7.6 Fig. 13.4.4 is

for α = 1, while Fig. 13.4.5 if for α = 1.78. Note that for the ordinary Kalman

gain K∗ , the spectral density under the approximating model in Fig. 13.4.3 is

lower at low frequencies than is the spectral density in Fig. 13.4.4, which is eval-

uated under the worst case model. This illustrates how the evil agent spends

6 Tom: check to make sure the interpretation of the Ball and permanent in-

come models are correct w.r.t. which model is used to evaluate the spectrum.
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most of his ‘entropy budget’ by deceiving the decision maker at low frequencies.

Fig. 13.4.4 shows how the robust filter responds by lowering the low frequency

contributions to variance under the worst case model.

Fig. 13.4.3 shows that the ordinary Kalman filter K∗ is most vulnerable to

low frequency components of et , which can be induced by having the worst case

conditional means feed back positively on et . Fig. 13.4.4 shows how the worst

case conditional means associated with θ = 7 pump up the low frequencies of

et , and how the robust K̂(7) filter achieves a lower variance vare(K;N1, N2) by

flattening the spectrum, accepting higher variance at higher frequencies in ex-

change for lower variance at the low frequencies where the worst case conditional

means operate the strongest.

Fig. 13.4.6 and Fig. 13.4.7 show the robust Kalman gain K̂ as functions

of log(θ) and α . These figures show how increasing the preference for a robust

filter (i.e., decreasing θ ) raises the Kalman gain.

13.5. Another example

Velde (2005XXXX) considers a state-space system of the form (13.3.1) in which

the first component of x−t is core-inflation and remaining components describe

the dynamics of a vector of relative prices. Velde is interested in minimizing

E(x1,−t−x̂1,−t)
2 . To get a robust Kalman filter, we would take Velde’s estimates

of A,C,G,D and set H = [ 1 0 · · · 0 ].

13.6. Discounting and the direction of time

This chapter has been partly motivated by mechanical questions associated with

duality. The duality of ordinary (non-robust) filtering and control described in

chapter 4 led us to suspect that there exists a filtering problem that is dual to

the robust discounted optimal linear regulator problem analyzed in chapters 6

and 7. By reverse engineering, we have found that robust filtering problem.

This robust filter minimizes a geometrically discounted sum of current and

past forecast errors. That criterion is inappropriate in economic models that tell

the decision maker to care only about current and future returns, settings that



334 A robust filtering problem

induce the decision maker to limit his attention to errors in forecasting current

and future variables that influence payoffs.

In chapter 14, we shall describe a different robust filtering problem with a

payoff function that is exclusively forward looking. Nevertheless, it is possible

to imagine some economic contexts in which the timing convention of the filter

of this chapter can be defended, for example, where the agent who filters must

commit himself in advance to a filtering rule and then be judged in terms of the

average forecasting behavior only after much time has elapsed. The formulation

studied in this chapter is widely used in the control literature (for example, see

Başar and Bernhard (1995) and Whittle (1990)).

13.7. Another perturbation

Consider the situation in which the decision maker cares only about current and

future values of the state. In particular, suppose that, conditional on knowing

the state x he has a value function −x′Mx , where the symmetric and positive

semi-definite matrix M might be obtained as the outcome of iterating on a

Riccati equation that looks to the future. Suppose that if the decision maker

knew the state, he would use the decision rule u = −Fx . Now suppose that

the state is not known and that the decision maker estimates the state using an

ordinary Kalman filter. The Kalman filter makes the time t state x distributed

according to a Gaussian distribution with conditional mean x̂ and conditional

covariance Σ, so that the decision maker acts as if the (partially hidden) state

x obeys x = x̂ + ê , where ê is normal with mean 0 and covariance Σ. An

application of a certainty equivalence argument would have the decision maker

use the decision rule u = −F x̂ .

But now suppose that the decision maker believes that the posterior distri-

bution emerging from the Kalman filter is misspecified, so that x instead obeys

x = x̂+ ê+ u where u is a perturbation to the conditional mean. Because the

decision maker wants decisions that are robust with respect to such misspeci-

fications, he conducts the following context-specific worst case analysis, where

now the ‘context’ inspires him to choose the distortion u to harm the forward-

looking criterion −x′Mx . To find a worst case perturbation u , penalize u by
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entropy as measured by uΣ−1u and consider the problem

min
u

−(x̂+ u)′M(x̂+ u) +
θ

2
uΣ−1u (13.7.1)

whose first order necessary condition implies

u = −(M − θΣ−1)−1Mx̂. (13.7.2)

Apply the partitioned inverse formula

(a− bd−1c)−1 = a−1 + a−1b[d− ca−1b]−1ca−1

with a = M, b = θ, d = Σ, c = 1 to get

(M − θΣ−1)−1 = M−1 +M−1θ[Σ −M−1θ]−1M−1.

Then from (13.7.2) we have

u = −
(

I +M−1[θ−1Σ −M−1]−1
)

x̂.

The worst case x is then x̌ = x̂+ u or

x̌ = (I − θ−1ΣM)−1x̂. (13.7.3)

The decision maker achieves robustness to doubts about the specification of the

prior distribution coming from the Kalman filter by using the decision rule

u = −F x̌. (13.7.4)
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13.7.0.1. Formulation from control theory literature

Başar and Bernhard (1995) and Whittle (1990) use a decision rule of the form

(13.7.4) where instead of starting with the prior for x that emerges from the

Kalman filter, they begin from the distorted prior that we deduced from our

reverse-engineered-from-duality robust Kalman filter. In that formulation, past

distortions w−t to the conditional means of past ǫ−t ’s, used to design the ro-

bust Kalman filter, affect the decision rule through their effects on x̂ ; while

future distortions wt to conditional means of future ǫt ’s, affect the decision rule

through the design of a robust F via the approach described in chapter 2 and

6. See Whittle (1990) and Başar and Bernhard (1995) for extensive discussions.

13.7.1. Transition to next chapter

The material in this section forms a bridge to the next chapter, where we con-

sider a ‘two-θ recursiv formulation of decision problems in which the decision

makers considers two sources of possible misspecification: (1) misspecified dy-

namics, accommodated by allowing distortions to the conditional mean of the

state and measurement errors ǫt+1 to feed back on past outcomes, and a mis-

specified prior distribution for the hidden state variables, accommodated by a

perturbation like the u in problem (13.7.1). By using different θ ’s to penalize

the entropies associated with these two perturbations, we can focus the decision

maker’s concerns more on one or the other of these sources of misspecification.

A. Another way to compute the worst-case shock

Formula (13.3.13) shows how to compute the worst-case shock associated with
the robust filter. An alternative way to compute it is to use the dual problem to
compute K , then to formulate the primal problem, say with the following convention
for our time index t :

max
{wt}

∞
∑

t=0

β−t(et
′H ′Het − θw′

twt) (13.A.1a)

subject to
et = (A−KG)et−1 + (C −KD)wt (13.A.1b)

given an initial e−1 . Note how the discounting of the past in problem (13.3.9),
(13.3.7), (13.3.8) corresponds to anti-discounting the future in (13.A.1a) (because
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|β| < 1). The feedback rule for the worst case shock is

wt = Net−1, (13.A.2)

where N equals the usual feedback matrix7 for the optimal linear regulator associated
with (13.A.1).

Having found N either from formula (13.3.13) or (13.A.2), we return to our
original convention for the index t and use (13.3.2) to represent the robust filter
recursively as

ŷ−t = Gx̂−t−1 (13.A.3a)

x̂−t = Ax̂−t−1 +K(y−t − ŷ−t). (13.A.3b)

The associated worst-case law of motion for the state and the observed variables is

w−t = N(x−t−1 − x̂−t−1) (13.A.4a)

x−t = Ax−t−1 + Cw−t (13.A.4b)

y−t = Gx−t−1 +Dw−t. (13.A.4c)

B. A Bayesian interpretation of the robust K

In section 6.5.2 of chapter 6, we remarked that when a decision maker solves an ordinary
optimal linear regulator problem, acting as if a particular representation of the worst
case law of motion is true, he will thereby compute the robust decision rule. By
displaying a particular law of motion for the state that renders the robust rule optimal,
that finding was the basis for a Bayesian interpretation of the robust control law. In
this appendix, we describe a corresponding Bayesian interpretation of the robust filter
by displaying a representation of the worst-case law of motion for which an ordinary
Kalman gain will be the robust Kalman gain. We accomplish this by using another
version of a “Big X , little x trick.

Let K = K(θ) be the robust Kalman gain and express the law of motion for
{xt, yt} under the worst case model as

wt+1 = N(xt − x̌t) (13.B.1a)

xt+1 = Axt + C(ǫt+1 + wt+1) (13.B.1b)

x̌t+1 = Ax̌t +K(yt+1 −Gx̌t) (13.B.1c)

yt+1 = Gxt +D(ǫt+1 + wt+1). (13.B.1d)

7 Namely, −F in ut = −Fxt in the linear regulator in chapters 2 and 6.
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We use (̌·) to replace (̂·) for a reason that we explain after presenting system (13.B.2).
Substituting (13.B.1a) into (13.B.1b) and (13.B.1d), substituting the resulting for-
mula for yt+1 into (13.B.1c), and rearranging allows us to represent the worst case
law as

[

xt+1

x̌t+1

]

=

[

A+CN −CN
−K(G+DN) A+K(G+DN)

][

xt

x̌t

]

+

[

C
KD

]

ǫt+1

yt+1 = [ (G+DN) −DN ]

[

xt

x̌t

]

+Dǫt+1.

(13.B.2)

Notice how this representation shows that the worst-case law of motion is no longer
Markov in the state xt alone, though it is Markov when the state is augmented to
include x̌t . This occurs because the distorted mean wt+1 feeds back on xt − x̌t ,
thereby inducing history-dependence into the law of motion for xt . Express system
(13.B.2) as

Xt+1 = ĀXt + C̄ǫt+1

yt+1 = ḠXt +Dǫt+1.
(13.B.3)

Apply the ordinary Kalman filter to this system to get the Kalman gain Ǩ and the
representation

X̂t+1 = ĀX̂t + Ǩ(yt+1 − ḠX̂t). (13.B.4)

Then Ǩ = K(θ) , where K(θ) is the robust Kalman filter.



Chapter 14
Joint control and estimation

In commerce bygones are forever bygones and we are always starting clear

at each moment, judging the value of things with a view to future utility.

Industry is essentially prospective not retrospective.

— William Stanley Jevons, 1871

14.1. Introduction

This chapter extends ideas about control and filtering from chapters 4, 6, and

13. We study a decision maker who does not observe parts of the state that

help forecast variables that he cares about. We formulate a joint control and

prediction problem and show how it can be represented recursively.

The filtering problem in chapter 13 took as the decision maker’s approxi-

mating model a state space representation for observables and states, posed the

problem of estimating a function of hidden states with a filter that is robust to

perturbations of the approximating model. The approach in this chapter has

a different starting point. We take the view that the decision maker’s approxi-

mating model includes a recursive representation of the estimator of the hidden

state that is derived by applying the ordinary (nonrobust) Kalman filter to the

approximating state space model for states and observables. This means that

we include the sufficient statistics for the distribution of the hidden part state

that come from the ordinary Kalman, namely the mean and covariance of the

hidden part of the state, as among the state variables. We then obtain robust

decision rules by allowing an evil agent to perturb conditional distributions for

that approximating model. Among other distributions, the evil agent perturbs

the distribution of the hidden state conditional on the history of signals. The

decision maker designs a decision rule that is robust to these perturbations.

This chapter draws heavily from Hansen and Sargent (2005b XXXX).

– 339 –
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14.2. A recursive control and filtering problem

14.2.1. The decision maker’s approximating model

Following Hansen and Sargent (2005b XXXX), Partition a state vector as

xt =

[

yt

zt

]

where yt is observed and zt is not observed by a decision maker whose one-

period utility function is

U(xt, at) = −.5 [a′t x′t ]

[

Q P

P ′ R

] [

at

xt

]

where at is a vector of controls that influence future values of both (y, z) and

a signal s that is informative about z The decision maker orders {xt, at} se-

quences according to

E
[

∞
∑

t=0

βtU(xt, at)
∣

∣y0
]

, (14.2.1)

where E is the mathematical expectation with respect to a probability distribu-

tion that we now describe. At time t+ 1, the decision maker observes a vector

st+1 that includes yt+1 and possibly other signals about the hidden state. The

decision maker remembers past signals. The variables obey

yt+1 = Πsst+1 + Πyyt + Πaat (14.2.2a)

zt+1 = A21yt +A22zt +B2at + C2wt+1 (14.2.2b)

st+1 = D1yt +D2zt +Hat +Gwt+1 (14.2.2c)

where wt+1 ∼ N (0, I). Substituting (14.2.2c) into (14.2.2a) gives the following

transition law for the observed state:1

yt+1 = A11yt +A12zt +B1at + C1wt+1, (14.2.3)

1 Sometimes we formulate a problem directly in terms of (14.2.3) without first stipulating

(14.2.2a).
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where A11 = (ΠsD1 + Πy), A12 = ΠsD2, B1 = (ΠsH + Πa), C1 = ΠsG . Thus,

we have the state-space system

xt+1 = Axt +Bat + Cwt+1 (14.2.4a)

st+1 = Dxt +Hat +Gwt+1. (14.2.4b)

The decision maker believes that the distribution of the initial value of the

unobserved part of the state is

z0 ∼ N (ž0,∆0). (14.2.5)

Let st = [st, . . . , s0] . Taking into account that yt is observed and applying the

ordinary Kalman filter to system (14.2.4) gives the following representation for

žt+1 ≡ E[zt+1|st+1] and št+1 ≡ E[st+1|st] :

št+1 = D1yt +D2žt +Hat (14.2.6a)

žt+1 = A21yt +A22žt +B2at +K2(∆t)(st+1 − št+1) (14.2.6b)

∆t+1 = A22∆tA
′
22 + C2C

′
2 −K2(∆t)(A22∆tD

′
2 + C2G

′)′ (14.2.6c)

K2(∆) = (A22∆D
′
2 + C2G

′)(D2∆D
′
2 +GG′)−1 (14.2.6d)

where ∆t = E[zt − žt][zt − žt]
′ . Notice that žt+1 conditions on st+1 and that

št+1 conditions on st . Under the approximating model, zt ∼ N (žt,∆t). Thus,

(žt,∆t) are sufficient statistics for the distribution qt(zt) of the unobserved part

of the state at t .

We regard representation (14.2.6) as a complete statement of the decision

maker’s approximating model. Thus, we take the laws of motion for (žt,∆t)

that come from applying the Kalman filter to model (14.2.4) to be parts of

the decision maker’s approximating model.2 We shall design a robust decision

rule by considering the robustness of a decision rule to statistical perturbations

of (14.2.6). This structure identifies distributions to two random vectors to

perturb at date t : (1) the conditional distribution of the shock wt+1 , which

according to the approximating model is N (0, I); and (2) the distribution of

the hidden state zt , which according to the approximating model is N (žt,∆t).
3

2 This contrasts with the approach in chapter 13, where the approximating model did not

include the law of motion for an estimate of the hidden state induced by applying the ordinary

Kalman filter.
3 A virtue of this formulation is that by taking the outcomes of the Kalman filter as applied

to (14.2.4) as part of the approximating model, we have to solve only one Kalman filtering
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14.2.2. Two sources of statistical perturbation

We transform representation (14.2.6) in a way designed to focus our attention

on perturbations to the distributions of wt+1 and z , respectively. To formulate

a recursive version of our problem, let ∗ denote a next period value and use

(14.2.6) to express the evolution equation for [ y′t+1 ž′t+1 ∆t+1 ] as





y∗

ž∗

∆∗



 =





A11 A12 0

A21 A22 0

0 0 1









y

ž

f(∆)



+





B1

B2

0



 a+





A12

K2(∆)D2

0



 [z−ž]+





C1

K2(∆)G

0



w∗

(14.2.7)

where f(∆) = A22∆A
′
22 − (A22∆D

′
2 + C2G

′)(D2∆D
′
2 + GC′)−1(A22∆A

′
22 +

G2C
′)′ + C2C

′
2 , w∗ ∼ N (0, I), and z ∼ N (ž,∆). Notice that ∆t evolves

exogenously with respect to (y, ž), so that given an initial condition ∆0 , a path

{∆t+1}∞t=0 can be computed before observing any data.

Two random vectors appear in representation (14.2.7): (z− ž) and w∗ . In

the next subsection, we describe systematic ways of organizing context-specific

perturbations of the distributions of these two random vectors. At first reading,

it is possible lightly to skim these subsections and move immediately to subsec-

tion 14.2.5 where we use a certainty equivalent problem to find the key objects

needed to compute a robust decision rule.

14.2.3. Two operators

An operator T1 systematically perturbs the distribution of wt+1 conditional

on (y, ž, z) and another operator T2 perturbs the distribution of z conditional

on (y, ž). Let q = (ž,∆) denote our sufficient statistics for the distribution of

the hidden state. Throughout this section, we let a be a measurable function

of (y, q).

problem. Alternative formulations can be conceived that would have the decision maker solve

a separate filtering problem for each perturbation of the approximating model (14.2.4). Those

would obviously be less convenient computationally. See Hansen and Sargent (2005a, 2005b

XXX) for a discussion of this issue.
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14.2.3.1. The T1 operator

Let m be a nonnegative random variable that is measurable with respect to

(y∗, q∗, z∗). Assume that m has mean 1 conditional on (y, q, z, a). Hansen and

Sargent (2005a, 2005b XXXX) show that m can be used to represent distortions

to the joint distribution of (y∗, q∗, z∗), conditional on (y, q, z, a). In particular,

m functions as a Radon-Nikodym derivative, or likelihood ratio, for transforming

one distribution into another. Let V (y, q, z, a) be a measurable function of

(y, q, z). Then E
[

mV (y∗, q∗, z∗, a)
∣

∣y, z, q, a
]

equals the conditional expectation

of V evaluated with respect to a distorted density formed by multiplying the

original density by m . Define the entropy of m by ε1(m) = E (m logm|y, q, z).
Following Hansen and Sargent (2005bXXXX), we define the operator T1 by:

(T1V (y∗, q∗, z∗, a)|θ)(y, q, z, a) = min
m≥0

E
[

mV (y∗, q∗, z∗, a)
∣

∣y, z, q, a
]

+ θε1(m) (14.2.8a)

= θ log

∫

exp
[−V (y∗, q∗, z∗, a)

θ

]

φ(w∗)dw∗, (14.2.8b)

where φ is the standard normal density and the minimization in (14.2.8a) is

subject to the law of motion (14.2.7) and the restriction that E[m|y, z, q, a] = 1.

