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Abstract—The increasing popularity of regression discontinuity methods
for causal inference in observational studies has led to a proliferation of
different estimating strategies, most of which involve first fitting nonpara-
metric regression models on both sides of a treatment assignment boundary
and then reporting plug-in estimates for the effect of interest. In applica-
tions, however, it is often difficult to tune the nonparametric regressions in a
way that is well calibrated for the specific target of inference; for example,
the model with the best global in-sample fit may provide poor estimates
of the discontinuity parameter, which depends on the regression function
at boundary points. We propose an alternative method for estimation and
statistical inference in regression discontinuity designs that uses numeri-
cal convex optimization to directly obtain the finite-sample-minimax linear
estimator for the regression discontinuity parameter, subject to bounds on
the second derivative of the conditional response function. Given a bound
on the second derivative, our proposed method is fully data driven and
provides uniform confidence intervals for the regression discontinuity pa-
rameter with both discrete and continuous running variables. The method
also naturally extends to the case of multiple running variables.

I. Introduction

REGRESSION discontinuity designs, first developed in
the 1960s (Thistlethwaite & Campbell, 1960), often al-

low for simple and transparent identification of treatment
effects from observational data (Hahn, Todd, & Van der
Klaauw, 2001; Imbens & Lemieux, 2008; Trochim, 1984),
and their statistical properties have been the subject of recent
interest (Armstrong & Kolesár, 2018; Calonico, Cattaneo,
& Titiunik, 2014; Cheng, Fan, & Marron, 1997; Kolesár &
Rothe, 2018). The sharp regression discontinuity design as-
sumes a treatment assignment generated by a running variable
X ∈ Rk , such that individuals get treated if and only X ∈ A
for some set A ⊂ Rk . For example, in epidemiology, X ∈ R
could be a severity index (e.g., age or CD4 count), and pa-
tients are assigned a medical intervention whenever X ≥ c
for some threshold c (i.e., A = {x ∈ R : x ≥ c}). In educa-
tional settings, X ∈ R could be a test score that has to exceed
a threshold c, or, in political science, X ∈ R2 could denote
the latitude and longitude of a household, and A could be an
administrative region that has enacted a specific policy.

Given appropriate assumptions, we can identify a causal
effect by comparing subjects i with Xi barely falling within
the treatment region A to those with Xi just outside it. Vari-
ants of this identification strategy have proven to be useful
in education (Angrist & Lavy, 1999; Black, 1999; Jacob &
Lefgren, 2004), political science (Caughey & Sekhon, 2011;
Keele & Titiunik, 2014; Lee, 2008), criminal justice (Berk
& Rauma, 1983), program evaluation (Lalive, 2008; Ludwig
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& Miller, 2007), and other areas. As we discuss will in more
detail, standard methods for inference in the regression dis-
continuity design rely on plug-in estimates from local linear
regression.

In this paper, motivated by a large literature on mini-
max linear estimation (Armstrong & Kolesár, 2018; Cai &
Low, 2003; Donoho, 1994; Donoho & Liu, 1991; Ibragi-
mov & Khas’minskii, 1985; Johnstone, 2011; Juditsky &
Nemirovski, 2009), we study an alternative approach based
on directly minimizing finite sample error bounds via nu-
merical optimization, under an assumption that the second
derivative of the response surface is bounded away from the
boundary of the treatment region.1 This approach has several
advantages relative to local regression. Our estimator is well
defined regardless of the shape of the treatment region A,
whether it be a half line, as in the standard univariate regres-
sion discontinuity specification, or an oddly shaped region,
as might appear with a geographic regression discontinuity;
moreover, our implementation is not affected by potential
discreteness of the running variable. Finally, even with uni-
variate designs, our approach strictly dominates local linear
regression in terms of minimax mean-squared error. We start
by presenting our method in the context of classical univari-
ate regression discontinuity designs with a single treatment
cutoff: with Xi ∈ R and A = {x ∈ R : x ≥ c}. A solution to
the more general problem will then follow by direct exten-
sion. A software implementation, optrdd for R, is available
on CRAN.

A. Optimized Inference with Univariate Discontinuities

We start with the simple setting where we have access to
i = 1, . . . , n independent pairs (Xi, Yi) where Xi ∈ R is the
running variable and Yi ∈ R is our outcome of interest; the
treatment is assigned as Wi = 1({Xi ≥ c}). Following the po-
tential outcomes model (Imbens & Rubin, 2015; Neyman,
1923; Rubin, 1974), we posit potential outcomes Yi(w), for
w ∈ {0, 1} corresponding to the outcome subject i would
have experienced had they received treatment w, and define

1Of these papers, our work is most closely related to that of Armstrong and
Kolesár (2018), who consider minimax linear estimation in the regression
discontinuity model for an “approximately linear” model in the sense of
Sacks and Ylvisaker (1978) that places restrictions on second differences
relative to the response surface at the threshold. In contrast, we assume
bounded second derivatives away from the threshold. An advantage of their
approach is that it allows a closed-form solution for the weights. However, a
disadvantage is that they allow for jumps in the response surface away from
the threshold, which implies that given the same value for our bound on the
second derivative and their bound on second differences, our confidence in-
tervals can be substantially shorter (moreover, allowing for discontinuities
in the response surface does not seem conceptually attractive given that
the assumption of continuity of the conditional expectation at the thresh-
old is fundamental to the regression discontinuity design). We discuss this
comparison further in section IC.
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the conditional average treatment effect τ(x) in terms of
the conditional response functions μw(x) = E[Yi(w) | Xi =
x], such that τ(x) = μ1(x) − μ0(x). Provided the functions
μw(x) are both continuous at c, the regression discontinu-
ity identifies the conditional average treatment effect at the
threshold c, which is the estimand in this setting:2

τ(c) = lim
x↓c

E[Yi | Xi = x] − lim
x↑c

E[Yi | Xi = x]. (1)

Given this setup, local linear regression estimates τ(c) as
(Hahn et al., 2001; Porter, 2003),

τ̂ = argmin

{
1

nhn

n∑
i=1

K (|�i|/hn)(Yi − a − τWi

− β−(�i)− − β+(�i)+)2

}
, (2)

where K (·) is some weighting function, hn is a bandwidth,
�i = Xi − c, and a and β± are nuisance parameters; typically
K (�) is taken to be 0 for � outside a bounded interval. When
we do not observe data right at the boundary c (e.g., when Xi

has discrete support), then τ(c) is not point identified. How-
ever, given smoothness assumptions on μw(x), Kolesár and
Rothe (2018) propose an approach to local linear regression
that can still be used to construct partial identification inter-
vals for τ(c) in the sense of Imbens and Manski (2004); see
section IIA for a discussion.

The behavior of regression discontinuity estimation via lo-
cal linear regression is fairly well understood. When the run-
ning variable X is continuous (i.e., X has a continuous positive
density at c) and μw(x) is twice differentiable with a bounded
second derivative in a neighborhood of c, Cheng et al. (1997)
show that the triangular kernel K (t ) = (1 − t )+ minimizes
worst-case asymptotic mean-squared error among all possi-
ble choices of K ; Imbens and Kalyanaraman (2012) provide
a data-adaptive choice of hn to minimize the mean-squared
error of the resulting estimator; and Calonico et al. (2014) pro-
pose a method for removing bias effects due to the curvature
of μw(x) to allow for asymptotically unbiased estimation.
Meanwhile, given a second-derivative bound |μ′′

w(x)| ≤ B,
Armstrong and Kolesár (2018) and Kolesár and Rothe (2018)
construct confidence intervals centered at the local linear es-
timator τ̂ that attain uniform asymptotic coverage, even when
the running variable X may be discrete.

