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a b s t r a c t

When researchers develop new econometric methods it is common practice to compare
the performance of the new methods to those of existing methods in Monte Carlo
studies. The credibility of such Monte Carlo studies is often limited because of the
discretion the researcher has in choosing the Monte Carlo designs reported. To improve
the credibility we propose using a class of generative models that has recently been
developed in the machine learning literature, termed Generative Adversarial Networks
(GANs) which can be used to systematically generate artificial data that closely mimics
existing datasets. Thus, in combination with existing real data sets, GANs can be used
to limit the degrees of freedom in Monte Carlo study designs for the researcher, making
any comparisons more convincing. In addition, if an applied researcher is concerned
with the performance of a particular statistical method on a specific data set (beyond
its theoretical properties in large samples), she can use such GANs to assess the
performance of the proposed method, e.g. the coverage rate of confidence intervals or
the bias of the estimator, using simulated data which closely resembles the exact setting
of interest. To illustrate these methods we apply Wasserstein GANs (WGANs) to the
estimation of average treatment effects. In this example, we find that (i) there is not a
single estimator that outperforms the others in all three settings, so researchers should
tailor their analytic approach to a given setting, (ii) systematic simulation studies can be
helpful for selecting among competing methods in this situation, and (iii) the generated
data closely resemble the actual data.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There has been rapid progress in the development of predictive statistical methods in recent years, particularly in the
ield of machine learning. This progress has been aided by the availability of a large number of benchmark real-world
ata sets. Specifying the criterion of out-of-sample predictive accuracy on these datasets defines a shared objective for
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he scientific community that new developments can be evaluated against. This does not work directly in econometrics
ecause the main objective of many econometric methods is the estimation of causal effects. Because the true causal
ffects are unobserved in real-world data sets, such data sets cannot directly serve as benchmarks to evaluate the
erformance of causal inference methods.
Partly as a result, there is a long standing tradition in econometrics to compare the performance of the new methods to

hose of existing methods in Monte Carlo studies where researchers do have access to the true causal effect that generated
he data. In such Monte Carlo studies, artificial data are frequently generated using researcher-chosen distributions with a
igh degree of smoothness and limited dependence between different variables. Because of the discretion the researcher
as in choosing these distributions the performance of new methods in those settings is not always viewed as indicative
f the performance in the real world. For recent discussions of these issues, see Advani et al. (2019) and Knaus et al.
2018).

In a similar but distinct setting, an applied researcher may have to decide on which particular statistical method to use
n a specific data set. To make this decision, evidence on the properties of various estimators in a particular finite-sample
etting can be useful, even when attractive theoretical properties in large sample are known to hold for some methods.
n this situation, the researcher may wish to assess the performance, e.g., the coverage rate of confidence intervals or the
ias of an estimator using simulated data. For this purpose it would be helpful to be able to generate artificial data such
hat the distribution underlying the simulations resembles the actual data set where the researcher wishes to implement
he method.

In this paper we discuss how Generative Adversarial Nets (GANs, Goodfellow et al. (2014)), and in particular GANs
inimizing the Wasserstein distance (WGANs, Arjovsky et al. (2017)) can be used to systematically generate data that
losely mimic real data sets. Given an actual data set these methods allow researchers to systematically assess the
erformance of various estimators in settings that are substantially more realistic than those often used in Monte Carlo
tudies. Moreover, by tying the data generating process to real data sets they can at least partly pre-empt concerns
hat researchers chose particular simulation designs to favor their proposed methods. Additionally, the resulting data
enerating distributions can be shown to satisfy certain privacy guarantees with respect to the data they were trained
n under some modifications, see Xie et al. (2018). This would allow the scientific community to benefit from otherwise
naccessible confidential data sources.

After a brief review of WGANs we apply them to a classic data set in the program evaluation literature, originally
ut together by LaLonde (1986). We use the specific sample subsequently recovered by Dehejia and Wahba (1999, 2002)
hat is available online on Dehejia’s website. We refer to this as the Lalonde–Dehejia–Wahba (LDW) data set. The LDW
ata set has some special features which make it a challenging setting for estimating average treatment effects under
nconfoundedness. It is thus an attractive starting point for comparing some of the many estimators proposed for this
roblem. First, we demonstrate how WGANs can generate artificial data in this setting. Second, we discuss how similar
he generated data are to the actual sample. Third, we assess the properties of a set of estimators for average treatment
ffects. Finally, we present approaches to evaluate various robustness properties of these results, such as robustness to
ampling variation, size of the original data and WGAN hyperparameters.
We use three specific samples created from the LDW data to create a range of settings. First, in what we call the

DW-E (experimental sample), we use the data from the original experiment. Second, LDW-CPS (observational sample)
ontains the experimental treated units and data on individuals from the CPS comparison sample. Third, in the LDW-PSID
observational sample) we use the experimental treated units and data from the PSID comparison sample. In our analysis
e compare the performance of thirteen estimators for the average effect for the treated proposed in the literature to
he baseline estimator equal to the difference in means by treatment status. Some of the thirteen estimators are based
n flexible estimators of the conditional outcome means, of the propensity score, or of both. These estimators are based
n generalized linear models, random forests and neural nets, as well as balancing methods.

. Wasserstein generative adversarial networks

In this section we briefly review Generative Adversarial Networks (GANs), and in particular GANs based on the
asserstein distance for an audience familiar with standard statistical methods such as maximum likelihood estimation.
ANs were first introduced in Goodfellow et al. (2014), and Wasserstein GANs (WGANs for short) were introduced
n Arjovsky et al. (2017). See Gui et al. (2020) for a recent review. These methods have not received much attention
n the econometrics literature yet, with the exception of Kaji et al. (2019). The context we are interested in is as follows.
e have a sample of N observations on dX -component vectors, X1, . . . , XN , drawn randomly from a distribution with

umulative distribution function P(·), density pX (·) and domain X. We are interested in drawing new observations that
re similar to samples drawn from this distribution, but not necessarily identical.

.1. Conventional approaches to nonparametric estimation of distributions

A conventional approach in econometrics is to estimate the distribution pX (·) using kernel density estimation
Silverman, 2018; Härdle, 1990; Tsybakov, 2008). Given a bandwidth h and a kernel K (·), the standard kernel density
2
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stimator is

p̂X (x) =
1

NhdX

N∑
i=1

K
(
Xi − x

h

)
.

Conventional kernels include the Gaussian kernel and the Epanechnikov kernel. Bandwidth choices have been proposed
to minimize squared-error loss. Standard kernel density estimators perform poorly in high-dimensional settings, and
when the true data distribution has bounded support. In finite samples, kernel density estimation can be susceptible
to oversmoothing.

An alternative approach to generate new samples that are similar to an existing sample is the bootstrap (Efron, 1982;
Efron and Tibshirani, 1994), which estimates the cumulative distribution function as

P̂(x) =
1
N

N∑
i=1

1Xi≤x.

he main disadvantage of this method and the reason this does not work for our purposes is that it cannot generate
bservations that differ from those seen in the original sample. As a consequence a large generated sample would contain
n unrealistic amount of identical data points. In the particular problem we study this would lead to the difficulty that
n the population the propensity score, the probability of receiving the treatment conditional on the covariates, would
lways be equal to zero or one instead of strictly between zero and one as is required for the properties of many of the
stimators proposed in this literature.

.2. Generative adversarial networks

Generative Adversarial Networks (GANs) are a recently developed alternative approach to generating data that are
imilar to a particular data set (Goodfellow et al., 2014; Arjovsky and Bottou, 2017). GANs can be thought of as implicitly
stimating the distribution, although they do not directly produce estimates of the density or distribution function at a
articular point. Instead, they generate data from the estimated distribution. They do so by optimizing the parameters of a
odel for the distribution of the data generating process (DGP) called the generator, which is trained in a type of mini-max
ame against an adversarial model called the discriminator that attempts to distinguish between the generated data and
he real data. We introduce both pieces individually before we bring them together. Liang (2018) and Singh et al. (2018)
erive theoretical properties of the implied distributions obtained from this class of algorithms. Important takeaways
rom their convergence rates are that GANs can learn distributions as well as the traditional methods in general, while
ot suffering as much from the curse of dimensionality whenever the data approximately lies on a lower-dimensional
anifold.