The minimizing m is

m♥ ∝ exp
[−V (y∗, q∗, z∗, a)

θ

]

, (14.2.9)

where the factor of proportionality is chosen to make the mean of m conditional

on (y, q, a) equal to 1.
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14.2.3.2. The T2 operator

Let h be a nonnegative random variable that is a function of (y, q, z, a) and

that has mean 1 conditional on (y, q, a). Hansen and Sargent (2005a, 2005b

XXXX) show that such a nonnegative random variable h can be used to rep-

resent distortions to the joint distribution of (y, q, z). Define the entropy of h

as ε2(h) = E(h logh|y, q, a). Consider a function V̌ (y, q, z, a) and define the

operator

(T2V̌ (y, q, z, a)|θ)(y, q, a) = min
h≥0

E
(

hV̌ (y, q, z, a)|y, q, a
)

+ θε2(h) (14.2.10a)

= −θ log

∫

exp
[−V̌ (y, q, z, a)

θ

]

q(z)dz (14.2.10b)

where the minimization is subject to E[h|y, q, a] = 1. The minimizing h is

h♥ ∝ exp
[−V̌ (y, q, z, a)

θ

]

, (14.2.11)

where the factor of proportion is chosen to make h have expectation equal to

1.

14.2.4. A recursive formulation for control and estimation

By finding a worst-case m , the operator T1 distorts the distribution of w∗ , con-

ditional on (y, q, z, a). It can help a decision maker explore fragility of decisions

to misspecification of the distribution of (y∗, q∗, z∗) conditional on (y, q, z, a).

Notice that the hidden state z is included in the conditioning set.

By finding a worst-case h , the operator T2 distorts the distribution of z

conditional on (y, q, a). It can help a decision maker explore the fragility of

a decision rule a = a(y, ž) to misspecifications of the prior distribution for z ,

as represented in our linear quadratic problem, for example, by the sufficient

statistics (ž,∆) for the distribution q(z).

By solving the following Bellman equation, the decision maker can design

a decision rule that is robust to misspecifications of the conditional distribution

of w∗ and the distribution of the hidden state z :

W (y, q) = max
a

T2
[

U(x, a) + T1[βW ∗(y, q)
∣

∣θ1](y, q, z, a)
∣

∣

∣θ2]
]

(y, q, a). (14.2.12)
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Here T1 integrates over w∗ , conditioning on (y, q, z, a), and T2 integrates over

z , conditioning on (y, q, z). Assigning different values to θ in the two operators

lets the decision maker focus more on misspecifications of one rather than the

other of the two distributions being perturbed.

By virtue of equations (14.2.8a) and (14.2.10a), each step in recursion

(14.2.12) involves maximization over a and minimization over h and m . For

linear quadratic problems like the ones we are interested in here, certainty equiv-

alence ideas can be exploited to simplify the calculations. We show how to do

this in the next section by focusing first on the means of the perturbed distri-

butions of w∗ and z , then calculating the covariance matrices later.

14.2.5. A certainty equivalent short cut

Let u be the mean of z− ž and ṽ the mean of w∗ , both conditioned on (y, ž).

Consider the evolution equation

[

y∗

ž∗

]

=

[

A11 A12

A21 A22

] [

y

ž

]

+

[

B1

B2

]

a+

[

A12

K2(∆)D2

]

u+

[

C1

K2(∆)G

]

ṽ (14.2.13)

or

x̃∗ = Ãx̃+ B̃(∆)ã (14.2.14)

where

ã =





a

u

ṽ



 , x̃ =

[

y

ž

]

. (14.2.15)

We obtained (14.2.13) by letting w∗ = ṽ+ ǫ∗ and z− ž = u+ ǫu , where ǫ∗ and

ǫu are both Gaussian random vectors with means of zero, and then dropping

the terms in ǫ∗ and ǫu from (14.2.7). Dropping these terms can be justified

by a certainty equivalence argument like one used in chapter 2. We will take

account of these omitted terms later when we compute covariance matrices. The

important thing to note now is that omitting these terms at this stage does not

imperil our computations of u and ṽ .

We add to the utility function U(x, a) the parts of two entropy terms

pertinent for our deterministic problem to get the augmented return function

U(x, a) + θ1|ṽ|2 + θ2u
′∆−1u,
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where θ1 penalizes distortions v and θ2 penalizes distortions u . Define this

augmented return function as r(x̃, ã) and represent it as

r(x̃, ã) = −1

2
[ a′ y′ z′ ]





Q P1 P2

P ′
1 R11 R12

P ′
2 R21 R22









a

y

z



+
θ1
2
|ṽ|2 +

θ2
2
u′∆−1u

= −1

2
[ ã′ x̃′ ] Π(∆)

[

ã

x̃

]

and

Π(∆) =

[

Π11 P12

Π21 Π22

]

where

Π11 =





Q P2 0

P ′
2 R22 − θ2∆

−1 0

0 0 −θ1I



 , Π12 =





P1 P2

R21 R22

0 0



 , Π22 =

[

R11 R12

R21 R22

]

and Π21 = Π′
12 . Then we can compute (y, ž)-contingent distortions to the

means (u, ṽ) and a robust decision rule for a that solves (14.2.12) by solving

the deterministic problem:

min
{ut,ṽt}

max
{at}

∞
∑

t=0

βtr(x̃t, ãt) (14.2.16)

subject to

x̃t+1 = Ãx̃t + B̃(∆t)ãt (14.2.17)

where ∆t is the solution of (14.2.6c), (14.2.6d). The Bellman equation for

problem (14.2.16), (14.2.17) is

−1

2
x̃′Ω(∆)x̃ = extã

{

−1

2
[ ã′ x̃′ ] Π(∆)

[

ã

x̃

]

− βx̃′Ω(∆∗)x̃∗
}

, (14.2.18)

where ext denotes extremization (i.e., maximization with respect to a and mini-

mization with respect to u and ṽ ) and the extremization is subject to (14.2.14).

To be well posed, (θ1, θ2) must be large enough to make the matrix

[

θ2∆
−1 −R22 0

0 θ1I

]

− β

[

A12
′ D2

′K2(∆)′

C1
′ G′K2(∆)′

]

Ω(∆∗)

[

A12 C1

K2(∆)D2 K2(∆)G

]

(14.2.19)
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be positive definite. We call (14.2.19) a ‘no breakdown condition’.

The decision rule for ã is

ã = −
[

Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)
]−1 [

Π12 + βB̃(∆)′Ω∗(∆∗)Ã
]

x̃

(14.2.20)

and the recursion in Ω(∆) is the Riccati equation

Ω(∆) = Π22 + βÃ(∆)′Ω∗(∆∗)Ã(∆) −
[

Π12 + βB̃(∆)′Ω∗(∆∗)Ã
]′

[

Π11(∆) + βB̃(∆)′Ω∗(∆∗)B̃(∆)
]−1 [

Π12 + βB̃(∆)′Ω∗(∆∗)Ã
]

.

(14.2.21)

In the special case in which the decision maker in effect conditions on an

infinite history of signals and in which ∆t has converged, we can set ∆∗ = ∆

and exploit the observation that, as noted in chapter 2, problem (14.2.18) can

be solved using standard formulas for the ordinary discounted optimal linear

regulator. In particular, our Matlab program olrp.m can be applied.

The extremizing decision rule from either (14.2.20) in the general case or

olrp.m for the special case ∆t+1 = ∆0∀t ≥ 1 is

ã ≡





a

u

ṽ



 = −F̃ (∆)x̃ = −





F̃1(∆)

F2(∆)

F3(∆)



 x̃ (14.2.22)

The first block row gives the robust decision rule and the second gives the

distorted mean u of z − ž both as functions of x̃ =

[

y

z̃

]

. The third block row

gives the mean ṽ of the distorted distribution for w∗ , conditional on x̃ .

In problem (14.2.12), the distorted mean actually depends on the unob-

served state z as well, since the T1 operator conditions on z . So while problem

(14.2.16), (14.2.17) allows us to compute the decision rule a and the distortion

to the mean of z that solves (14.2.12), it does not provide the mean distor-

tion to the distribution of w∗ conditioned on (y, ž, z) that the T1 operator in

(14.2.12) computes. We now describe how to compute the distorted mean of w∗

conditioned on the set (y, ž, z) that conditions T1 . We want this conditional

mean and the associated conditional covariance matrix in order to compute

other objects that will be of interest later.
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14.2.6. Computing the T1 operator

Impose the robust control law for a in the law of motion (14.2.14) to get

[

y∗

z̃∗

]

= Ã

[

y

ž

]

−
[

B1

B2

]

F̃1(∆)

[

y

ž

]

+

[

A12

K2(∆)D2

]

[z − ž] +

[

C

K2(∆)G

]

w∗

or
[

y∗

z̃∗

]

= Ā(∆)

[

y

ž

]

H̄(∆)[z − ž] + C̄(∆)w∗.

We already know the mean of the worst case w∗ conditioned on (y, ž). We

want to know the mean of w∗ conditioned on (y, ž, z). An LQ control problem

associated with the T1 operator is:

min
v

−1

2
β [ y∗′ ž∗′ ] Ω∗(∆∗)

[

y∗

ž∗

]

+
θ1
2
v′v

where the minimization is subject to the law of motion

[

y∗

ž∗

]

= Ā(∆)

[

y

ž

]

+ H̄(∆)[z − ž] + C̄(∆)v.

The first-order necessary condition for this minimum problem yields

v = −β[−θ1I+βC̄(∆)′Ω∗(∆∗)C̄(∆)]−1C̄(∆)′Ω∗(∆∗)

(

Ā(∆)

[

y

ž

]

+H̄(∆)[z−ž]
)

or

v = −F̄ (∆)





z − ž

y

z



 = −F̄1(∆)(z − ž) − F̄2(∆)

[

y

z

]

. (14.2.23)

Equation (14.2.23) gives v , the worst case mean of w∗ that comes from applying

the T1 operator. Conditional on (y, z, ž), the covariance matrix of the worst

case distribution of w∗ is

Σ(∆) =
[

I − β

θ1
C̄(∆)′Ω∗(∆∗)C̄(∆)

]−1

.

We next compute the matrix Ω̄(∆) in the quadratic form in [ (z − ž)′ y′ ž′ ]

that emerges from applying the T1 operator. First, adjust the objective for the
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choice of v by constructing a matrix Π̄(∆), with row and column dimension

both equal to the dimension of [ (z − ž)′ y′ ž′ ] :

Π̄(∆) =









0 −F̃1(∆)

I 0 0

0 I 0

0 0 I









′ 







Q P2 P1 P2

P2
′ R22 − θ2∆

−1 R21 R22

P1
′ R21 R11 R12

P2
′ R22 R21 R22

















0 −F̃1(∆)

I 0 0

0 I 0

0 0 I









.

The matrix in the quadratic form in [ (z − ž)′ y′ ž′ ] for the minimized ob-

jective function that emerges from applying the T1 operator is:

Ω̄(∆) = Π̄(∆) + β

[

H̄(∆)′

Ā(∆)′

]

Ω∗(∆∗)
{

I+

βC̄(∆)
[

θ1I − βC̄(Ω)′Ω∗(∆∗)C̄(∆)
]−1

C̄(∆)′Ω∗(∆∗)
}

[ H̄(∆) Ā(∆) ] .

This is a useful formula, as we see next.

14.2.6.1. Worst case distribution for z − ž : N (u,Γ(∆))

Use the partition:4

Ω̄(∆) =

[

Ω̄11(∆) Ω̄12(∆)

Ω̄21(∆) Ω̄22(∆)

]

where Ω̄11(∆) has the same dimension as z − ž and Ω̄22(∆) has the same

dimension as

[

y

ž

]

. The covariance matrix of z − ž is

Γ(∆) = −
[

1

θ 2
Ω̄11(∆)

]−1

, (14.2.24)

which is positive definite when the pair of penalty parameters (θ1, θ2) satisfies

the no-breakdown condition (14.2.19).

4 Knowing Ω̄(∆) allows us to deduce the worst case distribution for z − ž conditional

on (y, ž) in another way, thereby establishing a useful cross check on formula (14.2.20) or

(14.2.22). See Hansen and Sargent (2005b XXXX).
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14.2.7. Worst case signal distribution

Appendix A establishes that the distribution of the signal under the worst case

model has conditional mean and conditional covariance matrix:

s̄∗ = D̄1(∆)y + D̄2(∆)ž +Ha (14.2.25)

Ῡ = D2Γ(∆)D2
′ +GΣ(∆)G′ (14.2.26)

where
D̄1(∆)

.
= D1 −D2F̃21(∆) −GF̃31(∆)

D̄2(∆)
.
= D2 −D2F̃23(∆) −GF̃33(∆).

The laws of motion for (y, ž) under the worst case model are:

y∗ =
[

Πyy + ΠsD̄1(∆) − (ΠsH + Πa)F̃11(∆)
]

y +
[

ΠsD̄2(∆) − (ΠsH + Πa)F̃13(∆)
]

ž

+ Πs(s
∗ − s̄∗). (14.2.27)

ž∗ =
(

A21 −B2F̃11(∆) +K2(∆)[D̄1(∆) −D1]
)

y

+
(

A22 −B2F̃13(∆) +K2(∆)[D̄2(∆) −D2]
)

ž +K2(∆)(s∗ − s̄∗). (14.2.28)

where the innovation s∗ − s̄∗ under the distorted model is normal with mean

zero and covariance matrix Ῡ.

Such a representation for the signal distribution is useful, for example, in

asset pricing applications.

14.3. Examples

Example 1 (Jovanovic-Nyarko I):

This example adds adjustment costs to a model authored by Jovanovic and

Nyarko (1996XX). A decision maker chooses a scalar decision at to maximize

E
[

∞
∑

t=0

βt[1 − (st+1 − y2t+1)
2 − da2

t ]
∣

∣y20

]

(14.3.1)

where

y2t+1 = y2t + at + cwt+1 (14.3.2a)

st+1 = z + gwt+1 (14.3.2b)

zt+1 = zt. (14.3.2c)

z0 ∼ N (ž0,∆0) (14.3.2d)



Examples 351

where wt+1 is an i.i.d. 2 × 1 Gaussian random vector with mean zero and

variance I . In (14.3.1), 1 − (st+1 − y2t+1)
2 is the decision maker’s time t+ 1

output, and st+1 is an ‘ideal’ time t+ 1 action, unknown at t but observed at

t+1, that the decision maker aspires to implement by choosing an increment at

to a prior action y2t , and da2
t is the adjustment cost that he pays for altering

his prior action. The ideal action is a noisy signal of an unknown mean ideal

action z . The decision maker starts with a prior belief ž0 about the ideal action.

Assume that the constant mean z of the ideal action is itself a random variable

that is drawn from N (ž0,∆0). Assume also that the initial action is y0 = ž0 .

To map this problem into our setting, evaluate E[(st+1 − y2t+1)
2] = E[z −

(y2t + at)]
2 + (g − c)(g − c)′ , which implies that the time t component of the

criterion function is U(xt, at) = 1− z2 − y2
2t − 2aty2t − (d+ 1)a2

t + 2zty2t + 2zat

plus the variance (g − c)′(g − c). The variance term is beyond control and can

be omitted when calculating a decision rule. Let 1 be the first component of

the observed part of the state yt so that

[

1

y2t+1

]

=

[

1 0

0 1

] [

1

y2,t+1

]

+

[

0

1

]

at +

[

0

c

]

wt+1

which is a version of (14.2.3) with yt = [ 1 y2t ]
′
, A11 = I, B1 = [ 0 1 ]

′
, C1 =

[ 0 c ]
′
, A12 = 0. Comparing (14.3.2b) with (14.2.2c) indicates that we should

set D = [ 0 1 ] , H = 0, G = g , and comparing (14.3.2c) with (14.2.2b) shows

that we should set A21 = 0, A22 = 1, B2 = 0, C2 = 0. To capture the ob-

jective function, we should set Q = (d + 1), P1 = [ 0 −1 ] , P2 = −1, R11 =
[−1 0

0 1

]

, R12 =

[

0

−1

]

, R22 = 1, R21 = R′
12 .

Instructions for Ricardo: This problem is interesting only in the nonstation-

ary case in which ∆t is moving over time. I ask that you extend your program

getStationaryDeltaK2 (i.e., create an alternative program to be used in the

nonstationary case) so that starting from a specified ∆0 to be input by the

user, it generates a sequence {∆t}T
t=0 . For many, though not all, problems, ∆t

will converge pretty quickly. Having created {∆t}T
t=0 , then I ask you to modify

your game II program so that it kicks out time-varying decision rules for at and

for the worst case conditional means ut, ṽt, vt . In addition, could you modify

your formulas for the conditional covariances so that they too are time-varying?

These are simple modifications for what you already have, implementing as they
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do the formulas in this chapter or in the HS paper nocommit*.tex. I recom-

mend that you set c = 1, g = 2, d = 1, ž0 = 10,∆0 = 5 to begin. End of

instructions for Ricardo.

Example 2: (Jovanovic-Nyarko II):

In example 1, limt→+∞ ∆t = 0, so that eventually learning about the

hidden state is complete. This implies that limt→+∞ ut = 0 and that the

associated variance of the distorted distribution for z also converges to zero. To

sustain perpetual learning about z and perpetual distortion through a nonzero

setting of u , we modify the description of zt to be:

zt+1 = (1 − ρ)µz + ρzt + czw3,t+1

where w3,t+1 ∼ N (O, 1) is a third random shock that we add to the model

of example 1 and |ρ| < 1. The rest of the model remains the same. Now

limt→+∞ ∆t = ∆∞ > 0, so that there always remains uncertainty about z . In

this case, for θ2 < +∞ , ut will not converge to zero but instead to a time-

invariant linear function of yt, žt that depends on (θ1, θ2).

Example 3 (pure estimation of hidden state):

Suppose that B = 0 so that the state cannot be influenced by a . The

decision maker wants to estimate −Px . Set Q = I and R = P ′P . The

decision at as a function of (yt, žt) is a robust estimate of −Pxt .

Example 4 (Hansen, Sargent, and Wang):

In chapter 12,5 we used a model of Hansen, Sargent, and Tallarini’s (HST,

1999) to describe some of the implications of a preference for robustness for asset

pricing. Hansen, Sargent, and Wang (HSW, 2002) modified HST’s permanent

income model by withholding knowledge of the two separate components of the

endowment process posited by HST, thereby impelling the representative to base

consumption-saving decisions on filtered estimates of those two components.

