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a b s t r a c t

In this paper we study estimation of and inference for average treatment effects in
a setting with panel data. We focus on the staggered adoption setting where units,
e.g, individuals, firms, or states, adopt the policy or treatment of interest at a particular
point in time, and then remain exposed to this treatment at all times afterwards.
We take a design perspective where we investigate the properties of estimators and
procedures given assumptions on the assignment process. We show that under random
assignment of the adoption date the standard Difference-In-Differences (DID) estimator
is an unbiased estimator of a particular weighted average causal effect. We characterize
the exact finite sample properties of this estimand, and show that the standard variance
estimator is conservative.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study estimation of and inference for average treatment effects in a setting with panel data. We focus
n the setting where units, e.g., individuals, firms, or states, adopt the policy or treatment of interest at a particular point
n time, and then remain exposed to this treatment at all times afterwards. The adoption date at which units are first
xposed to the policy may, but need not, vary by unit. We refer to this as a staggered adoption design (SAD), such designs

are sometimes also referred to as event study designs. An early example is Athey and Stern (1998) where adoption of an
enhanced 911 technology by counties occurs over time, with the adoption date varying by county. This setting is a special
case of the general Difference-In-Differences (DID) set up (e.g., Card, 1990; Meyer et al., 1995; Angrist and Pischke, 2008;
Angrist and Krueger, 2000; Abadie et al., 2010; Borusyak and Jaravel, 2016; Athey and Imbens, 2006; Card and Krueger,
1994; Freyaldenhoven et al., 2019; de Chaisemartin and d’Haultfœuille, 2020; Abadie, 2005) where units can switch back
and forth between being exposed or not to the treatment. In this SAD setting we are concerned with identification issues
as well as estimation and inference. In contrast to most of the theoretical DID literature, e.g., Bertrand et al. (2004), Shah
et al. (1977), Conley and Taber (2011), Donald and Lang (2007), Stock and Watson (2008), Arellano (1987b, 2003), Sun
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nd Abraham (2020), Wooldridge (2010), de Chaisemartin and d’Haultfœuille (2017), Callaway and Sant’Anna (2020),
oodman-Bacon (2018) and de Chaisemartin and d’Haultfœuille (2020), we take a design-based perspective where the
roperties of the estimators arises from the stochastic nature of the treatment assignment, rather than a sampling-based
r model-based perspective where these properties arise from the random sampling of units from a large population in
ombination with assumptions on this population distribution. Such a design perspective, motivating randomization or
ermutation based inference, has been common for many years in the analysis of randomized experiments, e.g., Neyman
1923/1990) and Rosenbaum (2002), and has more recently received attention in observational study settings (Rosenbaum,
017; Aronow and Samii, 2016; Abadie et al., 2016, 2020). This perspective is particularly attractive in the settings
hen the sample comprises the entire population, e.g., all states of the US, or all countries of the world so that non-
egenerate sampling properties would require postulating an imaginary super-population. In this design setting our
ritical assumptions involve restrictions on the assignment process as well as exclusion restrictions, but in contrast to
ther work in this area they do not include functional form assumptions. Commonly made common trend assumptions
de Chaisemartin and d’Haultfœuille, 2020; Sun and Abraham, 2020; Hull, 2018) follow from some of our assumptions,
ut are not the starting point.
As in Sun and Abraham (2020) we set up the problem with the adoption date, rather than the actual exposure to

he intervention, as the basic treatment indexing the potential outcomes. We consider assumptions under which this
iscrete multi-valued treatment (the adoption date) can be reduced to a binary one, defined as the indicator whether
r not the treatment has already been adopted. We then investigate the properties of the standard DID estimator under
ssumptions about the assignment of the adoption date and under various exclusion restrictions. We show that under
random adoption date assumption, the standard DID estimator can be interpreted as the weighted average of average
ausal effects of changes in the adoption date. We also consider design-based inference for this estimand. We derive the
xact variance of the DID estimator in this setting. We show that under a random adoption date assumption the standard
iang–Zeger (LZ) variance estimator (Liang and Zeger, 1986; Chamberlain, 1984; Arellano, 1987a; Bertrand et al., 2004), or
he clustered bootstrap, are conservative. For this case we propose an improved (but still conservative) variance estimator.

Our paper is most closely related to a set of recent papers on DID methods that explicitly focus on issues with heteroge-
ous treatment effects (Borusyak and Jaravel, 2016; Goodman-Bacon, 2018; Sun and Abraham, 2020; de Chaisemartin
nd d’Haultfœuille, 2020; Han, 2020; Callaway and Sant’Anna, 2020; Hull, 2018; Strezhnev, 2018; Imai and Kim, 2019;
azlett and Xu, 2018; Ben-Michael et al., 2018; Arkhangelsky and Imbens, 2018, and Arkhangelsky et al., 2019). Among
ther things these papers derive interpretations of the DID estimator as weighted averages of causal effects and bias terms
nder various assumptions. In many cases they find that these interpretations involve weighted averages of basic average
ausal effects with potentially negative weights and derive conditions, or propose alternative estimators that ensure the
eights are non-negative. Optimal design issues in the staggered adoption case have been considered in Xiong et al.
2019) and Doudchenko et al. (2019).

. Set up

Using the potential outcome framework for causal inference, we consider a setting with a finite population of N units.
ach of these N units are characterized by a set of potential outcomes (e.g., Rubin, 1974; Imbens and Rubin, 2015) in T
eriods for T+1 treatment levels, Yit (a). Here i ∈ {1, . . . ,N} indexes the units, t ∈ T = {1, . . . , T } indexes the time periods,
nd the argument of the potential outcome function Yit (·) is the adoption date a ∈ A, where A = T∪{∞} = {1, . . . , T , ∞}.

This argument, a, which indexes the discrete treatment, is the date that the binary policy was first adopted by a unit. Units
can adopt the policy at any of the time periods 1, . . . , T , or not adopt the policy at all during the period of observation, in
which case we code the adoption date as ∞. Once a unit adopts the treatment, it remains exposed to the treatment for
all periods afterwards. This set up matches that in Sun and Abraham (2020) and Hazlett and Xu (2018), and differs from
that in most of the DID literature where the binary indicator whether a unit is exposed to the treatment in the current
period indexes the potential outcomes. The notion of focusing on a full treatment path rather than a binary treatment is
also related to the dynamic treatment effect literature (e.g., Hernan and Robins, 2020; Han, 2020. We observe for each
unit in the population the adoption date Ai ∈ A and the sequence of T realized outcomes, Yit , for t ∈ T, where the realized
outcome for unit i in period t equals

Yit ≡ Yit (Ai). (2.1)

We may also observe pre-treatment characteristics, denoted by the K -component vector Xi, although for most of the
discussion we abstract from their presence. Let Y , A, and X denote the N × T , N × 1, and N × K matrices with typical
elements Yit , Ai, and Xik respectively. Implicitly we have already made a sutva-type assumption (Rubin, 1978; Imbens and
Rubin, 2015) that units are not affected by the treatments (adoption dates) for other units. Our design-based analysis views
the potential outcomes Yit (a) as deterministic, and only the adoption dates Ai, as well as functions thereof such as the
realized outcomes, as stochastic. Distributions of estimators will be fully determined by the adoption date distribution,
with the number of units N and the number of time periods T fixed, unless explicitly stated otherwise. Following the
literature we refer to this as a randomization, or designed-based, distribution (Rosenbaum, 2017; Imbens and Rubin,

2015; Abadie et al., 2020), as opposed to a sampling or model-based distribution.
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In many cases the units themselves are clusters of units of a lower level of aggregation. For example, the units may
be states, and the outcomes could be averages of outcomes for individuals in that state, possibly of samples drawn from
subpopulations from these states. In such cases N and T may be as small as 2, although in many of the cases we consider

will be at least moderately large. This distinction between cases where Yit is itself an average over basic units or not,
affects some, but not all, of the formal statistical analyses. It may make some of the assumptions more plausible, and it
may affect the inference, especially if individual level outcomes and covariates are available.

