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Preface

Among the various fields of economics, finance is somewhat unique in terms
of the correspondence between theory and evidence. The purpose of this
book is to introduce the theory of finance and the empirical tests of the
theory. I concentrate on that part of finance which is concerned with port-
folio decisions by investors and the pricing of securities in capital markets.

My view is that the student’s motivation to master a theory is enhanced
when evidence is presented to show that the theory has some power to ex-
plain real world phenomena. Moreover, my classroom experience is that
pointless squabbles about the realism of a theory or the assumptions from
which it is drawn can be avoided if relevant empirical evidence is presented
along with the theory. This is the approach taken in this book.

The first four chapters of the book provide the background statistical
material. The goals are (a) to review the statistical tools that are necessary for
any nonsuperficial study of finance and (b) to familiarize the reader with the
descriptive evidence on the behavior of securities prices that forms the empir-
ical foundation for the theory of finance and the formal tests of that theory.
The approach in these chapters is to introduce statistical concepts first and
then to use them to describe the behavior of returns on securities. Thus,
Chapter 1 studies probability distributions and the properties of samples and
then uses the concepts to examine distributions of common stock returns.
Chapters 2 and 3 take up the statistical tools that are needed to study the
relationships between returns on securities and portfolios. To motivate the
study of these tools, some of the rudiments of portfolio theory are intro-
duced in Chapter 2. Chapter 4 uses the statistical concepts presented in
Chapters 2 and 3 to study empirically the “market sensitivity” of New York
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Stock Exchange common stocks, examining evidence on the extent to which
the returns on individual securities are related to market returns.

The core of the book is in Chapters 5 to 9. Three related topics are treated:
(a) theory and evidence on capital market efficiency, (b) portfolio theory,
and (c) theory and evidence on the relationship between expected return and
risk. In an efficient capital market, prices of securities “fully reflect” available
information. Chapters 5 and 6 discuss theory and empirical work on capital
market efficiency; the former is concerned with the stock market, the latter
with the bond market. Chapter 7 develops in detail the portfolio model intro-
duced in Chapter 2 and presents empirical evidence on the effects of diversi-
fication in reducing risk. Chapter 8 then considers the characteristics of equi-
librium security prices when investors make portfolio decisions according to
the model of Chapter 7. The relationship between expected return and risk
that comes out of the model of capital market equilibrium in Chapter 8 is
put to the test in Chapter 9.

Problems for the reader are scattered through the text. The word “scat-
tered” is used advisedly. The problems are not tucked neatly at the ends of
sections, but rather appear whenever I want to reinforce a point or give pause
for thought. The problems are an integral part of the text; results contained
in them are often referred to in later parts of the text. In light of this, fair-
ness and convenience argue that answers to problems follow the problems in
the text. This raises the temptation—and thus the probability—that the prob-
lems will not be treated as such, but it is in the student’s interest to resist this
temptation. The problems allow the reader to keep tabs on his understanding
of the material and so to avoid unwarranted euphoria.

The technical prerequisites for reading this book are minimal. Mathematics
beyond elementary algebra appears only briefly in two chapters and is not
critical to understanding the important material in either chapter. Moreover,
I try always to supplement even elementary mathematical arguments with
verbal discussions; in cases where the details of a mathematical argument can
be skipped, this is so indicated. The book is, however, heavy with formal
notation, and the reader is well advised to master the notation as quickly as
possible.

Although finance is properly regarded as a branch of economics, the ambi-
tious reader could understand this book without previous formal exposure to
economics. Financial economics is, however, easier to grasp if one has some
familiarity with habits of economic analysis. Thus, although no specific mate-
rial is needed, some prior éxposure to economics is helpful. Likewise, the
book reviews the statistical concepts that it uses, but the presentation is more
effective if the reader has had some previous exposure to statistics, though
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not necessarily to the specific statistical concepts that are most useful in
finance.

This book is meant to be an introduction to finance, with approximately
equal emphasis on theory and evidence. As with any introduction, some pick-
ing and choosing of topics is necessary. 1 have chosen to focus on topics
where there is sufficient empirical evidence to draw coherent conclusions
about the descriptive power of a theory. I do not claim to cover all the topics
that meet this criterion, and one can argue that my choices reflect much
personal prejudice. The goal of the book is met, however, if I familiarize the
reader with the common methods of analysis in finance sufficiently to tackle
original works, both those already available and those yet to come, on his
own.