Despite its ubiquity, however, local linear regression still
has some shortfalls. First under the bounded second deriva-
tive assumption often used to justify local linear regression
(i.e., that μw(x) is twice differentiable and |μ′′

w(x)| ≤ B in a

2In the fuzzy regression discontinuity design where the probability of re-
ceiving the treatment changes discontinuously at x = c, but not necessarily
from 0 to 1, the estimand can be written as the ratio of two such differ-
ences. The issues we address in this paper also arise in that setting, and our
discussion extends naturally to it. See section V for a discussion.

neighborhood of c), local linear regression is not the minimax
optimal linear estimator for τ(c)—even with a continuous
running variable. Second, and perhaps even more important,
all the motivating theory for local linear regression relies on X
having a continuous distribution; however, in practice, X of-
ten has a discrete distribution with a modest number of points
of support. When the running variable is discrete, there is no
compelling reason to expect local linear regression to be par-
ticularly effective in estimating the causal effect of interest.3

In spite of these limitations, local linear regression is still the
method of choice, largely because of its intuitive appeal.

The goal of this paper is to show that we can systematically
do better. Regardless of the shape of the kernel K (·) in equa-
tion (2), local linear regression yields a linear estimator4 for
τ, that is, one of the form τ̂ = ∑n

i=1 γ̂iYi for weights γ̂i that de-
pend only on the distances Xi − c (the weights γ̂i underlying
local linear regression can be written out using the closed-
form solution to ordinary least squares regression). Here, we
find that if we are willing to rely on numerical optimization
tools, we can derive better weights.

In order to derive the optimal estimator of the form τ̂ =∑n
i=1 γ̂iYi, we first consider the general properties of such

estimators for a fixed set of weights γ̂i. The expected value
of any such estimator, conditionally on the Xi and Wi, can be
written as

E

[
n∑

i=1

γ̂iYi | {Xi, Wi}n
i=1

]
=

∑
{i:Wi=1}

γ̂iμ1(Xi)

+
∑

{i:Wi=0}
γ̂iμ0(Xi), (3)

resulting in bias
∑

i:Wi=1 γ̂iμ1(Xi) + ∑
i:Wi=0 γ̂iμ0(Xi) −

(μ1(c) − μ0(c)). Furthermore, given a set of weights γ̂i, the
worst-case absolute bias over a class of functions K is

IK(γ̂) = sup
μ0(·),μ1(·)∈K

{∣∣∣∣∣ ∑
{i:Wi=1}

γ̂iμ1(Xi) +
∑

{i:Wi=0}
γ̂iμ0(Xi)

− (μ1(c) − μ0(c))

∣∣∣∣∣
}

. (4)

The conditional variance of any such estimator is
∑n

i=1 γ̂2
i σ

2
i ,

with σ2
i = Var Yi | Xi. Then, because the expected squared

3One inconvenience that can arise in local linear regression with discrete
running variables is that if we use a data-driven rule to pick the bandwidth
ĥ (e.g., the one of Imbens & Kalyanaraman, 2012), we may end up with
no data inside the specified range (i.e., there may be no observations with
|Xi − c| ≤ h). The practitioner is then forced to select a different bandwidth
ad hoc. Ideally, methods for regression discontinuity analysis should be fully
data driven, even when X is discrete.

4We note the unfortunate terminological overlap between “local linear
regression” estimators of τ and “linear” estimators of type τ̂ = ∑n

i=1 γ̂iYi.
The word linear in these two contexts refers to different things. All “local
linear regression” estimators are “linear” but not vice versa.
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error of an estimator depends on only its variance and squared
bias, the minimax linear estimator for τ can be derived by
minimizing the variance and worst-case bias terms above.
In this paper, we focus on the case where μ0(·) and μ1(·)
belong to the class of functions with the second derivative
bounded by B, in which case the minimax linear estimator
conditionally on the Xi and Wi is

τ̂ =
n∑

i=1

γ̂iYi, γ̂ = argminγ

{
n∑

i=1

γ2
i σ

2
i + I2

B (γ)

}
,

IB(γ) := sup
μ0(·),μ1(·)

{
n∑

i=1

γiμWi (Xi) − (μ1(c)

− μ0(c)) : |μ′′
w(x)| ≤ B for all w, x

}
. (5)

We note that because no limitations are placed on μw(c)
or μ′

w(c), the optimization in equation (5) also automati-
cally enforces the constraints

∑
i Wiγ̂i = 1,

∑
i(1 − Wi)γ̂i =

−1,
∑

i Wi(Xi − c)γ̂i = 0, and
∑

i(1 − Wi)(Xi − c)γ̂i = 0.
At values of γ for which these constraints are not all satis-
fied, we can choose μ1(x) and μ0(x) with second derivative
bounded by B such as to make the conditional bias arbitrarily
bad, that is, IB(γ) = +∞; thus, the solution γ̂ to equation
(5) must satisfy the constraints. The problem, equation (5) is
a convex program and can be efficiently solved using read-
ily available software described in, for example, Boyd and
Vandenberghe (2004).

Because the estimator 5 is minimax among the class of
linear estimators and local linear regression is also a linear
estimator, our estimator dominates local linear regression es-
timator in a minimax sense over all problems where we only
know that Var[Yi | Xi] = σ2

i and |μ′′
w(x)| ≤ B. For further dis-

cussion of related estimators, see Armstrong and Kolesár
(2018), Cai and Low (2003), Donoho (1994), Donoho and
Liu (1991), and Juditsky and Nemirovski (2009).

In practice, of course, we need methods for choosing the
values of σ2

i and B to run our method with. Tuning the noise
scale σ2

i is not too difficult (it is comparable to estimating the
irreducible noise in any regression problem); however, ob-
taining a good value for B usually requires problem-specific
insight. We discuss some approaches to choosing B in the
context of applications in sections III and IV, and recommend
performing a sensitivity analysis for different choices of B.
Specifying B is closely related to choice of bandwidth, for
example, in existing methods such as those of Calonico et al.
(2014) or Imbens and Kalyanaraman (2012); the difference
is that choosing B directly reflects a quantitative belief about
the world—in terms of regularity of the functions μw(x))—
whereas a choice of bandwidth interacts with the fundamental
parameters of the problem in a more indirect way, which de-
pends on the shape of the kernel K (·) and the distribution of
the running variable Xi.

When Xi has a discrete distribution, the parameter τ(c) is
usually not point identified because there may not be any
observations Xi in a small neighborhood of c. However, we
can get meaningful partial identification of τ(c) thanks to
our bounds on the second derivative of μw(x). Moreover, be-
cause our approach controls for bias in finite samples, the
estimator (5) is still justified in the partially identified setting
and, as discussed further in section IIA, provides valid con-
fidence intervals for τ(c) in the sense of Imbens and Manski
(2004). We view the fact that our estimator can seamlessly
move between the point and partially identified settings as an
important feature.

The top panel of figure 1 compares the weights γ̂i obtained
via equation (5) in two different settings: one with a discrete,
asymmetric running variable X depicted the lower left panel
of the figure, and the other with a standard Gaussian running
variable. We see that for n = 1,000, the resulting weighting
functions look fairly similar and are also comparable to the
implicit weighting function generated by local linear regres-
sion with a triangular kernel. However, as n grows and the
discreteness becomes more severe, our method changes both
the shape and the scale of the weights, and the discrepancy
between the optimized weighting schemes for discrete versus
continuous running variables becomes more pronounced.