Define W : A × T ↦→ {0, 1}, with W (a, t) = 1a≤t to be the binary indicator for the adoption date a preceding t , and
define Wit to be the indicator for the policy having been adopted by unit i prior to, or at, time t , so that:

Wit ≡ W (Ai, t) = 1Ai≤t .

The N × T matrix W with typical element Wit has the form:

WN×T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 . . . T (time period)

0 0 0 0 . . . 0 (never adopter)
0 0 0 0 . . . 1 (late adopter)
0 0 0 0 . . . 1
0 0 1 1 . . . 1
0 0 1 1 . . . 1 (medium adopter)
...

...
...

...
. . .

...

0 1 1 1 . . . 1 (early adopter)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Na ≡
∑N

i=1 1Ai=a be the number of units in the sample with adoption date a, define πa ≡ Na/N , for a ∈ A, as the
fraction of units with adoption date equal to a, and define Πt ≡

∑t
s=1 πs, for t ∈ T, as the fraction of units with an

adoption date on or prior to t .
Also define Y t (a) to be the population average of the potential outcome in period t for adoption date a:

Y t (a) ≡
1
N

N∑
i=1

Yit (a), for t ∈ T, a ∈ A.

Define the unit and average causal effects of adoption date a′ relative to a, on the outcome in period t , as

τit,aa′ ≡ Yit (a′) − Yit (a), τt,aa′ ≡
1
N

N∑
i=1

{
Yit (a′) − Yit (a)

}
= Y t (a′) − Y t (a).

Sun and Abraham (2020) focus on slightly different building blocks. In a super-population perspective they focus on
he population average effect of adopting in period a relative to never adopting, on the outcome in period t + a, for
he subpopulation of units who adopt the treatment in period a, CATTa,t = E[τit+a,∞a|Ai = a]. Callaway and Sant’Anna
2020) and Goodman-Bacon (2018), also in a super-population setting, focus on the average effect of adopting in period
, relative to never adopting, on the outcome in period t , again for the subpopulation who adopts the treatment in period
, ATT(a, t), equal to E[τit,∞a|Ai = a]. This implies that ATT (t, a) = CATTa,t−a. Under random assignment of the adoption
ate, and with N infinite, it follows that ATT (t, a) = τt,∞a and CATTt,a = τt+a,∞a.
The average causal effects τt,aa′ form the components of many of the estimands we consider later. A particularly

nteresting average effect is

τt,∞1 =
1
N

N∑
i=1

(
Yit (1) − Yit (∞)

)
,

he average effect in period t of switching the entire population from never adopting the policy (a = ∞), to adopting the
olicy in the first period (a = 1). Formally there is nothing special about the particular average effect τt,∞1 relative to any
ther τt,aa′ , but τt,∞1 will be useful as a benchmark. Part of the reason is that for all t and i the comparison Yit (1)−Yit (∞)
s between potential outcomes for adoption prior to or at time t (namely adoption date a = 1) and potential outcomes for
adoption later than t (namely, never adopting, a = ∞). In contrast, any other average effect τt,aa′ will for some t involve
comparing potential outcomes neither of which correspond to having adopted the treatment yet, or comparing potential
outcomes both of which correspond to having adopted the treatment already. Therefore, τt,∞1 reflects more directly on
the effect of having adopted the policy than any other τt,aa′ .

3. Assumptions

We consider three sets of assumptions. The first set, containing only a single assumption, is about the design, that is,

the assignment of the treatment, here the adoption date, conditional on the potential outcomes and possibly pretreatment
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ariables. We refer to this as a design assumption because it can be guaranteed by design of the study. The second set
f assumptions is about the potential outcomes, and rules out the presence of certain treatment effects. These exclusion
estrictions are substantive assumptions, and they cannot be guaranteed by design. The third set of assumptions consists
f four auxiliary assumptions, two about homogeneity of certain causal effects, one about sampling from a large population,
nd one about an outcome model in a large population. The nature of these three sets of assumptions, and their
lausibility, is very different, and it is in our view useful to carefully distinguish between them. The current literature
ften combines various parts of these assumptions with functional form assumptions, either implicitly in the notation
sed, or in assumptions about the statistical models for the realized outcomes.

.1. The design assumption

The first assumption is about the assignment process for the adoption date Ai. Our starting point is to assume that the
doption date is completely random:

ssumption 1 (Random Adoption Date). For some set of positive integers Na, for a ∈ A,

pr(A = a) =

(
N!∏

a∈A Na!

)−1

,

or all N-vectors a such that for all a ∈ A,
∑N

i=1 1ai=a = Na.

This assumption is obviously very strong. However, without additional assumptions, this assumption has no testable
mplications in a setting with exchangeable units, as stated formally in the following Lemma.

emma 1 (No Testable Restrictions). Suppose all units are exchangeable. Then Assumption 1 has no testable implications for
he joint distribution of (Y ,A).

ll proofs are given in Appendix.
Hence, if we wish to relax the assumptions, we need to bring in additional information. Such additional information can

ome in the form of pretreatment variables, that is, variables that are known not to be affected by the treatment. In that
ase we can relax the assumption by requiring only that the adoption date is completely random within subpopulations
ith the same values for the pre-treatment variables, using the generalized propensity score (Imbens, 2000). Additional

nformation can also come in the form of restrictions on the potential outcomes or the treatment effects. The implications
f such restrictions on the ability to relax the random adoption assumption is more complex, as discussed in more detail
n Section 3.2.

Under Assumption 1 the marginal distribution of the adoption dates is fixed, and so also the fraction πa is fixed in the
epeated sampling thought experiment. This part of the set up is similar in spirit to fixing the number of treated units
n the sample in a completely randomized experiment. It is convenient for obtaining finite sample results. Note that it
mplies that the adoption dates for units i and j are not independent. Note also that in the standard framework where the
ncertainty arises solely from random sampling, this fraction does not remain constant in the repeated sampling thought
xperiment.
An important role in our analysis is played by what we label the adjusted treatment, adjusted for unit and time period

verages:

Ẇit ≡ Wit − W ·t − W i· + W ,

where W ·t ≡
∑N

i=1 Wit/N , W i· ≡
∑T

t=1 Wit/T , and W ≡
∑N

i=1
∑T

t=1 Wit/(NT ) are averages over units, time periods, and
oth, respectively. We can also write the adjusted treatment indicator as

Ẇit = g(t, Ai),

here

g(t, a) ≡

(
1a≤t −

∑
s≤t

πs

)
+

1
T

(
a1a≤T −

T∑
s=1

sπs

)
+

T + 1
T

(1a=∞ − π∞) , (3.1)

here, with some minor abuse of notation, we adopt the convention that a1a≤T is zero if a = ∞ Under Assumption 1,
hich fixes the marginal distribution of Ai, the sum

∑
i,t Ẇ

2
it is non-stochastic, even though the adjusted treatment Ẇit

nd its square Ẇ 2
it are stochastic. The fact that this sum is non-stochastic enables us to derive exact finite sample results

or the standard DID estimator as discussed in Section 4. This is similar in spirit to the derivation of the exact variance for
he estimator for the average treatment effect in completely randomized experiments when we fix the number of treated
nd controls.
4
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.2. Exclusion restrictions

The next two assumptions concern the potential outcomes. Their formulation does not involve the assignment
echanism, that is, the distribution of the adoption date. In that sense they are unlike the strict and weak exogeneity or
o-feedback assumptions (Chamberlain, 1984; Engle et al., 1983; Chamberlain et al., 1993). In essence these are exclusion
estrictions, assuming that particular causal effects are absent. Collectively these two assumptions imply that we can think
f the treatment as a binary one, the only relevant component of the adoption date being whether a unit is exposed to
he treatment at the time we measure the outcome. This rules out dynamic treatment effects of the type considered in
bbring and Heckman (2007) and Hernan and Robins (2020). Versions of such assumptions are also considered in the DID
etting in Borusyak and Jaravel (2016), de Chaisemartin and d’Haultfœuille (2020), Sun and Abraham (2020), Hazlett and
u (2018) and Imai and Kim (2019), where in the latter a graphical approach is taken in the spirit of the work by Pearl
2000).