HSW used their model to study the effects of filtering on market prices of risk.

HSW’s representative agent faces a problem that falls within the setting of this

chapter.

5 Programs that do the calculations are in C:/tom/projects/robust/games/hst/forricardom

and one directory up. The general HST programs are in c:/tom/projects/hansen/hst.
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We briefly summarize HST’s model, which was described in detail in chap-

ters 9 and 12. A planner values a scalar process s of consumption services

according to

V0 = −
∞
∑

t=0

βt(st − bt)
2 (14.3.3)

where the service s is produced by the scalar consumption process c via the

household technology

st = (1 + λ)ct − λht−1

ht = δhht−1 + (1 − δh)ct
(14.3.4)

where λ ≥ 0 and δh ∈ (0,1), b is a constant bliss level of services, and h is a

scalar stock of household habits.

There is a linear technology for converting an exogenous scalar endowment

dt into consumption or capital:

ct + kt = Rkt−1 + dt (14.3.5)

where kt, dt are the capital stock and the exogenous stochastic endowment at

time t , respectively. HST showed that R is the gross return on the risk free

asset, made constant by the technology.

HST assumed that the agent and the planner observe histories of each

component of the following two-component model for the endowment:6

dt+1 = µd + d1
t+1 + d2

t+1

d1
t+1 = g1d

1
t + g2d

1
t−1 + c1ǫ

1
t+1

d2
t+1 = a1d

2
t + a2d

2
t−1 + c2ǫ

2
t+1,

where ǫt+1 =

[

ǫ1t+1

ǫ2t+1

]

is an i.i.d. 2 × 1 Gaussian disturbance vector with mean

zero and identity covariance matrix.

HST assumed that the planner observes current and lagged values of both

components di
t at time t . HSW assumed instead that the planner sees only

current and lagged values of the sum dt at time t .

6 Tom: Note that in the earlier chapter and HST we instead used d1 = d∗, d2 =

d̂, c1 = c∗, c2 = ĉ . Change this in the text.
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The law of motion for the state of the model can be written

















ht

kt

dt

1
dt+1

d1t+1

d1t

















=

















δh (1 − δh)γ 0 0 (1 − δh) 0 0
0 δk 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 a2 µd(1 − a1 − a2) a1 g1 − a1 g2 − a2

0 0 0 0 0 g1 g2
0 0 0 0 0 1 0

































ht−1

kt−1

dt−1

1
dt

d1t
d1t−1

















+

















−(1 − δh)
1
0
0
0
0
0

















it +

















0 0
0 0
0 0
0 0
c1 c2
c1 0
0 0

















[

ǫ1t+1

ǫ2t+1

]

.

This fits our general setting with

yt =















ht−1

kt−1

dt−1

1

dt















, zt =

[

d1
t

d1
t−1

]

, st = yt.

For HST, the planner knows current and lagged values of yt and zt when

it is chosen. HSW instead assume that current and lagged values of yt are

in the planner’s information set when it is to be chosen, but that zt is never

observed. The planner bases his decisions on an estimate of zt gleaned from the

history of yt . This makes the Bellman equation for the robust planner a version

of (14.2.18).

Lars and Tom: We should generalize the observational equiva-

lence result of HST, and the extension in the earlier chapter, to the

two-θ case.
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14.3.1. Asset pricing with robustness and filtering

As noted in section 14.2.5, although game (14.2.12) takes account of the fact

that part of the state is estimated, in the end it still takes the form of the robust

linear regulator without filtering of the kind analyzed in chapters 2 and 6. The

asset pricing theory from chapter 12 applies directly. HSW used this theory

to construct multi-period versions of market prices of risk for their model and

compared them with HST’s model.

A. Worst case signal distribution

In this appendix, we construct a recursive representation of the distribution of

signals under the distorted probability distribution. Recall the signal evolution:

s∗ = Dx+Ha+Gw∗.

Under the approximating model, the signal next period is normal with mean

š∗ = D1y +D2ž +Ha

and covariance matrix

Υ̌ = D2∆D2
′ +GG′.

The distorted mean of the signal conditioned on the signal history is:

s̄∗ = D1y +D2ž + (D2u+Gṽ) +Ha

which by virtue of the second and third blocks of rows of (14.2.22) can be

written

s̄∗ = D̄1(∆)y + D̄2(∆)ž +Ha (14.A.1)

where
D̄1(∆)

.
= D1 −D2F̃21(∆) −GF̃31(∆)

D̄2(∆)
.
= D2 −D2F̃23(∆) −GF̃33(∆).

The distorted covariance matrix is:

Ῡ = D2Γ(∆)D2
′ +GΣ(∆)G′.
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To construct the distorted dynamics for y∗ , start from the formula y∗ =

Πss
∗ + Πyy + Πaa . Substituting for the robust decision rule for a from the

first block of row of (14.2.22) and replacing s∗ with with s̄∗ + (s∗ − s̄∗) from

(14.A.1) gives

y∗ = [Πyy + ΠsD̄1(∆) − (ΠsH + Πa)F̃11(∆)]y

+ [ΠsD̄2(∆) − (ΠsH + Πa)F̃13(∆)]ž + Πs(s
∗ − s̄∗).

(14.A.2)

To complete a recursive representation for y∗ under the worst case distri-

bution, we need a formula for updating ž∗ under the worst case distribution.

Recall the formula for ž∗ under the approximating model from the Kalman filter

(14.2.6b) or (14.2.7):

ž∗ = [A21 −B2F̃11(∆)]y + [A22 −B2F̃13(∆)]ž +K2(∆)(s∗ −D1y −D2ž −Ha)

or

ž∗ = [A21 −B2F̃11(∆)]y + [A22 −B2F̃13(∆)]ž +K2(∆)(s∗ − š∗).

Using the identity

s∗ − š∗ = (s∗ − s̄∗) + (s̄∗ − š∗)

= (s∗ − s̄∗) +
(

[D̄1(∆) −D1]y + [D̄2(∆) −D2]ž
)

in the above equation gives:

ž∗ =
(

A21 −B2F̃11(∆) +K2(∆)[D̄1(∆) −D1]
)

y

+
(

A22 −B2F̃13(∆) +K2(∆)[D̄2(∆) −D2]
)

ž +K2(∆)(s∗ − s̄∗).
(14.A.3)

Taken together, (14.A.2) and (14.A.3) show how to construct ž∗ from the signal

history under the distorted law of motion. The innovation s∗ − s̄∗ under the

distorted model is normal with mean zero and covariance matrix Ῡ.
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More applications





Chapter 15

Multiple agents

15.1. Introduction

This chapter and the next describe equilibria in which multiple decision makers

share an approximating model and are all concerned about model misspecifica-

tion. Because we desire to preserve as much as possible of the structure and

empirical power of rational expectations, we impute a common approximating

model to all of the agents When they have different objective functions, the

context-specific worst case models of different decision makers will differ. We

thus have a highly structured way of modelling what seem to be ex post hetero-

geneous beliefs, a point we discuss further in subsection 15.2.2.

In the present chapter, we study two player dynamic games. We adapt the

concept of Markov perfect equilibrium to incorporate concerns about robustness

to model misspecification. Here the timing protocol is that both players choose

sequentially and simultaneously. In chapter 16, we study a different timing

protocol in which a Stackelberg leader chooses once and for all at time 0, while

Stackelberg followers choose sequentially.

15.2. Markov perfect equilibria with robustness

The decisions of two agents affect the motion of a common state vector that

impinges on the return functions of both agents. Without concerns about ro-

bustness, a Markov perfect equilibrium can be computed by working backwards

on pairs of Bellman functions and the associated equations that express decision

rules as functions of continuation value functions.1 Similar procedures apply

when we impute concerns about robustness to both decision makers. Our equi-

librium concept insists that the decision makers share an approximating model.

1 See Ljungqvist and Sargent (2004,XXXX chapter 7).
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For each agent, the approximating model incorporates the robust decision rule

used by the other agent.

The model is

xt+1 = Axt +B1u1t +B2u2t + Cǫt+1 (15.2.1)

where uit is a control vector chosen by agent i as a function of the state xt , and

ǫt+1 is an i.i.d. Gaussian random vector with mean zero and identity covariance

matrix. Agent i conceives of model misspecification by thinking that the actual

data generating mechanism comes from a set of perturbations to (15.2.1) of the

form

xt+1 = Axt +B1u1t +B2u2t + C(ǫt+1 + wit+1) (15.2.2)

where wit+1 represents misspecified dynamic components that depend on the

history of xs up to time t . Agent i wants to maximize

E0

∞
∑

t=0

βtri(xt, uit) (15.2.3)

where β ∈ (0, 1) and ri(xt, uit) = −[x′tRixt + u′itQiuit + 2u′itHixt] .

We appeal to the version of certainty equivalence cited on page 27 to allow

us to drop the ǫt+1 term from (15.2.2) and the conditional expectation E from

(15.2.3) and proceed to solve nonstochastic versions of both players’ extremum

problems.

We define a Nash equilibrium with robust decision makers and a common

approximating model. In equilibrium, player i selects a robust decision rule of

the form

uit = −Fitxt. (15.2.4)

Though in the limit we will seek a time invariant rule Fi , to accommodate

backward induction we begin by allowing time-varying rules. The set of laws of

motion confronting agent i has the form

xt+1 = (A−B−iF−it)xt +Biuit + Cwit+1 (15.2.5)

where a subscript −i refers to the other player. Notice that (15.2.5) incorpo-

rates the robust rule F−it of the other player and that each player has his own

distortion process wit . Player i solves a multiplier robust control problem with

multiplier θi .
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Definition 15.2.1. A Markov perfect equilibrium with concerns about ro-

bustness consists of pairs of value functions Vi , decision rules ui = −Fixi , and

rules for worst case shocks wi = Kixi such that the decision rules for ui, wi

attain Vi(x) and the value functions Vi satisfy the Bellman equations

Vi(x) = max
ui

min
wi

{ri(x, ui) + βθiw
′
iwi + βVi(x

∗)} (15.2.6)

where ∗ denotes next period’s value and the extremization is subject to

x∗ = (A−B−iF−i)x+Biui + Cwi. (15.2.7)

The value functions assume the form

Vi(x) = −x′Pix,

where Pi = Ti ◦ DiPi is a fixed point defined in terms of the composition of

modified versions of two familiar operators:

Ti(Pi) = Qi + β(A− B−iF−i)
′
Pi(A−B−iF−i)

− (β(A −B−iF−i)
′
PiBi +H ′

i)(Ri + βB′
iPiBi)

−1

× (βB′
iPi(A−B−iF−i) +Hi) (15.2.8)

Di(Pi) = Pi + θ−1
i PiC(I − θ−1CPiC)−1C′Pi. (15.2.9)

The Ti operator is associated with the maximization part of the problem on the

right side of (15.2.7), while the Di operator is associated with the minimization

part.

In the next subsection, we describe a recursive algorithm for computing a

Markov perfect equilibrium with concerns about robustness.
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15.2.1. Computational algorithm: iterating on stacked Bellman
equations

Define the iterations

Fit = (Ri + βB′
iDi(Pit+1)Bi)

−1(βB′
iPit+1(A−B−iF−it) +H)(15.2.10)

Pit = Ti ◦ Di(Pit+1). (15.2.11)

We propose to use iterations on these operators to find fixed points Fi, Pi, i =

1, 2, that satisfy

Fi = (Ri + βB′
iDi(Pi)Bi)

−1(βB′
iPi(A−B−iF−i) +H) (15.2.12)

Pi = Ti ◦ Di(Pi). (15.2.13)

Suppose that ui is ki × n . Given P1t+1, P2t+1 , equations (15.2.10) for i =

1, 2 form (k1 + k2) × n linear equations in the same number of variables,

namely, F1t, F2t . To compute an equilibrium, start with zero terminal value

matrices P1T , P2T , solve (15.2.10) for F1T , F2T , then iterate backwards on

(15.2.10),(15.2.11) until, hopefully, the Fit, Pit sequences converge. If they

converge, we say that there is an asymptotically time invariant equilibrium law

of motion.

When both players use time invariant robust rules, the approximating

model becomes

xt+1 = A∗xt + Cǫt+1 (15.2.14)

where A∗ = A − B1F1 − B2F2 and where we have reactivated the Gaussian

disturbance. The two agents share this approximating model but in general

have different worst case models. The worst case model for agent i is

xt+1 = A∗xt + C(ǫt+1 + wit+1)

wit+1 = Kixt

where

Ki = θ−1(I − θ−1
i C′PiC)−1C′PiA

∗. (15.2.15)

Another expression for the worst case model of player i is

xt+1 = (A∗ + CKi)xt + Cǫt+1. (15.2.16)
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15.2.2. Bayesian interpretation and belief heterogeneity

A version of our usual ‘ex post Bayesian interpretation’ of each player’s robust

rule applies. After we have computed an equilibrium and know the different

worst-case shocks wit = Kixt of the two players, each player i can be regarded

as solving an ordinary control problem, using its own twisted law of motion

(15.2.16) and taking as given the decision rule u−i,t = −F−ixt of the other

player. Notice how this builds in full understanding about the other player’s

decision rule, a counterpart to a rational expectations assumption.

Thus, we have a highly disciplined way of taking a common approximating

model and from it generating what appear to be heterogeneous beliefs. The

fact that Bellman equations for the zero-sum two-player game solved by each

player are the sources of those heterogeneous beliefs means that cross-equation

restrictions very similar to those characterizing rational expectations models

(e.g., see Hansen and Sargent (1980, 1981 XXX)) will still prevail.

15.3. Concluding remarks

We have proposed an equilibrium concept in which both players in a dynamic

game share a common approximating model but are concerned that it is mis-

specified. Their disparate motives means that their worst-case beliefs twist the

approximating model in different directions. We have shown how this kind

of equilibrium can be computed by adapting existing methods for computing

Markov perfect equilibria without concerns about robustness. In the next chap-

ter, we apply a similar equilibrium concept to a setting with a timing protocol

that requires one agent to commit and the other agents to choose sequentially.





Chapter 16
Robustness in forward looking models

16.1. Introduction

This chapter continues the enterprise begun in chapter 15 of studying situations

in which differently situated and differently motivated agents all share a com-

mon approximating model and want robust decision rules.1 In the interests

of formulating robust versions of optimal policy problems, we alter the tim-

ing protocols from those in chapter 15 in order to incorporate a structure with

a ‘leader’ who must commit to future contingency plans and some ‘followers’

who must choose sequentially. Here and in chapter 18 we study Stackelberg

plans constructed with an eye to concerns about misspecification on the parts

of both the Stackelberg leader and the followers. For example, in chapter 18, a

benevolent government acts as a Stackelberg leader with respect to a compet-

itive private sector, modelled in terms of a representative consumer who acts

as a follower. At time 0, the leader chooses a sequence of actions, taking into

account how a follower’s decisions at each date will respond to its forecasts of

future actions by the leader. The leader’s policy instruments appear as ‘forcing

variables’ in a follower’s Euler equations. Those Euler equations describe how

a follower’s decisions depend on the sequence of the leader’s actions. When a

follower is concerned about robustness, some of those Euler equations describe

the follower’s worst case shocks, as we saw in chapter 6.

Without concerns about robustness, a ‘first-order’ approach to solving Stack-

elberg problems is to use the followers’ Euler equations to summarize their best

responses to the leader’s decisions, then to form a Lagrangian for the leader

with a sequence of multipliers adhering to the followers’ Euler equations. The

followers’ Euler equations are ‘implementability constraints’ that require the

leader’s decision at time t to confirm forecasts that a follower anticipated when

he made his earlier decisions. The Lagrange multipliers on the implementability

constraints make the leader’s actions depend on the history of outcomes and

allow a recursive representation of the leader’s decision rule.

1 This chapter builds upon and corrects aspects of Hansen and Sargent (2003).
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This chapter formulates an equilibrium in which the leader and the followers

are both concerned about model misspecification. As a natural counterpart of

rational expectations, we assume that the leader and followers share a common

approximating model. When both types of agent are concerned about robust-

ness, the approximating model for one agent must include a description of the

robust decision rules of the other types of agent, and of how they respond to

other decision makers’ actions.

How can the leader understand how he affects the robust decision rules of

the followers? The leader can influence the followers’ worst case shocks and

thereby their decision rules. The essential insight in this chapter is to note

that we can appeal to results in chapter 6 to assert that the followers’ Euler

equations, including those for the worst case shocks, fully summarize the robust

followers’ best response to the leader; and that by augmenting the followers’

Euler equations to include those for their worst-case shocks, a standard method

for computing a Ramsey plan can be applied.

The remainder of this chapter is organized as follows. Section 16.2 states a

Stackelberg problem in which decision makers fear model misspecification and

therefore want robustness. Section 16.3 describes how to solve the robust Stack-

elberg problem by properly rearranging and reinterpreting some state variables

and some Lagrange multipliers after having solved a robust linear regulator

problem. As an example, section 16.5 describes a dynamic model of a monopo-

list facing a competitive fringe. Section 16.6 concludes. Appendix A describes

how the invariant subspace methods of chapter 3 can also be used to compute

robust Ramsey plans. Appendix B studies the Riccati equation that solves the

robust Ramsey problem. Appendix C describes the connection of our work to a

Bellman equation that Marcet and Marimon (1999) have used to solve problems

with implementability constraints like ours.
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16.1.1. Related literature

Brunner and Meltzer (1969) and Von Zur Muehlen (1982) were early advocates

of zero-sum two person games for representing model uncertainty and designing

macroeconomic rules.2 Stock (1999), Sargent (1999), and Onatski and Stock

(1999) have used versions of robust control theory to study robustness of purely

backward looking macroeconomic models. They focused on whether a con-

cern for robustness would make policy rules more or less aggressive in response

to shocks. Vaughan (1970), Blanchard and Khan (1980), Whiteman (1983),

and Anderson and Moore (1985) are early sources on solving control prob-

lems with forward-looking private sectors.3 Without a concern for robustness,

Kydland and Prescott (1980), Hansen, Epple, and Roberds (1985), Miller and

Salmon (1985a, 1985b), Backus and Driffill (1986), Sargent (1987), Currie and

Levine (1987), Pearlman, Currie, and Levine (1986), Pearlman (1992), Wood-

ford (1998), King and Wolman (1999), and Marcet and Marimon (1999) have

solved Stackelberg or Ramsey problems using Lagrangian formulations. Pearl-

man, Currie, and Levine (1986), Pearlman (1992) and Svensson and Woodford

(2000) study the control of forward looking models where part of the state is

unknown and must be filtered. DeJong, Ingram, and Whiteman (1996), Otrok

(XXXX), and others study the Bayesian estimation of forward looking models.