In the lower right panel of figure 1, we also compare the
worst-case conditional mean-squared error of our method rel-
ative to that of optimally tuned local linear regression, both
with a rectangular and triangular kernel; For the smallest sam-
ple size we consider, n = 333, the discreteness of the running
variable has a fairly mild effect on estimation and, as one
might have expected, the triangular kernel is noticeably bet-
ter than the rectangular kernel, while our method is slightly
better than the triangular kernel. However, as the sample size
increases, the performance of local linear regression relative
to our method ebbs and flows rather unpredictably.5

B. Optimized Inference with Generic Discontinuities

The methods we have presented extend naturally to the
general case, where Xi ∈ Rk may be multivariate and A is
unrestricted. The problem of regression discontinuity infer-
ence with multiple running variables is considerably richer
than the corresponding problem with a single running vari-
able because an investigator could now plausibly hope to
identify many different treatment effects along the boundary
of the treated region A. Most of the literature on this setup,
including Papay, Willett, and Murnane (2011), Reardon and
Robinson (2012), and Wong, Steiner, and Cook (2013), have

5As a matter of intellectual curiosity, it is intriguing to ask whether there
exist discrete distributions for which the rectangular kernel may work sub-
stantially better than the triangular kernel or whether additional algorith-
mic tweaks—such as using different bandwidths on different sides of the
threshold—may have helped (in the above example, we used the same band-
width for local linear regression on both sides of the boundary). However,
from a practical perspective, estimator, equation (5), removes the need to
consider such questions in applied data analysis and automatically adapts
to the structure of the data at hand.
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FIGURE 1.—EXAMPLE WITH DISCRETE RUNNING VARIABLE

(Top) Optimized regression discontinuity design obtained via equation (5) for different values of n and two different X distributions. The red dots show the learned weighting function in a case where the running variable
X is discrete, and different support points are sampled with different probabilities (the probability mass function is shown in the lower left panel). The blue line shows γ(Xi ) for standard Gaussian X . We plot n4/5 γ̂i ,
motivated by the fact that with a continuous running variable, the optimal bandwidth for local linear regression scales as hn ∼ n−1/5. The weights γ̂i were computed with B = 5 and σ2 = 1. (Bottom left) Probability
mass function of the running variable. (Bottom right) Comparison of our procedure, equation (5), with local linear regression, both using a rectangular (K (t ) = 1({t ≤ 1})) and triangular (K (t ) = (1 − t )+) kernel. We
compare methods in terms of their worst-case mean-squared error conditional on {Xi}; for local linear regression, we always chose the bandwidth to make this quantity as small as possible. We depict performance
relative to our estimator, equation (5).

focused on these questions of identification while using some
form of local linear regression for estimation.

In the multivariate case, however, questions about how to
tune local linear regression are exacerbated, as the problems
of choosing the kernel function K (·) and the bandwidth h are
now multivariate. Perhaps for this reason, it is still popular
to use univariate methods to estimate treatment effects in the
multivariate setting by, for example, using shortest distance
to the boundary of the treatment region A as a univariate
running variable (Black, 1999), or considering only a subset
of the data where univariate methods are appropriate (Jacob
& Lefgren, 2004; Matsudaira, 2008).

Here, we show how our optimization-based method can
be used to sidestep the problem of choosing a multivariate
kernel function by hand. In addition to providing a simple-to-
apply algorithm, our method lets us explicitly account for the
curvature of the mean-response function μw(x) for statistical
inference, thus strengthening formal guarantees relative to
prior work.

Relative to the univariate case, the multivariate case has
two additional subtleties we need to address. First, in equation
(5), it is natural to impose a constraint |μ′′

w(x)| ≤ B to ensure
smoothness; in the multivariate case, however, we have more

choices to make. For example, do we constrain μw(x) to be
an additive function, or do we allow for interactions? Here,
we opt for the more flexible specification and simply require
that ||∇2μw(x)|| ≤ B, where ||·|| denotes the operator norm
(i.e., the largest absolute eigenvalue of the second derivative).

Moreover, as Papay et al. (2011), emphasized, whereas the
univariate design only enables us to identify the conditional
average treatment effect at the threshold c, the multivariate
design enables us to potentially identify a larger family of
treatment effect functionals. Here, we focus on the following
two causal estimands. First, writing c for a focal point of
interest, we can directly generalize the estimator, equation
(5), as τ̂c = ∑n

i=1 γ̂c,iYi with

γ̂c = argminγ

{
n∑

i=1

γ2
i σ

2
i +

(
sup

||∇2μw (x)||≤B

{
n∑

i=1

γiμWi (Xi)

− (μ1(c) − μ0(c))

})2}
. (6)

This is the minimax linear estimator for the conditional aver-
age treatment effect at c. The upside of this approach is that it
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268 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 2.—WEIGHTING FUNCTION FOR A GEOGRAPHIC REGRESSION DISCONTINUITY DESIGN

Points depict potential voters within a single school district, and the solid black line is a media market boundary. The left panel depicts an optimal weighting function for the conditional average treatment effect at the
point c marked with a bold × as in equation (6), while the right one allows for a weighted treatment effect as in equation (7) or, equivalently, shows the optimal weighting function for a constant effect. Households
below the line are treated (i.e., in the Philadelphia media market), whereas those above it are controls (i.e., in the New York media market). The color of the point depicts the γ-weight: red points receive positive weight,
and blue points receive negative weight; the shading indicates the absolute value of the weight (darker is larger).

gives us an estimand that is easy to interpret; the downside is
that the when curvature is nonnegligible, equation (6) can ef-
fectively make use of only data near the specified focal point
c, thus resulting in relatively long confidence intervals.

In order to potentially improve precision, we also study
weighted conditional average treatment effect estimation
with weights greedily chosen such as to make the inference
as precise as possible. In the spirit of Crump et al. (2009), Li,
Morgan, and Zaslavsky (2018), or Robins et al. (2008), we
consider τ̂∗ = ∑n

i=1 γ̂∗,iYi, with

γ̂∗ = argminγ

⎧⎨⎩
n∑

i=1

γ2
i σ

2
i +

(
sup

‖∇2μ0(x)‖≤B

{
n∑

i=1

γiμ0(Xi)

})2

:
n∑

i=1

γiWi = 1

}
. (7)

In other words, we seek to pick weights γi that are nearly
immune to bias due to curvature of the baseline response
surface μ0(x). By construction, this estimator satisfies

|E [τ̂∗ | {Xi}] − τ̄(γ̂∗)| ≤ sup
‖∇2μ0(x)‖≤B

{
n∑

i=1

γ̂∗,iμ0(Xi)

}
,

τ̄(γ̂∗) :=
n∑

i=1

Wi γ̂∗,iτ(Xi). (8)

Because
∑

Wiγ̂∗,i = 1, we see that τ̄(γ̂∗) is in fact a weighted
average of the conditional average treatment effect function

τ(·) over the treated sample. If we ignored the curvature of
τ(·), we could interpret τ̂∗ as an estimate for the conditional
average treatment effect at x∗ = ∑

γ̂∗,iWiXi.
In some cases, it is helpful to consider other interpretations

of the estimand underlying equation (7). If we are willing to
assume a constant treatment effect τ(x) = τ, then τ̄ = τ, and
τ̂∗ is the minimax linear estimator for τ. Relatedly, we can
always use the confidence intervals from section IIA built
around τ̂∗ to test the global null hypothesis τ(x) = 0 for all x.

To gain intuition for the multivariate version of our method,
we outline a simple example building on the work of Keele
and Titiunik (2014) on the effect of television advertising on
voter turnout in presidential elections. To estimate this ef-
fect, Keele and Titiunik (2014) examine a school district in
New Jersey, half of which belongs to the Philadelphia me-
dia market and the other half to the New York media mar-
ket. Before the 2008 presidential elections, the Philadelphia
half was subject to heavy campaign advertising, whereas the
New York half was not, thus creating a natural experiment
for the effect of television advertising assuming the media
market boundary did not coincide with other major bound-
aries within the school district. Keele and Titiunik (2014) use
this identification strategy to build a regression discontinuity
design, comparing sets of households straddling the media
market boundary.

However, despite the multivariate identification strategy,
Keele and Titiunik (2014) then reduce the problem to a uni-
variate regression discontinuity problem for estimation. They
first compute Euclidean distances Di = ‖Xi − c2‖ to a focal
point c and then use Di as a univariate running variable. In
contrast, our approach allows for transparent inference with-
out needing to rely on such a reduction. Figure 2 depicts γ̂-
weights generated by our optimized approach; the resulting
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OPTIMIZED REGRESSION DISCONTINUITY DESIGNS 269

treatment effect estimator is then
∑

i γ̂iYi. Qualitatively, we
replicate the “no measurable effect” finding of Keele and
Titiunik (2014) while directly and uniformly controlling
for spatial curvature effects. We discuss details, including
placebo diagnostics and the choice of tuning parameter, in
our working paper (Imbens & Wager, 2017).