The first of the two assumptions, and likely the more plausible of the two in practice, rules out effects of future adoption
ates on current outcomes. More precisely, it assumes that if the policy has not been adopted yet, the exact future date
f the adoption has no causal effect on potential outcomes for the current period.

ssumption 2 (No Anticipation). For all units i, all time periods t , and for all adoption dates a, such that a > t ,

Yit (a) = Yit (∞).

We can also write this assumption as requiring that for all triples (i, t, a),

Yit (a) = 1a≤tYit (a) + 1a>tYit (∞), or 1a>t

(
Yit (a) − Yit (∞)

)
= 0.

This last representation shows most clearly how the assumption rules out certain causal effects. Note that this assumption
does not involve the adoption date, and so does not restrict the distribution of the adoption dates. Violations of this
assumption may arise if the policy is anticipated prior to its implementation (e.g., Abbring and Van den Berg, 2003).

The next assumption is arguably much stronger. It asserts that for potential outcomes in period t it does not matter
how long the unit has been exposed to the treatment, only whether the unit is exposed at time t .

Assumption 3 (Invariance to History). For all units i, all time periods t , and for all adoption dates a, such that a ≤ t ,

Yit (a) = Yit (1).

This assumption can also be written as

Yit (a) = 1a≤tYit (1) + 1a>tYit (a), or 1a≤t

(
Yit (a) − Yit (1)

)
= 0,

with again the last version of the assumption illustrating the exclusion restriction in this assumption. Again, the
assumption does not rule out any correlation between the potential outcomes and the adoption date, only that there
is no causal effect of an early adoption versus a later adoption on the outcome in period t , as long as adoption occurred
before or on period t .

In general, this assumption is very strong. However, there are important cases where it may be more plausible. Suppose
the units are clusters of individuals, where in each period we observe different sets of individuals. To be specific, suppose
the units are states, the time periods are years, and outcome is the employment rate for twenty-five year olds, and the
treatment is the presence or absence of some regulation, say a subsidy for college tuition. In that case it may well be
reasonable to assume that the educational choices for students graduating high school in a particular state depends on
what the prevailing subsidy is, but much less on the presence of subsidies in previous years.

If both the exclusion restrictions, that is, both Assumptions 2 and 3, hold, then the potential outcome Yit (a) can be
indexed by the binary indicator W (a, t) = 1a≤t :

Lemma 2 (Binary Treatment). Suppose Assumptions 2 and 3 hold. Then for all units i, all time periods t and adoption dates
a > a′, (i)

Yit (a′) − Yit (a) = 1a′≤t<a

(
Yit (1) − Yit (∞)

)
,

so that,

Yit (a) = Yit (∞) + 1a≤t

(
Yit (1) − Yit (∞)

)
=

{
Yit (∞) if a ≤ t
Yit (1) otherwise,

and, for all time periods t, and adoption dates a > a′, (ii)

τt,aa′ = τt,∞11a′≤t<a =

{
τt,∞1 if a′

≤ t < a,
0 otherwise.

If these two assumptions hold, we can therefore simplify the notation for the potential outcomes and focus on the pair
of potential outcomes Y (1) and Y (∞).
it it

5
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Note that these two assumptions are substantive, and because they only involve the potential outcomes and not the
adoption date, they cannot be guaranteed by design. This in contrast to the Assumption 1, which can be guaranteed by
randomization of the adoption date. It is also important to note that in many empirical studies Assumptions 2 and 3 are
made, often implicitly by writing a model for realized outcome Yit that depends solely on the contemporaneous treatment
exposure Wit , and not on the actual adoption date Ai or treatment exposure Wit ′ in other periods t ′. In the current
discussion we want to be explicit about the fact that this restriction is an assumption, and that it does not automatically
hold. Note that the assumption does not restrict the time series dependence between the potential outcomes.

It is trivial to see that without additional information, the exclusion restrictions in Assumptions 2 and 3 have no
testable implications because they impose restrictions on pairs of potential outcomes that can never be observed together.
However, in combination with random assignment (Assumption 1), the two exclusion restrictions, Assumptions 2 and 3,
have testable implications as long as T ≥ 2 and there is some variation in the adoption date.

Lemma 3 (Testable Restrictions from the Exclusion Restrictions).
(i) Assumptions 2 and 3 jointly have no testable implications for the joint distribution of (Y ,W ).
(ii) Suppose T ≥ 2, and π2, π∞ > 0. Then the combination of the random adoption date and the exclusion restrictions,
Assumptions 1–3, impose testable restrictions on the joint distribution of (Y ,W ).

This implies that if we maintain, say, the no-anticipation assumption, we can relax the random adoption date
assumption. For example, we can allow the probability of adoption at time t to depend on the outcomes prior to period t .
This type of feedback or violation of strict exogeneity (citetchamberlain1993feedback) is often important in practice
(e.g., Chay and Greenstone, 2005). Here we focus on the random-adoption-date case as a first step towards a design-based
approach in the panel data case.

3.3. Auxiliary assumptions

In this section we consider four auxiliary assumptions that are convenient for some analyses, and in particular can
have implications for the variance of specific estimators, but that are not essential in many cases. These assumptions are
often made in empirical analyses without researchers explicitly discussing them.

The first of these assumptions assumes that the effect of adoption date a′, relative to adoption date a, on the outcome
in period t , is the same for all units.

Assumption 4 (Constant Treatment Effect Over Units). For all units i, j and for all time periods t and all adoption dates a
and a′

Yit (a′) − Yit (a) = Yjt (a′) − Yjt (a).

The second assumption restricts the heterogeneity of the treatment effects over time.

Assumption 5 (Constant Treatment Effect over Time). For all units i and all time periods t and t ′

Yit (1) − Yit (∞) = Yit ′ (1) − Yit ′ (∞).

We only restrict the time variation for comparisons of the adoption dates 1 and ∞ because we typically use this
assumption in combination with Assumptions 2 and 3. In that case we obtain a constant binary treatment effect set up,
as summarized in the following Lemma.

Lemma 4 (Binary Treatment and Constant Treatment Effects). Suppose Assumptions 2–5 hold. Then for all t and a′ < a

Yit (a′) − Yit (a) = 1a′≤t<aτ1∞.

The next assumption allows us to view the potential outcomes as random by postulating a large population from which
the sample is drawn.

Assumption 6 (Random Sampling). The sample can be viewed as a random sampling from an infinitely large population,
with joint distribution for (Ai, Yit (a), a ∈ A, t ∈ T) denoted by f (a, y1(1), . . . , yT (∞)).