They summarize the econometrician’s doubts about parameter values with a

prior distribution, meanwhile attributing no doubts about parameter values to

the private agents in their models. Mark Giannoni (2000) studies robustness

in a forward looking macro model. He models the policy maker as knowing all

parameters except two, for which he knows only bounds. The policy maker then

computes the min−max policy rule. Kasa (2000) also studies robust policy in

a forward looking model. Onatski (2000) designs simple (not history dependent)

robust policy rules for a forward looking monetary model. Christiano and Gust

(1999) study robustness from the viewpoint of the determinacy and stability of

rules under nearby parameters. They adopt a perspective of robust control the-

orists like Başar and Bernhard (1995) and Zhou, Doyle, and Glover (1996), who

are interested in finding rules that stabilize a system under the largest possible

set of departures from a reference model.

2 More generally, Hurwicz (1951) had advocated zero-sum games as a way of making

decisions when a decision maker could not specify a unique model.
3 Chapter 3 describes efficient computational algorithms for such models.
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Relative to the literature, a novelty in the approach of this chapter is that

we impute concerns about model misspecification to both the leader and the

follower. While some of the papers that we have just cited attribute model

uncertainty to the leader (a.k.a. the government), all of them assume that the

followers have no doubts about the model.

16.2. The robust Stackelberg problem

This section defines a robust Stackelberg problem where the Stackelberg leader

is concerned about model misspecification. In macroeconomic problems, the

Stackelberg leader is often a government and the Stackelberg follower is a repre-

sentative agent within a private sector. In section 16.5, we present an application

with a monopolist and a competitive fringe.

Let zt be an nz × 1 vector of natural state variables, xt an nx × 1 vector

of endogenous variables free to jump at t , and Ut a vector of the leader’s

instruments. The zt vector is inherited from the past. The model determines

the ‘jump variables’ xt at time t . Included in xt are prices and quantities

that adjust to clear markets at time t . Let yt =

[

zt

xt

]

. Define the Stackelberg

leader’s one-period loss function4

r(y, u) = y′Qy + u′Ru. (16.2.1)

The leader wants to maximize

−
∞
∑

t=0

βtr(yt, Ut). (16.2.2)

The leader makes policy in light of a set of models indexed by a vector of

specification errors Wt+1 around its approximating model:

[

I 0

G21 G22

] [

zt+1

xt+1

]

=

[

Â11 Â12

Â21 Â22

] [

zt

xt

]

+ B̂Ut + ĈWt+1. (16.2.3)

4 The problem assumes that there are no cross products between states and controls in

the return function. A simple transformation converts a problem whose return function has

cross products into an equivalent problem that has no cross products. See Chapter 3. XXXX

Add page tag.
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We assume that the matrix on the left is invertible, so that5

[

zt+1

xt+1

]

=

[

A11 A12

A21 A22

] [

zt

xt

]

+BUt + CWt+1 (16.2.4)

or

yt+1 = Ayt +BUt + CWt+1. (16.2.5)

The followers’ behavior is summarized by the second block of equations of

(16.2.3) or (16.2.4). These typically include the first-order conditions of pri-

vate agent’s optimization problem (i.e., their Euler equations). These equations

summarize the forward looking aspect of the followers’ behavior. The particular

structure of these equations and the variables composing xt depend on the fol-

lowers’ optimization problems, and in particular, whether we impute a concern

about robustness to them. As we shall see later, if we want to impute a motive

for robustness to the followers, then we must include wt+1 , the specification

errors of the followers, among the variables in xt , and we must include Euler

equations pertaining to the choice of wt+1 among the second block of equations

of (16.2.3) and (16.2.4). In section 16.5, we’ll analyze an example.

Returning to (16.2.3) or (16.2.4), the vector Wt+1 of unknown specification

errors can feed back, possibly nonlinearly, on the history yt , which lets the Wt+1

sequence represent misspecified dynamics in the leader’s approximating model.

The leader regards its approximating model (which asserts that Wt+1 = 0) as a

good approximation to the unknown true model in the sense that the unknown

Wt+1 sequence satisfies6

∞
∑

t=0

βt+1W ′
t+1Wt+1 ≤ η0 (16.2.6)

where η0 > 0.

The certainty equivalence principle stated on page 27 allows us to work

with non stochastic approximating and distorted models. We would attain the

same decision rule if we were to replace xt+1 with the forecast Etxt+1 and to

5 We have assumed that the matrix on the left of (16.2.3) is invertible for ease of presenta-

tion. However, by appropriately using the invariant subspace methods described in Chapter 3

and appendix A, it is straightforward to adapt the computational method when this assump-

tion is violated.
6 If Cǫt+1 were added to the right side of (16.2.5), we would take the expectation of

(16.2.6).



370 Robustness in forward looking models

add a shock process Ĉǫt+1 to the right side of (16.2.3) or Cǫt+1 to the right

side of (16.2.4), where ǫt+1 is an i.i.d. random vector with mean of zero and

identity covariance matrix.

Let Xt denote the history of any variable X from 0 to t . Kydland and

Prescott (1980), Miller and Salmon (1982, 1985), Hansen, Epple, and Roberds

(1985), Pearlman, Currie and Levine (1986), Sargent (1987), Pearlman (1992)

and others have studied non-robust (i.e., η0 = 0) versions of the following

problem:

Definition 16.2.1. For η > 0, the constraint version of the Stackelberg or

Ramsey problem is to extremize (16.2.2) by finding a sequence of decision rules

expressing Ut and Wt+1 as sequences of functions mapping the time t history

of the state zt into the time t decision. The leader chooses these decision rules

at time 0 and commits to them evermore.

Definition 16.2.2. When η0 > 0, the decision rule for Ut that solves the

Stackelberg problem is called a robust Stackelberg plan or robust Ramsey plan.

Note that the decision rules are designed to depend on the history of the true

state zt and not on the history of the jump variable xt . For a non-robust

version of the problem, the aforementioned authors show that the optimal rule

is history-dependent, which in our context means that Ut,Wt+1 depend not only

on zt but also on its lags. The history dependence comes from two sources: (a)

the leader’s ability to commit to a sequence of rules at time 0,7 and (b) the

forward-looking behavior of the followers that is embedded in the second block

of equations in (16.2.3) or (16.2.4).

Fortunately, there is a recursive way of expressing this history dependence

by having decisions Ut,Wt+1 depend linearly on the current value zt and on

µxt , a vector of Lagrange multipliers on the last nx equations of (16.2.3) or

(16.2.4). A solution of the problem in Definition 16.2.2 implies a law of motion

that expresses µxt+1 as a linear function of (zt, µxt). The dynamics of µxt

express the history dependence of the leader’s plan. These multipliers track

past leader promises about current and future settings of U . If at time 0

there are no past promises to honor, it is appropriate for the leader to initialize

the multipliers to zero (this maximizes its criterion function). The multipliers

7 The leader would make different choices were it to choose sequentially, that is, were it

to set Ut at time t rather than at time 0.
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take non-zero values thereafter, reflecting the subsequent costs to the leader of

adhering to its time 0 commitments.

16.2.1. Multiplier version of the robust Stackelberg problem

In chapter 6 and 7, we showed that it is usually more convenient to solve a

multiplier game rather than a constraint game. Accordingly, we use:

Definition 16.2.3. The multiplier version of the robust Stackelberg problem

is the zero-sum two-player game:

max
{Ut}∞

t=0

min
{Wt+1}∞

t=0

−
∞
∑

t=0

βt
{

r(yt, Ut) − βΘW ′
t+1Wt+1

}

(16.2.7)

where the extremization is subject to (16.2.5) and Θ < Θ <∞ .

16.3. Solving the robust Stackelberg problem

This section describes a three step algorithm for solving a multiplier version of

a robust Stackelberg problem.

16.3.1. Step 1: solve a robust linear regulator

Step 1 temporarily disregards the forward looking aspect of the problem (step

3 will take account of that) and notes that superficially the multiplier version

of the robust Stackelberg problem (16.2.7), (16.2.5) has the form of a robust

linear regulator problem. Mechanically, we can solve this artificial robust lin-

ear regulator by noting that associated with problem (16.2.7) is the Bellman

equation8

v(y) = max
u

min
W

{−r(y, u) + βΘW ′W + βv(y∗)} , (16.3.1)

8 By following the approaches of Kydland and Prescott (1980) and Marcet and Marimon

(2000), appendix C describes a closely related Bellman equation that can be used to compute

a robust Ramsey plan.
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where y∗ denotes next period’s value of the state and the extremization is

subject to the transition law y∗ = Ay + Bu + CW . The value function that

satisfies (16.3.1) has the form v(y) = −y′Py , where P is a fixed point of the

operator T ◦ D defined in chapters 2 and 6, namely,

T (P ) = Q+ βA′PA− β2A′PB(R+ βB′PB)−1B′PA (16.3.2)

D(P ) = P + Θ−1PC(I − Θ−1C′PC)−1C′P. (16.3.3)

Thus, the Bellman equation (16.3.1) leads to the Riccati equation

P = T ◦ D(P ). (16.3.4)

The T operator emerges from the maximization over U on the right side of

(16.3.1), while the D operator emerges from the minimization over W . The

extremizing decision rules are given by Ut = −F1yt where

F = β(R + βB′D(P )B)−1B′D(P )A (16.3.5)

and Wt+1 = Kyt where

K = Θ−1(I − Θ−1C′PC)−1C′P (A−BF ). (16.3.6)

(See page 29.) Everything that we need to solve the robust Stackelberg problem

is encoded in the triple (P, F,K). The next steps decode the solution of the

Riccati equation P = T ◦D to recover objects that solve the robust Stackelberg

problem.
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16.3.2. Step 2: use the stabilizing properties of shadow price Pyt

We use P to describe how shadow prices on the transition law relate to the

artificial state vector yt = [ z′t x′t ]
′

(we say ‘artificial’ because xt is a vector of

jump variables.) Recall the Lagrangian methods used in chapters 3 and 6. Thus,

another way to solve the multiplier version of the robust Stackelberg problem

(16.2.7), (16.2.5) is to form the Lagrangian:

L = −
∞
∑

t=0

βt
[

y′tQyt + U ′
tRUt + 2βµ′

t+1(Ayt +BUt + CWt+1 − yt+1)

− βΘW ′
t+1Wt+1

]

.

(16.3.7)

We want to maximize (16.3.7) with respect to sequences for Ut and yt+1 and

minimize it with respect to a sequence for Wt+1 . The first-order conditions with

respect to Ut, yt,Wt+1 , respectively, are:

0 = RUt + βB′µt+1 (16.3.8a)

µt = Qyt + βA′µt+1 (16.3.8b)

0 = βΘWt+1 − βC′µt+1. (16.3.8c)

Solving (16.3.8a) and (16.3.8c) for Ut and Wt+1 and substituting into (16.2.5)

gives

yt+1 = Ayt − β(BR−1B′ − β−1Θ−1CC′)µt+1. (16.3.9)

Write (16.3.9) as

yt+1 = Ayt − βB̃R̃−1B̃′µt+1. (16.3.10)

We can represent the system formed by (16.3.10) and (16.3.8b) as

[

I βB̃R̃−1B̃′

0 βA′

] [

yt+1

µt+1

]

=

[

A 0

−Q I

] [

yt

µt

]

(16.3.11)

or

L∗
[

yt+1

µt+1

]

= N

[

yt

µt

]

. (16.3.12)

We want to find a stabilizing solution of (16.3.12), i.e., one that satisfies

∞
∑

t=0

βty′tyt < +∞.
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The stabilizing solution is attained by setting µ0 = Py0 , where P solves the

matrix Riccati equation P = T ◦D(P ). The solution µ0 = Py0 replicates itself

over time in the sense that

µt = Pyt. (16.3.13)

16.3.3. Key insight

In a typical robust linear regulator problem, y0 is a state vector inherited from

the past; the multiplier µ0 jumps at t = 0 to satisfy µ0 = Py0 . See chapter 3.

But in the Stackelberg problem, pertinent components of both y0 and µ0 must

adjust to satisfy µ0 = Py0 , as shown in step 3.

16.3.4. Step 3: convert implementation multipliers into state
variables

Partition µt conformably with the partition of yt into [ z′t x′t ]
′
:9

µt =

[

µzt

µxt

]

.

For the robust Stackelberg problem, only the first nz elements zt of yt =

[ zt xt ]′ are predetermined and the remaining xt components are free. And

while the first nz elements µzt of µt are free to jump at t , the remaining

components µxt are not. The third step completes the solution of the robust

Stackelberg problem by taking note of these facts. We convert the last nx

Lagrange multipliers µxt into state variables by using the following procedure

after we have performed the key step of computing the P that solves the Riccati

equation P = T ◦ D(P ).

Write the last nx equations of (16.3.13) as

µxt = P21zt + P22xt. (16.3.14)

9 This argument simply adapts one in Pearlman (1992). The Lagrangian associated with

the robust Stackelberg problem remains (16.3.7). Then the logic of section 16.3.2 implies that

the stabilizing solution must satisfy (16.3.13). It is only in how we impose (16.3.13) that the

solution diverges from that for the linear regulator.
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The vector µxt becomes part of the state at t , while xt is free to jump at t .

Therefore, solve (16.3.13) for xt in terms of (zt, µxt):

xt = −P−1
22 P21zt + P−1

22 µxt. (16.3.15)

Then we can write

yt ≡
[

zt

xt

]

=

[

I 0

−P−1
22 P21 P−1

22

] [

zt

µxt

]

. (16.3.16)

With these modifications, the key formulas (6.10.2) and (16.3.4) from the

optimal linear regulator for F and P , respectively, continue to apply. Using

(16.3.16), the solutions for the control and worst case shock are

[

Ut

Wt+1

]

=

[−F
K

] [

I 0

−P−1
22 P21 P−1

22

] [

zt

µxt

]

. (16.3.17)

Using the law of motion for yt+1 together with (16.3.16) and (16.3.14) allows
us to represent our solution recursively as

[

zt+1

µx,t+1

]

= M
[

zt
µxt

]

(16.3.18a)

xt = [−P−1
22 P21 P−1

22 ]

[

zt
µxt

]

. (16.3.18b)

where

M =

[

I 0

P21 P22

]

(A−BF + CK)

[

I 0

−P−1
22 P21 P−1

22

]

. (16.3.19)

In summary, we solve the robust Stackelberg problem by formulating a par-

ticular optimal linear regulator, solving the associated matrix Riccati equation

(16.3.4) for P , computing F,K , and then partitioning P to obtain represen-

tation (16.3.18a).
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16.4. Incorporating robustness for the followers

So far we have concentrated on getting a robust rule for the leader, taking as

given the Euler equations that characterize a follower’s behavior. In this section,

we point out that by including Euler equations for the followers’s worst case

shocks among the implementability constraints, we can impute a concern for

robustness to the followers as well as to the leader. For a representative follower

example, we shall index a follower’s concern about robustness by a multiplier θ

that need not equal the robustness parameter Θ of the leader.

16.4.1. An approach enabled by the Bellman-Isaacs condition

To formulate the implementability constraints concisely, we rely on findings

about the zero-sum two-player dynamic game that underlies the single-agent

robust control problem. Başar and Bernhard (1995) and chapter 6 show that

equilibrium outcomes are identical for several games with different timing proto-

cols for the maximizing and minimizing players. Among these different timing

protocols is one in which the minimizing and maximizing players simultane-

ously choose entire sequences of state-contingent decisions at time 0. By using

that timing protocol for a follower’s two-person zero-sum game, we can rep-

resent a follower’s decisions by the stabilizing solution of the Euler equations

for extremizing his objective with respect to both his ‘natural control’ ut and
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his pseudo-control wt+1 , the worst case shocks.10 Then in the robust Stackel-

berg problem, we can regard the first-order conditions of a follower, including

his worst-case shock process, as among the implementability conditions for the

Stackelberg leader. This leads to an equilibrium of the game between the leader

and the follower in which each understands the decision rules of the other, and

in which the leader takes into account how the follower’s decisions respond to its

own. To know how the follower responds, the leader has to keep track of how the

worst case shocks of the follower respond to the leader’s decisions. This impels

us to include the worst case shock process of a follower in the state vector for the

leader. The leader manipulates a follower’s worst case shock process in order to

manipulate his robust best response to the leader’s own robust decisions.

10 A Bellman-Isaacs condition on the value function described in chapter 6 allows us to

characterize the solution of the robust control problem in this way. We use a substantial

and very important result about zero-sum games here. For general two-person games, the

Markov-perfect equilibrium cannot be computed by stacking and solving the Euler equations

for the two players. Doing that would produce a candidate equilibrium that would not be

subgame perfect. But the Bellman-Isaacs condition that pertains to two-player zero-sum

games implies that a Markov perfect equilibrium can be computed by stacking and solving

the Euler equations. For proofs, see Başar and Bernhard (1995) and chapter 6. Technically,

the irrelevance of timing protocols for zero-sum two-player dynamic games is related to Chari,

Kehoe, and Prescott’s (1989, pp. 269–272) that time-inconsistency in macroeconomics occurs

only in situations in which there is conflict between a society’s objective and those of the

agents within it. Chari, Kehoe, and Prescott show that without such conflict, the existence

of a single value function makes irrelevant the order of maximization. Comparing their result

to the one we are using that is based on the Bellman-Isaacs condition for two-player zero-

sum dynamic games, it can be seen that to avoid time inconsistency really only requires that

objective functions of different decision makers be completely aligned , a condition that holds

when there is perfect conflict.
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16.4.2. Heterogeneity of worst case models

By following this recipe, we can construct an equilibrium in which leaders and

followers share a common approximating model. However, differences in their

preferences will lead them to slant their worst case models in different directions

away from their common approximating model, as the two types of agents use

their own worst-case analyses to investigate the fragility of alternative rules to

possible misspecifications of that common approximating model. In section 16.5,

we illustrate our equilibrium concept with an example.

16.4.3. Evolution under approximating model and robust rules

The general equilibrium models described in chapter 10 contained a vector of

exogenous state variables whose evolution was given by et+1 = A22et+C2ǫt+1 .11

As we shall illustrate in section 16.5, when we want to model concerns about

robustness for both the leader and the follower, we shall include subvectors

designed to distinguish between a leader’s and a follower’s worst-case views of

future values of the exogenous state variables. This means that zt includes

two versions of et , one for the leader and one for the follower, which under the

distorted models take the forms

eℓ,t+1 = A22eℓ,t + C2(ǫt+1 +Wt+1)

ef,t+1 = A22ef,t + C2(ǫt+1 + wt+1)
(16.4.1)

where ef pertains to the follower and eℓ pertains to the leader, Wt+1 is the

leader’s distortion to the mean of the innovation, and wt+1 is the follower’s.