We also see that, at least here, standard heuristics used to
reduce the multivariate regression discontinuity problem to
a univariate one are not sharp. In the setup of the left panel
of figure 2, where we seek to estimate the treatment effect
at a focal point c, some treated points due west of c get a
positive weight, whereas points the same distance south from
c get a mildly negative weight, thus violating the heuristic of
Keele and Titiunik (2014) that weights should depend only on
Di = ‖Xi − c2‖. Meanwhile, we can compare the approach
in the right panel of figure 2, where we allow for averaging of
treatment effects along the boundary, to the popular heuristic
of using shortest distance to the boundary of the treatment
region as a univariate running variable (Black, 1999). But
this reduction does not capture the behavior of our optimized
estimator. There are some points at the eastern edge of the
treated region that are very close to the boundary but get
essentially 0 weight (presumably because there are no nearby
units on the control side of the boundary).

C. Related Work

The idea of constructing estimators of the type 5 that are
minimax with respect to a regularity class for the underly-
ing data-generating process has a long history in statistics.
In early work, Legostaeva and Shiryaev (1971) and Sacks
and Ylvisaker (1978) independently studied inference in “al-
most” linear models that arise from taking a Taylor expansion
around a point (see also Cheng et al., 1997). For a broader
discussion of minimax linear estimation over nonparametric
function classes, see Cai and Low (2003), Donoho (1994),
Ibragimov and Khas’minskii (1985), Johnstone (2011), Ju-
ditsky and Nemirovski (2009), and references in them. An
important result in this literature is that for many problems of
interest, minimax linear estimators are within a small explicit
constant of being minimax among all estimators (Donoho &
Liu, 1991).

Armstrong and Kolesár (2018) apply these methods to re-
gression discontinuity designs, resulting in an estimator of
the form 5, except with weights:6

γ̂ = argminγ

{
n∑

i=1

γ2
i σ

2
i + A2

B(γ)

}
,

6Armstrong and Kolesár (2018) also consider a more general setting where
we assume accuracy of the kth order Taylor expansion of μw (x) around c;
in fact, our method also extends to this setting. Here, however, we fo-
cus on second-derivative bounds, which are by far the most common in
applications.

AB(γ) = sup
μ0(·),μ1(·)

{
n∑

i=1

γiμWi (Xi) − τ(c) : |μw(x)

− μw(c) − μ′
w(c)(x − c)| ≤ B

2
(x − c)2

}
. (9)

Now, although this class of functions is cosmetically quite
similar to the bounded-second-derivative class used in equa-
tion (5), we note that the class of weights allowed for in
equation (9) is substantially larger, even if the value of B
is the same. This is because the functions μw(·) underlying
the above weighting scheme need not be continuous and in
fact can have jumps of magnitude B(x − c)2/2. Given that
the key assumption underlying regression discontinuity de-
signs is continuity of the conditional means of the potential
outcomes at the threshold for the running variable, it would
appear to be reasonable to impose continuity away from the
threshold as well. Allowing for jumps through the condition
(9) can make the resulting confidence intervals for τ(c) sub-
stantially larger than they are under the smoothness condition
with bounded second derivatives. One key motivation for the
weighting scheme (9) rather than our proposed one, equation
(5), appears to be that the optimization problem induced by
equation (9) is substantially easier and allows for closed-form
solutions for γ̂i. Conversely, we are aware of no closed-form
solution for equation (5) and instead need to rely on numeric
convex optimization.

In the special case where the running variable X is as-
sumed to have a continuous density around the threshold
c, there have been a considerable number of recent pro-
posals for asymptotic confidence intervals while imposing
smoothness assumptions on μw(x). Calonico et al. (2014)
propose a bias correction to the local linear regression es-
timator that allows for valid inference, and Calonico, Cat-
taneo, and Farrell (2018) provide further evidence that such
bias corrections may be preferable to undersmoothing. Mean-
while, Armstrong and Kolesár (2016) show that when μw(x)
is twice differentiable and X has a continuous density around
c, we can use local linear regression with a bandwidth chosen
to optimize mean-squared error as the basis for bias-adjusted
confidence intervals, provided we inflate confidence intervals
by an appropriate, universal constant (e.g., to build 95% con-
fidence intervals, one should use a critical threshold of 2.18
instead of 1.96). Gao (2017) characterizes the asymptotically
optimal kernel for the regression discontinuity parameter un-
der the bounded second derivative assumption with a con-
tinuous running variable. As discussed above, the value of
our approach relative to this literature is that we allow for
considerably more generality in the specification of the re-
gression discontinuity design: the running variable X may be
discrete or multivariate, and the treatment boundary may be
irregularly shaped.

Optimal inference with multiple running variables is less
developed than in the univariate case. Papay et al. (2011) and
Reardon and Robinson (2012) study local linear regression
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with a “small” bandwidth, but do not account for finite sam-
ple bias due to curvature. Zajonc (2012) extends the analy-
sis of Imbens and Kalyanaraman (2012) to the multivariate
case and studies optimal bandwidth selection for continu-
ous running variables given second derivative bounds; the
inference, however, again requires undersmoothing. Keele,
Titiunik, and Zubizarreta (2015) consider an approach to ge-
ographic regression discontinuity designs based on matching.
To our knowledge, the approach we present is the first to al-
low for uniform, bias-adjusted inference in the multivariate
regression discontinuity setting.

Finally, although local methods for inference in the regres-
sion discontinuity design have desirable theoretical proper-
ties, many practitioners also seek to estimate τ(c) by fitting
E[Yi | Xi = x] using a global polynomial expansion along
with a jump at c (see Lee & Lemieux, 2010, for a review
and examples. However, as Gelman and Imbens (forthcom-
ing) argued, this approach is not recommended, as the model
with the best in-sample fit may provide poor estimates of the
discontinuity parameter. For example, high-order polynomi-
als may give large influence to samples i for which Xi is far
from the decision boundary c, and thus lead to unreliable
performance.

Another approach to regression discontinuity designs (in-
cluding in the discrete case) builds on randomization infer-
ence (see Cattaneo, Frandsen, & Titiunik, 2015; Cattaneo,
Idrobo, & Titiunik, forthcoming; and Li, Mattei, & Mealli,
2015, for a discussion). The problem of specification testing
for regression discontinuity designs is considered by Catta-
neo, Jansson, & Ma (2016), Frandsen (2017), and McCrary
(2008).

II. Formal Considerations

A. Uniform Asymptotic Inference

Our main result verifies that optimized designs can be used
for valid asymptotic inference about τ(c). We here consider
the problem of estimating a conditional average treatment ef-
fect at a point c as in equation (5) or (6); similar arguments
extend directly to the averaging case as in (7). Following,
for example, Robins and van der Vaart (2006), we seek con-
fidence intervals Iα that attain uniform coverage over the
whole regularity set under consideration:

lim inf
n→∞ inf{P [μ1(c) − μ0(c) ∈ Iα] : ‖∇2μw(x)‖ ≤ B

for all w, x} ≥ 1 − α. (10)

As in Armstrong and Kolesár (2018), our approach to build-
ing such confidence intervals relies on an explicit characteri-
zation of the bias of τ̂ rather than on undersmoothing. Our key
result is as follows (all proofs are available in our working
paper: Imbens & Wager, 2017):

Theorem 1. Suppose that we have a moment bound E[(Yi −
E[Yi | Xi])q | Xi = x] ≤ C uniformly over all x ∈ Rk, for some
exponent q > 2 and constant C ≥ 0. Suppose, moreover, that
0 < σmin ≤ σi for all i = 1, . . . , n for a deterministic value
σmin, and that none of the weights γ̂i derived in equations (5)
or (6) dominates all the others:7

max
1≤i≤n

{
γ̂2

i

}/ n∑
i=1

γ̂2
i →p 0. (11)

Then our estimator τ̂ from equations (5) or (6) is asymptoti-
cally gaussian,

(τ̂ − b(γ̂) − τ(c)) / s(γ̂) ⇒ N (0, 1),

b(γ̂) =
n∑

i=1

γ̂iμWi (Xi) − τ(c), s2(γ̂) :=
n∑

i=1

γ̂2
i σ

2
i , (12)

where b(γ̂) denotes the conditional bias, and s2(γ̂) →p 0.