Under the random sampling assumption we can put additional structure on average potential outcomes.

Assumption 7 (Additivity).

E [Yit (∞)] = αi + βt .
6
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. Difference-In-Differences estimators: Interpretation and inference

In this section we consider the standard Differences-In-Differences (DID) set up (e.g., Meyer et al., 1995; Bertrand et al.,
004; Angrist and Pischke, 2008; Donald and Lang, 2007; de Chaisemartin and d’Haultfœuille, 2020). In the simplest
etting with N units and T time periods, without additional covariates, the realized outcome in period t for unit i is
odelled as

Yit = αi + βt + τWit + εit . (4.1)

n this model there are unit effects αi and time effects βt , but both are additive with interactions between them ruled
ut. The effect of the treatment is implicitly assumed to be additive and constant across units and time periods.
We interpret the DID estimand under the randomized adoption date assumption, leading to a different setting from

hat considered in de Chaisemartin and d’Haultfœuille (2020), Callaway and Sant’Anna (2020), Sun and Abraham (2020)
nd Goodman-Bacon (2018). We also derive its variance and show that in general it is lower than the standard random-
ampling based variance. Finally we propose a variance estimator that is smaller than the regular variance estimators
uch as the Liang–Zeger and clustered bootstrap variance estimators.

.1. Difference-In-Differences estimators

Consider the least squares estimator for τ based on the specification in (4.1):(
τ̂did, {α̂i}

N
i=2, {β̂t}

T
t=1

)
= arg min

τ ,{αi}
N
i=2,{βt }Tt=1

N∑
i=1

T∑
t=1

(
Yit − αi − βt − τWit

)2
.

t is convenient to write the least squares estimator for the treatment effect in terms of the adjusted treatment indicator
˙ it as

τ̂did =

∑
i,t ẆitYit∑
i,t Ẇ

2
it

.

he primary question of interest in this section concerns the properties of the estimator τ̂did. This includes the interpre-
ation of its expectation under various sets of assumptions, and its variance. Mostly we focus on exact properties in finite
amples. Note that under Assumption 1, the denominator of τ̂did is non-stochastic.
In order to interpret the expected value of τ̂did we consider some intermediate objects. Define, for all adoption dates

∈ A, and all time periods t ∈ T the average outcome in period t for units with adoption date a:

Y t,a =

{ 1
Na

∑
i:Ai=a Yit if Na > 0,

0 otherwise.

Under Assumption 1 the stochastic properties of these averages are well-defined because the Na are fixed over the
randomization distribution. The averages are stochastic because the realized outcomes depend on the adoption date.
Define also the following two difference between outcome averages:

τ̂t,aa′ = Y t,a′ − Y t,a.

iven the random adoption date assumption (Assumption 1) these differences estimate average causal effects.

xample. To facilitate the interpretation of some of the results it is useful to consider a special case where the results from
completely randomized experiments directly apply. Suppose T = {1, 2}, and A = {2, ∞}, with a fraction π = π2 = 1−π∞

adopting the policy in the second period. Suppose also that the first period outcome is zero for all units and all adoption
dates, Yi1(a) = 0 for all i and a, so that we can directly apply cross-section results. Then the DID estimator is

τ̂did = τ̂2,2∞ = Y 2,2 − Y 2,∞ =
1
N2

∑
i:Ai=2

Yi2 −
1
N∞

∑
i:Ai=∞

Yi2,

he simple difference in means for the second period outcomes for adopters and non-adopters. Under Assumption 1, the
tandard results for the variance of the difference in means for a randomized experiments apply (e.g., Neyman, 1923/1990;
mbens and Rubin, 2015), and the exact variance of τ̂did is,

V(τ̂did) =
1

N2(N − 1)

N∑
i=1

{
Yi2(2) − Y 2(2)

}2
+

1
N∞(N − 1)

N∑
i=1

{
Yi2(∞) − Y 2(∞)

}2

−
1

N(N − 1)

N∑{(
Yi2(2) − Y 2(2)

)
−
(
Yi2(∞) − Y 2(∞)

)}2
.

i=1

7
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he standard Neyman estimator for this variance ignores the third term, and uses unbiased estimators for the first two
erms, leading to:

V̂(τ̂did) =
1

N2(N2 − 1)

∑
i:Ai=2

{
Yi2 − Y 2,2

}2
+

1
N∞(N∞ − 1)

∑
i:Ai=∞

{
Yi2 − Y 2,∞

}2
,

with E[V̂(τ̂did)] ≥ V(τ̂did). □

4.2. The interpretation of Difference-In-Differences estimators

The following weights play an important role in the interpretation of the DID estimand:

γt,a ≡
πag(t, a)∑

t ′∈T
∑

a′∈A πa′g(t ′, a′)2
, γt,+ ≡

∑
a≤t

γt,a, and γt,− ≡

∑
a>t

γt,a, (4.2)

with g(t, a) as defined in (3.1). Note that these weights are non-stochastic, that is, fixed over the randomization
distribution.

Example (Ctd). Continuing the example with two periods and adoption in the second period or never. Then we have

γt,a =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if (t, a) = (1, 1),
0 if (t, a) = (2, 1),
−1 if (t, a) = (1, 2),
1 if (t, a) = (2, 2),
1 if (t, a) = (1, ∞),
−1 if (t, a) = (2, ∞),

γt,+ =

{
0 if t = 1,
1 if t = 2, and γt,− =

{
0 if t = 1,
−1 if t = 2. □

In general the weights γt,a have some important properties,∑
t∈T

γt,+ = 1
∑
t∈T

γt,− = −1, and
T∑

t=1

∑
a∈A

γt,a =

∑
t∈T

γt,+ +

∑
t∈T

γt,− = 0.

ow we can state the first main result of the paper.

emma 5. We can write τ̂did as

τ̂did =

∑
t∈T

∑
a∈A

γt,aY t,a =

∑
t∈T

γt,+τ̂t,∞1 +

∑
t∈T

∑
a>t

γt,aτ̂t,∞a −

∑
t∈T

∑
a≤t

γt,aτ̂t,a1. (4.3)

omment 1. Alternative characterizations of the DID estimator or estimand as a weighted average of potentially causal
omparisons are presented in Sun and Abraham (2020), de Chaisemartin and d’Haultfœuille (2020), Han (2020), Goodman-
acon (2018), Imai and Kim (2019), Borusyak and Jaravel (2016), and Kim et al. (2019). The characterizations differ in
erms of the building blocks that are used in the representation and the assumptions made. Like our representation, the
epresentation in Sun and Abraham (2020) is in terms of average causal effects of different adoption dates, but it imposes
o-anticipation. Goodman-Bacon (2018) presents the DID estimator in terms of basic two-group DID estimators. Just like
ur representation, the Goodman-Bacon (2018) representation does not rely on any assumptions. To endow the building
locks and the representation itself with a causal interpretation requires some assumption on, for example, the assignment
echanism. □

omment 2. The lemma implies that the DID estimator has an interpretation as a weighted average of simple estimators
or the causal effect of changes in adoption dates, the τ̂t,aa′ . Moreover, the estimator can be written as the sum of three
verages of these τ̂t,aa′ . The first is a weighted average of the τ̂t,∞1, which are all averages of switching from never adopting
o adopting in the first period, meaning that these are averages of changes in adoption dates that involve switching from
ot being treated at time t to being treated at time t . The sum of the weights for these averages is one, although some
f the weights may be negative. The second sum is a weighted sum of τ̂t,∞a, for a > t , so that the causal effect always
nvolves changing the adoption date from never adopting to adopting some time after t , meaning that the comparison is
etween potential outcomes neither of which involves being treated at the time. The sum of the weights for these averages
s again one. The third sum is a weighted sum of τ̂t,a1, for a ≤ t , so that the causal effect always involves changing the
doption date from adopting prior to, or at time, t relative to adopting at the initial time, meaning that the comparison
s between potential outcomes both of which involves being treated at the time. These weights sum to minus one. □