The law of motion (16.3.18) then contains descriptions of the evolution of both

eℓ and ef . We impose the initial condition eℓ,0 = ef,0 = e0 to reflect that the

Stackelberg problem conditions on time 0 information that is available to both

the leader and the followers.

The solution of the Stackelberg problem (16.3.18) then gives sequences

{zt, µxt, t ≥ 0} that respect the initial condition for z0, µx0 , where the initial

condition for z0 includes eℓ,0 = ef,0 = e0 . The components of the solution

{eℓ,t, ef,t} for t ≥ 1 are the worst case forecasts of future es made by the

leader and the followers, respectively, conditional on information at time 0. A

11 In chapter 10, we called it zt rather than et . We change notation because in this chapter

we have used zt for something else.
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certainty equivalence argument can be used to show that for a stochastic version

of the model driven by Gaussian shocks, these forecasts equal the conditional

means of these agents’ worst case models conditioned on time 0 information,

including e0 .

16.4.4. Evolution of the economy under Stackelberg solution

To understand how we can repeatedly solve the Stackelberg problem to trace

out the evolution of the economy over time under commitment, it is sufficient to

consider the situation at time 1 and to consider the time 1 values z1, µx,1 that

were determined by the time 0 solution. It is appropriate to take the variables

in z1, µx,1 other than eℓ,1, ef,1 as initial conditions for the time 1 version of

the Stackelberg problem. Because at time 1 the actual value of e1 will have

been realized and known to both the leader and the followers, to pose the time

1 Stackelberg problem, it is appropriate to set ef,1 and eℓ,1 both equal to

the realized value e1 . This step expresses the idea that both the leader and

the follower observe e1 at time 1.12 We then can solve a time 1 Stackelberg

problem with these initial conditions, which is accomplished by simply applying

solution (16.3.18) to these initial conditions.

That the Stackelberg leader is committed to the time 0 plan is expressed

in solving the time 1 taking µx,1 determined in the time 0 solution as initial

conditions for the time 1 problem. The part of the solution for {eℓ,t, ef,t, t ≥ 1}
corresponds to what in a stochastic version of the model will be conditional

expectations of future e ’s from the the leader’s and followers’ worst case models,

conditioned on time 1 information that includes e1 .

To simulate the evolution of the state variables under the approximating

model and the robust decision rules, we can dispense with ef and eℓ as separate

state variables and create a collapsed state called z̃t that imposes eℓ,t = ef,t =

et . The law of motion of this reduced state vector can be deduced from (16.3.18)

and takes the form

[

z̃t+1

µx,t+1

]

= N
[

z̃t

µxt

]

+

[

Ĩ 0

P̃21 P22

]

Cǫt+1 (16.4.2a)

12 This mechanical process of resetting the initial conditions for ef , eℓ as time passes thus

captures how uncertainty is resolved as time passes.
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xt = [−P−1
22 P̃21 P−1

22 ]

[

z̃t

µxt

]

. (16.4.2b)

where the ·̃ above matrices refer to objects whose size has been reduced by

appropriately combining the coefficients of eℓ and ef and where N is obtained

as follows from M . First, to get the rows in N pertaining to variables other

than eℓ and ef , add the coefficients on eℓ and ef in M and use them as the

coefficients on e in N . Second, delete the rows in M corresponding to eℓ and

ef and replace them with the rows corresponding to

et+1 = A22et + C2ǫt+1.

The matrix P̃21 is formed from P21 by a similar deletion procedure.

In section 16.5.4, we shall illustrate within a concrete example this proce-

dure for moving from representation (16.3.18) to a recursive representation of

outcomes under the approximating model and the robust decision rule for the

Stackelberg leader.

16.5. A monopolist with a competitive fringe

As an example, this section studies an industry with a large firm that acts as a

Stackelberg leader with respect to a competitive fringe. The industry produces

a single nonstorable homogeneous good. One large firm called the monopolist

produces Qt and a representative firm in a competitive fringe produces qt . We

use qt to denote the quantity chosen by the individual competitive firm and

qt to denote the equilibrium quantity. In equilibrium, qt = qt , but in posing

the optimum problem of the representative competitive firm, it is necessary

to distinguish between qt and qt . The representative firm in the competitive

fringe takes Qt and qt as exogenous and chooses sequentially. In light of the

responses of the representative firm in the competitive fringe, the monopolist

commits to a policy at time 0, taking into account its ability to manipulate the

price sequence and the worst case beliefs of the representative competitive firm

through its quantity choices. Subject to the competitive fringe’s best response,

the monopolist views itself as choosing qt+1 and Qt+1 for t ≥ 0, as well as the

representative competitive firm’s worst-case shock process wt+1 for t ≥ 0.

Costs of production are Ct = eQt + .5gQ2
t + .5c(Qt+1−Qt)

2 for the monop-

olist and σt = dqt + .5hq2t + .5c(qt+1 − qt)
2 for the representative competitive
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firm, where d > 0, e > 0, c > 0, g > 0, h > 0 are cost parameters. There is a

linear inverse demand curve

pt = A0 −A1(Qt + qt) + vt, (16.5.1)

where A0, A1 are both positive and vt is a disturbance to demand governed by

vt+1 = ρvt + Cǫǫ̌t+1 (16.5.2)

and where |ρ| < 1 and ǫ̌t+1 is an i.i.d. sequence of random variables with mean

zero and variance 1. The monopolist and the representative competitive firm

share equation (16.5.2) as their approximating model for the demand shock.

The monopolist and the representative competitive firm both want decision

rules that are robust to alternative specifications of the process for the demand

shock. Because the monopolist and the representative firm in the competitive

fringe potentially have different worst case models of the demand shock, we

distinguish between them by letting vt denote the process perceived by the

representative firm, and Vt the process perceived by the monopolist. For the

representative competitive firm, the alternative models of the demand shock

have the form

vt+1 = ρvt + Cǫ(ǫt+1 + wt+1). (16.5.3)

For the monopolist, they have the form

Vt+1 = ρVt + Cǫ(ǫ̃t+1 +Wt+1). (16.5.4)

Here wt+1,Wt+1 are specification errors for the representative competitive firm

and the monopolist, respectively, and ǫt+1, ǫ̃t+1 are other i.i.d. random processes

with mean zero and variance 1. The distortion Wt+1 can feed back on the his-

tory of the state of the market, namely, (q,Q, v, V ) and the distortion wt+1 can

feed back on the history of the market-wide version of the state (q,Q, v, V ).13

The distortions wt+1 and Wt+1 will typically differ because the monopolist and

the representative competitive firm have different objectives.

13 In section 16.5.3, we show that in a recursive representation of the problem of a repre-

sentative firm in the competitive fringe, the household’s decision rule feeds back on a ‘big K ’

version of the state (q, Q, v, V ) and also the individual firm’s quantity q and v .
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16.5.1. The competitive fringe

The representative competitive firm regards {Qt, qt}∞t=0 as given stochastic

processes and chooses an output plan {qt+1}∞t=0 and shock distortion process

{wt+1}∞t=0 to extremize

E0

∞
∑

t=0

βt
{

ptqt − σt + βθw2
t+1

}

, β ∈ (0, 1) (16.5.5)

subject to q0 given, where Et is the mathematical expectation based on time t

information evaluated with respect to a distorted model that includes (16.5.3).

Here θ is the robustness parameter of the representative firm in the competitive

fringe, which can differ from Θ, the robustness parameter of the monopolist.

Let ut = qt+1 − qt. We take (ut, wt+1) as the representative competitive firm’s

composite control vector at t . Subject to (16.5.1) and (16.5.3), first order-

conditions for extremizing (16.5.5) with respect to ut, wt+1 , respectively, are

ut = Etβut+1 − c−1βhqt+1 + c−1βEt(pt+1 − d)

wt+1 = − 1

2θ
CǫEtqt+1 + βρEtwt+2

(16.5.6)

for t ≥ 0.

In more detail, we derive the first-order conditions (16.5.6) by forming the

following Lagrangian for the representative firm in the competitive fringe:

L = E0

∞
∑

t=0

βt
{

[A0 −A1(Qt + qt) + vt]qt − [dqt + .5hq2t + .5cu2
t ]

βθw2
t+1 + ℓ1t[qt + ut − qt+1] + ℓ2t[ρvt + Cǫwt+1 − vt+1]

}

.

(16.5.7)

Here {ℓ1t, ℓ2t} are sequences of Lagrange multipliers. Taking {Qt, qt}∞t=0 as

given, the representative firm maximizes L with respect {ut, qt+1}∞t=0 and min-

imizes it with respect to {wt+1, vt+1}∞t=0 . Rearranging the first order conditions

for (ut, qt+1) gives the first equation of (16.5.6), while rearranging the first-

order conditions for (wt+1, vt+1) gives the second equation of (16.5.6), which

from now on we call the Euler equation for wt+1 .

We can appeal to a certainty equivalence principle to justify working with

a non-stochastic version of (16.5.6) that we form by dropping the expectation
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operator and the random terms ǫ̌t+1 and ǫt+1 from (16.5.2) and (16.5.3).14

Shift (16.5.1) forward one period, set qt = qt for all t ≥ 0, and substitute for

pt+1 in (16.5.6) to get

ut = βut+1 − c−1βhqt+1 + c−1β(A0 − d) − c−1βA1qt+1

− c−1βA1Qt+1 + c−1βvt+1

wt+1 = − 1

2θ
Cǫqt+1 + βρwt+2.

(16.5.8)

Equation (16.5.8) combines the Euler equations of the representative firm in the

competitive fringe with market clearing.15 Note that v , and not V , appears in

the first equation of (16.5.8). This reflects how the representative competitive

firm’s forecasts influence its decisions, a fact that the monopolist will acknowl-

edge when he designs his policy.

14 Here we use a method that Sargent (1987) used to compute a rational expectations equi-

librium. The key step is to eliminate price and output by setting qt = qt and substituting from

the inverse demand curve and the production function into the firm’s first-order conditions to

get a difference equation in capital.
15 As shown in Sargent (1987) in the case without robustness, (16.5.8) is also the Euler

equation for a fictitious planner who takes Qt as exogenous and who chooses a sequence for

{qt+1}
∞
t=0 to maximize the discounted sum of consumer and producer surplus. Given stable

sequences {Qt, vt} , we could solve (16.5.8) and ut = qt+1 − qt to express the competitive

fringe’s output sequence as a function of the monopolist’s output sequence.
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16.5.2. The monopolist’s problem

The monopolist views the sequence of Euler equations-cum-market-clearing con-

ditions (16.5.8) as implementability constraints. We can represent the con-

straints impinging on the monopolist, including (16.5.8), in terms of the tran-

sition law:
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where Ut = Qt+1 −Qt is the control of the monopolist. The last row portrays

(16.5.8). Represent (16.5.9) as

yt+1 = Ayt +BUt + CWt+1. (16.5.10)

Although we have included (ut, wt+1) as components of the ‘state’ yt in the

monopolist’s transition law (16.5.10), (ut, wt+1) are actually ‘jump’ variables

that correspond to xt in section 16.3. The analysis in section 16.3 implies that

the solution of the monopolist’s problem is encoded in the Riccati equation

associated with a robust linear regulator that takes (16.5.10) as the transition

law.

To match the setup of section 16.3, we partition yt as y′t = [ z′t x′t ] where

z′t = [ 1 vt Vt Qt qt ] , x′t = [u′t w′
t+1 ] , and let µ′

xt = [µut µwt ] be the

vector of multipliers associated with the Euler equations for (ut, wt+1). The

monopolist’s artificial optimal linear regulator problem can be expressed

max
{Ut}

min
{Wt+1}

∞
∑

t=0

βt
{

ptQt − Ct + βΘW ′
t+1Wt+1

}
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or

max
{Ut}

min
{Wt+1}

∞
∑

t=0

βt
{

(A0 −A1(qt +Qt) + Vt)Qt − eQt − .5gQ2
t − .5cU2

t + βΘW 2
t+1

}

(16.5.11)

subject to (16.5.10). Notice how the monopolist’s perceived demand shock Vt

appears in (16.5.11). The monopolist’s problem can be written

max
{Ut}

min
{Wt+1}

−
∞
∑

t=0

βt
{

y′tQyt + U ′
tRUt − βΘW 2

t+1

}

(16.5.12)

subject to (16.5.10) where

Q = −























0 0 0 A0−e
2 0 0 0

0 0 0 0 0 0 0

0 0 0 1
2 0 0 0

A0−e
2 0 1

2 −A1 − .5g −A1

2 0 0

0 0 0 −A1

2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0























and R = c
2 . The results of section 16.3 apply.

16.5.3. Recursive representation of a competitive firm’s problem

By using a counterpart to the ‘Big K , little k ’ trick used in chapter 11 on page

283. The representative competitive firm takes Q, q as exogenous processes that

are determined by the following ‘big K’ counterpart to (16.3.18a):

Qt = eQXt

q̄t = eqXt

Xt+1 = MXt

(16.5.13)

where

Xt =

[

Zt

Mx,t

]

(16.5.14)

In addition to (16.5.13), (16.5.14), the representative firm in the competitive

fringe faces the laws of motion

qt+1 = qt + ut

vt+1 = ρvt + Cewt+1

(16.5.15)
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and seeks to choose a {wt+1, vt+1} process to minimize and a {ut, qt+1} se-

quence to maximize

∞
∑

t=0

βt
{

[

A0 −A1(Qt + q̄t) + vt

]

qt − σt + βθw2
t+1

}

(16.5.16)

subject to (16.5.13), (16.5.15). This problem can be formulated as a discounted

robust linear regulator with state X̃t = [X ′
t q′t v′t ]

′
and extremizing decision

rules

ut = duX̃t (16.5.17)

wt+1 = dwX̃t. (16.5.18)

If we add the coefficients on the two components corresponding to the state v

in X̃ , and also add the coefficients corresponding to the state q and q̄ , then it

should be true that the decision rules (16.5.17), (16.5.18) for u,w that depend

on Xt equal those given by (16.3.18b). In the Matlab program compfringe.m

that will be used to compute the example in section 16.5.5, we verify that the

decision rules line up in this way.

16.5.4. Representation of the monopolist’s decision rule under the
approximating model

The monopolist’s decision rule has representation (16.3.18a), (16.3.18b) where

z = [ 1 v′ V ′ Q q̄ ]
′
and µx = [µu µw ]

′
. As anticipated in section 16.4.3,

we have included within the state z two versions of the demand shock v , V

for the monopolist, and v for the representative firm in the competitive fringe,

because distinguishing between them allows us to represent the different ways

that the two types of firms distort the conditional distributions of future values

of the demand shock. As we have seen, the differing motives of the two types of

firms inspire their respective evil agents to twist their worst case distributions

of future v ’s in different directions.

However, because it can be constructed from observed outputs and the

price, v is actually an observable state variable. As explained in section 16.4.3,

we must recognize this when we simulate the approximating model under the

robust decision rules. We accomplish this by reducing the description of the state
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under the approximating model to x̃ = [ 1 v Q q̄ µu µw ]
′

and writing

x̃t+1 = N x̃t + C̃ǫt+1 (16.5.19)

where the second row of (N , C̃) expresses the law of motion vt+1 = ρvt+Ceǫt+1 .

Evidently, we can form the remaining rows of N from the corresponding rows

of M by adding the column elements corresponding to the coefficients on v and

V in M to form the coefficient on v in N , leaving the coefficients on the other

variables the same; the remaining rows of C̃ equal zero.

16.5.5. Numerical example

This section briefly describes a numerical example of the monopoly-competitive

fringe model in which we start without concerns about robustness, then study

the effects of successively turning on concerns about robustness for one type

of agent, but not the other, and then turning them on for both.16 For pa-

rameter settings (A0, A1, ρ, Cǫ, c, d, e, g, h, β)= (100, 1, .8, .2, 1, 20, 20, 1, 1, .95),

Table 16.5.1 displays steady state values associated with four pairs of settings

for (Θ, θ) under the approximating model and the robust rule. To represent lit-

tle or no concern about robustness, we set θ or Θ equal to 100000. To activate

concerns about robustness, we set θ or Θ equal to 10.

The first column of Table 16.5.1 serves as a benchmark, concerns about

robustness having been turned off for both the monopolist and the competitive

firms by setting Θ = θ ≈ +∞ . The next two columns turn on a concern about

robustness for one but not the other of the two types of agents, while the fourth

column turns on a concern about robustness for both types. The entries in the

table show that a main effects of activating concerns about robustness are to

make the steady state values of the worst case shocks w and W negative. In

effect, firms’ pessimistic forecasts about demand push their outputs down. In

the middle two columns in the table in which concerns about robustness are

turned on for one but not the other type of firm, the type with the concern

about robustness produces less and the other type produces more than under

the benchmark steady state without concerns about robustness.

16 The calculations are performed by the Matlab programs compfringall.m and compfringefn.m.
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Table 16.5.1: Steady state values

(Θ, θ) (∞,∞) (∞, 10) (10,∞) (10, 10)

p 50 50.23 50.07 50.03

q 30 29.72 30.10 29.82

Q 20 20.05 19.83 19.88

w 0 -.247 0 -.25

W 0 0 0.82 -.83

16.6. Concluding remarks

This chapter has generalized standard methods for solving Ramsey problems in

linear-quadratic forward looking models to include a common concern for model

misspecification to both the government and private agents. The government

and private agents share an approximating model that describes the shocks

and other exogenous variables hitting the economy. We add two parameters

Θ and θ to the standard rational expectations setup, penalty parameters that

measure sets of models near the approximating model over which the leader and

the followers, respectively, want robust decision rules. We compute the Ramsey

rule by forming an optimal linear regulator problem and carefully exchanging the

roles of the forward looking model’s artificial state variables and the Lagrange

multipliers on their laws of motion. Mechanically, robustness for the leader is

achieved simply by adding another control to the regulator problem, a distortion

to the conditional mean of the disturbances that is chosen by a fictitious evil

agent.
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A. Invariant subpace method

Let L = L∗β−.5 and transform the system (16.3.12) to

L

[

y∗t+1
µ∗t+1

]

= N

[

y∗t
µ∗t

]

, (16.A.1)

where y∗t = βt/2yt, µ
∗
t = µtβ

t/2 . Now λL − N is a symplectic pencil, so that the
generalized eigenvalues of L,N occur in reciprocal pairs: if λi is an eigenvalue, then
so is λ−1

i .
We can use Evan Anderson’s Matlab program schurg.m to find a stabilizing

solution of system (16.A.1). The program computes the ordered real generalized
Schur decomposition of the matrix pencil. Thus, schurg.m computes matrices L̄, N̄ , V
such that L̄ is upper triangular, N̄ is upper block triangular, and V is the matrix of
right Schur vectors such that for some orthogonal matrix W the following hold:

WLV = L̄

WNV = N̄ .
(16.A.2)

Let the stable eigenvalues (those less than 1) appear first. Then the stabilizing solution
is

µ∗t = Py∗t (16.A.3)

where
P = V21V

−1
11 ,

V21 is the lower left block of V , and V11 is the upper left block.
If L is nonsingular, we can represent the solution of the system as17

[

y∗t+1
µ∗t+1

]

= L−1N

[

I
P

]

y∗t . (16.A.4)

17 The solution method in the text assumes that L is nonsingular and well conditioned. If

it is not, the following method proposed by Evan Anderson will work. We want to solve for a

solution of the form

y∗t+1 = A∗
oy∗t .