In solving the optimization problem, equation (5), we also
obtain an explicit bound t̂ on the conditional bias, b(γ̂) ≤ t̂ ,
and so can use the following natural construction to obtain
confidence intervals for (Imbens and Manski, 2004). In large
samples, Iα is a uniform level-α confidence interval for τ(c):

Iα = τ̂ ± lα, lα = min{l : P
[|b + s(γ̂)Z| ≤ l

] ≥ α

for all |b| ≤ t̂}, Z ∼ N (0, 1). (13)

These confidence intervals are asymptotically uniformly
valid in the sense of equation (10): for any α′ < α, there is
a threshold nα′ for which, if n ≥ nα′ , the confidence inter-
vals, equation (13), achieve α′-level coverage of τ(c) for any
functions μw(·) in our regularity class.

Finally, whenever Xi does not have support arbitrarily close
to c (e.g., in the case where Xi has a discrete distribution),
the parameter τ(c) is not point identified. Rather, even with
infinite data, the strongest statement we could make is that

τ(c) ∈ I∗,

I∗ = range{μ(1)(c) − μ(0)(c) : ‖∇2μ(w)(x)‖ ≤ B, and

μ(w)(x) = E [Yi | Xi = x, Wi = w]

for all (x, w) ∈ supp{Xi, Wi}, (14)

where supp{Xi, Wi} denotes the support of (Xi, Wi). In this
case, our confidence intervals, equation (13), remain valid for

7The bound on the relative contribution of any single γ̂i is needed to ob-
tain a Gaussian limit distribution for τ̂. In related literature, Armstrong and
Kolesár (2018) follow Donoho (1994) and sidestep this issue by assuming
Gaussian errors Yi(w) − μw (Xi ), in which case no central limit theorem is
needed. Conversely, Athey, Imbens, & Wager (2018) adopt an approach
more similar to ours and explicitly bound γ̂i from above during the opti-
mization.
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τ(c); however, they may not cover the whole optimal identifi-
cation interval I∗. In partially identified settings, these types
of confidence intervals (ones that cover the parameter of in-
terest but not necessarily the whole identification interval) are
advocated by Imbens and Manski (2004). From the perspec-
tive of the practitioner, an advantage of our approach is that
intervals for τ(c) have the same interpretation whether or not
τ(c) is point identified, that is, uniformly in large samples,
τ(c) will be covered with probability 1 − α. Then, asymp-
totically, intervals (13) will converge to a point if and only if
τ(c) is point identified. (For a further discussion of regression
discontinuity inference with discrete running variables, see
Kolesár & Rothe, 2018).

B. Implementation via Convex Optimization

In our presentation so far, we have discussed several non-
parametric convex optimization problems and argued that
solving them was feasible given advances in the numerical
optimization literature over the past few decades (Boyd &
Vandenberghe, 2004). Here, we present a concrete solution
strategy via quadratic programming over a discrete grid and
show that the resulting discrete solutions converge uniformly
to the continuous solution as the grid size becomes small.8

To do so, we start by writing the optimization problems
underlying equations (5), (6), and (7) in a unified form. Given
a specified focal point c, we seek to solve

minimize
γ, t

n∑
i=1

γ2
i σ

2
i + B2t2 subject to

n∑
i=1

γi( f0(Xi) + ψ w(Xi)( f1(Xi) − f0(Xi))) ≤ t,

for all fw(c) = 0, ∇ fw(c) = 0,

‖∇2 fw(x)‖ ≤ 1 with w ∈ {0, 1}
n∑

i=1

w(Xi)γi = 1,

n∑
i=1

(1 − w(Xi))γi = −1,

n∑
i=1

γi(Xi − c) = 0,

ψ

n∑
i=1

(2w(Xi) − 1)γi(Xi − c) = 0, (15)

where w(x) denotes the treatment assignment function and
ψ lets us toggle between different problem types. If we want
to estimate the conditional average treatment effect (CATE)

8In the case where X is univariate, the resulting optimization problem is a
classical one, and arguments made by Karlin (1973) imply that the weights
γ̂i can be written as γ̂i = g(Xi ), where g is a perfect spline; our proposed
optimization strategy reflects this fact. However, in the multivariate case,
we are not aware of a similar simple characterization.

at c as in equation (6) we set ψ = 1, whereas if we want an
optimally weighted CATE estimator as in equation (7), we
set ψ = 0.

To further characterize the solution to this problem, we
can use Slater’s constraint qualification (e.g., Ponstein, 2004,
theorem 3.11.2) to verify that strong duality holds and that
the optimum of equation (15) matches the optimum of the
following problem:

maximize
f (·), λ

inf
γ, t

{
n∑

i=1

γ2
i σ

2
i + B2t2

+ λ1

(
n∑

i=1

γi( f0(Xi) + ψ w(Xi)( f1(Xi)) − f0(Xi)) − t

)

+ λ2

(
n∑

i=1

γiw(Xi) − 1

)
+ λ3

(
n∑

i=1

γi(1 − w(Xi)) + 1

)

+
n∑

i=1

γi(λ4 + ψ λ5(2w(Xi) − 1))(Xi − c)

}
subject to fw(c) = 0, ∇ fw(c) = 0,

‖∇2 fw(x)‖ ≤ 1 for w ∈ {0, 1},
λ1, ≥ 0, λ2, λ3 ∈ R, λ4, λ5 ∈ Rk, (16)

where k is the number of running variables. Here, we also
implicitly used von Neumann’s minimax theorem to move
the maximization over f outside the infγ, t {} statement.

The advantage of this dual representation is that by ex-
amining first-order conditions in the infγ, t {} term, we can
analytically solve for γ and t in the dual objective, for
example,

−2σ2
i γ̂i = λ̂1( f̂0(Xi) + ψ w(Xi)( f̂1(Xi) − f̂0(Xi)))

+ λ̂2w(Xi) + . . . , (17)

where f̂0(·), f̂1(·), λ̂1, and so forth are the maximizers of
equation (16). Carrying out the substitution results in a
more tractable optimization problem over the space of twice-
differentiable functions f , along with a finite number of
Lagrange parameters λ j :

minimize
f̃ (·), λ

1

4

n∑
i=1

G2
i

σ2
i

+ 1

4

λ2
1

B2
+ λ2 − λ3

subject to Gi = f̃ (Xi) + λ2w(Xi) + λ3(1 − w(Xi))

+ λ4(Xi − c) + ψ λ5(2w(Xi)

− 1)(Xi − c)

f̃ (x) = f̃0(x) + ψ w(x)
(

f̃1(x) − f̃0(x)
)
,

λ1 ≥ 0, λ2, λ3 ∈ R, λ4, λ5 ∈ Rk,
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f̃w(c) = 0, ∇ f̃w(c) = 0,

‖∇2 f̃w(x)‖ ≤ λ1 for w ∈ {0, 1}, (18)

where f̃w(x) in the above problem corresponds to λ1 fw(x) in
equation (16), and we can recover our weights of interest via
γ̂i = −σ−2

i Ĝi/2 and t̂ = λ̂1/(2B2). The upshot of these ma-
nipulations is that equation (18) can be approximated via a
finite-dimensional quadratic program. In our software imple-
mentation optrdd, we use this type of a finite-dimensional
approximation to obtain γ̂i following the construction de-
scribed in the proof of proposition 2, available in our working
paper (Imbens & Wager, 2017).

Proposition 2. Suppose that Xi ∈ X belong to some com-
pact, convex set X ⊂ Rk. Then for any tolerance level η > 0,
there exists a finite-dimensional quadratic program that can
recover the solution γ̂ to equation (18) with L2-error at
most η.

C. Minimizing Confidence Interval Length

As formulated in equation (5), our estimator seeks to min-
imize the worst-case mean-squared error over the specified
bounded-second-derivative class. However, in some applica-
tions, we may be more interested in making the confidence
intervals (13) as short as possible; and our approach can easily
be adapted for this objective. To do so, consider the minimiza-
tion objective in equation (15). Writing v̂2 = ∑n

i=1 γ̂2
i σ

2
i , we

see that both the worst-case mean-squared error, v̂2 + B2t̂2,
and the confidence interval length in equation (13) are mono-
tone increasing functions of v̂ and t̂ ; the only difference is in
how they weight these two quantities at the optimum.