If we are willing to make the random adoption date assumption we can give this representation a causal interpretation:
8
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heorem 1. Suppose Assumption 1 holds. Then (i):

E
[
τ̂t,aa′

]
= τt,aa′ ,

nd (ii)

E
[
τ̂did
]

=

∑
t∈T

γt,+τt,∞1 +

∑
t∈T

∑
a>t

γt,aτt,∞a −

∑
t∈T

∑
a≤t

γt,aτt,a1.

uppose both Assumptions 1 and 2 hold. Then (iii):

E
[
τ̂did
]

=

∑
t∈T

∑
a≤t

γt,aτt,∞a =

∑
t∈T

γt,+τt,∞1 −

∑
t∈T

∑
a≤t

γt,aτt,a1.

uppose Assumptions 1–3 hold. Then (iv):

E
[
τ̂did
]

=

T∑
t=1

γt,+τt,∞1.

uppose Assumptions 1–5 hold. Then (v):

E
[
τ̂did
]

= τ∞1.

Part (iii) of the theorem where we make the no-anticipation assumption is closely related to one of the results in Sun
nd Abraham (2020), who make a super-population common trend assumption that, in the super-population context,
eakens our random adoption date assumption. Part (iv) of the theorem, where we assume both the exclusion restrictions
o that the treatment is effectively a binary one, is related to the results in de Chaisemartin and d’Haultfœuille (2020).
Without either Assumptions 2 or 3, the estimand τdid has a causal interpretation, but it is not clear it is a very interesting

ne concerning the receipt of the treatment. With the no-anticipation assumption (Assumption 2), the interpretation, as
iven in part (iii) of the theorem, is substantially more interesting. Now the estimand is a weighted average of τt,∞a for
≤ t , with weights summing to one. These τt,∞a are the average causal effect of changing the adoption date from never
dopting to some adoption date prior to, or equal to, time t , so that the average always involves switching from not being
xposed to the treatment to being exposed to the treatment.

.3. The randomization variance of the Difference-In-Differences estimators

In this section we derive the randomization variance for τ̂did under the randomized adoption date assumption. We do
ot rely on other assumptions here, although such assumptions may be required for making the estimand a substantively
nteresting one. The starting point is the representation τ̂did =

∑
t,a γt,aY t,a. Because under Assumption 1 the weights γt,a

re fixed, the variance is

V(τ̂did) =

∑
t,a

γ 2
t,aV(Y t,a) +

∑
(t,a)̸=(t ′,a′)

γt,aγt ′,a′C(Y t,a, Y t ′,a′ ).

Note that the γt,a are known, so the sole challenge is to find estimators for the V(Y t,a) and C(Y t,a, Y t ′,a′ ). Working out the
variance V(Y t,a), and finding an unbiased estimator for it, is straightforward. It is more challenging to infer the covariance
erms C(Y t,a, Y t ′,a′ ), and even more difficult to estimate them without bias. In fact, in general that is not possible. Note that
for a sampling-based variance the γt,a are not fixed, because in different samples the fractions with a particular adoption
date will be stochastic. This in general leads to a larger variance, as we verify in simulations.

Define

Yi(a) =

T∑
t=1

γt,aYit (a), Y (a) =

T∑
t=1

γt,aY t (a) and Y a =

T∑
t=1

γt,aY t,a.

Now we can write τ̂did as

τ̂did =

∑
a∈A

∑
t∈T

γt,aY t,a =

∑
a∈A

Y a.

Define also

S2a =
1

N − 1

N∑
i=1

(
Yi(a) − Y (a)

)2
,

and

V 2
a,a′ =

1
N − 1

N∑
i=1

{(
Yi(a) − Y (a)

)
+
(
Yi(a′) − Y (a′)

)}2
.

9
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T
heorem 2. Suppose Assumption 1 holds. Then the exact variance of τ̂did over the randomization distribution is

V
(
τ̂did
)

=

∑
a∈A

S2a

(
1
Na

+
T − 1
N

)
−

∑
a∈A

∑
a′∈A,a′>a

V 2
a,a′

N
,

with

V
(
τ̂did
)

≤

∑
a∈A

S2a /Na.

Comment (Ctd). In our two period example with some units adopting in the second period and the others not at all, and
the first period outcome is zero, Yi1(a) = 0, we have

γ1 =

(
0
0

)
, γ2 =

(
−1
1

)
, and γ∞ =

(
1

−1

)
.

S21 = 0,

S2,2 =
1

N − 1

N∑
i=1

⎛⎝Yi2(2) −
1
N

N∑
j=1

Yj2(2)

⎞⎠2

,

S2
∞

=
1

N − 1

N∑
i=1

⎛⎝Yi2(∞) −
1
N

N∑
j=1

Yj2(∞)

⎞⎠2

,

V 2
1,2 = 0, S21,∞ = 0,

V 2
2,∞ =

1
N − 1

N∑
i=1

⎛⎝⎛⎝Yi2(2) −
1
N

N∑
j=1

Yi2(2)

⎞⎠−

⎛⎝Yi2(∞) −
1
N

N∑
j=1

Yi2(∞)

⎞⎠⎞⎠2

,

so that in this special

V(τ̂did) =
1

N2(N − 1)

N∑
i=1

⎛⎝Yi2(2) −
1
N

N∑
j=1

Yi2(2)

⎞⎠2

+
1

N∞(N − 1)

N∑
i=1

⎛⎝Yi2(∞) −
1
N

N∑
j=1

Yi2(∞)

⎞⎠2

−
1

N(N − 1)

N∑
i=1

⎛⎝⎛⎝Yi2(2) −
1
N

N∑
j=1

Yi2(2)

⎞⎠−

⎛⎝Yi2(∞) −
1
N

N∑
j=1

Yi2(∞)

⎞⎠⎞⎠2

,

which agrees with the Neyman variance for a completely randomized experiment. □

4.4. Estimating the randomization variance of the Difference-In-Differences estimators

In this section we discuss estimating the variance of the DID estimator. In general there is no unbiased estimator
for V

(
τ̂did
)
. This is not surprising, because there is no such estimator for the simple difference in means estimator in a

completely randomized experiment, and this corresponds to the special case with T = 1. However, it turns out that just
like in the simple randomized experiment case, there is a conservative variance estimator. In the current case it is based
on using unbiased estimators for the terms involving S2a , and ignoring the terms involving V 2

a,a′ . Because the latter are
non-negative, and always enter with a minus sign, ignoring them leads to an upwardly biased variance estimator. One
difference with the simple randomized experiment case is that there is no simple case with constant treatment effects
such that the variance estimator is unbiased.

Next, define the estimated variance of this by adoption date:

s2a ≡
1

Na − 1

∑ (
Yi − Y a

)2
.

i:Ai=a

10
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N
ow we can characterize the proposed variance estimator as

V̂did ≡

∑
a∈A

s2a
Na

.

Theorem 3. Suppose Assumption 1 holds. Then

E
[
V̂did

]
≥ V(τ̂did),

so that V̂did is a conservative variance estimator for τ̂did.