.2.1. Generator
In contrast to more conventional approaches to specifying distributions, the generator is defined as a non-stochastic

ush-forward mapping g(·; θg ) : Z → X, where θg denote the parameters of the generator and Z is some latent space
ith dimension dg , which often is, but need not be equal to dX , the dimension of X . For any distribution pZ (·) over Z, this
apping implicitly defines a distribution pθg (·) (referred to as push-forward measure in measure theory) over X via

X̃ = g(Z; θg ), Z ∼ pZ (·) H⇒ X̃ ∼ pθg (·).

Z (·) is chosen by the researcher to be simple to draw from (e.g., multivariate uniform or normal) and kept fixed
hroughout training. Given g(·) with a finite-dimensional θg , this simply defines a parametric model for X . As a result
ne could in principle estimate θg by maximum likelihood. The difficulty in doing so is that it can be difficult to evaluate
he implied log likelihood function. The GAN approach is different. Estimates of θg are obtained by minimizing a notion
f distance between the empirical distributions of samples from pθg and the original data. Before describing the details of
he optimization, we introduce a simple concrete example where both Z and X are scalars. Let pZ (·) be the density of a
tandard normal distribution to illustrate some of the concepts:

Z ∼ N (0, 1).

ur generator is a simple shift:

g(z; θg ) = z + θg ,

here θg is scalar as well. With this special choice for the generator, we can express the implied distribution of X̃ in
closed form:

X̃ = g(Z; θg ), Z ∼ N (0, 1) H⇒ X̃ ∼ N (θg , 1).

In practice the generator is usually parametrized in a much more flexible manner using a neural network. In that case,
the researcher would not have access to a closed form expression of pθg (·), although typically it is still straightforward to

draw samples from it given values for the parameter θg .

3
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In this simple case estimating the parameter of the generator given the sample is straightforward: the maximum
likelihood estimator for θg is the sample average X . However, we are interested in settings where (i) the maximum
likelihood estimator may be difficult to calculate, and (ii) the maximum likelihood estimator may not even be an attractive
choice.

2.2.2. Discriminator
Next, we explain how the GAN methodology estimates θg by minimizing a well defined notion of distance between

the distribution of our model pθg (·) and that of the data pX (·) without requiring a closed-form expression for either of
he two. First, we examine different notions of distances between distributions. For two distributions P and P′ which are
bsolutely continuous with respect to the same measure µ(·), the Kullback–Leibler divergence is given by

KL(P,P′) =
∫

ln
(

P(X)
P′(X)

)
P(X)dµ(X).

his distance is used with P equal to the empirical distribution in maximum likelihood estimation. In many settings this
as attractive efficiency properties. However, it has been argued that a distance notion that is symmetric in P and P′
ould be preferable in the context of data generation (Huszár, 2015): whereas maximum likelihood favors values for the
arameters under which the data from the empirical distribution is likely, data generation might be more interested in
he reverse: values for the parameters which produce data that is likely under the empirical distribution. Intuitively, this
an be related to the perceived tendency of KL-minimizers to oversmooth relative to the true distribution. An objective
hat addresses these concerns would be the Jensen–Shannon divergence

JS(P,P′) = KL
(
P

⏐⏐⏐⏐P+ P′

2

)
+ KL

(
P′

⏐⏐⏐⏐P+ P′

2

)
.

Goodfellow et al. (2014) show that the JS divergence can be equivalently written as the solution to a particular
optimization problem:

JS(P,P′) = ln 2+ sup
d:X↦→(0,1)

{
1
2
Ex∼P ln(d(x))+

1
2
Ex∼P′ ln(1− d(x))

}
.

oodfellow et al. (2014) call the function d(·) the discriminator. It has a simple interpretation: imagine a data generating
rocess that with equal probability samples x from either P or P′. Then the above objective function for d(·) corresponds
o the maximum likelihood objective of a model which tries to classify which of the two distributions x was sampled
rom, P or P′. In this case the optimal discriminator is

d∗(x) = P(x ∼ P|x) =
P(x)

P(x)+ P′(x)
.

Note that if the two distributions P and P′ are equal, the discriminator is constant as a function of x.
Let us examine how this applies to the simple one-dimensional example from the previous subsection. Assume the

riginal data was generated from a one-dimensional Gaussian with mean µ and unit variance,

X ∼ N (µ, 1).

hen, we can plug in the Gaussian densities into the expression above to obtain the optimal discriminator d∗:

d∗(x) = σ (µ2
− θ2

g + 2(µ− θg )x) = σ (θ∗0d + θ∗1dx),

here σ (x) = exp(x)/(1 + exp(x)) and for θ∗0d = µ2
− θ2

g and θ∗1d = 2(µ − θg ). A key insight is that we do not require
n analytical expression for either of the two densities to obtain the optimal discriminator. We can simply parametrize a
odel for the discriminator d(x; θd) = σ (θ0d + θ1dx) and optimize the likelihood of correctly classifying random samples

rom the two distributions. The maximum likelihood estimator for θd will converge to the optimal θ∗d as the sample size for
he generated data and the actual data set increases. This discriminator estimates the JS divergence between the current
enerator and original data distribution and allows us to obtain gradients with which we can optimize the generator as
escribed in the next section. Even if the true and generator distributions are very complex, we can approximate the
ptimal discriminator by maximizing the empirical analogue of the maximum likelihood objective with any sufficiently
lexible function approximator d(·; θd) taking values in (0, 1). This yields the original GAN formulation.

.3. Original GAN

Let X1, . . . , XNR denote the original data as before and let Z1, . . . , ZNF be a large number of samples from the researcher-
chosen pZ (·). Goodfellow et al. (2014) propose to jointly optimize for the discriminator and generator via the saddle-point
objective

minmax L(θd, θg ),

θg θd

4
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here the objective function is

L(θd, θg ) =
1
NR

NR∑
i=1

ln d(Xi; θd)+
1
NF

NF∑
i=1

ln
[
1− d

(
g(Zi; θg ); θd

)]
.

oth the generator and discriminator are fully parametric models, though typically very flexible ones, e.g., neural networks
typically so flexible that they require regularization to avoid overfitting, as discussed below). The joint optimization is
arried out by switching back and forth between updating θd and θg in the respective directions implied by the gradient
f the objective L(θd, θg ). This procedure can be interpreted as a two player mini-max game with alternating better-
esponse dynamics. Using the arguments from the previous subsection, the authors discuss assumptions under which
his process converges to the saddle-point in which the discriminator yields the JS divergence, which the generator
inimizes by mimicking the original data pX (·). Further implementation details, including those on regularization and

he choice of tuning parameters such as batch size, are discussed in Section 2.5. Let us examine how this would play out
n our simplified one-dimensional example with Xi ∼ N (µ, 1). Since both the original and discriminator distributions
re Gaussian with constant variance, we are justified to restrict the search space for the discriminator to that of linear
ogistic regression functions as argued before. After an initialization (θ (0)

g , θ
(0)
d ), we can optimize the saddle-point objective

y iterating between the following two steps. Given values (θ k
d , θ

k
g ) after k steps of the algorithm we update the two

arameters:

1. Update the discriminator parameter θd as

θ k+1
d = argmax

θd
L(θd, θg ).

2. Update the generator parameter θg by taking a small step (small learning rate α) along the derivative:

θ k+1
g = θ k

g − α
∂

∂θg
L(θ k+1

d , θg ).

After optimizing the discriminator at each step, we get an estimate of the JS divergence and its gradient at the current value
of θg . We thus need to re-optimize the discriminator after every gradient update of θg . Particularly when the discriminator
is a neural network, a practical implementation would simply update θd for a few gradient steps only instead of solving
its optimization until convergence. In our particular example, given a sufficiently large number of draws from PZ (·), the
process will converge to the JS minimizing value θg = X implying a discriminator with θd = (ln(NR/(NR + NF )), 0) which
annot do better than guessing a constant probability of NR/(NR + NF ) of the data being real.

