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Abstract

Breiman’s “Two Cultures” paper painted a picture of two disciplines, data modeling, and
algorithmic machine learning, both engaged in the analyses of data but talking past each
other. Although that may have been true at the time, there is now much interaction
between the two. For example, in economics, machine learning algorithms have become
valuable and widely appreciated tools for aiding in the analyses of economic data, informed
by causal/structural economic models.
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1. Introduction

When we first read Breiman’s “Two Cultures” paper (Breiman, 2001) in the early 2000’s
it baffled us. In econometrics, as in much of statistics (98% according to Breiman), the
modeling culture was dominant, and a purely prediction-based focus seemed very alien to
what econometricians were doing. You can see this clearly in the history of econometrics
(see for a description, e.g, Hendry and Morgan (1997)). From the founding days of the
field many researchers were more focused on identification and estimation of causal effects
(e.g., the parameters of structural models) than on prediction. This causality-based focus
led econometricians to de-emphasize R2 values as measures of success, and instead aim to
build a credible case for estimation of causal effects. To illustrate the difference between
the predictive and causal approaches, we discuss two examples. Both examples are part
of what Josh Angrist and Steve Pischke later called the credibility revolution (Angrist and
Pischke (2010)) that since the late 1980s has been a major influence in empirical work in
economics. Then we discuss how more recently researchers in econometrics have started
appreciating the benefits of the algorithmic machine learning approaches. A rapdily grow-
ing literature attempts to combine the benefits of the prediction-focused machine learning
algorithm approaches with the traditional focus on causal model-based approaches.

The first illustration focuses on the problem of estimating supply and demand functions,
an important example of a simultaneous equations problem. The study of such problems
goes back to the founding of econometrics as a separate discipline (see the example of the
demand for potato flour in Tinbergen (1930), with a translation in Hendry and Morgan
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(1997) and further discussion in Imbens). We illustrate this with an application taken from
Angrist et al. (2000). They study the demand for fish as a function of price, using daily data
from the Fulton fish market in New York. The demand function is a causal object, defined
as the quantity as a function of the price that buyers would be willing to buy if the price
was set exogenously. We denote the average demand function, averaged over buyers, by the
potential outcome function Qd

t (p), where t indexes the markets, days in this illustration. It
is of fundamental interest in economics. For example, it is of interest to policy makers who
may be interested in the effect of different market structures (e.g., imposing a tax), or to
sellers, who may be interested in the effect of charging higher prices. It is quite different
from the predictive relation between quantities and prices. The latter may be of interest for
different purposes. In the Angrist et al study the researchers have observations for a number
of days at the Fulton fish market. The two main variables observed by the researcher are the
quantity of fish traded, Qt, and the average price at which it was traded on that particular
day, Pt. Figure 1 shows the data, with each dot denoting the log quantity and log price
combination for a particular day at the Fulton fish market. What should we do with such
data? To estimate the demand function, one might be tempted to try tofit a predictive
model, predicting the quantity sold as a function of the price. The best predictor would
be the conditional expectation E[Qt|Pt = p]. But for an economist such an exercise would
make little sense as an attempt to estimate the demand function. There is little reason to
believe that the conditional expectation of the quantity as a function of price, no matter
how cleverly estimated, and no matter how well it predicts (how small the residual sum
of squares), would correspond to the demand function. Price are not set randomly, not in
this particular market, and not in most markets. To make sense of these data on quantities
and prices and what they reveal about the demand function, one needs an economic model
that explains how the demand function relates to the data we see, and in particular why
prices took on the values that were observed. In this case a standard, perhaps too simple,
economic model is that in addition to the demand function Qd

t (p), presumably decreasing
in price, there is a supply function that relates price to the quantity supplied:

Qs
t (p),

presumably increasing in price. The final piece of the economic model is the market clearing
assumption that the price and quantity we actually see on day t is the equilbrium/market-
clearing price Pt that equates supply and demand

Pt solves Qd
t (p) = Qs

t (p),

and that the observed quantity Qt is equal to the supply and demand at the equilibirum
price:

Qt = Qd(Pt) = Qs(Pt).

Under fairly mild conditions these equilibrium prices and quanties will be unique. The rela-
tion between the observed quantities and prices combines the supply and demand function.
To separate the supply and demand functions econometricians often rely on instrumental
variables methods. In this particular case (Angrist et al., 2000) use weather conditions
(wave height and wind speed) at sea as instruments that directly affects supply, but does
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not directly affect demand. The traditional approach would then assume that the demand
function was linear in logarithms,

ln(Qd
t (p)) = α+ β ln(p) + εt,

lead to an instrumental variables estimator for the price elasticity, β, equal to

β̂iv =
Cov(Qt, zt)

Cov(Pt, zt)
.

The solid line in Figure 1 presents the regression line from a least squares regression of Qt

on Pt, with a slope of -0.54. The dashed line presents the instrumental variables estimate
of the demand function, with a slope of approximately -1.01. Whether the price explains
much of the quantity traded here is not viewed as being of central importance. Certainly
one can obtain a better fit, as measured by the residual sum of squares, by simple linear
regression of the quantity on the price. However, that would not be viewed as meaningful
here by most economists for the purpose of estimating the demand function. The stars in
this figure represent the average log quantities and log prices on days where the weather
was fair, mixed, or stormy. The instrumental variables estimates are essentially trying to
fit a straight line through these points.