Finally, I am pleased to acknowledge the help of Linda Huegel, who typed
several versions of the manuscript; proofreading was provided by Agnes
Farris, Vicky Longawa, and Jane Miller. Nicholas Gonedes and Harry Roberts,
my colleagues at the University of Chicago, made many valuable comments
on the manuscript. My debt to the pioneers of modern finance, who did the
original work on which this book is based, is obvious.

/0
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CHAPTER

1

The Behavior
of Stock Market
Returns

In introducing the theory of finance, our first step is to review some statistical
concepts and some of the properties of normal distributions. These are the
tools for the empirical work of this chapter, and they are used repeatedly
throughout the rest of the book. Next we define what is meant by “return.”
Then the history of return variability and the nature of distributions of stock
market returns are studied. This empirical evidence is important background
for the work of later chapters.

I. Some Statistical Concepts

A. Random Variables

When observations of a variable can be thought of as governed by a proba-
bility distribution, the variable is called random or stochastic. The idea is that
before an observation is generated, the value of the variable to be obtained is
to some extent unknown (random or stochastic), and the only way we can
characterize what will be observed is in terms of the probability distribution
that governs the variable.
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For example, the return next month on a share of IBM common stock is
unknown now and can only be described in terms of a probability distribu-
tion, perhaps normal, of possible values. The form of the distribution of the
return depends on the interactions of complex economic phenomena, them-
selves random variables, and the ‘“drawing” from the distribution of the
return is the result of trading among investors. Nevertheless, the return is
properly thought of as a variable whose observed value is governed by a prob-
ability distribution, and thus the return is a random variable.

To denote a random variable, we include a tilde (™) over the symbol used to
identify the variable. When we refer to a specific-value of the variable, the
tilde is dropped. For example, the return to be observed next month on a
share of IBM might be denoted R, while a specific possible value of the return
is labeled R.

B. The Mean

Although here and elsewhere one commonly sees the phrase “the normal
distribution,” the term “normal” in fact refers to a whole family of proba-
bility distributions. The two parameters used to distinguish one normal
distribution from another are the mean and the standard deviation. We re-
view first the general definition of the mean of a probability distribution
(whether normal or not). Since its interpretation is simpler, we consider first
the mean of the distribution of a discrete variable.

The mean or “expected value” of a discrete random variable X is

E®) =3 x P(x), 4))

where the notation I, means “sum over all legitimate values of x,” and
where P(x) is the probability that a drawing from the distribution of the ran-
dom variable ¥ will yield the specific value x. Thus, E(X), the expected value
of the random variable X, is the sum, over all possible values of x, of x times
the probability of x. Equivalently, the expected value is the weighted average
of the different possible values of the variable, with each value weighted by
its probability. Note that since the sum is over the specific possible values of
x, there are no tildes on the right of the equality in equation (1). Note also
that the result of the summation in (1), the mean or expected value of the
random variable X, is not itself a random variable. It is a unique number
whose value is determined by the properties of the distribution of X. In short,
E(X) is a parameter of the distribution of X.
The mean or expected value of a continuous random variable X is

EG)= f x plx) dx, @
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where p(x) is the probability density function for the random variable X (that
is, p(x) assigns positive weights to different possible values of x that reflect
the likelihoods of observing these different values in a random drawing), and
where, strictly speaking, the integral notation [, dx calls for the computation
of the area under the function f(x) =x p(x). Although it is somewhat non-
rigorous, no harm is done and the right idea is conveyed if we interpret (2) in
roughly the same terms as (1). Thus, we interpret the mean or expected value
of a continuous random variable X as the weighted average of the different
possible values of the variable, with each value weighted by its likelihood.
Note again that because the expected value is computed over all possible
specific values of X, there are no tildes on the right of the equality in (2). As
in equation (1), E(¥) is a parameter of the distribution of X; that is, it is a
unique number whose value is determined by the form of the probability
density function p(x).

C. The Standard Deviation

If % is a discrete random variable, its variance is defined as

?®=E([%- EG)]*) =X [x- EG)]*P(x). 3)

Thus the variance is the mean or expected value (again indicated by the
symbol E) of the function g(¥) = [¥ - E(X)] %, the squared deviation of the
random variable ¥ from its mean E(¥). Equation (3) says that the variance of
a discrete random variable ¥ is the weighted average of the different possible
values of [x - E(¥)] %, with each value weighted by its probability P(x).

The variance of a continuous random variable X is

o*®) =E([%- EG)]?) =J‘ [x - EG)]*p(x)dx. @

We interpret (4) as saying that the variance of X is the weighted average of
[x - E(¥)] 2, where the weight assigned to [x - E (®)]? is p(x), the proba-
bility density or likelihood of the specific value of x.