.4. Wasserstein GANs

In practice, optimization of the original (Goodfellow et al., 2014) GAN objective has proven to be computationally
hallenging. Difficulties can arise when the discriminator becomes too proficient early on in detecting generated obser-
ations, becoming ‘‘flat’’ around the samples from the generator and thus failing to provide useful gradient information
o the generator with which to improve that. This is related to the fact that any two distributions with disjoint support
ave maximal JS divergence, no matter how close the distributions are in terms of moments or quantiles. See Gulrajani
t al. (2017) and Arjovsky and Bottou (2017) for details. An attractive alternative to the Jensen–Shannon divergence is
he Earth-Mover or Wasserstein distance (Arjovsky et al., 2017):

W (P,P′) = inf
γ∈Π (P,P′)

E(X,Y )∼γ [∥X − Y∥] ,

here Π (P,P′) is the set of joint distributions that have marginals equal to P and P′. The term Earth-Mover distance comes
rom the interpretation that W (P,P′) is the amount of probability mass that needs to be transported to move from the
istribution P to the distribution P′. The Earth-Mover/Wasserstein distance is symmetric and well-defined irrespective of
he degree of overlap between the support of the distributions. Arjovsky et al. (2017) exploit the fact that the Wasserstein
istance, like the JS divergence, admits a dual representation

W (P,P′) = sup
∥f ∥L≤1

{
EX∼P [f (X)]− EX∼P′ [f (X)]

}
,

here we take the supremum of the functions f : X ↦→ R over all Lipschitz functions with Lipschitz constant equal to
. The function f (·) is known as the critic and its optimized value implies an upper bound on how much any Lipschitz-
ontinuous moment can differ between the two distributions. We parametrize the critic as f (x; θc), using a flexible function
orm. Ignoring the Lipschitz constraint, the empirical analogue of the optimization problem becomes

min
θg

max
θc

{
1
N

NR∑
f (Xi; θc)−

1
N

NF∑
f (g(Zi; θg ); θc)

}
. (2.1)
R i=1 F i=1

5
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G
iven the generator, we choose the parameters of the critic to maximize the difference between the average of f (Xi; θc)
over the real data and the average over the generated data. We then choose the parameter of the generator θg , to minimize
this maximum difference. For this objective to be well-behaved, it is important to restrict the search to parameters that
ensure that the critic is Lipschitz with constant 1. The original WGAN formulation considered parameter clipping to ensure
this constraint, which causes computational problems. Gulrajani et al. (2017) showed that these can be avoided by instead
adding a penalty term to the objective function for the critic. This term directly penalizes the norm of the derivative of
the critic f (·) with respect to its input along the lines connecting original and generated data points, which ensures the
critic sufficiently satisfies the constraint. Specifically, the penalty term has the form

λ

{
1
m

m∑
i=1

[
max

(
0,

∇x̂f
(
X̂i; θc

)
2
− 1

)]2
}

,

where the X̂i = ϵiXi + (1 − ϵi)X̃i are random convex combinations of the real and generated observations, with the εi
re-drawn at each step. Note that here we do not use the full real data sample, but instead use random batches of the real
and generated data of the same size m.

2.5. The algorithm

Instead of using all the data in each step of the algorithm, we repeatedly use random batches of the real data with
batch size m, denoted by X1, . . . , Xm, and each iteration generate the same number m of new fake observations from the
input distribution, denoted by Z1, . . . , Zm. The general algorithm is described in Algorithm 1. For the optimization we
use a modification of the SGD (Stochastic Gradient Descent) algorithm (e.g., Bottou (2010)), the Adam (Adaptive moment
estimation, Kingma and Ba (2014)) algorithm. The Adam algorithm combines the estimate of the (stochastic) gradient with
previous estimates of the gradient, and scales this using an estimate of the second moment of the unit-level gradients.
The latter part is somewhat akin to the way the Berndt–Hall–Hall–Hausman algorithm proposed in Berndt et al. (1974)
rescales the first derivatives using the inverse of the outer product matrix of the observation-level gradients, with the
difference that Adam only uses the inverses of the diagonal elements of the outer product matrix of the gradients. Details
are provided in the appendix. Our specific implementation uses dropout (Warde-Farley et al., 2013; Wager et al., 2013)
to regularize the generator, which sets a random sample of q% of the weights in the generator network to zero at each
step of the training. Without regularization, the generator may get close to the empirical distribution function especially
if the batch size is large.

2.6. Conditional WGANs

The algorithm discussed in Section 2.5 learns to generate draws from an unconditional distribution. In many cases we
want to generate data from a conditional distribution. For example, for the causal settings that motivate this paper, we
may wish to keep fixed the number of treated and control units. This would be simple to implement by training two
unconditional WGANs. More importantly, we wish to generate potential treated and control outcomes given a common
set of pre-treatment variables. For that reason it is important to generate data from a conditional distribution (Mirza and
Osindero, 2014; Odena et al., 2017; Liu et al., 2018; Kocaoglu et al., 2017).

Suppose we have a sample of real data (Xi, Vi), i = 1, . . . ,NR. We wish to train a generator to sample from the
conditional distribution of Xi|Vi. The conditioning variables Vi are often referred to as labels in this literature. This can
be achieved under minimal modifications to the unconditional WGAN algorithm described before: we simply feed Vi as
input to both the generator and the discriminator/critic, by concatenating it to their respective input vectors (i.e. the noise
Zi and the observations Xi respectively). To illustrate why this works, let the conditioning variables take values in some
finite set Vi ∈ V and apply the law of iterated expectations to the infinite-sample version of the GAN objective:

inf
g

sup
∥f ∥L≤1

{
EX,V [f (X, V )]− EZ,V [f (g(Z, V ), V )]

}
=∑

v∈V

P(V = v) inf
gv

sup
∥fv∥L≤1

{
EX |V=v [fv(X)]− EZ |V=v [fv(gv(Z))]

}
As long as we enforce the Lipschitz constraint on the critic only with respect to Xi and do not otherwise restrict the

functional forms of the discriminator and critic, the resulting infinite-sample objective therefore simply corresponds to
fitting an independent WGAN for every value v ∈ V. Of course, with finite samples, particularly in the continuous case,
we will allow the models to benefit from the smoothness of the conditional distribution Xi|Vi by limiting the flexibility
of the parametric models for the generator g(Zi|Vi; θg ) and the critic f (Xi|Vi; θc). In this case the equivalence disappears,
since the optimization is not performed separately for different values of Vi ∈ V, but the intuition is similar. The specific

algorithm is described in Algorithm 2.

6
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Algorithm 1 WGAN
1: ▷ Tuning parameters:
2: m, batch size
3: ncritic = 15, number of critic iterations per iteration of the generator
4: lr0 = 0.0001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, parameters for Adam algorithm with hypergradient descent
5: λ = 5, penalty parameter for derivative of critic
6: ▷ Starting Values:
7: θc = 0 (critic), θg = 0 (generator)
8: ▷ Noise Distribution:
9: pZ (z) is mean zero Gaussian with identity covariance matrix, dimension equal to that of x
0:
1: while θg has not converged do
2: ▷ Run ncritic training steps for the critic.
3: for t = 0, ..., ncritic do
4: Sample {Xi}

m
i=1 ∼ D (a batch of size m from the real data, without replacement)

15: Sample {Zi}mi=1 ∼ pZ (z) noise.
16: ▷ Generate m fake observations from the noise observations.
17: X̃i ← g(Zi; θg ) for i = 1, . . . ,m
18: ▷ Compute penalty term Q (θc).
19: Generate ϵi, i = 1, . . . ,m from uniform distribution on [0, 1]
20: Calculate X̂i = ϵiXi + (1− ϵi)X̃i convex combinations of real and fake observations

21: Q (θc)← 1
m

∑m
i=1

[
max

(
0,

∇x̂f
(
X̂i; θc

)
2
− 1

)]2

22: ▷ Compute gradient with respect to the critic parameter θc .
23: δθc ← ∇θc

[
1
m

∑m
i=1 f (Xi; θc)−

1
m

∑m
i=1 f

(
X̃i; θc

)
+ λQ (θc)

]
4: θc ← Adam(−δθc , θc, α, β1, β2) (update critic parameter using Adam algorithm)

25: end for
26: ▷ Run a single generator training step.
27: Sample {Zi}mi=1 ∼ pZ (z) noise.
28: ▷ Compute gradients with respect to the generator parameters.
29: δθg ← ∇θg

1
m

∑m
i=1 f

(
g(Zi; θg ); θc

)
30: θg ← Adam(δθg , θg , α, β1, β2) (update generator parameter using Adam algorithm)
31: end while

3. Simulating the Lalonde–Dehejia–Wahba data

In this section we discuss the application of WGANs for Monte Carlo studies based on the Lalonde–Dehejia–Wahba
LDW) data.