Note that with (16.A.3),

L[I;P ]y∗t+1 = N [I;P ]y∗t

The solution A∗
o will then satisfy

L[I;P ]A∗
o = N [I;P ].

Thus Ao∗ can be computed via the Matlab command

A∗
o = (L ∗ [I;P ])\(N ∗ [I;P ]).
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The solution is to be initiated from (16.A.3). We can use the first half and then
the second half of the rows of this representation to deduce the following recursive
solutions for y∗t+1 and µ∗t+1 :

y∗t+1 = A∗
oy

∗
t

µ∗t+1 = ψ∗y∗t
(16.A.5)

Now express this solution in terms of the original variables:

yt+1 = Aoyt

µt+1 = ψyt,
(16.A.6)

where Ao = A∗
oβ

−.5, ψ = ψ∗β−.5 . We also have the representation

µt = Pyt. (16.A.7)

The matrix Ao = A− B̃F , where F is the matrix for the optimal decision rule.

B. The Riccati equation

16.B.1. The Riccati equation

The stabilizing P obeys a Riccati equation coming from the Bellman equation. Sub-
stituting µt = Pyt into (16.3.10) and (16.3.8b) gives

(I + βB̃R̃−1B̃P )yt+1 = Ayt (16.B.1a)

βA′Pyt+1 = −Qyt + Pyt. (16.B.1b)

A matrix inversion identity implies

(I + βB̃R̃−1B̃′P )−1 = I − βB̃(R̃+ βB̃′PB̃)−1B̃′P. (16.B.2)

Solving (16.B.1a) for yt+1 gives

yt+1 = (A− B̃F )yt (16.B.3)

where
F = β(R̃+ βB̃′PB̃)−1B̃′PA. (16.B.4)

Pre multiplying (16.B.3) by βA′P gives

βA′Pyt+1 = β(A′PA− A′PB̃F )yt. (16.B.5)
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For the right side of (16.B.5) to agree with the right side of (16.B.1b) for any initial
value of y0 requires that

P = Q+ βA′PA− β2A′PB̃(R̃+ βB̃′PB̃)−1B̃′PA. (16.B.6)

Equation (16.B.6) is the algebraic matrix Riccati equation associated with the ordi-
nary linear regulator for the system A, B̃,Q, R̃ .

C. Another Bellman equation

We briefly indicate the connection of the preceding formulation to that of Kydland
and Prescott (1980) and Marcet and Marimon (2000). For a class of problems with
structures close to ours, they construct a Bellman equation in a state vector defined as
(z, µx) : these are the ‘natural’ state variables and the vector of multipliers on the laws
of motion for the ‘jump’ variables xt . We show how to modify that Bellman equation
to include a concern about model misspecification.

Let µxt denote the sub vector of multipliers attaching to the implementability
constraints that summarize the Euler equations of the private sector. Then the La-
grangian for the optimum problem (16.3.7) can be written

L = −
∞
∑

t=0

βt

{

[

zt
xt

]′
Q

[

zt
xt

]

+ U ′
tRUt − βθw′

t+1wt+1

+ βµ′x,t+1(A21zt + A22xt +B2Ut + C2wt+1 − xt+1)

}

.

(16.C.1)

This Lagrangian is to be ‘extremized’ (i.e., maximized or minimized, as appropriate)
with respect to sequences {zt, xt µx,t, wt+1} subject to λ0 = 0 and the transition law

zt+1 = A11zt + A12xt +B1Ut + C1wt+1. (16.C.2)

Equation (16.C.1) can be rewritten

L = −
∞
∑

t=0

βt

{

[

zt
xt

]′
Q

[

zt
xt

]

+ U ′
tRUt − βθw′

t+1wt+1

+ (βµ′x,t+1A22 − µ′x,t)xt + βµ′x,t+1(A21zt +B2Ut + C2wt+1)

}

,

(16.C.3)

which is to be extremized with respect to the same constraints (16.C.2). Define

the one-period return function −r̃(z, µx, x, µ
∗
x, w) =

[

z
x

]′
Q

[

z
x

]

+ u′Ru − θw′w +
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(βµ∗′x A22 − µ′x)x+ βµ∗′x (A21z+B2u+C2w), where ∗ superscripts denote one-period
ahead values. Let v(z, µx) be the optimum value of the problem starting with aug-
mented state (z, µx) . Problem (16.C.3) is recursive and has the following Bellman
equation:

v(z, µx) = max
{u,x}

min
{w,µ∗

x}

{

r̃(z, µx, x, µ
∗
x, w) + βv(z∗, µ∗x)

}

(16.C.4)

where the extremization is subject to

z∗ = A11z + A12x+B1u+C1w. (16.C.5)

The Bellman equation (16.C.4), (16.C.5) is a version of the recursive saddle
problem described by Kydland and Prescott (1980) and Marcet and Marimon (2000).
We have added a concern for robustness via the extra minimization with respect to
the shock distortion w . In related contexts, Marcet and Marimon stress that while
such problems are not recursive in the natural state variables z alone, they becomes
recursive when the multipliers µx are included.

Although one could solve our problem by iterating to convergence on (16.C.4),
(16.C.5), it is more convenient for us to use the method described in section 16.3 that
solves the Riccati equation (16.3.4) and its associated Bellman equation.



Chapter 17
Non-linear models

17.1. Introduction

This chapter discusses a preference for robustness in settings that extend beyond

the linear-quadratic examples we have concentrated on up to now. We permit

both the return function and the transition law to be of general functional

forms. The state vector obeys a Markov process. A preference for robustness to

model misspecification can be expressed by altering the conditional expectation

operator in the Bellman equation. That new operator is connected with the

risk-sensitive control theory of chapter 6.

17.1.1. The R operator for LQ problems

Chapters 6 and 7 showed how for a linear quadratic problem, a robust decision

rule can be found by iterating to convergence on a composite operator T ◦D in

place of the ordinary operator T defined by the right side of the Riccati equation

for the matrix P in the value function −x′Px− p . Thus, for the nonstochastic

linear-quadratic case studied in chapter 6, a Bellman equation that induces a

robust rule is

−x′Px = max
u

[r(x, u) − βy′D(P )y] (17.1.1)

where r(x, u) = −x′Qx− u′Ru , the maximization is subject to y = Aox+Bu ,

and

D(P ) = P + θ−1PC(I − θ−1C′PC)−1C′P.

The D operator in Bellman equation (17.1.1) rewards robust decision rules.

The operator D verifies the following equality:

J ≡ −x′A′D(P )Ax = min
w

[θw′w − (Ax + Cw)′P (Ax+ Cw)] . (17.1.2)

The problem on the right is to minimize θw′w + y′Py subject to the approx-

imating model y = Ax + Cw , where y′Py is the continuation value function

– 393 –
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of next period’s state y . Thus, in iterating to convergence on T ◦ D , the D
operator reflects the actions of the minimizing agent who distorts models, and

the T operator reflects the actions of the maximizing agent.

Chapter 7 reinterprets the operator D in terms of risk-sensitivity where the

law of motion is y = Aox+Bu+Cǫ and ǫ is a Gaussian vector with mean zero

and identity covariance matrix. Define α = 2θ .1 The Bellman equation for the

value function V (x) for a risk-sensitive control problem is

V (x) = max
u

{r(x, u) + βR(V (y))(x)} (17.1.3)

where

R(V (y))(x) = −α logE exp

(−V (y)

α

)

∣

∣

∣

∣

∣

x. (17.1.4)

For the fixed control law u = −Fx and the quadratic continuation value function

V (y) = −y′Py − p , we have

R(V (y))(x) = −x′A′D(P )Ax − p− θ−1 log det(I − θ−1C′PC).

The D on the right side encapsulates a ‘twisting’ of probabilities induced by

risk-sensitive preferences.

In the linear-quadratic case studied in chapters 6 and 7, the robust deci-

sion rule associated with a given θ > 0 attains the value function V (x) that

solves the risk-sensitive Bellman equation (17.1.3). Thus robustness to model

misspecification can be achieved by replacing the expectations operator E with

the distorted expectations operator R on the right side of the usual Bellman

equation, as in (17.1.3).

This chapter shows how these ideas extend beyond linear-quadratic prob-

lems. By using R as defined in the first line of (17.1.4) to replace the conditional

expectations operator in the Bellman equation, decision rules that are robust to

model misspecification can be computed easily.

1 In earlier chapters, we typically used θ as the multiplier on w′w , where w′w equaled

two times entropy. Here we use α as the corresponding multiplier on entropy.
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17.1.2. Markov perturbations

In this chapter, an approximating model is a controlled Markov chain. To ex-

press a concern about model misspecification, we suppose that a decision maker

believes that an unknown member of a set of unspecified nearby models gener-

ates the data. We form the set of models by perturbing the Markov transition

density of an approximating model. This way of proceeding lets us avail our-

selves of formalizations for Markov processes from large deviation theory (e.g.

see Dupuis and Ellis, 1997).

The decision maker’s approximating model is a Markov process with state

x ∈ X and time-invariant transition density π(x′, x), where x denotes the state

today and x′ the state tomorrow. We form a perturbed model by multiplying

π by a function w(x′, x) > 0, then rescaling appropriately to make the resulting

object a transition density:

πw(x′, x) =
w(x′, x)π(x′, x)

∫

w(x′, x)π(x′, x)d x′
. (17.1.5)

The likelihood ratio, or Radon-Nikodym derivative of πw with respect to π , is

evidently
w(x′, x)

∫

w(x′, x)π(x′, x)d x′
. (17.1.6)

From w(x′, x) > 0, it follows that πw puts positive probability on the same

events as does π (i.e., πw is said to be absolutely continuous with respect to

π ). This means that statistically πw can be difficult to distinguish from π using

a finite number of observations.

It is sometimes convenient to characterize a Markov process with a condi-

tional expectations operator T that is defined as follows. For any test function

φ belonging to the class Φ of bounded continuous functions, define the operator

T by

T (φ)(x) = E [φ(xt+1)|xt = x] . (17.1.7)

For a rich enough set of functions in Φ, the conditional expectations operator

T characterizes the transition density π . The expectations operator associated

with the distorted transition density πw in (17.1.5) can be expressed

T w(φ) =
T (wφ)

T (w)
.
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Let Ew(·|x) denote the mathematical expectation with respect to the distorted

model.

17.1.3. Relative entropy

To embody the idea that the approximating model is good, we want a convenient

way to measure discrepancy from the approximating model. We measure dis-

crepancy by ‘relative entropy,’ defined as the expected value of the log-likelihood

ratio conditional on x , where the conditional expectation is evaluated with re-

spect to the density associated with the twisted density πw .2 As in chapter 2,

we define relative entropy for a candidate model indexed by w as

I(w)(x) ≡ Ew

[

log
πw(x′, x)

π(x′, x)

∣

∣

∣x

]

= Ew

[

log
w(x′, x)

T (w)(x)

∣

∣

∣x

]

= T w(logw)(x) − log[T (w)(x)] ≥ 0.

(17.1.8)

Relative entropy is not a metric because it treats the approximating model π and

the alternative model πw asymmetrically. The asymmetry emerges because the

expectation is evaluated with respect to the ‘twisted’ distribution πw . Relative

entropy is prominent in both information theory and large deviation theory and

satisfies several attractive properties:3 I(w) nonnegative, but I(w) = 0 if w is

constant.4 Substituting for T w in (17.1.8) gives:

I(w) =
T [w log(w)]

T (w)
− log[T (w)]

= E

[

w(x′, x)

E[w(x′, x)|x] log

(

w(x′, x)

E[w(x′, x)|x]

)

∣

∣

∣x

]

.

(17.1.9)

2 For readers of Dupuis and Ellis (1997, Chapter 1, Section 4), think of the transition

density associated with T as Dupuis and Ellis’s θ ; and think of
w(z)

T (w)(y)
as Dupuis-Ellis’s

Radon-Nikodym derivative d γ
d θ . For Dupuis and Ellis, relative entropy is

∫

log

(

d γ
d θ

)

d γ .

3 See Shore and Johnson, 1980 and Csiszar, 1991 for axiomatic justifications.

4 For Markov specifications with stochastically singular transitions,
w(x′,x)
T (w)(x)

may be one

even when w is not constant. For these systems, we have in effect over parameterized the

perturbations, although in a harmless way.
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As indicated in chapter 8, we limit concern about robustness by insisting

that the robust decision maker pay special attention to models with small rel-

ative entropies because they are difficult to distinguish empirically from the

approximating model.

17.2. Value function for robustness

Given a current-period reward function U(x) and a known Markov process,

a value function W (x) for a discounted infinite horizon solves the functional

equation

W (x) = U(x) + βT (W )(x) (17.2.1)

where β ∈ (0, 1) is a discount factor. To attain a recursive representation while

incorporating a concern about model misspecification, we replace the condi-

tional expectations operator T in (17.2.1) with an alternative transformation

R of the continuation value function. The operator R distorts the conditional

expectation operator T with a single parameter α > 0 and is defined as

R(W ) = −α log

(

T
[

exp

(−W
α

)])

. (17.2.2)

The parameter α ≡ 2θ is restricted to be nonnegative; as it diverges to ∞ , R
becomes the conditional expectation operator T . The so-called risk sensitivity

parameter is σ = −2α−1 = −θ−1 .5 In the absence of discounting, replacing T
with R in (17.2.1) delivers the risk sensitive evaluation used in control theory.

To express a preference for robustness, we propose to iterate on the following

recursion:

V (x) = U(x) + βR(W )(x). (17.2.3)

Here W (y) is a continuation value function and V (x) is a current value function.

To help motivate (17.2.3), we present an inequality that bounds how much

the conditional expectation of a continuation value function deteriorates across

5 See Whittle (1990, 1996). As a formulation of recursive utility in the style of Epstein

and Zin (1989), Weil (1993) used R to make risk adjustments in a value function recursion

that is not additively separable, in contrast to (17.2.1). For Weil’s formulation, there exists a

transformation of the value function that has a recursion that is additively separable, but the

corresponding risk adjustment is different.
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different probability specifications. Assume that α > 0 and consider the follow-

ing problem:

Problem A:

inf
w>0

J(w) (17.2.4a)

where6

J(w) ≡ αI(w) + T w(W ). (17.2.4b)

The first term on the right of (17.2.4b) is a weighted entropy measure and the

second is the expectation of the continuation value function using the twisted

probability model indexed by w . The objective is to find a worst-value model w ,

where the departures w from the approximating model are penalized at a utility-

price α applied to their relative entropy. Increasing the absolute magnitude of

α increases the penalty for deviating from the approximating model.

Theorem 17.2.1. Assume that T can be evaluated at exp
(

−W
α

)

. For any

constant k > 0 , a solution to Problem A is:

w∗ = k exp

(

−W
α

)

,

which attains the minimized value

J(w∗) = R(W )

where

R(W ) = −α log

(

T
[

exp

(

−W
α

)])

The solution w∗ is not unique (any k > 0 works), but the minimized value of

the objective is unique and so is the associated probability law.

Proof. 7 To verify that w∗ is the solution, write:

I(w) = I∗(w/w∗) +
T (w logw∗)

T (w)
− logT (w∗)

where

I∗(w) =
T ∗(w logw)

T ∗(w)
− logT ∗(w)

6 Note how (17.2.4b) generalizes (17.1.2).
7 This proof emulates the proof of Proposition 1.4.2 in Dupuis and Ellis (1997).
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and

T ∗φ ≡ T (w∗φ)

T (w∗)
.

Notice that I∗ is itself interpretable as a measure of relative entropy and hence

I∗(w/w∗) ≥ 0. Thus the criterion J satisfies the inequality:

J(w) = α[I∗(w/w∗) +
T (w logw∗)

T (w)
− logT (w∗)] + T w(W )

≥ α[
T (w logw∗)

T (w)
− logT (w∗)] + T w(W )

= −α logT [exp(−W
α

)]

= J(w∗).

Equation (17.2.4b) implies an inequality in terms of robust evaluations of value

functions.

Corollary 17.2.1. The conditional expectation of the value function W

evaluated under T w satisfies the bound

T w(W ) ≥ R(W ) − αI(w). (17.2.5)

Proof. This follows immediately from J(w∗) = R(W ) and the definition of

J(w).

The first term on the right depends on α , but not on the alternative model

parameterized by w . The second term is −α times entropy. Thus, inequality

(17.2.5) justifies interpreting α as a type of utility price of robustness.