The variance is a measure of the dispersion of the probability distribution
of %. It measures the average variability of successive random drawings from
the distribution of ¥ about the mean of the distribution £(X). The variance
is in units of the variable squared; that is, by definition, the variance measures
the squared variability of ¥ about its mean. By taking the square root of the
variance, we transform it into a measure of dispersion, the standard deviation
o(¥), which is in the same units as X.

0(®)= Vo (X). (5)
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D. Characterization of Normal Distributions by Their Means and
Standard Deviations :

For any normally distributed random variable ¥, the probability that a ran-

dom drawing is within one standard deviation of the mean, that is, in the
interval

E®@) - a(X)<X<E®) +o(®),
is .6826 and is the same for all normally distributed variables. Likewise, the
probability that a random drawing is in the interval
E®X) - 20(X) <¥<E®)+20(%)

is .9550 and is the same for all normally distributed variables. The important
general property is that for normal distributions, the probability that a ran-
dom drawing will be in the range

E®)- po(X) <X <EX)+ ¢po(X)

depends only on ¢, and not on E(¥) and o(%).

Equivalently, for any normally distributed random variable ¥, the trans-
formed variable

which is just ¥ measured in units of standard deviations from its mean, has
the unit normal distribution, that is, the normal distribution with mean equal
to 0.0 and standard deviation equal to 1.0. Thus, if we know the distribution
of 7 (it is shown in Figure 1.1 and tabulated in Table 1.8 at the end of the

FIGURE 1.1
The Unit Normal Distribution
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chapter), all we have to know about any other normal variable X is its mean
and standard deviation. Given the mean and standard deviation of X, the
probability associated with any specified interval of X can be determined
from the distribution of the unit normal variable 7. In short, normal dis-
tributions are two-parameter distributions; knowledge of the mean and
standard deviation of a normal distribution is sufficient to completely charac-
terize the distribution.

This property of normally distributed variables is important in the portfolio
model of later chapters. The reason is intuitive. If the probability distribu-
tions of returns on portfolios are normal, the portfolio selection problem is
simplified, since alternative portfolios can be ranked in terms of the means
and standard deviations of the distributions of their returns. These two pa-
rameters are sufficient inputs for rational portfolio choice.

E. The Sample Mean and Standard Deviation

In real-world data analysis, the mean and standard deviation of a random
variable are almost never known, but rather must be estimated from a sample.
For example, suppose we are willing to assume that month-by-month returns
on a share of IBM common stock are random drawings from some, perhaps
normal, probability distribution. The population mean and standard deviation
of this distribution are unknown. If we want information about them, it must
be obtained from sample estimates. The computation of such sample esti-
mates is the next concern.

In this book a sample mean is always computed as

x= ZT: X,'/T, (6)
i=1

where T is the sample size (the number of observations in the sample), x; is
the ith observation or drawing in the sample, and >T, isread “the sum from
i=1 to i=T.” Thus the sample mean is the simple average of the observa-
tions in the sample.

It is instructive to compare equation (6) with equations (1) and (2), which
define the population means of discrete and continuous variables. In (1), for
example, each different possible value of x is weighted by its probability,
which is not generally the same for different values of x. In computing the
sample mean, however, each sample observation is weighted equally, that is,
by 1/T. In weighting the observations equally, the presumption is not that
each different value of x is equally likely, but rather that sample relative
frequencies of different values of x approximate population probabilities.
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Then, weighting each sample observation by 1/T has the effect of weighting
observations that have different values by their relative frequencies.

Sample variances are computed in a manner analogous to equation (5); that
is,

0= X - DUT- 1), @)

This is not exactly the average of (x; - X)?, since we divide by 7 - 1 instead
of T. The reason for this is discussed in Problem ILB.7 of Chapter 2. The
sample standard deviation is just the square root of the sample variance:

s(x) =/s2(x) . (8)

F. Testing for Normality: The Studentized Range
DEFINITION

In real-world data analysis, not only are the true mean and standard devia-
tion unknown, but the type of distribution that generated a sample is also
unknown. For example, if we have a sample of month-by-month returns on a
share of IBM common stock, we may be willing to assume that the returns
are drawings from some probability distribution, but the type of distribution
is unknown. A useful statistic* for judging whether the distribution that
generated a sample is normal is the studentized range. The studentized range
is

_Max (x;) - Min (x;)
B s(x) ’ ©)

that is, the studentized range is the range of observations in the sample, the
maximum minus the minimum, measured in units of the sample standard
deviation.