Now, to derive the full Pareto frontier of pairs (v̂, t̂ ), we
can simply rerun equaiton (15) with the term B2t2 in the ob-
jective replaced with λB2t2, for some λ > 0. A practitioner
wanting to minimize the length of confidence intervals could
consider computing this whole solution path to equation (15)
and then using the value of λ that yields the best intervals;
this construction provides minimax linear fixed-length con-
fidence intervals (Donoho, 1994). Since this procedure never
looks at the responses Yi, the inferential guarantees for the
resulting confidence intervals remain valid.

In our applications, however, we did not find a meaningful
gain from optimizing over λ instead of just minimizing worst-
case mean-squared error as in equation (15), and so did not
pursue this line of investigation further. This observation is
in line with the analytic results of Armstrong and Kolesár
(2016), who showed that when X has a continuous density
and μw(x) is twice differentiable, using the mean-squared
error optimal bandwidth for local linear regression is over
99% efficient relative to using a bandwidth that minimizes
the length of bias-adjusted confidence intervals.

Finally, although it is beyond the scope of this paper, it is
interesting to ask whether we can generalize our approach
to obtain asymptotically quasi-minimax estimators for τ(c)

when the per observation noise scale σi needs to be estimated
from the data. The resulting question is closely related to
the classical issue of when feasible generalized least squares
can emulate generalized least squares (see Romano and Wolf
(2017) for a recent discussion).

III. Univariate Optimized Designs in Practice

To use this result in practice, we need to estimate the sum∑
γ̂2

i σ
2
i and choose a bound B on curvature. Estimating the

former is relatively routine, and we recommend the following.
First, we estimate μw(x) globally, or over a large plausible
relevant interval around the threshold, and average the square
of the residuals Ri = Yi − μ̂Wi (Xi) to obtain an estimate σ̂2 of
the average value of σ2

i . Then we optimize weights γ̂i using
equation (5), with σ2

i ← σ̂2. Finally, once we have chosen
the weights γi, we estimate the sampling error of τ̂ as below,
noting that the estimator will be consistent under standard
conditions:

ŝ2(γ̂) =
n∑

i=1

γ̂2
i

(
Yi − μ̂Wi (Xi)

)2
,

ŝ2(γ̂)
/∑

γ̂2
i σ

2
i ≥ 1 − oP(1). (19)

Conceptually, this strategy is comparable to first running local
linear regression without heteroskedasticity adjustments to
get a point estimate but then ensuring that the uncertainty
quantification is heteroskedasticity-robust (White, 1980). We
summarize the resulting method as procedure 1. We always
encourage plotting the weights γ̂i against Xi when applying
our method:

Procedure 1: Optimized Regression Discontinuity Inference

This algorithm provides confidence intervals for the condi-
tional average treatment effect τ(c), given an a priori bound B
on the second derivative of the functions μw(x). We assume
that the conditional variance parameters σ2

i are unknown; if
they are known, they should be used as in equation (5). This
procedure is implemented in our R package optrdd.9

1. Pick a large window r, such that data with |Xi − c| > r
can be safely ignored without loss of efficiency. (Here,
we can select r = ∞, but this may result in unnecessary
computational burden.)

2. Run ordinary least-squares regression of Yi on the in-
teraction of Xi and Wi over the window |Xi − c| ≤ r.
Let σ̂2 be the residual error from this regression.

9Here, the algorithm assumes that all observations are of roughly the same
quality (i.e., we do not know that σ2

i is lower for some observations than
others). If we have a priori information about the relative magnitudes of
the conditional variances of different observations, for example, some pairs
outcomesYi are actually aggregated over many observations, then we should
run steps 2 and 3 using appropriate inverse-variance weights. Our software
allows for such weighting.
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3. Obtain γ̂ via the quadratic program, equation (15), with
σi set to σ̂ and weights outside the range |Xi − c| ≤ r
set to 0.

4. Confirm that the optimized weights γ̂i are small for
|Xi − c| ≈ r. If not, start again with a larger value of
r.10

5. Estimate τ̂ = ∑n
i=1 γ̂iYi and ŝ2 = ∑n

i=1 γ̂2
i (Yi −

μ̂Wi (Xi))2, where the μ̂Wi (Xi) are predictions from
the least squares regression from step 1.

6. Build confidence intervals as in equation (13).

Conversely, obtaining good bounds on the curvature B is
more difficult and requires problem-specific insight. In par-
ticular, adapting to the true curvature μw(x) without a pri-
ori bounds for B is not always possible (see Armstrong &
Kolesár, 2018 and Bertanha & Moreira, 2016, and references
there). In applications, we recommend considering a range
of plausible values of B that could be obtained, for exam-
ple, from subject matter expertise or from considering the
mean-response function globally. For example, we could es-
timate μw(x) using a quadratic function globally or over a
large, plausible relevant interval around the threshold, and
then multiply maximal curvature of the fitted model by a
constant (e.g., 2 or 4). The larger the value of B we use the
more conservative the resulting inference. In practice, it is
often helpful to conduct a sensitivity analysis for the robust-
ness of confidence intervals to changing B (see figure 4 for
an example).11

A. Application: The Effect of Compulsory Schooling

In our first application, we consider a data set from Ore-
opoulos, 2006, who studied the effect of raising the minimum
school-leaving age in the United Kingdom on earnings as an
adult. The effect is identified by the change in the minimum
school-leaving age from 14 to 15 in 1947, and the response
is log-earnings among those with nonzero earnings (in 1998
pounds sterling). This data set exhibits notable discreteness
in its running variable and was used by Kolesár and Rothe
(2018) to illustrate the value of their bias-adjusted confidence
intervals for discrete regression discontinuity designs. For
our analysis, we preprocess our data exactly as in Kolesár

10Only considering data over an a priori-specified “large plausible relevant
interval” around c that safely contains all the data relevant to fitting τ(c) can
also be of computational interest. Our method relies on estimating a smooth
nonparametric function over the whole range of x, and being able to reduce
the relevant range of x a priori reduces the required computation. Although
defining such plausibility intervals is of course heuristic, our method ought
not be too sensitive to how exactly the interval was chosen. For example, in
the setup considered in section IIIA, the optimal bandwidth for local linear
regression is around three or six years depending on the amount of assumed
smoothness (and choosing a good bandwidth is very important); conversely,
using plausibility intervals extending ten, fifteen, or twenty years on both
sides of c appears to work reasonably well. When running the method (5),
one should always make sure that the weights γ̂i get very small near the
edge of the plausibility interval; if not, the interval should be made larger.

11An interesting wrinkle is that if we are able to bound B in large samples—
but not uniformly—then confidence intervals built using estimated values
of B will have asymptotic but not uniform coverage.

FIGURE 3.—COMPARISON OF WEIGHTING FUNCTIONS

Weighting functions γ̂(Xi ) produced explicitly by our estimator, equation (5), and implicitly via local
linear regression with a rectangular or triangular kernel. Both local linear regression methods have a finite
bandwidth, and the effective weights of γ̂(Xi ) = 0 outside this bandwidth are not shown. The weighting
functions were generated with B = 0.012.

and Rothe (2018). We refer readers to their paper and to Ore-
opoulos, 2006 for a more in-depth discussion of the data.

As in Kolesár and Rothe (2018), we seek to identify the
effect of the change in minimum school-leaving age on av-
erage earnings via a local analysis around the regression dis-
continuity; our running variable is the year in which a person
turned 14, with a treatment threshold at 1947. Kolesár and
Rothe (2018) consider analysis using local linear regression
with a rectangular kernel and a bandwidth chosen such as to
make their honest confidence intervals as short as possible,
(recall that we can measure confidence interval length with-
out knowing the point estimate, and so tuning the interval
length does not invalidate inference). Here, we also consider
local linear regression with a triangular kernel, as well as our
optimized design.12

In order to obtain confidence intervals, it remains to choose
a bound B. Following the above discussion, 3, a second-order
polynomial fit with a “large” bandwidth of either 12 or 18 has
a curvature of 0.006 (the estimate is insensitive to the choice
of large bandwidth); thus, we tried B = 0.006 and B = 0.012.
We also consider the more extreme choices B = 0.003 and
B = 0.03. For σ2

i , we proceed as discussed above. Figure 3
shows the effective γ̂(Xi) weighting functions for all three
considered methods, with B = 0.012.