There are two important issues regarding this variance estimator. The first is its relation to the standard variance
estimator for DID estimators. The second is whether one can improve on this variance estimator given that in general it
is conservative.

The relevant variance estimators are the Liang–Zeger clustered variance estimator and the clustered bootstrap (Liang
and Zeger, 1986; Chamberlain, 1984; Arellano, 1987a; Bertrand et al., 2004). Both have large sample justifications under
random sampling from a large population, so they are in general not equal to the variance estimator here. In large samples
both the Liang–Zeger and bootstrap variance will be more conservative than V̂did because they also take into account
variation in the weights γt,a. These weights are kept fixed under the randomization scheme, because that keeps fixed the
marginal distribution of the adoption dates. In contrast, under the Liang–Zeger calculations and the clustered bootstrap,
the fraction of units with a particular adoption date varies, and that introduces additional uncertainty.

The second issue is whether we can improve on the conservative variance estimator V̂did. In general there is only a
limited ability to do so. Note, for example, that in the two period example this variance reduces to the Neyman variance in
randomized experiments. In that case we know we can improve on this variance a little bit exploiting heteroskedasticity,
e.g., Aronow et al. (2014), but in general those gains are modest.

5. Some simulations

The goal is to compare the exact variance, and the corresponding estimator in the paper to the two leading alternatives,
the Liang–Zeger (stata) clustered standard errors and the clustered bootstrap. We want to demonstrate settings where
the proposed variance estimator differs from the Liang–Zeger clustered variance, and settings where it is the same. We
have N units, observed for T time periods. We focus on the case with T = 3. The adoption date is randomly assigned,
with two distributions for the adoption date, πI = (π1, π2, π3, π∞) = (0, 0.67, 0, 0.33), and πII = (π1, π2, π3, π∞) =

(0, 0.5, 0.4, 0.1).
We consider four designs for the potential outcome distributions in the population, the Yi(a) for a ∈ {1, 2, 3, ∞}. In

Design A the potential outcomes, are generated as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yi1(2)
Yi1(3)
Yi1(∞)
Yi2(2)
Yi2(3)
Yi2(∞)
Yi3(2)
Yi3(3)
Yi3(∞)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
4
3
3
2
2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In this design Assumptions 1–5 hold: the treatment effect is constant, and depends only on whether the adoption date
precedes the potential outcome date, or

Yit (a) = 1a≤t + εit ,

where the εit are correlated over time.
In Design B the potential outcomes are generated as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yi1(2)
Yi1(3)
Yi1(∞)
Yi2(2)
Yi2(3)
Yi2(∞)
Yi3(2)
Yi3(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
2
1
1
2
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Yi3(∞) 1 0 0 0 0 0 0 0 0 1
11
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ere the presence of treatment effects requires the treatment having been adopted, but the effects vary by the adoption
ate, so that Assumption 3 does not hold.
In Design C the potential outcomes are generated with positive correlations between the potential outcomes as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yi1(2)
Yi1(3)
Yi1(∞)
Yi2(2)
Yi2(3)
Yi2(∞)
Yi3(2)
Yi3(3)
Yi3(∞)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
2
1
1
2
11
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.9 0.9 0 0 0 0 0 0
0.9 1 0.9 0 0 0 0 0 0
0.9 0.9 1 0 0 0 0 0 0
0 0 0 1 0.9 0.9 0 0 0
0 0 0 0.9 1 0.9 0 0 0
0 0 0 0.9 0.9 1 0 0 0
0 0 0 0 0 0 1 0.9 0.9
0 0 0 0 0 0 0.9 1 0.9
0 0 0 0 0 0 0.9 0.9 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In Design D the potential outcomes are generated with negative correlations between the potential outcomes as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Yi1(2)
Yi1(3)
Yi1(∞)
Yi2(2)
Yi2(3)
Yi2(∞)
Yi3(2)
Yi3(3)
Yi3(∞)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
2
1
1
2
11
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, σ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −0.4 −0.4 0 0 0 0 0 0
−0.4 1 −0.4 0 0 0 0 0 0
−0.4 −0.4 1 0 0 0 0 0 0
0 0 0 1 −0.4 −0.4 0 0 0
0 0 0 −0.4 1 −0.4 0 0 0
0 0 0 −0.4 −0.4 1 0 0 0
0 0 0 0 0 0 1 −0.4 −0.4
0 0 0 0 0 0 −0.4 1 −0.4
0 0 0 0 0 0 −0.4 −0.4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For a particular design, eg (A, II) draw the four sets of three-component vectors of potential outcomes for each unit
the three components corresponding to the three time periods), one set for each of the values of a ∈ {1, 2, 3, ∞}. We
eep these sets of potential outcomes fixed across all simulations for a given design. Then for each simulation draw the
doption date according to the distribution for that design, keeping the fraction of units with a particular adoption date
ixed.

We want to look at variances and the corresponding confidence intervals based on four methods for estimating
he variance for the DID estimator. The confidence intervals are Normal-distribution based, simply equal to the point
stimates plus and minus 1.96 times the square root of the variances. We can write τ̂did as a regression estimator with
T observations, and N + T regressors. Let with j = 1, . . . ,NT . For observation j, Tj ∈ {1, . . . , T } denotes the time period
he observation is from, and Nj ∈ {1, . . . ,N} denotes the unit is corresponds to. Now let Yj = YNj,Tj and Wj = WNj,Tj , so
hat the regression function can be written as

Yj = µ +

N−1∑
n=1

αn1Nj=n +

T−1∑
t=1

βt1Tj=t + τWj + εj = Yj = X⊤

j θ + εj,

here Xj = (1, 1Nj=1, . . . , 1Nj=N−1, 1Tj=1, . . . , 1Tj=T−1,Wj), and θ = (µ, α1, . . . , αN−1, β1, . . . , βT−1, τ ).
We compare five variances. The first is the (infeasible) exact randomization-based variance,

Vdid = V
(
τ̂
)

=

∑
a∈A

S2γa,a
Na

−

∑
a∈A

∑
a′∈A,a′>a

V 2
γa,a,γa′ ,a

′

N
.

The other four are estimators of the variance. First, the conservative variance estimator V̂did,

V̂did ≡

∑
a∈A

1
Na(Na − 1)

∑
i:Ai=a

(
Yi − Y a

)2
.

Second, the standard Liang–Zeger clustered variance. Start with the regression representation of the estimator, based on
the regression Yj = X⊤

j θ + εj with the covariates including the unit and time fixed effects and the treatment indicator.
Let ε̂j = Yj − X⊤

j θ̂ be the residual from this regression. Calculate the variance as

V̂LZ =

⎛⎝ J∑
j=1

XjX⊤

j

⎞⎠−1⎛⎝ N∑
n=1

⎛⎝∑
j:Nj=n

Xjε̂j

⎞⎠⎛⎝∑
j:Nj=n

Xjε̂j

⎞⎠⊤⎞⎠⎛⎝ J∑
j=1

XjX⊤

j

⎞⎠−1

.

e then use the component of this variance/covariance matrix corresponding to the estimator for the treatment effect,
ˆdid.

The last two variance estimators are two versions of the clustered bootstrap. First, the standard clustered bootstrap,
. Draw bootstrap samples based on drawing units, with all time periods for each unit drawn. Note that this explicitly
B1

12
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r

able 1
imulations: Variances and coverage rates for 95% confidence intervals.