Since the studentized range depends so much on the extreme observations
in a sample, it is sensitive to departures from normality where the probabili-
ties associated with observations far from the mean are either higher or lower
than if the variable were normally distributed. This turns out to be relevant
for distributions of common stock returns, which are “fat-tailed” relative to
normal distributions; that is, where the frequencies of large positive and large
negative returns are higher than would be expected from normal distributions.

PROBABILITY DISTRIBUTIONS FOR SAMPLE STATISTICS

Samples of data from a given probability distribution differ from one
another, and in general a sample does not reproduce the characteristics of the

SR

*Statistic is the general term for any number calculated from a sample.

e e e e e e
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distribution completely accurately. Because of variation from sample to
sample, any sample statistic (e.g., the sample mean, the sample standard
deviation, or the studentized range) is itself a drawing from a probability
distribution. The statistic is a random variable. It is common in the statistics
literature to conceptualize the distribution of a sample statistic as the distri-
bution generated when values of the statistic are computed from an indefi-
nitely large number of samples of given size from the specified distribution.
For this reason, the probability distribution of a statistic is called the sam-
pling distribution of the statistic. However one chooses to dramatize its
origins, the distribution of a sample statistic is no different from any other
probability distribution.

When we talk about a statistic as a random variable, the tilde notation is
used, but when we refer to an observed value of the statistic, the tilde is
dropped. Thus, before a sample is drawn, the unknown sample mean, vari-
ance, and studentized range are expressed as

~ T :
$=3 T, (10)
i1
2@ =3 G- DT 1), a1

i=1
~ Max (},) - Min (E,)
R = .
> 5(3)

The notation is meant to convey the idea that before a sample is drawn, the
sample mean, standard deviation, and studentized range are random variables
because the T sample observations, X;,i=1,..., T, are random variables.
When we refer to specific values of the statistics obtained from a sample, the
notation in (6), (7), and (9) is used; that is, the tildes that appear in (10),
(11), and (12) are omitted. This is again just the way that we distinguish any
random variable from a specific value of the variable.

(12)

INFERENCES ABOUT NORMALITY FROM THE STUDENTIZED RANGE

We see in a later chapter that when samples of size T are drawn randomly
from a normal distribution, the distribution of the sample mean is readily
determined. The sampling distribution of the studentized range is more
difficult to specify. Fortunately, fractiles of the distribution have been
computed, and tables of these fractiles are what one uses in applications.

Table 1.9 at the end of the chapter shows fractiles of the lower and upper
tails of the sampling distribution of the studentized range when the stu-
dentized range is computed from random samples from a normal distribution.
The interpretation of the fractiles shown in Table 1.9 is as follows. If
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SR(p, T) is the p fractile of the distribution of SR in samples of size T, then
the probability of observing a value of SR equal to or less than SR(p, T) in a
sample of size T from a normal distribution is p. Alternatively, | - p is the
probability that a sample of size T from a normal distribution will have a
studentized range greater than SR(p, T). In intuitive terms, if we take many
samples of size T from a normal distribution and compute the studentized
range for each sample, then we expect that the proportion p of the sample
studentized ranges will be equal to or less than SR(p, T), and we expect that
the proportion 1 - p of the sample studentized ranges will be greater than
SR(p, T).

For example, Table 1.9 says that in a sample of 100 from a normal distribu-
tion, the probability that the studentized range will be equal to or less than
6.36 is .99. In intuitive terms, when sample studentized ranges are computed
for repeated samples of 100 from a normal distribution, we expect that 99
percent of the sample studentized ranges will be equal to or less than 6.36,
and we expect that only 1 percent of the sample studentized ranges will be
greater than 6.36.

PROBLEM LF

1. Table 1.9 shows that any given fractile of the distribution of the stu-
dentized range, that is, the value of SR(p, T) for any specific p, is larger the
larger the sample size 7. Give an explanation for this phenomenon.

ANSWER

1. Values of a normal random variable far from the mean in either direc-
tion have low probability. Such extreme observations are more likely to occur
in larger samples than in smaller samples. Since the studentized range depends
directly on the range of the observations in a sample, that is, the difference
between the largest and smallest observations, the distribution of SR shifts
toward larger values for larger samples when the samples are from a normal
distribution.