We present results in the top panel of table 1. Overall,
these results are in line with those presented in figure 1. The
optimized method yields materially shorter confidence inter-
vals than local linear regression with a rectangular kernel;

12Oreopoulos (2006) analyzes the data set using a global polynomial spec-
ification with clustered random variables, following Lee and Card (2008).
However, as Kolesár and Rothe (2018) discussed in detail, this approach
does not yield valid confidence intervals.
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TABLE 1.—NUMERICAL ESTIMATES OF TREATMENT EFFECTS

A. Effect of Raising Minimum School-Leaving Age

B Rectangular Kernel Triangular Kernel Optimized

0.003 0.0213 ± 0.0761 0.0321 ± 0.0737 0.0302 ± 0.0716
0.006 0.0578 ± 0.0894 0.0497 ± 0.0867 0.0421 ± 0.0841
0.012 0.0645 ± 0.1085 0.0633 ± 0.1037 0.0557 ± 0.1003
0.03 0.0645 ± 0.1460 0.0710 ± 0.1367 0.0710 ± 0.1329

B. Effect of Summer School on Math and Reading Scores

Estimator Unweighted CATE Equation (6) Weighted CATE Equation (7)

Subject B Confidence Interval Maximum Bias Sample Error Confidence Interval Maximum Bias Sample Error

Math 0.5 × 40−2 0.037 ± 0.093 0.030 0.038 0.076 ± 0.037 0.009 0.017
Math 1.0 × 40−2 0.013 ± 0.126 0.041 0.052 0.068 ± 0.043 0.011 0.019
Reading 0.5 × 40−2 0.014 ± 0.098 0.030 0.041 0.044 ± 0.037 0.009 0.017
Reading 1.0 × 40−2 −0.015 ± 0.130 0.040 0.054 0.047 ± 0.043 0.011 0.019

A. Confidence interval (α = 95%) for the effect of raising the minimum school-leaving age on average log earnings, as given by local linear regression with a rectangular kernel, local linear regression with a
triangular kernel, and our optimized method, equation (5). The confidence intervals account for curvature effects, provided the second derivative is bounded by B. B. Estimates for the effect of summer school on
math and reading scores on the following year’s test, using different estimators and choices of B. Reported are bias-adjusted 95% confidence intervals, a bound on the maximum bias given our choice of B, and an
estimate of the sampling error conditional on {Xi}.

for example, with B = 0.03, the rectangular kernel intervals
are 11% longer. In comparison, the triangular kernel comes
closer to matching the performance of our method, although
the optimized method still has shorter confidence intervals.
Moreover, when considering comparisons with the triangu-
lar kernel, we note that the rectangular kernel is far more
prevalent in practice and that the motivation for using the tri-
angular kernel often builds on the optimality results of Cheng
et al. (1997). And once one has set out on a quest for optimal
weighting functions, there appears to be little reason to not
just use the actually optimal weighting function, equation 5.

Finally, we note that a bound B on the second derivative
also implies that the quadratic approximation, equation (9),
holds with the same bound B. Thus, we could in principle also
use the method of Armstrong and Kolesár (2018) to obtain
uniform asymptotic confidence intervals here. However, the
constraint, equation (9), is weaker than the actual assump-
tion we were willing to make—that the functions μw(·) have
a bounded second derivative—and so the resulting confidence
intervals are substantially larger. Using their approach on this
data set gives confidence intervals of 0.0518 ± 0.0969 with
B = 0.006 and 0.0682 ± 0.1760 with B = 0.03; these inter-
vals are not only noticeably longer than our intervals, but are
also longer than the best uniform confidence intervals we can
get using local linear regression with a rectangular kernel as
in Kolesár and Rothe (2018). Thus, the use of numerical con-
vex optimization tools that let us solve equation (5) instead
of equation (9) can be of considerable value in practice.

IV. A Discontinuity Design with Two Cutoffs

We next consider the behavior of our method in a specific
variant of the multiple running variable problem motivated
by a common inference strategy in education. Some school
districts require students to attend summer school if they fail a
year-end standardized test in either math or reading (Jacob &
Lefgren, 2004; Matsudaira, 2008), and it is of course impor-
tant to understand the value of such summer schools. The fact

that students are mandated to summer school based on a sharp
test score cutoff suggests a natural identification strategy via
regression discontinuities; however, standard univariate tech-
niques cannot directly be applied as the regression disconti-
nuity now no longer occurs along a point, but rather along a
surface in the bivariate space encoding both a student’s math
and reading scores.

We illustrate our approach using Matsudaira’s (2008) data
set. As discussed above, the goal is to study the impact of
summer school on future test scores, and the effect of sum-
mer school is identified by a regression discontinuity: at the
end of the school year, students take tests in math and reading;
those failing either of these tests must attend summer school.
Here, we focus on the 2001 class of graduating fifth graders
and filter the sample to include only the n = 30,741 students
whose fifth-grade math and reading scores fall between 40
points of the passing threshold; this represents 44.7% of the
full sample. Matsudaira (2008) analyzed this data set with
univariate methods by using reading score as a running vari-
able and considering only the subset of students who passed
the math or reading exam. This allows for a simple analy-
sis, but may also result in a loss of precision.13 Not all stu-
dents mandated to attend summer school in fact attend, and
some students who pass both tests still need to attend for
reasons discussed in Matsudaira (2008). That being said, the
effect of passing tests on summer school attendance is quite
strong; furthermore, the treatment effect of being mandated
to summer school is interesting in its own right, so here we
perform an intent-to-treat analysis without considering non-
compliance. We consider both of our optimized estimators,
equations 6 and 7.

In order to proceed with our approach, we again need to
choose a value for B. Running a second-order polynomial
regression on the next year’s math and reading scores for both

13In order to make a formal power comparison, we need to compare two
estimators that target the same estimand. In the simplest case where τ(x) = τ
is constant, our estimator, equation (7), presents an unambiguous gain in
power over those considered in Matsudaira (2008).
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FIGURE 4.—ESTIMATING THE EFFECT OF SUMMER SCHOOL ON TEST SCORES

(Top row) Weights γ̂ underlying treatment effect estimates of the effect of summer school on the following year’s reading scores, using both equation (6), which seeks to estimate the conditional average treatment effect
(CATE) at c = (0, 0), and the estimator, equation (7), which allows weighted CATE estimation. The size of γ̂i is depicted by the color, ranging from dark red (very positive) to dark blue (very negative). In the right
panel, the diamond marks the weighted mean of the treated Xi-values:

∑
γ̂iWiXi . These plots were generated with a maximum second derivative bound of B = 0.5 × 40−2. (Bottom row) The first two panels depict a

sensitivity analysis for our weighted CATE result, for the math and reading outcomes respectively. We plot point estimates along with bias-aware 95% confidence intervals for different choices of B; the choices of B
used in the bottom panel of table 1 are indicated with dotted lines. The third panel depicts effective sample sizes used by the procedure, ESSw = 1/

∑
{i:Wi=w} γ̂2

i . For a given value of B, the γ̂i used for the math and
reading outcomes, are the same. In all cases, B is multiplied by 402 for readability.

treated and control students separately, we find the largest
curvature effect among the reading score of control students:
roughly, a curvature of 0.46 × 40−2 along the (1, 2) direction.
Thus, we run our algorithm with both an optimistic choice of
B = 0.5 × 40−2 and a more conservative choice B = 1.0 ×
40−2.