.1. Simulation studies for average treatment effects

In the setting of interest we have data on an outcome Yi, a set of pretreatment variables Xi and a binary treatment
Wi ∈ {0, 1}. We postulate that there exists for each unit in the population two potential outcomes Yi(0) and Yi(1), with
the observed outcome equal to corresponding to the potential outcome for the treatment received, Yi = Yi(Wi). We are
interested in the average treatment effect for the treated,

τ = E[Yi(1)− Yi(0)|Wi = 1],

assuming unconfoundedness (Rosenbaum and Rubin, 1983; Imbens and Rubin, 2015):

Wi y

(
Yi(0), Yi(1)

) ⏐⏐⏐ Xi,

and overlap

0 < pr(Wi = 1|Xi = x) < 1, ∀ x,

in combination referred to as ignorability. Let µ(w, x) ≡ E[Yi|Wi = w, Xi = x] (which by unconfoundedness is equal
to E[Yi(w)|Xi = x]) be the conditional outcome mean, and let e(x) ≡ pr(Wi = 1|Xi = x) be the propensity score. There
is a large literature developing methods for estimating average and conditional average treatment effects in this setting
(see Imbens (2004) and Abadie and Cattaneo (2018) for surveys).
7
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Algorithm 2 CWGAN
1: ▷ Tuning parameters:
2: m, batch size
3: ncritic = 15, number of critic iterations per iteration of the generator
4: lr0 = 0.0001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, parameters for Adam algorithm with hypergradient descent
5: λ = 5, penalty parameter for derivative of critic
6:
7: ▷ Starting Values:
8: θc = 0 (critic), θg = 0 (generator)
9: ▷ Noise Distribution:

10: pZ (z) is mean zero Gaussian with identity covariance matrix, dimension equal to that of x
11:
12: while θ has not converged do
13: ▷ Run ncritic training steps for the critic.
14: for t = 0, ..., ncritic do
15: Sample {(Xi, Vi)}

m
i=1 ∼ D a batch from the real data and labels.

16: Sample {Zi}mi=1 ∼ pZ (z) noise.
17: ▷ Generate m fake observations X̃i corresponding to the m real labels Vi.
8: X̃i ← g(Zi|Vi; θg ) for each i
9: ▷ Compute penalty term Q (θc).
0: Generate ϵi, i = 1, . . . ,m from uniform distribution on [0, 1]
1: Calculate X̂i = ϵiXi + (1− ϵi)X̃i convex combinations of real and fake observations

22: Q (θc)← 1
m

∑m
i=1

[
max

(
0,

∇x̂f
(
X̃i|Vi; θc

)
2
− 1

)]2

23: ▷ Compute gradient with respect to the critic parameter θc .
24: δθc ← ∇θc

[
1
m

∑m
i=1 f (Xi|Vi; θc)−

1
m

∑m
i=1 f

(
X̃i|Vi; θc

)
+ λQ (θc)

]
25: θc ← Adam(−δθc , θc, α, β1, β2) (update critic parameter using Adam algorithm)
26: end for
27: ▷ Run a single generator training step.
28: Sample {Vi}

m
i=1 ∼ D a batch of size m from the real labels.

29: Sample {Zi}mi=1 ∼ pZ (z) noise.
30: ▷ Compute gradients with respect to the generator parameters.
31: δθg ← ∇θg

1
m

∑m
i=1 f

(
g(Zi|Vi; θg )|Vi; θc

)
32: θg ← Adam(δθg , θg , α, β1, β2) (update generator parameter)

In this setting, researchers have often conducted simulation studies to assess the properties of proposed methods
(Athey et al., 2018; Belloni et al., 2014; Huber et al., 2013; Lechner and Wunsch, 2013; Lechner and Strittmatter, 2019;
Wendling et al., 2018). Most closely related in the spirit of creating simulation designs that closely resemble real data
are Abadie and Imbens (2011), Schuler et al. (2017) and Knaus et al. (2018). Using the LDW sample Abadie and Imbens
(2011) estimate a model for the conditional means and the propensity score allowing for linear terms and second order
terms. To account for the mass points at zero, they model separately the probability of the outcome being equal to
zero and outcome conditional on being positive. Schuler et al. (2017) also start with a real data set. They postulate a
value for the conditional average treatment effect τ (x) = E[Yi(1) − Yi(0)|Xi = x] = µ(1, x) − µ(0, x). They then use
the empirical distribution of (Wi, Xi) as the true distribution. They estimate the conditional means µ(w, x) using flexible
models, imposing the constraint implied by the choice of conditional average treatment effect τ (x). Given these estimates
they estimate the residual distribution as the empirical distribution of Yi − µ̂(Wi, Xi). Then they impute outcomes for
new samples using the estimated regression functions and random draws from the empirical residual distribution. Note
that this procedure imposes homoskedasticity. Note also that the Schuler et al. (2017) choice for the joint distribution of
(Wi, Xi) can create violations of the overlap requirement if the pre-treatment variables Xi are continuous. Because they
specify the conditional average treatment effect that does not create problems for estimating the ground truth. Knaus
et al. (2018) develop what they call empirical Monte Carlo methods where they use the empirical distribution of the
covariates and the control outcome, combined with postulated individual level treatment effects and a flexibly estimated
propensity score to generate artificial data.

3.2. The LDW data

The data set we use in this paper was originally constructed by LaLonde (1986), and later recovered by Dehejia and

Wahba (1999) and available on Dehejia’s website. This data set has been widely used in the program evaluation literature

8
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Table 1
Summary statistics for Lalonde–Dehejia–Wahba data.

Experimental Experimental CPS PSID
trainees (185) controls (260) controls (15,992) controls (2490)

mean s.d. mean s.d. mean s.d. mean s.d.

black 0.84 (0.36) 0.83 (0.38) 0.07 (0.26) 0.25 (0.43)
hispanic 0.06 (0.24) 0.11 (0.31) 0.07 (0.26) 0.03 (0.18)
age 25.82 (7.16) 25.05 (7.06) 33.23 (11.05) 34.85 (10.44)
married 0.19 (0.39) 0.15 (0.36) 0.71 (0.45) 0.87 (0.34)
nodegree 0.71 (0.46) 0.83 (0.37) 0.3 (0.46) 0.31 (0.46)
education 10.35 (2.01) 10.09 (1.61) 12.03 (2.87) 12.12 (3.08)
earn ’74 2.1 (4.89) 2.11 (5.69) 14.02 (9.57) 19.43 (13.41)
earn ’75 1.53 (3.22) 1.27 (3.1) 13.65 (9.27) 19.06 (13.6)
earn ’78 6.35 (7.87) 4.55 (5.48) 14.85 (9.65) 21.55 (15.56)

to compare different methods for estimating average treatment effects (e.g., Dehejia and Wahba (2002), Heckman and
oseph Hotz (1989), Abadie and Imbens (2011), Ma and Wang (2010) and many others). We use three versions of the data.
he first, which we refer to as the experimental sample, LDW-E, contains the observations from the actual experiment.
his sample contains Nexp observations, with Nexp

0 = 260 control observations and Nexp
1 = Nexp

− Nexp
0 = 185 treated

bservations. For each individual in this sample we observe a set of eight pre-treatment variables, denoted by Xi. These
nclude two earnings measures, two indicators for ethnicity, marital status, and two education measures, and age. Xexp

0
denotes the Nexp

0 × 8 matrix with each row corresponding to the pre-treatment variables for one of these units, and Xexp
1

denoting the Nexp
1 × 8 for the treated units in this sample. Let Xexp denote the Nexp

× 8 matrix with all the covariates.
Similarly, let Yexp

0 denote the Nexp
0 vector of outcomes for the control units in this sample, and Yexp

1 denote the Nexp
1 vector

f outcomes for the treated units, and let Wexp
0 denote the Nexp

0 vector of treatment indicators for the control units in this
ample (all zeros), and Wexp

1 denote the Nexp
1 vector of outcomes for the treated units (all ones). The outcome is a measure

f earnings in 1978.
The second sample is the CPS sample, LDW-CPS. It combines the treated observations from the experimental sample

ith Ncps
0 = 15,992 control observations drawn from the Current Population Survey, for a total of Ncps

= Nexp
1 + Ncps

0 =

6,177 observations. The third sample is the PSID sample, LDW-PSID. It combines the treated observations from the
xperimental sample with Npsid

0 = 2490 control observations drawn from the Panel Survey of Income Dynamics, for
total of Npsid

= Nexp
1 + Npsid

0 = 2675 observations. Table 1 presents summary statistics for the eight pretreatment
ariables and the outcome by treatment status in these samples.