Suppose now that we have a random sample of data—for example, month-
by-month returns on a share of IBM common stock—and we wish to judge
how likely it is that the sample came from a normal distribution. Suppose we
compute the studentized range for the sample and that Table 1.9 says it cor-
responds to a fractile somewhere between .1 and .9. Such a sample stu-
dentized range is quite likely if the sample came from a normal distribution.
In repeated samples from a normal distribution, the studentized ranges for
80 percent of the samples are expected to be between the .1 and .9 fractiles
of the relevant distribution of SR in Table 1.9. On the other hand, if the
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computed SR for IBM corresponds to a fractile far into the tails of the dis-
tribution of SR in Table 1.9, then the sample studentized range is unlikely if
the sample came from a normal distribution. In repeated samples from a
normal distribution, only a small fraction of the samples are expected to
produce extreme values of SR. If the sample SR for IBM seems too large, we
might reject the normality hypothesis and conclude instead that the sample
came from a distribution where the probabilities of observations far from the
mean are higher than if the distribution were normal. On the other hand, a
low value of SR might lead us to conclude that the sample came from a
distribution that is “thin-tailed” relative to a normal distribution.

To reject the hypothesis that a sample of data is from a normal distribution
always involves some chance of error. To say that very large or very small
values of SR are unlikely if the distribution is normal is not to say that such
values are impossible. On the other hand, to accept the hypothesis that a
sample is from a normal distribution also involves some chance of error.
Nonnormal distributions can generate samples which, by chance, look much
like those from a normal distribution.

It is the nature of empirical research that inferences are made with some
degree of uncertainty. A hypothesis is never proved to be true or false with
certainty. Rather, the careful researcher always states that a hypothesis is
accepted or rejected with some degree of confidence, usually summarized by
a probability statement. For example, if the studentized range for a sample
of 100 observations is 6.4, the researcher might say something like:

The probability that the studentized range in a sample of 100 from a
normal distribution is 6.4 or larger is less than 1 percent. On the basis of
this, the hypothesis that the data are from a normal distribution is rejected.

If the researcher carefully states the conditions under which a sample has
been obtained, specifies the assumptions underlying the statistical techniques
that have been used, and presents the results obtained in sufficient detail,
then the reader can reevaluate the results and conclusions based on his own
assessment of the losses involved if a true hypothesis is rejected or a false
hypothesis is accepted.

G. Statistical Models and Reality

Since we are ready to take a look at some stock market data, it is appropri-
ate to end this section with one more methodological point. When a hypothe-
sis or model is suggested as a description of data, the model is not meant to
be an exact representation of reality. Rather, the hypothesis or model is
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proposed as a convenient and useful approximation of the world which
explains real-world data better than competing models. Indeed, the word
“model” is meant to convey the notion of an approximation.

For example, we hypothesize or propose the normal distribution as a model
for the month-by-month returns on New York Stock Exchange common
stocks. The usefulness of this model is properly judged by how well it repre-
sents samples of returns and by whether it provides better descriptions of
such samples than other possible models. This is onié of the questions that we
now take up. First, however, we must defing pracic-1; whal wre mean ke tha

term “return.”

II. The Definition of Return

Important data for the empirical work of this book are the monthly returns
on all New York Stock Exchange (NYSE) common stocks from February
1926 through June 1968, as compiled by the Center for Research in Security
Prices (CRSP) of the University of Chicago. The return for month  on a given
stock is

dis* Pie - Pit-1) _ die  Pie = Pit-
Ry = it it ~ Pi,1-1 =it Pu i,t-1 ’ (13)
Pi,t-1 DPi,t—1 DPi, t1

where

d;, = dividend per share of the common stock of firm i from the end of
month ¢ - | to the end of month ¢;
Pi r-1 = price per share of the common stock of firm / at the end of
month ¢ - 1;and
pl, = market value at the end of month ¢ of one share of firm i pur-
chased at the end of month ¢ - 1.

In words, the return for month ¢ is the dividend plus the capital gain, all
divided by the initial price. In this book, returns on securities always include
both cash payments and capital gains. The capital gain is included even
though the security may not be sold at the end of the period. The reasoning
is that the investor can realize the capital gain by selling the security. If he
does not sell, this is treated as an implicit decision to sell and then immedi-
ately repurchase the security.

The dividend d;, and the end-of-month “price” pj, are in terms of an
equivalent beginning-of-month share; that is, they are adjusted when neces-
sary to abstract from the effects of capital changes, such as stock splits and
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stock dividends, that change the number of shares held by a stockholder but
do not affect his claims on the firm’s assets and earnings. For example, if
there is a two-for-one split between the end of month ¢ - 1 and the end of
month ¢, the end-of-month ““price” p;, used in (13) is twice the quoted end-
of-month price, pj,, so that pj, is the end-of-month market value of one
share owned at the beginning of the month. Likewise, d;, represents the
dividends that accrue during month ¢ on one share of common stock held at
the end of month ¢ - 1.