The top row of figure 4 compares weight functions γ̂

learned by both methods. The estimator τ̂c is in fact quite
conservative and gives large weights only to students who
scored close to c. Our choice of estimating the conditional
average treatment effect at (0, 0) may have been particularly
challenging, as it is in a corner of control space and so does
not have particularly many control neighbors. In contrast,
the weighted method τ̂∗ appears to have effectively learned
matching: it constructs pairs of observations all along the
treatment discontinuity, thus allowing it to use more data
while cancelling out curvature effects due to μ0(x). In this
sample, it is much more common to fail math and pass read-
ing than vice versa; thus, the mean of the samples used for

“matching” lies closer to the math pass/fail boundary than
the reading one.

The bottom panel of table 1 displays corresponding esti-
mates for the treatment effect. As expected, the confidence
intervals using the weighted method, equation (7), are much
shorter than those obtained using equation (6), allowing for a
0.95 level significant detection in the first case but not in the
second. Since the weighting method allows for shorter confi-
dence intervals and in practice seems to yield a matching-like
estimator, we expect it to be more often applicable than the
unweighted estimator, equation (6).

The bottom row of figure 4 presents some further diagnos-
tics for our result. The first two panels depict a sensitivity
analysis for our weighted CATE result. We vary the max-
imum bound B on the second derivative and examine how
our confidence intervals change.14 The result on the effect of

14We note that if the CATE function τ(·) is not constant, then our weighted
CATE estimand τ̄∗ = ∑

i Wiγ̂iτ(Xi ) may vary with B. This result should
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summer school on math scores appears to be fairly robust, as
we still get significant bias-aware 95% confidence intervals
at B = 2 × 40−2, which is four times the largest apparent cur-
vature observed in the data. The third panel plots a measure
of the effective size of the treated and control samples used by
the algorithm, ESSw = 1/

∑
{i:Wi=w} γ̂

2
i . Although our anal-

ysis sample has almost exactly the same number of treated
and control units (W̄ = 0.501), it appears that our algorithm
is able to make use of more control than treated samples,
perhaps because the treated units are “wrapped around” the
controls.

Finally, it is natural to ask whether the bivariate specifi-
cation considered here gave us anything in addition to the
simpler approach used by Matsudaira (2008) estimating the
treatment effect of summer school on the next year’s math
exam by running a univariate regression discontinuity anal-
ysis on only students who passed the reading exam, and
vice versa to the effect on the reading exam.15 We ran both
of these analyses using our method, equation (15), again
considering bounds B = 0.5 × 40−2, 1 × 40−2 on the sec-
ond derivative. For math, we obtained 95% confidence in-
tervals of 0.083 ± 0.040 and 0.079 ± 0.047 for the smaller
and larger B-bounds, respectively; for reading, we obtained
0.037 ± 0.075 and 0.030 ± 0.090. In both cases, the corre-
sponding bounds for the weighted estimator, equation (7), in
the bottom panel of table 1 are shorter, despite accounting for
the possibility of bivariate curvature effects. The difference is
particularly strong for the reading outcome, since our estima-
tor τ̂∗ can also use students near the math pass/fail boundary
for improved precision.16

V. Discussion

In this paper, we introduced an optimization-based ap-
proach to statistical inference in regression discontinuity de-
signs. By using numerical convex optimization tools, we ex-
plicitly derive the minimax linear estimator for the regression
discontinuity parameter under bounds on the second deriva-
tive of the conditional response surface. Because any method

thus formally be interpreted as either a sensitivity analysis for the constant
treatment effect parameter τ if we are willing to assume constant treatment
effects or as a robustness check for our rejection of the global null hypothesis
τ(x) = 0 for all x.

15Matsudaira’s (2008) estimator is not exactly comparable to the two we
consider. For example, when only focusing on students who passed the
reading exam, his estimator effectively averages treatment effects over the
math pass/fail boundary but not the reading pass/fail boundary. In contrast,
we either estimate the conditional average treatment effect at a point c,
equation (6), or allow for averaging over the full boundary, equation (7). It is
unclear whether the restriction of Matsudaira (2008) to averaging over only
one of the two boundary segments targets a meaningfully more interpretable
estimand than equation (7).

16The corresponding headline numbers from Matsudaira (2008) are a 95%
confidence interval of 0.093 ± 0.029 for the effect on the math score and
0.046 ± 0.045 for the reading score; see tables 2 and 3, reduced-form esti-
mates for fifth graders. These confidence intervals, however, do not formally
account for bias. They estimate the discontinuity parameter using a global
cubic fit; such methods, however, do not reliably eliminate bias (Gelman &
Imbens, forthcoming).

based on local linear regression is also a linear estimator
of this type, our approach dominates local linear regression
in terms of minimax mean-squared error. We also show how
our approach can be used to build uniformly valid confidence
intervals.

A key advantage of our procedure is that given bounds on
the second derivative, estimation of the regression disconti-
nuity parameter is fully automatic. The proposed algorithm
is the same whether the running variable is continuous or dis-
crete and whether τ(c) is point identified. Moreover, it does
not depend on the shape of treatment assignment boundary
when X is multivariate. We end our discussion with some
potential extensions of our approach.

A. Fuzzy Regression Discontinuities

In this paper, we considered only sharp regression dis-
continuities, where the treatment assignment Wi is a deter-
ministic function of Xi. However, there is also consider-
able interest in fuzzy discontinuities, where Wi is random
but P [Wi = 1 | Xi = x] has a jump at the threshold c (see
Imbens & Lemieux, 2008, for a review). In this case, it is
common to interpret the indicator 1({Xi ≥ c}) as an instru-
ment and then to estimate a local average treatment effect via
two-stage local linear regression (Imbens & Angrist, 1994).
By analogy, we can estimate treatment effects with fuzzy
regression discontinuity via two-stage optimized designs as
τ̂LAT E = ∑n

i=1 γ̂iYi/
∑n

i=1 γ̂iWi, where the γ̂i are obtained as
in equation (15) with an appropriate choice penalty on the
maximal squared imbalance t2. This approach would clearly
be consistent based on results established in this paper; how-
ever, deriving the best way to trade off bias and variance in
specifying γ̂i and extending the approach of Donoho (1994)
for uniform asymptotic inference is left for future work.

B. Balancing Auxiliary Covariates

In many applications, we have access to auxiliary covari-
ates Zi ∈ Rp that are predictive of Yi but unrelated to the
treatment assignment near the boundary c. As discussed in,
for example, Imbens and Lemieux (2008), such covariates
are not necessary for identification, but controlling for them
can increase robustness to hidden biases. One natural way to
use such auxiliary covariates in our optimized designs is to
require the weights γ̂i to balance these covariates, that is, to
add a constraint

∑n
i=1 γ̂i Zi j = 0 for all j = 1, . . . , p to the

optimization problem, equation (5). In principle, if the dis-
tribution of Zi is in fact independent of Xi when Xi is near
the threshold c, we would expect the balance conditions to
hold approximately even if we do not enforce them; however,
explicitly enforcing such balance may improve robustness.17

17A related idea would be to use the covariates Zi for post-hoc specification
testing as in Heckman and Hotz (1989) or Imbens and Lemieux (2008).
Their strategy is to obtain weights γ̂i without looking at the Zi, and then to
reject the modeling strategy if balance does not hold approximately.
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If we have an additive, linear dependence of Yi on Zi, then
enforcing balance would also result in variance reduction, as
the conditional variance of our estimator τ̂ would now de-
pend on Var[Yi | Xi, Zi], which is always smaller or equal to
Var[Yi | Xi].

C. Working with Generic Regularity Assumptions

Following standard practice in the regression discontinu-
ity literature, we focused on minimax linear inference under
bounds on the second derivative of μw(·) (Kolesár & Rothe,
2018; Imbens & Kalyanaraman, 2012). However, our concep-
tual framework can also be applied with higher-order smooth-
ness assumptions via bounds on the kth derivative of μw(·)
and can easily be combined with other forms of structural
information about the conditional response functions (e.g.,
perhaps we know from theory that the functions μw(·) must
be concave). Thanks to the flexibility of our optimization-
based approach, acting on either of these ideas would simply
involve implementing the required software using standard
convex optimization libraries.
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