The robust value function W solves the functional equation:

W (x) = inf
w

{U(x) + β[αI(w) + T w(W )(x)]} . (17.2.6)

This can also be expressed as

W (x) = U(x) + βR(W )(x). (17.2.7)

These equations display how the continuation value function is adjusted for fear

of possible model misspecification.
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17.2.1. Gaussian example

Theorem 17.2.1 shows that the worst distorted transition measure obeys

πw(x′, x) ∝ π(x′, x) exp(
−W (x′)

α
). (17.2.8)

To link this result to the linear-quadratic-Gaussian setting of earlier chapters,

assume that the continuation value function is W (x) = −x′Px − ρ and that

π(x′, x) is Gaussian with mean A∗x and conditional covariance matrix C′C ,

so that x′ can be represented as x′ = µ + Cǫ where µ = A∗x and ǫ is a

Gaussian random vector with mean zero and identity covariance matrix. Using

the definition σ = −θ−1 = −2α−1 and the preceding assumption about the

conditional distribution of x′ , (17.2.8) implies

πw(x′, x) ∝ exp

(−ǫ′ǫ
2

)

exp

(

σW (x′)

2

)

∝ exp

(−ǫ′ǫ
2

)

exp

(−σ(µ+ Cǫ)′P (µ+ Cǫ) − ρσ

2

)

∝ exp
(−ǫ′(I + σC′PC)ǫ

2
− ǫ′(I + σC′PC)(I + σC′PC)−1σC′Pµ

)

∝ exp
[

−.5
(

ǫ+ σ(I + σC′PC)−1C′Pµ
)′

(I + σC′PC)
(

ǫ+ σ(I + σC′PC)−1C′Pµ
)]

The last line portrays x′ under πw as having a Gaussian distribution with

shocks that have mean vector µ̃ and covariance matrix Σ̃ defined by

µ̃ = −σ(I + σC′PC)−1C′Pµ (17.2.9)

Σ̃ = (I + σC′PC)−1. (17.2.10)

It follows that under the distorted conditional distribution, the mean and covari-

ance matrix for x′ are A∗x+Cµ̃ and CΣ̃C′ . Notice that −σ(I+σC′PC)−1C′P =

θ−1(I − θ−1C′PC)−1C′Pµ , so that the formula for the distortion in the mean

agrees with the distortion under the worst case model from chapters 2 and 6.8

In those chapters, we allowed the minimizing agent to distort only the mean,

8 Mention small size of alteration in Σ in HST example; mention continuous time no

adjustment in limit.
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not the variance, of the conditional distribution for next period’s state. We have

just shown, however, that when the minimizing agent is allowed to choose any

distribution near the approximating transition density π , and when the density

is Gaussian under the approximating model, the minimizing agent will select a

Gaussian distorted distribution, but will choose to distort both the mean and the

covariance matrix of the shocks. The formula for the mean distortion matches

the one that prevails when the minimizing agent is allowed to alter only the

mean vector.

17.3. Large deviation interpretation of R

We have interpreted (17.2.7) in terms of a preference for robustness that is

achieved by substituting the operator R for the conditional expectations oper-

ator T in a corresponding Bellman equation without a concern for robustness.

In this section, we use ideas from the theory of large deviations to indicate how

the operator R(W (x′))(x) contains information about the left tail of the distri-

bution of W (x′). Recall from (17.2.2) that R depends on α , and collapses to

T as αր +∞ . We shall show that R contains more information about the left

tail of W (x′) as α is decreased. We gather this interpretation from an expo-

nential inequality that bounds the (conditional) tail probabilities of W . These

tail probability bounds show how R expresses a form of enhanced risk aversion

that makes the decision-maker care about more than just the conditional mean

of the continuation value.

The tail probability bound comes from the theory of large deviation ap-

proximations. It uses the inequality

1{W :W≤−r} ≤ exp

[−(W + r)

α

]

depicted in Figure 17.3.1. This inequality holds for any real number r and

any α > 0. Let z denote the state tomorrow. Then computing expectations

conditioned on the current state vector x yields:

Pr{W (x′) ≤ −r|x} ≤ E

(

exp

[

−W (x′)

α

]

∣

∣

∣x

)

exp
(

− r

α

)

,

or

log[Pr{W (x′) ≤ −r|x}] ≤ − 1

α
R(W )(x) − r

α
. (17.3.1)
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The first term on the right side of this inequality is independent of r but depends

on α . We can express (17.3.1) as

Pr{W (x′) ≤ −r|x} ≤ exp
{

−α−1R(W )(x)
}

exp
{

− r

α

}

. (17.3.2)

Inequality (17.3.2) bounds the tail probability on the left by an exponential in

r . The right side declines with increases in r at rate −α−1 ; R , a function of α ,

influences the constant in the bound. Decreasing α increases the exponential

rate at which the bound sends the tail probabilities to zero, thereby expressing

how a lower α heightens concern about tail events. This tells us how using

R to replace the mathematical expectation T in a typical Bellman equation

enhances risk aversion.
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Figure 17.3.1: Ingredients of large deviation bounds: exp
(

−(W+r)
α

)

and 1{W :W≤−r} for r = 1 and two values of α , 1 and 2.

Figure 17.3.2 shows how R induces additional caution about continuation

utilities W . In the figure, E(W ) is the expected utility of a gamble between two

continuation utility levels W2,W1 with W2 > W1 . Where h(W ) is a convex

function, like exp(−W/α) for 0 < α < +∞ , h−1E(h(W )) < E(W ).
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θ

−1h  (E(W)) E(W) W

h(W)

W
W1 2

h(W)=exp(−W/   )

E(h(W))

Figure 17.3.2: The function h−1E(h(W )) for h(W ) =

exp(−W
α ), 0 < α < +∞ .





Chapter 18

Ramsey plans

18.1. Introduction

In chapter 16, a Stackelberg leader manipulates the worst-case model of the

followers as part of its process of forming a Stackelberg plan. This chapter

studies a Stackelberg leader in the person of a Ramsey planner who chooses

both flat rate state contingent taxes and the system of date-state contingent

prices to construct a competitive equilibrium that is best for a representative

consumer. When the representative consumer fears model misspecification, the

Ramsey planner chooses the consumer’s worst-case belief in order to manipulate

equilibrium state-date prices.

This chapter computes Ramsey equilibria for a version of Lucas and Stokey’s

(1983) model of taxation in an economy without physical capital in which the

representative agent is concerned about misspecification of the model for gov-

ernment purchases and therefore appreciates robust decision rules. We modify

Sargent and Velde’s linear quadratic version of Lucas and Stokey’s model.1 In

Lucas and Stokey’s original model, the Ramsey planner manipulates both taxes

and the price system in a way to maximize the utility of the representative

agent subject to an implementability condition that requires that allocations

are supported by competitive equilibria with flat rate taxes. Arrow-Debreu

state-history prices can be represented as intertemporal rates of substitution

times the probabilities that the representative agent assigns to transitions from

one value the state to another. When the representative agent fears model mis-

specification, the transition probabilities that contribute to the Arrow-Debreu

state-date prices correspond to the representative agent’s worst-case model. In

the Ramsey equilibrium with a representative consumer who fears misspecifica-

tion, the Ramsey planner manipulates those worst-case probabilities as part of

the process of choosing equilibrium prices. We begin by presenting the standard

1 We thank Cristobal Huneeus and Yongseok Shin for excellent help with the computations.

These François Velde’s calculations in Sargent and Velde (1999XX).
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model in which the representative agent is not concerned about misspecification.

18.1.1. Exogenous processes and information

Let xt be an exogenous information vector. We shall use xt to drive exogenous

stochastic processes gt, dt, bt, 0st , representing, respectively, government expen-

ditures, an endowment, a preference shock, and a stream of promised coupon

payments owed by the government at the beginning of time 0:

gt = Sgxt (18.1.1a)

dt = Sdxt (18.1.1b)

bt = Sbxt (18.1.1c)

0st = 0Ssxt. (18.1.1d)

Sargent and Velde (199XXX) made one of two alternative assumptions

about the underlying stochastic process xt .

Assumption 1: The n× 1 vector process xt with given initial condition

x0 is governed by

xt+1 = Axt + Cǫ̂t+1. (18.1.2)

Here ǫ̂t+1 is an i.i.d. random vector with mean 0 and identity covariance matrix,

and A is a stable matrix.

Assumption 2: The process xt is an n state Markov chain with time

invariant transition probabilities arranged in the n × n matrix π with πij =

Prob(xt+1 = x̄j |xt = x̄i).

Later, when we find robust rules in section 18.2, we shall use one of the

following assumptions about alternative specifications:

Assumption 1 ′ : The n× 1 vector process xt with given initial condition

x0 is governed by

xt+1 = Axt + C(ǫt+1 + wt+1). (18.1.3a)

Here ǫt+1 is another i.i.d. random vector with mean 0 and identity covariance

matrix, and wt+1 is a measurable function of xs, s ≤ t ; wt+1 is a distortion to
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the conditional mean of ǫ̂t+1 in the approximating model (18.1.2). It satisfies

E0

∞
∑

t=0

βt+1wt+1 · wt+1 ≤ η0. (18.1.3b)

Assumption 2 ′ : The process xt is one of a continuum of n state Markov

chains indexed by matrices w with elements wij > 0. The transition probabili-

ties are arranged in the n× n matrix πw with πw
ij = (wijπij) /

∑

k wikπik. Let

I(w)i be called conditional entropy in state i , where

I(w)i ≡
∑

j

ln

(

wij
∑

k wikπik

)(

wijπij
∑

k wikπik

)

. (18.1.4)

The constraint on misspecification is

E0

∞
∑

t=0

βt+1I(w)t+1 ≤ η0, (18.1.5)

where I(w)t+1 is the value of conditional entropy when the system is in the ith

state at time t .

In (18.1.4), the term wij/
∑

k wikπik is the Radon-Nikodym derivative of the

distorted transition density πw with respect to the approximating π . Inequality

(18.1.5) is a constraint on the entropy of Markov chain πw relative to Markov

chain π .2

We begin by staying with Sargent and Velde’s assumptions 1 and 2, then

adopt assumptions 1 ′ and 2 ′ when we study fear of misspecification.

2 See Anderson, Hansen, and Sargent (2000) for a discussion of how to specify the set of

alternative models when the approximating model is Markov.
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18.1.2. Technology

There is a technology for converting one unit of labor ℓt into one unit of a single

nonstorable consumption good. Feasible allocations satisfy:

ct + gt = dt + ℓt. (18.1.6)

18.1.3. Representation of price system

From chapter 12, recall formula (12.3.2)

qt(xt|x0) = βt u′(c(xt))

e1 · u′(c(x0))
ft(xt|x0)

for the price vector at time t of a claim on list of consumption goods at time t

when the state is xt , where ft(xt|x0) is the representative consumer’s transition

t-step transition density for the state and u′ is a vector marginal utilities of

consumption. This equation simply rearranges the household’s first-order for

time-t , state xt consumption. The present model has a single consumption

good and the above formula becomes

qt(xt|x0) = βt bt − ct
b0 − c0

ft(xt|x0). (18.1.7)

In the standard rational expectations model without concern about model mis-

specification, the same transition density ft(xt|x0) in this formula is accepted

by both the government and the representative consumer. In the model in sec-

tion 18.2 with concern about model misspecification, the government and the

Ramsey planner will have a common ft as their approximating model but dif-

ferent ft ’s corresponding to their worst-case models. When the representative

consumer is concerned about model misspecification, we must replace (18.1.7)

by

qt(xt|x0) = βt bt − ct
b0 − c0

f̂t(xt|x0) (18.1.8)

where f̂t(xt|x0) is the worst-case t-step transition density of the representative

consumer. In section 18.2, we shall provide an algorithm for computing the

representative consumer’s worst-case transition density f̂t(xt|x0).
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As in chapter 12, we can follow Harrison and Kreps (1979XXXX) and define

the scaled state-date price

p0
t (xt) =

qt(xt|x0)

βtft(xt|x0)
, (18.1.9)

which in the present context becomes

p0
t (xt) =

bt − ct
b0 − c0

. (18.1.10)

18.1.4. Households

Markets are complete. At time 0, a representative consumer faces a scaled

Arrow-Debreu price system {p0
t} and a flat rate tax on labor {τt} and chooses

consumption and labor supply to maximize:

−.5E0

∞
∑

t=0

βt[(ct − bt)
2 + ℓ2t ] (18.1.11)

subject to the time 0 budget constraint

∑

t

∑

xt

qt(xt|x0)[dt + (1 − τt)ℓt + 0st − ct] = 0. (18.1.12)

By using the scaled Arrow-Debreu prices, we can represent this equation in

terms of the following conditional expectation:

E0

∞
∑

t=0

βtp0
t [dt + (1 − τt)ℓt + 0st − ct] = 0. (18.1.13)

This states that the present value of consumption equals the present value of the

endowment plus coupon payments on the initial government debt plus after-tax

labor earnings. The scaled Arrow-Debreu price system is a stochastic process

for which the conditional expectation is well defined.3

3 See chapter 12 as well as Hansen (1987) and Hansen and Sargent (200XXX) for more

about scaled Arrow-Debreu prices.
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In section 18.2, we shall change (18.1.11) to reflect a concern about model

misspecification by the representative consumer. As in chapter 12, when the

representative agent fears model misspecification, it will be appropriate to use

f̂t(xt|x0) to define the scaled Arrow-Debreu prices in (18.1.9) and to replace

E0 in (18.1.13) with Ê where Ê0 is the expectation with respect to the repre-

sentative consumer’s worst-case model.

18.1.5. Government

The government’s time-0 budget constraint is

E0

∞
∑

t=0

βtp0
t [(gt + 0st) − τtℓt] = 0. (18.1.14)

Given the government expenditure process and the present value

E0

∑∞
t=0 β

tp0
t 0st , a budget-feasible tax process must satisfy (18.1.14).

18.1.6. Equilibrium

Definition: L2
0 is the space of random variables yt that are measurable with

respect to xt and such that E0

∑∞
t=0 β

ty2
t < +∞ .

Definitions: A feasible allocation is a stochastic process {ct, ℓt} that satisfies

(18.1.6). A tax system is a scalar stochastic process {τt} . A price system is

a stochastic process {p0
t} . The time t elements of each of these processes are

assumed to be measurable with respect to xt and to belong to L2
0 .

Definition: An equilibrium is a feasible allocation, a price system, and a tax

system that have the following properties:

i. Given the tax and price systems, the allocation solves the household’s prob-

lem.

ii. Given the price system, the allocation and the tax system satisfy the gov-

ernment’s budget constraint.
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18.1.7. Properties

The first-order conditions for the household’s problem imply that the equilibrium

price system satisfies p0
t = ξ(bt − ct), where ξ is a numeraire that we set at

(b0 − c0)
−1 . As in chapter 12, the preference specification permits the scaled

Arrow-Debreu price p0
t to be expressed in terms of ratios of linear functions of

the state:

p0
t = Mpxt/Mpx0,

where Mp is a matrix defined so that Mpxt = bt − ct . The preference specifica-

tion will make it possible to express government time t revenues as the ratio of

a quadratic function of the state at t to a linear function of the state at 0. The

forms of these prices and taxes and of the other objects in (18.1.11) reduce the

technical problem to evaluating geometric sums of a quadratic form in the state,

which means solving Sylvester equations. For assumptions 1 and 2, Appendix A

of Sargent and Velde (1999) shows how to compute such sums by using standard

formulas for expectations of geometric sums of a quadratic form.

18.1.8. Ramsey problem

There are many equilibria, indexed by tax systems. The Ramsey problem is to

choose the tax system that delivers the equilibrium preferred by the represen-

tative household. The Ramsey problem assumes that at time 0 the government

commits itself to the tax system, once and for all.

Definition: The Ramsey problem is to choose an equilibrium that maximizes the

household’s welfare (18.1.11). The allocation that solves this problem is called

the Ramsey allocation, and the associated tax system is called the Ramsey plan.
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18.1.9. Solution strategy

Following a long line of researchers starting with Frank Ramsey (1929), we shall

solve this problem using a ‘first-order’ approach that involves the following steps.

The steps incorporate the properties required by the definition of equilibrium.

1. Obtain the first-order conditions for the household’s problem and use them

to express the tax system and the price system in terms of the allocation.

2. Substitute the expressions for the tax system and the price system obtained in

step 1 into the government’s budget constraint to obtain a single intertemporal

restriction on allocations.

3. Use Lagrangian methods to find the feasible allocation that maximizes the

utility of the representative household subject to the restriction derived in step

2. The maximizer is the Ramsey allocation.

4. Use the expressions from step 1 to find the associated Ramsey equilibrium

price and tax systems by evaluating them at the Ramsey allocation.

18.1.10. Computation with no concern about robustness

We now execute these four steps for the version of the model without a preference

for robustness. The problem is set so that the mathematics of linear systems

can support a solution.

Step 1. The household’s first order conditions imply

p0
t = (bt − ct)/(b0 − c0) (18.1.15)

τt = 1 − ℓt
bt − ct

. (18.1.16)

Step 2. Using (18.1.15) and (18.1.16), express (18.1.14) as

E0

∞
∑

t=0

βt[(bt − ct)(gt + 0st) − (bt − ct)ℓt + ℓ2t ] = 0. (18.1.17)

Equation (18.1.17) is often called the implementability constraint on the allo-

cation.
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Step 3. Consider the maximization problem associated with the Lagrangian:

J = E0

∞
∑

t=0

βt

{

−.5[(ct − bt)
2 + ℓ2t ]

+ λ0[(bt − ct)ℓt − ℓ2t − (bt − ct)(gt + 0st)]

+ µ0t[dt + ℓt − ct − gt]

}

where λ0 is the multiplier associated with the government’s budget constraint,

and µ0t is the multiplier associated with the time t feasibility condition. Obtain

the first-order conditions:

ct : − (ct − bt) + λ0[−ℓt + (gt + 0st)] = µ0t (18.1.18a)

ℓt : ℓt − λ0[(bt − ct) − 2ℓt] = µ0t (18.1.18b)

µ0t : dt + ℓt = ct + gt (18.1.18c)

We want to solve equations (18.1.18a), (18.1.18b), (18.1.18c) and the govern-

ment’s budget constraint (18.1.14) for an allocation.

18.1.11. Key idea

Our solution strategy is to begin by taking λ0 as given and to solve (18.1.18)

for an allocation contingent on λ0 . Then we shall use (18.1.14) to solve for λ0 .

18.1.12. Execution

Using the feasibility constraint ct = dt + ℓt − gt , we can express (18.1.18a),

(18.1.18b) as

ℓt − λ0[(bt − dt − ℓt + gt) − 2ℓt] = −(dt + ℓt − gt − bt) + λ0[−ℓt + (gt + 0st)]

or

ℓt =
1

2
(bt − dt + gt) −

λ0

2 + 4λ0
(bt − dt − 0st).

We also derive

ct =
1

2
(bt + dt − gt) −

λ0

2 + 4λ0
(bt − dt − 0st).
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Define

c̃t = (bt + dt − gt)/2 (18.1.19a)

ℓ̃t = (bt − dt + gt)/2 (18.1.19b)

mt = (bt − dt − 0st)/2 (18.1.19c.)