Design π N Vdid Cov V̂did Cov V̂LZ Cov V̂B1 Cov V̂B2 Cov

A I 30 0.144 0.951 0.239 0.979 0.214 0.974 0.232 0.975 0.219 0.973
B I 30 0.111 0.947 0.187 0.986 0.163 0.978 0.182 0.982 0.172 0.978
C I 30 0.201 0.953 0.217 0.947 0.181 0.925 0.211 0.942 0.200 0.932
D I 30 0.064 0.949 0.265 1.000 0.230 0.999 0.257 1.000 0.244 0.999
A II 30 0.112 0.946 0.165 0.972 0.146 0.966 0.158 0.969 0.142 0.956
B II 30 0.085 0.947 0.139 0.973 0.268 0.999 0.269 0.999 0.119 0.962
C II 30 0.184 0.949 0.191 0.939 0.279 0.983 0.285 0.981 0.162 0.920
D II 30 0.081 0.950 0.164 0.992 0.285 1.000 0.280 0.999 0.142 0.987
A I 150 0.027 0.953 0.047 0.991 0.045 0.989 0.047 0.989 0.046 0.989
B I 150 0.022 0.955 0.041 0.994 0.039 0.992 0.041 0.992 0.041 0.992
C I 150 0.035 0.956 0.038 0.960 0.036 0.956 0.037 0.955 0.037 0.954
D I 150 0.019 0.950 0.044 0.997 0.044 0.997 0.044 0.996 0.043 0.995
A II 150 0.020 0.952 0.033 0.989 0.033 0.989 0.033 0.987 0.032 0.987
B II 150 0.021 0.945 0.036 0.985 0.053 0.997 0.052 0.997 0.035 0.984
C II 150 0.034 0.952 0.035 0.953 0.051 0.985 0.052 0.983 0.034 0.947
D II 150 0.016 0.950 0.028 0.990 0.044 0.998 0.044 0.998 0.028 0.987

changes from bootstrap sample to bootstrap sample the fraction of units with a particular adoption date. Second, a
modification (improvement) of the standard clustered bootstrap, V̂B2, where we fix the fraction of units with each value
or the adoption date.

In Table 1 we report the results. For each of the five variances we report the average of variance, and the coverage
ate for the 95% confidence interval.

We see that the standard Liang–Zeger and the clustered bootstrap (V̂B1) substantially over-estimate the variance
in Design B. The fixed adoption date bootstrap (V̂B2) and the proposed variance estimator (V̂did) have the appropriate
coverage.

6. Conclusion

We discuss a design-based approach to Difference-In-Differences estimation in a setting with staggered adoption and
argue that this clarifies the properties of DID estimators. We characterize what the standard DID estimator is estimating
under a random adoption date assumption, and what the exact finite sample variance of the standard estimator is. We
show that the standard DID estimand is a weighted average of different types of causal effects, for example, the effect
of changing from never adopting to adopting in the first period, or changing from never adopting to adopting later. In
this approach the standard Liang–Zeger and clustered bootstrap variance estimators are conservative, similar to standard
variance estimators in randomized experiments. In contrast to simple randomized experiments, however, one can improve
systematically on the standard variance estimator, and we do so with an improved variance estimator, V̂B2, the bootstrap
where we keep the distribution of the adoption dates fixed.

Appendix

Proof of Lemma 1. Let Y p denote the N × (T · (T + 1)) dimensional matrix with all the potential outcomes. Because the
units are exchangeable we can write the joint distribution of the potential outcomes and A as

f (Y p,A) =

N∏
i=1

f (Y p
i , Ai).

Now we shall construct a distribution f (Y p
i , Ai) that satisfies two conditions. First, Ai is independent of all the potential

outcomes and second, the implied distribution for the adoption date and the realized outcome is consistent with the
actual distribution. To do so we assume independence of the sets potential outcomes Yi1(a), . . . , fiT (a) for different a, and
assume that

f (Yi1(a), . . . , fiT (a)) = f (Yi1(a), . . . , fiT (a)|Ai = a) = f (Yi1, . . . , fiT |Ai = a). □

Proof of Lemma 2. By Assumption 2 we have

Yit (a) = 1a≤tYit (a) + 1a>tYit (∞),

and by Assumption 3 we have
Yit (a) = 1a≤tYit (1) + 1a>tYit (a).

13
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ombining the two assumptions implies

Yit (a) = 1a≤tYit (1) + 1a>tYit (∞).

Hence

Yit (a′) − Yit (a) = 1a′≤tYit (1) + 1a′>tYit (∞) −
(
1a≤tYit (1) + 1a>tYit (∞)

)
= 1a′≤t<t (Yit (1) − Yit (∞)) ,

which proves part (i).
For part (ii)

τt,aa′ =
1
N

N∑
i=1

(
Yit (a′) − Yit (a)

)

=
1
N

N∑
i=1

1a′≤t<t (Yit (1) − Yit (∞))

= 1a′≤t<t
1
N

N∑
i=1

(Yit (1) − Yit (∞)) = 1a≤t<a′τt,∞1. □

Proof of Lemma 3. Part (i) follows directly from the fact that the exclusion restrictions place restrictions only on potential
utcomes that cannot be observed together.
Let us turn to part (ii). By assumption

Yit (a) ⊥⊥ Ai,

hich as a special case includes

Yi1(∞) ⊥⊥ Ai.

ence

Yi1(∞) ⊥⊥ Ai

⏐⏐⏐ Ai ≥ 2

hich implies

Yi1 ⊥⊥ Ai

⏐⏐⏐ Ai ≥ 2

nd thus

Yi1 ⊥⊥ Ai

⏐⏐⏐ Ai ∈ {2, ∞},

hich is a testable restriction. □

roof of Lemma 4. By Assumptions 2 and 3 we have

Yit (a) − Yit (∞) = 1a≤t

(
Yit (1) − Yit (∞)

)
.

y Assumptions 4 and 5, Yit (1) − Yit (∞) = τ1∞, so that

Yit (a) − Yit (∞) = 1a≤tτ1∞. □

roof of Lemma 5. Using the definition for g(t, a), we can write τ̂did as

τ̂did =

∑
i,t ẆitYit∑
i,t Ẇ

2
it

=

∑
t∈T
∑

a∈A
∑

i:Ai=a ẆitYit

N
∑

t∈T
∑

a∈A πag(a, t)2
=

∑
t∈T
∑

a∈A
∑

i:Ai=a g(a, t)Yit

N
∑

t∈T
∑

a∈A πag(a, t)2

=

∑
t∈T
∑

a∈A
∑

i:Ai=a g(a, t)NaY t,a

N
∑

t∈T
∑

a∈A πag(a, t)2

=

∑
t∈T
∑

a∈A g(a, t)πaY t,a∑
t∈T
∑

a∈A πag(a, t)2
=

∑
t,a

γt,aY t,a,

where γt,a is as given in (4.2). □
14
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roof of Theorem 1. First consider part (i). We will show that

E[Y ta] = Y t (a),

hich in turn implies the result in (i). We can write

E[Y ta] = E

[
1
Na

N∑
i=1

1Ai=aYit

]
= E

[
1
Na

N∑
i=1

1Ai=aYit (a)

]
.

y Assumption 1 this is equal to

1
Na

N∑
i=1

E
[
1Ai=a

]
Yit (a) =

1
Na

N∑
i=1

Na

N
Yit (a) =

1
N

N∑
i=1

Yit (a) = Y t (a),

hich is the desired result.
ext consider part (ii). By Lemma 5,

τ̂did =

∑
t∈T

γt,+τ̂t,∞1 +

∑
t∈T

∑
a>t

γt,aτ̂t,∞a −

∑
t∈T

∑
a≤t

γt,aτ̂t,a1,

o that

E
[
τ̂did
]