.3. A conditional WGAN for the LDW data

Consider the experimental data set LDW-E. The goal is to create samples of Nexp observations, containing Nexp
0 = 260

ontrol units and Nexp
1 = 185 treated units, where the samples are similar to the real sample. We proceed as follows. First,

e run a conditional WGAN on the sample Xexp, conditional on Wexp. Let the parameters of the generator of the WGAN be
exp
g,X . During training of the models, each batch of training data contains the same fraction of treated to avoid estimation
ssues when the fraction treated is close to zero (for example, this fraction is equal to 0.011 in the CPS dataset).

In each case, for the generator we use a neural net with the following architecture. There are three hidden layers in the
eural net, with the number of inputs and outputs equal to (dX +M, 128), (128, 128) and (128, 128) respectively. Here dX
s the dimension of the vectors whose distribution we are modeling and M is the dimension of the conditioning variables.
or generating the covariates conditional on the treatment, this is dX = 8, and M = 1, and for generating the outcome
ariable conditional on the treatment and covariates this is dX = 1, and M = 9. We use the rectified linear transformation,
(z) = z1z>0 in the hidden layers. For the final layer we have 128 inputs and dX outputs. Here we use for binary variables a

sigmoid transformation, for censored variables a rectified linear transformation, and for continuous variables the identity
function. We experimented a bit with shallower neural nets, including single layer networks that are known to be able
to approximate functions arbitrarily closely (Chen and Shen, 1998; Chen and White, 1999). In this case with relatively
modest sample sizes one would expect that the single layer networks would be competitive with the deeper networks,
and this is consistent with our experience. However, the deeper architectures were less sensitive to the hyperparameter
choices, which is an advantage even with our modest sample sizes. The current state of the literature suggests that in
complex big data settings deeper networks outperform the shallower ones (Goodfellow et al., 2016; Choromanska et al.,
2015).

For the critic we use the same architecture with three layers, with the number of inputs and outputs equal to
(dX +M, 128), (128, 128) and (128, 128) respectively. For the final layer we have 128 inputs, and 1 linear output. We use
batch sizes of 128, 4096, and 512 for the LDW-E sample, the LDW-CPS sample, and the LDW-PSID sample, respectively.

We did not adapt the architectures to the individual settings, so these hyperparameters should not be thought of as

optimal. In spite of this, they yield a well-performing WGAN. This is to emphasize that the exact architectural choices do

9
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Table 2
Summary statistics for WGAN-generated data based on LDW data.

Experimental Experimental CPS PSID
trainees controls controls controls

mean s.d. mean s.d. mean s.d. mean s.d.

black 0.93 (0.26) 0.91 (0.29) 0.08 (0.27) 0.26 (0.44)
hispanic 0.03 (0.18) 0.03 (0.18) 0.07 (0.25) 0.03 (0.17)
age 25.66 (6.45) 25.55 (7.32) 32.81 (11.0) 34.92 (10.67)
married 0.15 (0.36) 0.1 (0.3) 0.72 (0.45) 0.86 (0.34)
nodegree 0.69 (0.46) 0.81 (0.39) 0.29 (0.45) 0.29 (0.46)
education 10.35 (1.71) 10.01 (1.62) 12.03 (2.85) 12.33 (3.12)
earn ’74 3.07 (6.74) 2.14 (5.5) 14.08 (9.58) 19.92 (13.1)
earn ’75 2.06 (3.42) 1.3 (2.7) 13.76 (9.37) 20.46 (13.26)
earn ’78 5.28 (5.48) 3.95 (4.44) 14.9 (9.81) 22.65 (14.69)

Table 3
Wasserstein distance between generated data and empirical distribution.
Dataset GAN Multivariate normal Ratio

Experimental controls 1639 5049 0.32
CPS controls 1641 5084 0.32
PSID controls 3242 5542 0.59

not matter in settings like ours, so long as the overall size of the network is large enough to capture the complexity of
the data and the amount of regularization (i.e., dropout probability) is high enough to avoid over-fitting.

Given the parameters for the generators, θ exp
g,X |W , θ

exp
g,Y (W )|X,W , we first create a single very large sample, with N = 106

units. We use this sample as our population for the simulations. To create the large sample, first we draw separately the
covariates for the treated and control units using the generator with parameter θ

exp
g,X |W . In this step, we create the sample

keeping the fraction of treated units equal to that in the sample. Next we draw independently Y (0) and Y (1) for each
observation in this large sample, using the X and W as the conditioning variables, using the generators with parameters
θ
exp
g,Y (W )|X,W . Unlike in any real dataset, we observe both Y (0) and Y (1) for each unit, simplifying the task of estimating the
ground truth in the simulated data. We use this single large sample to calculate the approximate true average effect for
the treated as the average difference between the two potential outcomes for the treated units:

τ =
1
N1

∑
i:Wi=1

(
Yi(1)− Yi(0)

)
.

For this fixed population we report in Table 2 the means and standard deviations for the same ten variables as in Table 1.
The means and standard deviations are fairly similar. However, the fact that the first two moments of the generated data
closely match those of the actual data is only limited comfort. There are simple ways in which to generate data for which
the first two moments of each of the variables match exactly those of the actual data, such as the standard bootstrap or
a multivariate normal distribution. However, our generator allows us to generate new samples that contain observations
not seen in the actual data, and with no duplicate observations. The latter is important in our setting as discussed before.

In Figs. 1–3 we present some graphical evidence on the comparison of the actual data and the generate data for the
CPS control sample. In general the generated data and the actual data are quite similar. This is true for not just for the
first two moments, but also for the marginal distributions, the correlations, as well as the conditional distributions. In
particular it is impressive to see in Fig. 5 the conditional distribution of 1978 earnings for two groups for the actual data
(those with 1974 earnings positive or zero). These two conditional distributions of 1978 earnings have quite different
shapes, yet both are well matched in the two samples. A multivariate normal distribution could not have reproduced
such patterns.

In Table 3 we report the exact Wasserstein distances, calculated via linear programming, for both the GAN and
a multivariate normal distribution fitted to the respective data sets below as a comprehensive measure of fit. The
experimental and PSID datasets are averaged over 10 samples from the generator of equal size to the original dataset,
and for the larger CPS data the reported distance is an average over 3 samples of equal size to the original dataset.
We find that the Wasserstein distance is considerably smaller for the WGAN simulations than for the multi-variate
normal simulations, which just match the mean and variance of the real data. For larger datasets, calculating the exact
Wasserstein distance via linear programming is infeasible, but instead an approximate version can be calculated by adding
an entropic regularization term that smoothes the optimal transport problem necessary to calculate the Wasserstein
distance, see Cuturi (2013).

Finally we assess how well the conditional expectation implied by the generator is approximated by a linear function.

To do so we fit a linear model, a random forest and a neural net to this regression, and compare the goodness of fit out
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Fig. 1. Marginal histograms for CPS data.

f sample in Table 4. We do so both with the actual data and the generated data. The out of sample R2 is estimated using
ive-fold cross-validation. For the experimental generated data, which has a small sample size, the average cross-validated
2 over 50 different samples from the generator is reported. We find that for the experimental, PSID and CPS samples
he model fit is similar between the real and generated data, for all three models. Furthermore, the ranking of the three
redictive models in terms of out of sample R2 is similar between real and generated data. This suggests the generated

data captures any non-linearity of the conditional expectation in the real data well.

4. Comparing estimators for average treatment effects

In this section we implement the WGANs to generate data sets to compare different estimators for the average
treatment effects. We do this in three settings, first with the experimental LDW-E data, second with the LDW-CPS
comparison group, and third with the LDW-PSID comparison group.
11
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Fig. 2. Correlations for CPS data.

Fig. 3. Conditional histograms for CPS data.

Table 4
Out-of-sample goodness of fit (R2) on real and generated data.