A second example is the returns to education. There is a large literature in economics
devoted to estimating the causal effect of formal education (as measured by years of educa-
tion) on earnings (see Card (2001) for a general discussion). For individual i let Yi be the
logarithm of earnings, and Xi be years of education, and let Yi(x) be the potential earnings
function for this individual, measuring log earnings for this individual if this individual were
to receive level of education equal to x. Initially researchers would estimate the returns to
education by estimating a linear regression of log earnings on years of education. Much of
the literature has been concerned with the fact that educational choices are partly driven
by unobserved individual characteristics (say, unobserved skills) that may be related to the
potential earnings outcomes. As a result the linear regression of log earnings on years of
education may be biased for the causal effect of education on log earnings, even after condi-
tioning on observed individual characteristics. Building a better predictive model does not
directly deal with this concern because it cannot adjust for unobserved covariates. Angrist
and Krueger (1991) propose a clever research strategy to estimate the causal effect of ed-
ucation without this omitted variable bias. They suggest using compulsory schooling laws
as an instrument. The idea is that compulsory schooling laws exogenously shift education
levels without directly affecting earnings. In practice, of course compulsory schooling laws
explain very little of the variation in education levels, so little that Angrist and Krueger
needed to use Census data in order to get precise estimates. So, from a predictive perspec-
tive compulsory schooling laws appear to be largely irrelevant for modeling earnings. But,
there is a reasonable argument that the compulsory schooling laws generate variation in
education levels that is not associated with the unobserved skills that create the biases in
least squares regressions of log earnings on years of education. In other words, there is a
reasonable argument that it is a valid instrument in the sense of satisfying the exclusion
restrictions (Imbens and Angrist (1994); Angrist et al. (1996)).

These two examples are essentially an elaboration of the point that David Cox (Cox,
2001) and Brad Efron (Efron, 2001) make in their comments on (Breiman, 2001) that much
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of statistics is about causal effects of interventions, rather than predictions. This distinction
may often be implicit, but that does not take away from the fact that causal effects are the
ultimate goal. This view may have been part of the reason the econometrics community was
initially slow in adopting the algorithmic methods that Breiman was advocating. However,
although perhaps slower than one might have hoped, many of these methods are now
enthusiastically been adopted in econometrics, from deep learning methods to generative
adversarial networks (Athey et al. (2019a); Kaji et al. (2019)). See Athey and Imbens
(2019) for a general discussion of the use of these methods in economics. A key insight is
that although economic theory may be helpful, and in fact essential, for part of the model
(e.g., the exclusion restrictions that are the core of the instrumental variables methods,
or the equilibrium assumptions that underly supply and demand models), there are parts
of the model where economic theory is silent, and where the modern machine learning
methods can be extremely effective in assisting in model specification, substantially more
so than traditional econometric methods. The challenge is to incorporate the economic
causal restrictions and non-prediction objectives into the algorithms.

Let me discuss two examples of this integration of machine learning methods into causal
modeling. First, there is a large literature focusing on estimating average treatment ef-
fects under ignorable treatment assignment (Rosenbaum and Rubin (1983)). Under the
ignorability/unconfoundedness assumption the target (the average treatment effect) can be
written as a functional of number of conditional expectations, that of the outcome given the
treatment and covariates, and that of the treatment given the covariates (the propensity
score). Traditionally these conditional expectations were estimated using nonparametric
regression methods. Building on Robins et al. (1994) that introduced double robust esti-
mation, Van der Laan and Rose (2011); Chernozhukov et al. (2017); Athey et al. (2018)
and others use algorithmic machine learning methods for recovering these conditional ex-
pectations. These methods are more effective at doing so than the traditional econometric
methods, leading to more accurate estimate of the average treatment effect.

Second, a literature has developed using machine learning techniques to estimate average
treatment effects conditional on observable characteristics in a variety of settings, including
those where instrumental variables can be used to estimate treatment effects. For example,
Athey et al. (2019b) develop a generalized random forest method that targets treatment
effect heterogeneity. Building on an application by Angrist and Evans (1998), Athey et al.
(2019b) analyze the question of how having additional children affects the labor supply of
women. The instrumental variable is an indicator for whether a woman’s first two children
were of the same gender. Similarly, Hartford et al. (2017) make use of neural nets to analyze
conditional average treatment effects in instrumental variables settings.

Since the publication of the Breiman paper much progress has been made. Modellers
have embraced many of the algorithms developed in the machine learning literature. The
algorithm builders have expanded beyond the original prediction problems and are now
actively exploring methods for including causal objectives and restrictions into their algo-
rithms using both graphical (Pearl (2000)) and potential outcome perspectives (Imbens and
Rubin (2015)), and going into new directions such as causal discovery (Peters et al. (2017)).
The two cultures have found they have much in common and much to learn from each other.
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