Finally, equation (13) aleo can be used to define the return on security f

ety tpangc e o

ie interpretation 06 tie tHIe faictVas ve cwinii SULLEsbIve bty O] £

III. Indexes or Portfolios of Stock Market Returns

To get some feeling for the general behavior of securities returns, we examine
first an index of the monthly returns on NYSE common stocks. For any
month ¢, the value of the index (call it R,,,,) is just the average of the returns
from the end of month 7~ 1 to the end of month ¢ on all securities listed on
the exchange at the end of month ¢~ 1. Equivalently, in Chapter 2 we show
that R,,,, is the return for month ¢ obtained by investing the same proportion
of investment funds in each security on the exchange at the end of month
t - 1. The time series of R,,,, that is, the sequence of values of R,,, for
successive months ¢, is the sequence of returns on a portfolio where each
security in the portfolio is given an equal weight at the beginning of each
month. As an investment rule, this portfolio implies monthly rebalancing;
that is, each month funds must be shifted among securities in order to equal-
ize the proportions invested in each security.

By way of contrast, and for later reference, we can compare the equally
weighted index with a value-weighted index or portfolio. The value-weighted
portfolio return for month ¢ is again the weighted average of the returns on
individual securities but the weight given to a security is the ratio of the
total market value of all of its outstanding units at the end of month ¢ - 1 to
the total market value of all securities. Thus, a value-weigl{ted index is the
return on a portfolio where each security is weighted by its share of the
market. In a value-weighted index, aside from the effects of new issues of
securities and delistings of old securities, the changes in weights through time
correspond to changes in market value. Thus, if one purchases such a value-
weighted portfolio, it is never necessary to rebalance holdings of individual
securities.
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IV. Average Return and Variability: A Quick Look

Table 1.1 shows the sample means and standard deviations of the monthly
returns R,,; on the equally weighted portfolio for the overall period Feb-
ruary 1926-June 1968, for the periods before and after 1945, and for eight
subperiods which, except for the last, cover five years each. The average
monthly returns in Table 1.1 are generally high relative to returns on what

TABLE 1.1
Sample Means, Em, and Standard Deviations, s(Rpp), of Ry, the Monthly Returns
on the Equally Weighted Portfolio, February 1926-June 1968

PERIOD

2/26-  2/26- 1/46-

STATISTIC 6/68  12/45 6/68
Bm 0138 0162 0117
s(Rpm) 0853 1165 .0413

PERIOD

2/26- 1/31-  1/36- 1/41- 1/46- 1/51- 1/56- 1/61-

STATISTIC 12/30  12/36 12/40 12/45 12/50 12/55 12/60 6/68
Em -.0019 0313 0075 .0274 .0077 .0147 .0090 .0141
s(Rpm) .0686 1822 1135 0577 .0520 0325 .0337 .0433

are usually thought of as less risky securities. For example, the average
monthly return on NYSE stocks for the postwar period is 1.17 percent,
whereas the average monthly return on U.S. Treasury bills with one month
to maturity is .18 percent. This comparison seems consistent with the reason-
able hypothesis that, on average, the market compensates investors for
bearing risk, a hypothesis that we develop and test in detail in Chapters 7-9.
The high average return on common stocks is matched by correspondingly
high variability of returns. In Table 1.1 the average monthly return for the
1926-1968 period is 1.38 percent, and the standard deviation of monthly
returns is 8.53 percent. If we assume for the moment that the distribution
of R,,, is normal and treat the sample mean and standard deviation for the
overall period as the population parameters, then for this portfolio of equally
weighted stocks, the expected value of the increase in wealth in any given
month is 1.38 percent, but the probability is about .32 that the actual change
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in wealth for the month will be less than E(R ;) - o(R,,;) = 0138 - 0853 =
-.0715 (that is, a decline of 7.15 percent) or greater than E(ﬁmt) + 0(13,,,,) =
0991 (that is, an increase of 9.91 percent). The probability is about .045
that in a given month wealth will decline by more than 15.68 percent or
increase by more than 18.44 percent; that is, with probability about .045,
the return will be outside the interval

E@Rops) - 20Rme) Rt SERme) + 20Romy).