Experimental controls CPS controls PSID controls

Real data Linear model −0.04 0.47 0.56
Real data Random forest −0.06 0.48 0.58
Real data Neural net −0.10 0.48 0.55

Generated data Linear model 0.10 0.47 0.60
Generated data Random forest 0.09 0.49 0.66
Generated data Neural net −0.07 0.50 0.60

4.1. Estimators

We compare thirteen estimators for the average effect for the treated. Nine of them fit into a set where we compare
hree methods for estimating the two nuisance functions, the propensity score e(x) and the conditional outcome mean
(0, x) (linear and logit models, random forests, and neural nets), with three ways of combining these estimates of
he nuisance functions (difference in estimated conditional means, Horvitz–Thompson type inverse propensity score
eighting, and double robust methods), and four are stand-alone estimators. All estimators that involve estimating the
ropensity score use trimming on the estimated propensity score, dropping all observations with an estimated propensity
core larger than 0.95. See Crump et al. (2009) for discussions of the importance of trimming in general.
For estimating the two nuisance functions e(x) and µ(0, x) we consider three methods:
12
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Table 5
Estimates based on LDW data.

Experimental CPS PSID

Estimate s.e. Estimate s.e. Estimate s.e.

Baselines

DIFF 1.79 0.63 −8.50 0.71 −15.20 1.15
BCM 2.12 0.88 2.15 0.87 0.57 1.47

Outcome models

L 1.79 0.57 0.69 0.60 0.79 0.60
RF 1.69 0.58 0.85 0.60 −0.20 0.56
NN 1.49 0.59 1.70 0.60 1.47 0.60

Propensity score models

L 1.81 0.83 1.18 0.77 1.26 1.13
RF 1.90 0.86 0.73 0.82 0.24 1.00
NN 1.69 0.86 1.38 0.77 0.42 1.45

Doubly robust methods

L 1.80 0.67 1.27 0.65 1.50 0.97
RF 1.93 0.70 1.63 0.76 0.98 0.83
NN 1.90 0.75 1.63 0.72 1.56 0.76
CF 1.72 0.68 1.58 0.67 0.59 0.78
RB 1.73 0.70 0.93 0.62 0.72 0.79

1. A logit model for the propensity score and a linear model for the conditional outcome mean, given the set of eight
pre-treatment variables. Denote the estimator for the conditional mean by µ̂lm(0, x), and the estimator for the
propensity score by êlm(x). In settings with high dimensional covariates one might modify these estimators using
regularization as in, for example, Farrell (2015).

2. Random Forests for the propensity score and the conditional outcome mean. Denote the estimator for the
conditional mean by µ̂rf(0, x), and the estimator for the propensity score by êrf(x), e.g., Wager and Athey (2018).

3. Neural Nets for the propensity score and the conditional outcome mean. Denote the estimator for the conditional
mean by µ̂nn(0, x), and the estimator for the propensity score by ênn(x). Farrell et al. (2018) establish the convergence
rates for deep neural networks necessary for semiparametric inference.

We also consider three methods for incorporating the estimated nuisance functions into an estimator for the ATT:

1. Use the estimated conditional outcome mean by averaging the difference between the realized outcome and the
estimated control outcome, averaging this over the treated observations (e.g., Hahn (1998)):

τ̂ cm
=

1
N1

∑
i:Wi=1

(
Yi − µ̂(0, Xi)

)
.

2. Use the estimated propensity score to weight the control observations, e.g., Hirano et al. (2003):

τ̂ ht
=

∑
i

⎛⎝Wi

N1
Yi − (1−Wi)Yi

ê(Xi)
1− ê(Xi)

/ N∑
j=1

(1−Wj)
ê(Xj)

1− ê(Xj)

⎞⎠ .

3. Use both the estimated conditional mean and the estimated propensity score in a double robust approach,
e.g., Scharfstein et al. (1999) and Chernozhukov et al. (2017):

τ̂ dr
=

∑
i

⎛⎝Wi

N1

(
Yi − µ̂(0, Xi)

)
− (1−Wi)

(
Yi − µ̂(0, Xi)

) ê(Xi)
1− ê(Xi)

/ N∑
j=1

(1−Wj)
ê(Xj)

1− ê(Xj)

⎞⎠ .

Note that for the neural net and the random forest implementation, we use sample splitting as in Chernozhukov et al.
(2017). We indicate the respective combination of nuisance function estimators and ATT formulas by combining the
superscripts, yielding the nine estimators τ̂ cm,lm, τ̂ cm,rf, τ̂ cm,nn, τ̂ ht,lm, τ̂ ht,rf, τ̂ ht,nn, τ̂ dr,lm, τ̂ dr,rf and τ̂ dr,nn.

4.2. Estimates for LDW data

First we compute all thirteen estimators on the three samples for the original LDW data. The results are reported in
Table 5.
13
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Table 6
Estimates based on LDW experimental data (2000 Replications).
Method rmse bias sdev Coverage

Baselines

DIFF 0.49 0.06 0.48 0.94
BCM 0.58 0.00 0.58 0.96

Outcome models

L 0.52 −0.06 0.51 0.88
RF 0.51 −0.07 0.50 0.88
NN 1.32 0.04 1.32 0.75

Propensity score models

L 0.52 −0.08 0.52 0.99
RF 0.52 −0.06 0.51 0.99
NN 0.52 0.01 0.52 0.99

Doubly robust methods

L 0.51 −0.08 0.51 0.95
RF 0.52 −0.04 0.52 0.95
NN 0.79 −0.05 0.79 0.95
CF 0.50 −0.09 0.49 0.94
RB 0.52 −0.09 0.51 0.95

4.3. Simulation results for the experimental control sample

Next, we report results for the comparison of all the estimators for the experimental sample in Table 6. We draw
000 samples from the population (the sample of size 1,000,000) and calculate the estimated treatment effect for each
ample and each of the thirteen estimators. The population value of the treatment effect is the average treatment effect
or treated in the generated population of 1 million individuals. We report the average bias of each estimator across the
000 samples, the standard deviation for each estimator across the 2000 samples, the root-mean-squared error (RMSE)
nd the coverage rates over the 2000 replications.
For the experimental sample, the RMSEs for the different estimators are fairly similar, ranging from 0.49 (for the

esidual balancing estimator) to 1.32 for the outcome model based on neural nets. Because there is balance between the
reatment and control group due to random assignment of the treatment, it is not surprising that all methods perform
airly well. The double robust methods do particularly well in terms of coverage rates for the 95% confidence intervals.

.4. Simulation results for the CPS control sample

Next, we report results for the comparison of the twelve estimators for the CPS comparison sample in Table 7.
s expected, given the substantial differences in characteristics between the treatment group and the control group,
n this exercise we find considerably bigger differences in the performances of the different estimators. The double
obust methods generally do well here. The biases for some of the estimators that are not doubly robust are substantial,
ontributing to their confidence intervals having poor coverage rates.

.5. Simulation results for the PSID control sample

Third, we report results for the comparison of the twelve estimators for the psid comparison sample in Table 8. Again
he double robust methods do well overall. Note that the linear methods do particularly well in terms of bias.

. Robustness of the simulations

The algorithm developed in this paper leads, for a given data set, to a RMSE for each estimator, and, based on that,
unique ranking of a set of estimators. However, it does not come with a measure of robustness of that ranking or the
MSE it is based on. The estimated RMSEs and the implied ranking of the estimators could be different if we change the
et up. In particular we may be concerned with the robustness of the bias component of the RMSE. In this section we

iscuss a number approaches to assessing how robust the rankings are.
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Table 7
Estimates based on LDW-CPS data (2000 Replications).
Method rmse bias sdev Coverage

Baselines

DIFF 11.12 −11.11 0.45 0.00
BCM 0.73 0.07 0.73 0.96

Outcome models

L 2.14 −2.08 0.51 0.02
RF 1.00 −0.87 0.51 0.54
NN 0.63 0.14 0.61 0.88

Propensity score models

L 0.51 0.00 0.51 0.98
RF 1.00 −0.87 0.50 0.73
NN 0.65 0.23 0.61 0.94

Doubly robust methods

L 0.53 0.03 0.53 0.96
RF 0.54 −0.05 0.54 0.93
NN 0.62 0.20 0.58 0.94
CF 0.55 0.11 0.53 0.91
RB 0.57 −0.22 0.52 0.89

Table 8
Estimates based on LDW-PSID data (2000 Replications).
Method rmse bias sdev Coverage

Baselines

DIFF 18.81 −18.81 0.53 0.00
BCM 0.98 −0.02 0.98 0.98

Outcome models

L 1.95 −1.82 0.72 0.12
RF 2.30 −2.22 0.62 0.02
NN 2.97 −0.93 2.82 0.59

Propensity score models

L 1.11 −0.64 0.91 0.96
RF 2.21 −2.05 0.82 0.32
NN 1.82 −1.43 1.11 0.69

Doubly robust methods

L 0.98 −0.35 0.92 0.94
RF 0.98 −0.57 0.80 0.84
NN 0.98 −0.38 0.90 0.92
CF 1.13 −0.89 0.69 0.73
RB 1.06 0.33 1.01 0.75

5.1. Robustness to sample

We apply the WGANs to M = 10 samples drawn without replacement from the original sample. Each sample is 80%
f the size of the original sample. We use these subsamples to train a WGAN and for each WGAN, draw 10,000 samples
rom the population distribution and calculate RMSE, bias, standard deviation, coverage, and power. The main question of
nterest is by how much the results vary across the different subsamples of the data. The table gives the average of each
etric of interest, calculated across the 10 different synthetic populations trained from the 10 different subsamples of
riginal data. The averages are close to the point estimates of the metrics from the full sample. We also show the standard
eviation; although there is substantial variation in the estimates over the synthetic populations trained on different 80%
ubsamples of the dataset, the conclusion that the doubly-robust methods generally outperform the other methods still
olds (see Table 9).