= E

[∑
t∈T

γt,+τ̂t,∞1 +

∑
t∈T

∑
a>t

γt,aτ̂t,∞a −

∑
t∈T

∑
a≤t

γt,aτ̂t,a1

]
,

hich by Assumption 1 is equal to∑
t∈T

γt,+E
[
τ̂t,∞1

]
+

∑
t∈T

∑
a>t

γt,aE
[
τ̂t,∞a

]
−

∑
t∈T

∑
a≤t

γt,aE
[
τ̂t,a1

]
.

his in turn, by part (i), is equal to∑
t∈T

γt,+τt,∞1 +

∑
t∈T

∑
a>t

γt,aτt,∞a −

∑
t∈T

∑
a≤t

γt,aτt,a1,

hich finishes the proof of part (ii).
ext consider part (iii). If Assumption 2 holds, then for all a > t , τt,∞a = 0, so that

E
[
τ̂did
]

=

∑
t∈T

γt,+τt,∞1 −

∑
t∈T

∑
a≤t

γt,aτt,a1

=

∑
t∈T

∑
a≤t

γt,aτt,∞a.

ext consider part (iv). If also Assumption 3 holds, then also for all a ≤ t , τt,a1 = 0, so that

E
[
τ̂did
]

=

∑
t∈T

γt,+τt,∞1 +

∑
t∈T

∑
a>t

γt,aτt,∞a −

∑
t∈T

∑
a≤t

γt,aτt,a1

=

∑
t∈T

γt,+τt,∞1.

inally, consider part (v). This follows directly from part (iv) in combination with the constant treatment effect assumption
Assumption 5). □

ext we give a preliminary result.

emma A.1. Suppose that Assumption 1 holds. Then (i) the variance of Y a is

V(Y a) =
S2a
Na

(
1 −

Na

N

)
,

(ii), the covariance of Y a and Y a′ is

C(Y a, Y a′ ) = −
1
2N

(
S2a + S2a′ − S2aa′

)
=

1
2N

(
S2a + S2a′ − V 2

aa′

)
,

iii), the variance of the sum of the Y a is

V

(∑
Y a

)
=

∑
S2a

(
1
Na

+
T − 1
N

)
−

1
2N

∑
V 2
aa′ ,
a∈A a∈A a,a′:a̸=a′
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nd (iv),

V

(∑
a∈A

Y a

)
≤

∑
a∈A

S2a
Na

.

roof of Lemma A.1. Part (i) follows directly from the variance of a sample average with random sampling from a finite
opulation.
ext consider part (ii). Define

S2aa′ =
1

N − 1

N∑
i=1

{(
Yi(a′) − Y (a′)

)
−
(
Yi(a) − Y (a)

)}
.

Recall that the variance of the difference between Y a′ and Y a is

V(Y a′ − Y a) =
S2a
Na

+
S2a′

Na′

−
S2aa′

N
,

from the results in Neyman (1923/1990) and Imbens and Rubin (2015) for completely randomized experiments with a
binary treatment. In general it is also true that

V(Y a′ − Y a) = V(Y a) + V(Y a′ ) − 2C(Y a, Y a′ ).

Combining these two characterizations of the variance of the standard estimator for the average treatment effect, it follows
that the covariance is equal to

C(Y a, Y a′ ) =
1
2

{
V(Y a) + V(Y a′ ) − V(Y a′ − Y a)

}
=

1
2

{
S2a
Na

(
1 −

Na

N

)
+

S2a′

Na′

(
1 −

Na′

N

)
−

{
S2a
Na

+
S2a′

Na′

−
S2aa′

N

}}
= −

1
2N

{
S2a + S2a′ − S2aa′

}
= −

1
2N

{
S2a + S2a′ + V 2

aa′ − 2S2a − 2S2a′

}
=

1
2N

{
S2a + S2a′ − V 2

aa′

}
.

ext, consider part (iii). Using the result in part (ii),

V

(∑
a∈A

Y a

)
=

∑
a∈A

V(Y a) +

∑
a,a′:a̸=a′

C(Y a, Y a′ )

=

∑
a∈A

S2a
Na

(
1 −

Na

N

)
+

1
2N

∑
a,a′:a̸=a′

{
S2a + S2a′ − V 2

aa′

}
=

∑
a∈A

S2a

(
1
Na

−
1
N

+
T
N

)
−

1
2N

∑
a,a′:a̸=a′

V 2
aa′

=

∑
a∈A

S2a

(
1
Na

+
T − 1
N

)
−

1
2N

∑
a,a′:a̸=a′

V 2
aa′ .

inally, consider part (iv). The third term, the sum of V 2
aa′ terms is not directly estimable. Because it has a negative sign,

e need to find a lower bound on this sum. A trivial lower bound is zero, but we can do better. We will show that
1
2N

∑
a,a′:a̸=a′

V 2
aa′ ≥

∑
a∈A

S2a
T − 1
N

. (A.1)

This in turn implies

−
1
2N

∑
V 2
aa′ ≤ −

∑
S2a

T − 1
N

,

a,a′:a̸=a′ a∈A
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nd thus

V

(∑
a∈A

Y a

)
=

∑
a∈A

S2a

(
1
Na

+
T − 1
N

)
−

1
2N

∑
a̸=a′

V 2
aa′

≤

∑
a∈A

S2a

(
1
Na

+
T − 1
N

)
−

∑
a∈A

S2a
T − 1
N

=

∑
a∈A

S2a
Na

.

The last inequality to prove is (A.1). First,

V 2
aa′ =

1
N − 1

N∑
i=1

((
Yi(a′) − Y (a′)

)
+
(
Yi(a) − Y (a)

))2

=
1

N − 1

N∑
i=1

{(
Yi(a′) − Y (a′)

)2
+
(
Yi(a) − Y (a)

)2
+ 2

(
Yi(a′) − Y (a′)

) (
Yi(a) − Y (a)

)2}
=

1
N

(
S2a + S2a′ + 2C(Yi(a), Yi(a′))

)
.

ence
1
2N

∑
a̸=a′

V 2
aa′ =

1
2N

∑
a,a′:a̸=a′

{
S2a + S2a′ + 2C(Yi(a), Yi(a′))

}

=

∑
a∈A

S2a
T
N

+
1
N

∑
a̸=a′

C(Yi(a), Yi(a′)). (A.2)

Next,

0 ≤ V

(∑
a∈A

Yi(a)

)
=

∑
a∈A

V(Yi(a)) +

∑
a,a′:a̸=a′

C(Yi(a), Yi(a′)).

herefore∑
a,a′:a̸=a′

C(Yi(a), Yi(a′)) ≥ −

∑
a∈A

V(Yi(a)) = −

∑
a∈A

S2a . (A.3)

ombining (A.2) and (A.3) we get the bound

1
2N

∑
a,a′:a̸=a′

V 2
aa′ =

∑
a∈A

S2a
T
N

+
1
N

∑
a,a′:a̸=a′

C(Yi(a), Yi(a′))

≥

∑
a∈A

S2a
T
N

−

∑
a∈A

S2a =

∑
a∈A

S2a
T − 1
N

,

which proves (A.1). □

Proof of Theorem 2. This follows directly from the results in Lemma A.1. □

roof of Theorem 3. By Assumption 1 it follows that

E
[
s2γa,a

]
= S2γa,a.

his implies that

E
[
V̂did

]
= E

[∑
a∈A

s2γa,a/Na

]
=

∑
a∈A

S2γa,a/Na ≥ V(τ̂did),

here the inequality is by Theorem 2. □
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