We have:

ℓt = ℓ̃t − µmt (18.1.20a)

ct = c̃t − µmt (18.1.20b)

where, for convenience, we define

µ =
λ0

1 + 2λ0
. (18.1.21)

Using (18.1.20), the general term of (18.1.17) can be written as:

(bt − c̃t)(gt + 0st) − (bt − c̃t)ℓ̃t + ℓ̃2t

− µmt[−(gt + 0st) + ℓ̃t − (bt − c̃t) + 2ℓ̃t] + µ2m2
t

= (bt − c̃t)(gt + 0st) − 2m2
tµ+ 2m2

tµ
2,

where we used 2ℓ̃t = bt − dt + gt and ℓ̃t = bt − c̃t to reduce the bracketed factor

in the second line.

This allows us to write (18.1.17) as:

a0(x0)(µ
2 − µ) + b0(x0) = 0 (18.1.22)

where

a0(x0) = E0

∞
∑

t=0

βt 1

2
(bt − dt − 0st)

2

= E0

∞
∑

t=0

βtx′t
1

2
[Sb − Sd − 0Ss]

′[Sb − Sd − 0Ss]xt (18.1.23)

and

b0(x0) = E0

∞
∑

t=0

βt[(bt − c̃t)(gt + 0st) − (bt − c̃t)ℓ̃t + ℓ̃2t ] (18.1.24)

= E0

∞
∑

t=0

βt 1

2
(bt − dt + gt)(gt + 0st)

= E0

∞
∑

t=0

βt 1

2
x′t[Sb − Sd + Sg]

′[Sg + 0Ss]xt, (18.1.25)
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where we have used the fact that bt− c̃t = ℓ̃t . The 0 subscripts on the quadratic

forms a0 and b0 denote their dependence on 0Ss . The coefficients in the poly-

nomial expression (18.1.22) are functions of x0 alone because, given the law of

motion for the exogenous state xt , the infinite sums can be computed using the

algorithms described in Appendix A of Sargent and Velde (1999).

Notice that b0(x0), when expressed by (18.1.24), is simply the infinite sum

on the left side of (18.1.17) evaluated for the specific allocation {c̃t, ℓ̃t} defined

in (18.1.19), which solves the problem:

max
c,ℓ

−.5[(c− bt)
2 + ℓ2]

subject to c + gt = ℓ + dt ; {c̃t, ℓ̃t} is the allocation that would be chosen

by a benevolent dictator able to choose among all feasible allocations, not just

competitive equilibrium allocations. This is also the Ramsey allocation when the

government can resort to lump-sum taxation. The term b0(x0) is the present-

value of the government’s stream of spending commitments {gt+0st} , evaluated

at the prices that correspond to the {c̃t, ℓ̃t} allocation. If that present value

is 0, distortionary taxation is not necessary, and µ = 0 (which implies that

λ0 = 0) solves (18.1.22): the government’s budget constraint is not binding.

One configuration for which b0(x0) = 0 occurs when gt = −0st for all t ,

but there are many others. Because markets are complete, the timing of the

government’s claims on the household does not matter. If the government were

able to acquire such claims on the private sector in a non-distortionary way, it

would be able to implement a first-best allocation.

When the net present value of the government’s commitments is positive,

we must solve (18.1.22) for a µ in (0, 1/2) that correspond to a λ0 > 0. The

polynomial a0(x0)µ(1 − µ) is bounded above by a0(x0)/4, which means that

government commitments that are “too large” cannot be supported by a Ramsey

plan. If b0(x0) < a0(x0)/4, there exists a unique solution µ in (0, 1/2) and a

unique λ0 > 0. The Ramsey allocation can then be computed as:

ct = c̃t − µmt

=
1

2
([Sb + Sd − Sg] − µ[Sb − Sd − 0Ss])xt (18.1.26a)

ℓt = ℓ̃t − µmt

=
1

2
([Sb − Sd + Sg] − µ[Sb − Sd − 0Ss])xt (18.1.26b)
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and the Ramsey plan as:

τt = 1 − ℓt
bt − ct

= 1 − ℓ̃t − µmt

bt − c̃t + µmt

=
2µmt

ℓ̃t + µmt

=
2µ[Sb − Sd − 0Ss]xt

([Sb − Sd + Sg] + µ[Sb − Sd − 0Ss])xt
. (18.1.27)

Expression (18.1.27) shows that when the endowment and the preference shocks

are constant, the stochastic properties of the tax rate mirror those for gov-

ernment expenditures. Tax rates vary inversely with government expenditures

(notice that Sgxt appears in the denominator).

18.2. Modifications for robustness

We now compute a Ramsey plan when the representative consumer is concerned

about model misspecifications of a type described either by Assumption 1′ or

by Assumption 2′ . Now the f̂t(xt|x0) that occurs in the equilibrium state-date

prices qt(xt|x0) = βt bt−ct

b0−c0
f̂t(xt|x0) defined in (18.1.8) becomes the represen-

tative consumer’s worst-case transition density. To compute the Ramsey plan,

we must use these modified qt(xt|x0)’s to evaluate the government’s budget

constraint. To deduce f̂t , we use a multiplier problem with parameter θ for

the representative consumer at a candidate Ramsey allocation. We let θ be a

multiplier on the constraint on the specification error (18.1.3b) for Assumption

1′ or (18.1.5) for Assumption 2′ . We take θ ∈ (θ,+∞] as a parameter. The

value of θ is context specific because it depends on the government expenditure

process.4

4 See chapter 7 for a discussion of the lower limit on θ .
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18.2.1. Main idea

Recall our basic solution strategy of (1) taking λ0 as given, (2) solving (18.1.18)

for an allocation contingent on λ0 , then (3) using (18.1.14) to solve for λ0 .

We solved the Ramsey problem by searching for a λ0 that solves (18.1.14).

For computing a Ramsey plan when the representative consumer fears model

misspecification, steps (1) and (2) remain the same, and (3) is modified by the

extra step of finding a distorted expectations operator with which to evaluate

the government’s budget constraint (18.1.14):

Ê0

∞
∑

t=0

βtp0
t [(gt + 0st) − τtℓt] = 0 (18.2.1)

where Ê is evaluated with respect to f̂t . We describe how to compute this

modified expectations operator under Assumptions 1’ and 2’.

18.2.2. Assumption 1 ′

We first adopt Assumption 1 ′ and form the multiplier problem for the represen-

tative consumer at a candidate Ramsey allocation associated with a fixed λ0 .

For a given λ0 , the candidate allocation is held fixed, so that this becomes a pure

minimization problem. It is important at this point to observe that given f̂t , the

first-order conditions for the Ramsey planner retain the same form (18.1.19),

(18.1.20) that they took in the original model without a concern about robust-

ness on the part of the representative consumer. These equations lead directly

to the formulas (18.1.26) for the Ramsey allocation in terms of the multiplier

µ and the state xt . The adjustment for robustness occurs entirely through the

transformed multiplier µ due to replacing ft from the approximating model

with f̂t from the consumer’s worst-case model in evaluating the government’s

budget constraint (18.2.1).

Thus, we proceed as follows. Given a candidate λ0 , we use (18.1.26),

(18.1.1), and (18.1.11) to form the matrix H in the representation x′tH
′Hxt =

−.5[(bt − ct)
2 + ℓ2t ] of the representative consumer’s one-period utility function

at the candidate Ramsey allocation associated with a given candidate µ . Then

to deduce the worst-case model to be used to compute the distorted transi-

tion density needed to form the Arrow-Debreu prices and the budget constraint
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(18.2.1), we form the multiplier problem:

min
w
E0

∞
∑

t=0

βt
{

−x′tH ′Hxt + βθw′
t+1wt+1

}

(18.2.2)

where the expectation and the minimization are both subject to

xt+1 = Axt + C(ǫt+1 + wt+1). (18.2.3)

This is a discounted optimal linear regulator problem with optimal feedback rule

wt+1 = Kxt. (18.2.4)

Substituting (18.2.4) into (18.2.3) gives the distorted law of motion

xt+1 = Âxt + Cǫt+1 (18.2.5)

where

Â = A+ CK. (18.2.6)

An alternative formula for K can be found as follows. First, compute a

matrix V by iterating to convergence on

S(Vj+1) = −H ′H + βA′D(Vj)A

where D is the operator

D(V ) = V + σV C(I − σC′V C)−1C′V (18.2.7)

and σ ≡ −θ−1 . Then compute K from

K = σ(I − σC′V C)−1C′V. (18.2.8)

The fact that H depends on µ , or λ0 , through (18.1.19), (18.1.20) neces-

sitates that now we use an iterative method to compute λ0 , whereas Sargent

and Velde could calculate it directly.

Here is a four step process to compute the Ramsey plan when the repre-

sentative consumer’s concern about robustness is associated with given θ :

Step 1. Guess a value of λ0 . Find the associated µ from (18.1.21).
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Step 2. Compute ct, ℓt from (18.1.19), (18.1.20). Find the associated H for

(18.2.2). Find the associated K and Â .

Step 3. Using model (18.2.5), (18.2.6) to evaluate the expectation operator Ê ,

evaluate a0(x0) and b0(x0) using the formulas

a0(x0) = Ê0

∞
∑

t=0

βtx′t
1

2
[Sb − Sd − 0Ss]

′[Sb − Sd − 0Ss]xt (18.2.9)

and

b0(x0) = Ê0

∞
∑

t=0

βt 1

2
x′t[Sb − Sd + Sg]

′[Sg + 0Ss]xt. (18.2.10)

Step 4. Check whether (18.1.22) is satisfied. Iterate on steps 1 through 3 to

find a λ0 that is a zero of (18.1.22).

Step 5. Having found such a λ0 , use (18.1.26) and (18.1.27) to compute the

Ramsey allocation and Ramsey plan.

18.2.3. Assumption 2 ′

Here is the corresponding step-by-step plan for computing the Ramsey plan

when the representative consumer is concerned about robustness under the

Markov assumption 2′ . First, again fix a λ0 and use (18.1.26), (18.1.1), and

(18.1.11) to define H in the following representation of the one-period return

function:

u(xt) = −x′tH ′Hxt. (18.2.11)

This is the same H as found above. Then follow these steps.

Step 1. Compute the value function V (a vector) by iterating to convergence

on

Vi = ui − βθ ln
{

∑

j

exp

(−Vj

θ

)

πij

}

. (18.2.12)

Step 2. Form

w∗
j = exp

(−Vj

θ

)

. (18.2.13)
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Step 3. Form the distorted transition density

πw∗

ij =
w∗

jπij
∑

k w
∗
kπik

. (18.2.14)

Step 4. Evaluate a0(x0), b0(x0), using πw∗

and formulas for computing geomet-

ric sums of a quadratic form for a Markov chain.5

Step 5. Check whether (18.1.22) is satisfied. Iterate on steps 1 through 4 to

find a λ0 that is a zero of (18.1.22).

Step 6. Having found such a λ0 , use (18.1.26) and (18.1.27) to compute the

Ramsey allocation and Ramsey plan.

18.2.4. Ramsey planner’s worst-case model

So far, we have concentrated entirely on the representative consumer’s atti-

tudes about model misspecification and the representative consumer’s worst-

case model. In this section we explain why the essentially static nature of the

Ramsey problem mean that the planner’s own worst-case model affects neither

the Ramsey plan nor the Ramsey allocation.

The indirect preferences of the Ramsey planner differ from those of the

representative consumer because the Ramsey planner must respect the imple-

mentability condition that restricts him to competitive equilibrium allocations.6

Therefore if we were to attribute a concern about model misspecification to the

Ramsey planner, the worst-case model of the Ramsey planner would typically

differ from the worst-case model of the representative consumer.7 However,

given λ0 , the first-order conditions for the maximization part of the Ramsey

planner’s problem are entirely static. That fact implies that the Ramsey plan-

ner’s worst-case model has no affect on the Ramsey plan or on the Ramsey allo-

cation. The Ramsey plan and the Ramsey allocation can be computed without

5 See Sargent and Velde (1999).
6 See Jones, Manuelli, and Rossi (19XX) for an interpretation of the Ramsey planners

problem as being an ordinary planning problem with a weird one-period utility function that

is augmented by the time- t component of the implementability restriction.
7 Recall the characterization of time-inconsistency in chapter 16, page 376, in terms of

conflict or misalignment of preferences.
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computing the planner’s worst-case model.8 The worst-case model of the rep-

resentative consumer is what gets embedded in equilibrium prices. The Ramsey

planner affects equilibrium prices partly by manipulating the worst-case model

of the representative consumer.

18.3. Computations

We activate a concern about robustness on the part of the representative con-

sumer by setting values of θ < +∞ in (18.2.2) or (18.2.12). We want to study

how allocations, taxes, and prices change as we accentuate a preference for ro-

bustness (i.e., lower θ ) for both the 1 ′ and 2 ′ cases. In addition to these objects,

we also want to calculate government debt and interest rates. Along the Ramsey

allocation, government debt Bt equals

Bt =
Êt

∑∞
j=0 β

j [(bt+j − ct+j)ℓt+j − ℓ2t+j − (bt+j − ct+j)gt+j ]

(bt − ct)
, (18.3.1)

which can evidently be expressed as a function of the time t state xt , in partic-

ular, a quadratic form in xt plus a constant divided by a linear form in xt . The

quantity Bt can be regarded as the time t value of government state contingent

debt (Arrow securities) issued at t− 1. We also compute the one period gross

interest rate from

R−1
t =

Êtβp
t
t+1

pt
t

,

where pt
t+1 =

Mpxt+1

Mpxt
.

8 Computing the Ramsey planner’s worst-case model amounts to solving a ‘pure prediction

problem’ using the weird one-period preferences described in the previous footnote.



422 Ramsey plans

18.4. Simulations at approximating model

Using the approximating model to generate the government expenditure pro-

cess, we simulate Ramsey plans with a representative consumer who fears model

misspecification and compare them with Ramsey plans for a representative con-

sumer who trusts the approximating model. Under assumption 1′ , for an ap-

proximating model A,C and a given θ , a Ramsey plan with robust consumers

is affiliated with a distorted law of motion Â, C that is the worst-case model

of the representative agent and that gets embedded in equilibrium state-date

prices. At the approximating model, we are interested in comparing the Ram-

sey plan with a robust representative consumer with the plan for representative

consumer who completely trusts the model. We simulate systems with different

θ ’s at the approximating model (i.e., A not Â). These simulations thus indi-

cate outcomes when the approximating model for the government expenditure

process is indeed correct. Similarly, for Assumption 2′ , we simulate the robust

Ramsey plan using the approximating Markov chain π to generate government

expenditures, while using the representative consumer’s distorted chain πw∗ to

evaluate asset prices and budget constraints.

18.5. Computed Ramsey plans and allocations

18.5.1. Markov case

We specify a three state Markov chain with transition matrix

π =





.95 .05 0

0 .8 .2

0 0 1



 ,

and initial distribution π0 = [ 1 0 0 ]′ , so that the system starts in state 1.

Government expenditures in states 1, 2, 3 are [ .5 .5 .25 ]. State 1 is designed

to represent war, state 2 armistice, and state 3 peace. Peace is an absorbing

state. Achieving peace requires spending at least one period in the state of

armistice. We specify that β = .97 and b = 2.2.

For two values of θ , namely, 4 and 1, Fig. 18.5.1 and Fig. 18.5.2 show the

Ramsey plans and allocations with (solid lines) and without (dotted lines) a
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concern for robustness on the part of the representative consumer. Recall that

lowering θ raises the preference for robustness. For both values of θ , we have

computed the associated distorted Markov transition matrices. With θ = 4 we

have

πw∗

=





.9836 .0164 0

0 .8581 .1419

0 0 1



 .

With θ = 1 we have

πw∗

=





.99975 .00025 0

0 .99393 .00607

0 0 1



 .

Notice how raising the consumer’s concern about model misspecification (i.e.,

lowering θ ) shifts probability toward longer wars and a longer armistice.

Relative to the standard Ramsey plan where the representative consumer

trusts the model, the Ramsey plan where the consumer is concerned about ro-

bustness has taxes higher and consumption and labor supply both lower. Once

peace occurs, taxes and government debt are both higher in the robust Ramsey

plan. After peace arrives, the representative consumer’s worst-case beliefs coin-

cide with the approximating beliefs. Thus, the higher taxes and government debt

during peace time in the robust plan reflect the government’s having to honor

its past promises, entered into during earlier periods of war or armistice when it

was facing state-date prices that embedded the representative consumer’s worst-

case beliefs via formula (18.1.8). During war and peace, interest rates coincide

for the Ramsey plans with and without a concern for robustness by the rep-

resentative consumer, however, they are lower during the armistice when the

representative consumer wants robustness. This reflects the consumer’s more

pessimistic expectation about the one-period rate of growth of consumption

under the distorted Markov chain πw∗

used to price assets.9

When we push θ down to 1, the government sets taxes so high that the

value of its debt is negative at first. This is the government’s response to the

twisted state-date prices it faces due to the representative consumer’s pessimism.

At those prices, the government actually acquires claims on the public that it

uses to fund some of its expenditures during armistice.

9 Notice that during war the expected rate of change of consumption under π and πw∗

coincide.
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Figure 18.5.1: Markov case, θ = 4. Dotted line is the

Ramsey plan without a preference for robustness, the solid

line is the Ramsey plan with a preference for robustness.

18.5.2. Stochastic difference equation

Fig. 18.5.3 compares Ramsey plans with and without a concern about robustness

on the part of the representative consumer when government expenditures follow

the first order autoregression:

xt+1 = .0175 + .95xt + Cǫt+1,

where C = .013660. When θ = .1, the associated worst-case distorted law of

motion for government expenditures is

xt+1 = .0476 + .9580xt + Cǫt+1
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Figure 18.5.2: Markov case, θ = 1. Dotted line is the

Ramsey plan without robustness, the solid line is the Ramsey

plan with a representative consumer who wants robustness.

where again C = .013660.10 The mean of xt under A is .35 while under the

distorted law it is 1.1324. Thus, pessimism translates into more persistence and

a higher mean for government expenditures. We set the other parameters at

β = .97 and b = 2.135.

Fig. 18.5.3 shows taxes and government debt to be higher, and labor and

consumption lower when the representative consumer wants robustness. Interest

rates are uniformly lower when the consumer wants robustness, reflecting the

consumer’s pessimism about the rate of growth of consumption embedded in

the distorted law of motion Â .

10 We have set θ to a low value to accentuate the effects of robustness so that they show

up well on the graphs.
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Figure 18.5.3: Stochastic difference equation case, θ = .1.

Dotted line is the Ramsey plan without robustness, the solid

line is the Ramsey plan with a representative consumer who

wants robustness.
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