.2. Robustness to model architecture

We also investigate the robustness to the architecture of the critic and generator, within a similar complexity class of
eural networks. Recall that the architecture of the generator and critic both have three hidden layers, with dimensions
dX + M, 128), (128, 128) and (128, 128). The first alternative architecture (Alt1) considered has a generator hidden
layer with dimensions [64, 128, 256] and a critic hidden layer with dimensions [256, 128, 64]. The second alternative
15
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Table 9
Robustness of ranking for LDW-CPS, average and standard deviations of metrics over
M = 10 samples drawn from original sample.
Method rmse bias sdev Coverage

Baselines

DIFF 10.12 (1.29) −10.11 (1.29) 0.45 (0.04) 0.00 (0.00)
BCM 0.78 (0.13) −0.04 (0.13) 0.77 (0.12) 0.96 (0.02)

Outcome models

L 1.09 (0.48) −0.69 (0.88) 0.49 (0.04) 0.50 (0.35)
RF 0.87 (0.32) −0.59 (0.52) 0.51 (0.04) 0.64 (0.29)
NN 0.70 (0.16) 0.14 (0.39) 0.60 (0.04) 0.82 (0.09)

Propensity score models

L 0.75 (0.30) 0.07 (0.63) 0.52 (0.04) 0.89 (0.16)
RF 0.98 (0.36) −0.76 (0.52) 0.50 (0.04) 0.73 (0.27)
NN 0.68 (0.12) 0.04 (0.28) 0.63 (0.05) 0.96 (0.03)

Doubly robust methods

L 0.75 (0.32) 0.14 (0.63) 0.53 (0.05) 0.82 (0.19)
RF 0.62 (0.11) 0.05 (0.33) 0.54 (0.05) 0.89 (0.05)
NN 0.65 (0.12) 0.07 (0.23) 0.62 (0.07) 0.94 (0.03)
CF 0.67 (0.16) 0.14 (0.39) 0.56 (0.06) 0.83 (0.08)
RB 0.82 (0.24) 0.00 (0.70) 0.53 (0.03) 0.69 (0.19)

Table 10
Robustness to model architecture for LDW-CPS.
Method rmse bias sdev

Main Alt1 Alt2 Main Alt1 Alt2 Main Alt1 Alt2

Baselines

DIFF 11.12 9.80 11.50 −11.11 −9.79 −11.49 0.45 0.43 0.45
BCM 0.73 0.66 0.57 0.07 0.07 0.03 0.73 0.65 0.57

Outcome models

L 2.14 0.70 2.14 −2.08 −0.52 −2.08 0.51 0.46 0.48
RF 1.00 0.72 1.38 −0.87 −0.55 −1.30 0.51 0.46 0.47
NN 0.63 0.54 0.73 0.14 −0.03 −0.45 0.61 0.54 0.57

Propensity score models

L 0.51 0.51 1.15 0.00 −0.19 −1.04 0.51 0.48 0.48
RF 1.00 0.80 1.50 −0.87 −0.65 −1.42 0.50 0.47 0.47
NN 0.65 0.54 0.65 0.23 −0.03 −0.34 0.61 0.54 0.56

Doubly robust methods

L 0.53 0.50 1.11 0.03 −0.15 −0.98 0.53 0.48 0.50
RF 0.54 0.51 0.64 −0.05 0.08 −0.40 0.54 0.51 0.50
NN 0.62 0.54 0.54 0.20 0.06 −0.16 0.58 0.54 0.52
CF 0.55 0.53 0.52 0.11 0.20 −0.16 0.53 0.49 0.49
RB 0.57 0.50 0.97 −0.22 0.09 −0.82 0.52 0.49 0.52

architecture (Alt2) considered has a generator hidden layer with dimensions [128, 256, 64] and a critic hidden layer with
dimensions [64, 256, 128]. We do not find that our results are overly sensitive to a certain WGAN architecture. We find
that the RMSE, bias, and standard deviation estimates for each treatment effect estimator are mostly similar for the main
and two alternative specifications (see Table 10).

5.3. Robustness to size of training data

Next we change the size of the training sample to some fraction of the original sample. This is likely to make the
generator more smooth because it has fewer data to be trained on. We still generate samples from the generator that are
the same size as the original sample. The results are in Table 11.

6. Imposing restrictions

So far the setting has been a just-identified one, so that the question is to generate data that mimic an actual data set
without any restrictions. In many cases, however, we wish to generate data from a restricted set of distributions. Here
we discuss a simple example to demonstrate how one can extend the ideas discussed so far to that case.
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Table 11
RMSE for estimators on LDW-CPS for different training data sizes.
Fraction of original sample 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baselines

DIFF 10.17 10.84 9.88 10.09 11.10 10.45 10.41 10.55 11.12
BCM 0.60 0.73 0.64 0.72 0.78 0.71 0.72 0.65 0.73

Outcome models

L 1.87 0.70 0.48 0.46 1.37 1.31 0.52 1.52 2.14
RF 0.62 0.62 0.73 0.84 0.94 0.97 0.61 1.28 1.00
NN 0.54 0.74 0.58 0.60 0.68 0.59 0.54 0.79 0.63

Propensity score models

L 0.74 0.66 0.49 0.76 0.60 0.53 0.49 1.37 0.51
RF 0.94 0.71 0.69 1.06 1.10 1.08 0.89 1.49 1.00
NN 0.54 0.71 0.57 0.59 0.68 0.56 0.61 0.59 0.65

Doubly robust methods

L 0.69 0.67 0.49 0.72 0.60 0.54 0.49 1.34 0.53
RF 0.48 0.70 0.49 0.53 0.63 0.53 0.49 0.70 0.54
NN 0.51 0.68 0.57 0.58 0.67 0.57 0.58 0.55 0.62
CF 0.49 0.69 0.54 0.50 0.66 0.53 0.53 0.61 0.55
RB 1.41 0.82 0.52 0.49 0.62 0.56 0.50 1.20 0.57

To make it specific, suppose we have two variables (Xi, Yi), and the model implies that µ(x) = E[Yi|Xi = x] is
monotone (say, increasing) in x. This type of shape restriction is fairly common in structural models, for example, demand
functions are typically monotone in prices. More subtle versions of that come up in auction models with the hazard rate
of the bid distribution decreasing. So, the question is how to simulate data that look like the actual data, but imposing
monotonicity of the conditional mean (or some other restriction). Here is one possible approach. Suppose we have a test
statistic T ((X1, Y1), . . . , (XM , YM )) that gives us a consistent test for the null hypothesis that the regression function is
non-decreasing. For the generated noise Z1, . . . , ZM , and the parameter of the generator θg , we can write the statistic as
a function of θg as T (θg ) = T (g(Z1, θg ), . . . , g(ZM , θg )). Then, when we do gradient descent to find a new value for the
generator parameter, we can add a penalty term λT (θg ) to the objective function so that we penalize changes of θg in
the direction that increase the value of the test statistic. All this requires is a test statistic, and a value for the penalty
term. To illustrate this we use a recent test statistic for monotonicity of the regression function proposed in Chetverikov
(2019), see also Chetverikov et al. (2018). We use the CPS subset of the LDW data and look at the case where Yi is earnings
in 1978 and Xi is the age. Here the regression function is far from monotone in the actual sample, so we can see how
imposing monotonicity changes the joint distribution.