V. The History of Return Variability

The results in Table 1.1 indicate that the variability of returns in the post-
World War II period is substantially lower than in the prewar period. The
postwar standard deviation of R, 4.13 percent per month, is about one-
third the standard deviation of the war and prewar period, 11.65 percent per
month.

King (1966) and Blume (1968) gave the first extensive documentation of
the decrease in the variability of NYSE retumns from the prewar to the post-
war period. Blume reported that of the 251 common stocks listed on the
NYSE continuously from December 30, 1926, through December 30, 1960,
247 had higher variances of monthly returns for the period prior to 1944
than for 1944-1960. Thus, the decrease in variability applies to individual
securities as well as to the market index.

Officer (1971) later questioned the simple prewar-postwar dichotomy. His
suspicions were aroused by the fact, apparent in Table 1.1, that the variability
of returns from 1926 to 1929 is more like that of the post-World War II
period than like that of the 1930s. He hypothesized that the 1930s was an
unusual period and that in the 1940s the variability of returns simply reverted
to normal levels. To test this hypothesis, Officer computed the returns on the
Dow-Jones Industrial Average (DJIA) from 1897 to 1925. The DJIA was a
portfolio of 12 stocks until August 1914, when the number of stocks was
increased to 20. Using the returns on the DJIA for 1897-1925 and the re-
turns R,,,; on the equally weighted CRSP portfolio for January 1926-June
1969, he then computed a time series of standard deviations of monthly
returns for overlapping one-year periods. Thus, the first estimate uses the
monthly returns for 1/97-12/97, the second uses 2/97-1/98, and so forth.
The resulting time series of standard deviations of one-month returns is shown
in Figure 1.2. In the figure, each standard deviation is dated, arbitrarily, at
the seventh month of the 12 one-month returns from which it is computed.

Figure 1.2 supports Officer’s hypothesis. For the entire pre-1929 period,



FIGURE 1.2
Behavior of the One-Year Standard Deviation of the Monthly Returns on the Market
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FIGURE 1.3
One-Year Standard Deviations of the Market Index and of Percentage
Changes in Industrial Production, 1919-1968
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the variability of returns is more like that of the post-1940 period than like
that of the 1930s. Moreover, within the 1930s there seem to be two distinct
subperiods, corresponding approximately to the sharp contractions of the
two depressions, with the observed increase in the variability of returns more
severe in the first. Figure 1.3, also reproduced from Officer (1971), compares
the standard deviations of monthly percentage changes in industrial produc-
tion, computed from overlapping 12-month periods, with the corresponding
standard deviations of stock market returns. The periods of greatly increased
volatility in stock market returns during the 1930s were also periods of great
volatility in industrial production.

Finally, almost everyone is aware that the 1930s was a period of great
depression, both in economic activity and in the level of stock market prices.
But low levels of economic activity and stock prices do not necessarily imply
high variability of returns and changes in production. Thus, Officer’s results
indicate that the 1930s was not only a period of unusual depression but also
a period of unusual uncertainty.

VI. Distributions of Stock Market Returns

A. Motivation and Theory

Evidence on the form of the distributions of returns on securities and
portfolios is important for several reasons. For the investor, the form of the
distribution is a major factor in determining the risk of investment. For
example, although two different possible distributions for returns may have
the same mean and standard deviation, the probabilities of returns much
different from the mean may be much greater for one than for the other.
The form of the distribution is also important from an economic point of
view, since, as illustrated by Figure 1.3, evidence on the behavior of stock
market returns is indirect information on the underlying economic factors
that trigger returns. For example, if very large returns occur quite frequently,
one might infer that the economic factors triggering returns on securities
are themselves subject to frequent and sudden shocks over time.

The first complete development of a model for distributions of security
price changes s credited to Bachelier (1900). Bachelier’s work went unnoticed,
and his model was derived independently, but much later, by Osborne (1959).
Bachelier and Osborne began by assuming that price changes* from transac-

*In this paragraph, the term ‘“price change” is meant to include both dividends and

change in price. For short intervals, like a day, dividends are relatively infrequent, so that
the term “price change” refers to the quantity of interest.
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tion to transaction in an individual security are random drawings from the
same distribution. In formal terms, this model assumes that successive price
changes are independent and identically distributed. The model further
assumes that transactions are uniformly spread across time. If the number of
transactions per day, week, or month is large, then price changes across these
intervals are sums of many independent, identically distributed drawings.
The central-limit theorem of statistics leads us to expect that the distribution
of a sum of independent, identically distributed drawings generally ap-
proaches a normal distribution as the number of items in the sum is increased.
Thus, in the Bachelier-Osborne model, distributions of daily, weekly, and
monthly price changes are approximately normal.