To be more specific, our data for a particular batch are (X1, Y1), . . . , (XM , YM ), where (Xi, Yi) = g(Zi, θg ). First we describe
the calculation of the test statistic as a function

T = T ((X1, Y1), . . . , (XM , YM )),

which implicitly defines it as a function of θ given the noise variables. First, we need a variance estimator for V(Yi|Xi = x),
evaluated at the sample points X1, . . . , XM . Suppose the observations are ordered, so that Xi ≤ Xi+1 for all i. Let

σ̂ 2
i = (Yi+1 − Yi)2/2.

(and σ̂ 2
M = (YM − YM−1)2/2.) Define

K (x) = 0.75(1− x2),

Q (x1, x2, x, h) = K ((x1 − x)/h)K ((x2 − x)/h),

hmax = max
1≤i,j≤M

|Xi − Xj|/2,

hmin = hmax(0.3/M0.95)1/3.

HM = {hmax, hmax(0.5), hmax(0.5)2, . . . , hmin}

Then define

b(x, h) = (1/2)
∑

1≤i,j≤M

(Yi − Yj)sign(Xj − Xi)Q (Xi, Xj, x, h).

V (x, h) =
∑

σ̂ 2
i

∑
sign(Xj − Xi)Q (Xi, Xj, x, h).
1≤i≤M 1≤j≤M
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T

Fig. 4. Kernel regression on original data and WGANs with various penalties.

hen the test statistic is

T = T ((X1, Y1), . . . , (XM , YM )) = max
h∈HM

max
1≤i≤M

b(Xi, h)
V (Xi, h)

.

In addition to the test statistic proposed by Chetverikov, we examine a second penalty. Here, we estimate the
conditional mean of interest via a Kernel regression and take the first differences of income along a grid over age, summing
all differences which are positive. The resulting conditional means are shown in Fig. 4.

Both penalties successfully enforce monotonicity despite it being violated in the original data. As shown in Fig. 5, we
also see that the model learns to capture the non-penalized aspects of the data well.

However, we see that the Chetverikov test has a much bigger impact on the generated data than the Kernel regression
penalty. In particular, it appears to be incentivizing linearity beyond monotonicity. As we see in this example, the
properties which are desirable for a test statistic T (X) may or may not be desirable for a penalty P(X) and vice versa. What
both have in common is that they should take on large values under violations of H1 and be informative even with a limited
number of samples. To see why the latter is important, recall that neural network training benefits from optimization
via stochastic gradients, which samples only a few observations from the generator at every iteration. Further, a WGAN
penalty should yield informative gradients to the generator, i.e. it should at least be point-wise differentiable with respect
to a subset of the generated variables, which is the case for the Chetverikov penalty. Another desirable property for a
penalty is that its gradient is zero if H0 is not violated, which the Chetverikov penalty does not satisfy. This is likely
the reason for its observed side-effects. A simple fix could be setting P(X) = max(T (X), C), where C is some critical
value below we cut off the test statistic. We were not able to improve beyond C = 0 in our experiments, although it
outperformed C = −∞ by not privileging the linearity as much. This is likely driven by the fact that the critical values of
the Chetverikov test change with the distribution of the data and thus throughout training, which makes it difficult to limit
the penalty’s impact via a fixed cutoff while ensuring it is enforcing H0. This suggests that pivotal test statistics should be
used instead, if available. Since there is no pivotal test statistic for monotonicity, we showed that one can alternatively
obtain a penalty, which is also an implicit test statistic, if a differentiable estimator of the feature of the data that is to
be restricted is available, by adding its absolute deviation from a desired value. The key takeaway of this exercise is that
researchers can directly take any existing test statistic in the econometric literature for a given H0 and plug it into the
WGAN objective to obtain a DGP which satisfies H0. Surprisingly, the resulting WGAN algorithm remains stable even for
relatively complex, adaptive test statistics, and fits unpenalized aspects of the data well. While existing test statistics can
be recommended as good starting points, the researcher may find they affect the model beyond H0, which may require
modification or alternative solutions.

7. Conclusion

In this paper we show how WGANs can be used to tightly link Monte Carlo studies to real data. This has the benefit of
ensuring that simulation studies are grounded in realistic settings, removing the suspicion that they were chosen partly
to support the preferred methods. In this way the simulations studies will be more credible to the readers. We illustrate
these methods comparing different estimators for average treatment effects using the Lalonde–Dehejia–Wahba data. There

are a number of findings. First, in the three different settings, the experimental data, the CPS control group and the PSID
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Fig. 5. Penalized WGANs fit unpenalized dimensions of the data.

control group, different estimators emerge at the top. Within a particular sample the results appear to be relatively robust
to changes in the analysis (e.g., changing the sample size, or doing the cross-fitting WGAN robustness analysis). Second,
the preference in the theoretical literature for double robust estimators is broadly mirrored in our results. Although the
flexible double robust estimators (using random forests or neural nets) do not always outperform the other estimators,
the loss in terms of root-mean-squared-error is always modest, where other estimators often perform particularly poorly
in some settings. If one were to look for a single estimator in all settings, our recommendation would therefore be the
double robust estimator using random forests or neural nets. However, one may do better in a specific setting by using
the WGANs to assess the relative performance of a wider range of estimators. Finally, we showed that WGANs can also be
applied to settings in which the researcher wishes to impose restrictions on the implied distribution. This clarifies that,
even in settings in which researchers require some control over their simulations, WGANs offer a way to increase the
credibility of their results by tying the remaining aspects of their data generating process to real data.

Appendix A. The estimators

1. Difference in Means (DIFF)

τ dm
=

1
N1

∑
i:Wi=1

Yi −
1
N0

∑
i:Wi=0

Yi.

2. The Bias-Adjusted Matching estimator (BCM)

(a) Match all treated units with replacement to control units using diagonal version of Mahalanobis matching.
(b) Regress difference between treated and control outcome for matched pairs on difference in covariates.

See Abadie and Imbens (2006, 2011).

3. Conditional Outcome Model, Linear Model (LIN): See τ̂ cm,lm in 4.1.
4. Conditional Outcome Model, Random Forest (RF): See τ̂ cm,rf in 4.1.
5. Conditional Outcome Model, Neural Nets (NN): See τ̂ cm,nn in 4.1.
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6. The Horowitz–Thompson Estimator, Logit Model (LIN): See τ̂ ht,lm in 4.1 and Hirano et al. (2003).
7. The Horowitz–Thompson Estimator, Random Forest (RF): See τ̂ ht,rf in 4.1.
8. The Horowitz–Thompson Estimator, Neural Net (NN): See τ̂ ht,nn in 4.1.
9. The Double Robust Estimator, Linear and Logit Model (LIN): See τ̂ dr,lm in 4.1.

10. The Double Robust Estimator, Random Forest (RF): See τ̂ dr,rf in 4.1.
11. The Double Robust Estimator, Neural Nets (NN): See τ̂ ht,nn in 4.1.
12. Residual Balancing Estimator (RB)

(a) Estimate conditional outcome mean for controls by elastic net.
(b) Construct weights that balance control covariates to average covariate values for treated.
(c) Combine to estimate average outcome for treated units under control treatment. See Athey et al. (2018).

13. Causal Forest Estimator (CF) See Athey et al. (2019).

Appendix B. The Adam algorithm

Algorithm 3 Adam
1: ▷ Tuning parameters:
2: m =, batch size
3: α, step size
4: β1,
5: β2,
6: ϵ = 10−8,
7: ▷ Starting Values:
8: θ = 0, m0 = 0, v0 = 0, t = 0
9: while θ has not converged do

10: ▷ t ← t + 1
11: Sample {Zi}mi=1.
12: ▷ Compute gradient
13: δθ ←

1
m

∑m
i=1 ∇θ f (Zi; θt)

4: γθ ←
1
m

∑m
i=1 (∇θ f (Zi; θt))2

5: mt ← β1mt−1 + (1− β1)δθ

16: m̂t = mt/(1− β t
1)

17: vt ← β2vt−1 + (1− β2)γθ

18: v̂t = vt/(1− β t
2)

19: θt ← θt−1 − αm̂t/(
√

v̂t + ϵ)
20: end while
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