PROBLEM VI A

1. Assume that no dividends are paid on security i. Convince yourself
that if successive price changes are identically distributed, successive returns,
as defined by equation (13), are not. Conversely, convince yourself that if
successive returns are identically distributed, successive price changes are
not.

ANSWER

1. At any time t- I, the price change p;, - Di,t-1 and the return 13,, =
(Pit - Pi,t-1)/Pi,s-y are random variables because Pi: is unknown. The
price p; ;_, is known at time f - 1 and can be treated as a constant.

If successive price changes have mean E(p;, - Pi,¢-1) and standard devia-
tion 0(p;; - p;, ;- ), then the return

~

~ Pit ~ Pi,t—1
Ry =St
Pi,t-1
has expected value
ER;) = E(py; - pi,t-l)
i, t-1
and standard deviation
~ 1 -
o(R;) = S o(pj, - Pi,t-1)-

Iht-1
Here we have used the fact that the expected value of a constant times a
random variable, in this case 1p; ¢~y times (P;, - p; ;-,), is the constant
multiplied by the expected value of the variable. Likewise, the standard
deviation of a constant times a random variable is the absolute value of the
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constant multiplied by the standard deviation of the variable. Such opera-
tions with constants and random variables are discussed in Chapter 2.

If successive price changes are identically distributed, this means that
E(Pit - Pi,¢-1) and o(P;; - p; ;) have the same values for all ¢, which in
turn means that E(ﬁ,—,) and 0(13,-,) are inversely related to p; ,;. Alter-
natively, if successive returns are identically distributed, this means that
E(ﬁi,) and 0(13“) have the same values for all ¢, which means that

E(py - Pi,t-1) and o(P;; - p; ;- ) are directly related to the value of pj -1 -

In later chapters, when we take up portfolio models and more advanced
models of price behavior in the stock market, it becomes clear that it makes
somewhat more economic sense to formulate models of price determination
in terms of retums rather than price changes. A given price change is a differ-
ent economic quantity, depending on the initial investment. For example, a
one-month price change of $1 on a beginning-of-month investment or price of
$10 is a different economic quantity than a price change of $1 on an initial
price of $100. We now discuss a model for returns analogous to the Bachelier-
Osborne model for price changes discussed above.

Whereas the price change for month ¢ is the sum of intermediate daily price
changes, the return for month ¢, as defined by equation (13), depends on the
product of the intermediate daily returns, where the daily returns are also as
defined by (I3). For example, if there are twenty trading days in month ¢,
the return for the month on security i is related to the 20 daily returns (call
themry,r,y,...,r,y0) as follows:

T+R;y=(1+r ) +r)...(1+ry). (14)
To interpret equation (14), first note that, from equation (13),

_ Pi,e-1 tdi +(pjy - DPi,e-y) _dy +pj
1 +R; = = ; 15)
Pi, 11 Pi, 11

that is, 1 + R;, is the value at the end of month ¢ of $1 invested in security 7
at the end of month ¢ - 1. This end-of-month value of a $1 initial investment
is also just the cumulation of the consecutive daily returns. Thus, the value
of a $1 initial investment at the end of the first dayis1+r,. If this1 +r, is
reinvested—that is, if the investor continues to hold the security—then the
value of his investment at the end of day 2 is (I + r1)(1 +ry), which is also
just the value at the end of day 2 of $1 invested at the beginning of the
month. The value of a $1 initial investment at the end of day 3is (1 +r,)
(1 +r,)(1 +ry), which leads eventually to equation (14). In general, if R;, is
the return on an initial investment of $1 for some period of time (e.g., a day,
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week, month, or year) and if ry, k=1,2,...,K, represent the returns for
intermediate periods, then

1+R;;=(1+r)(A+r)...(1+rk) (16)

Instead of assuming that successive price changes are independent and
identically distributed, suppose successive values of 7, are independent and
identically distributed.* Then successive values of /n(1 +7;) are also inde-
pendent and identically distributed, where In(1 + F,) is the natural logarithm
of 1 +F. Since the log of a product is the sum of the logs,

- - .4 -
In(1+R;)=In(1+F)+in(1 +F)+...+In(1+7¢)= 3" In(1+F),

=
a7

the cental-limit theorem leads us to expect that for intervals of time where
the number of subperiods, K, is large, the distribution of in(1 +R;;) is ap-
proximately normal.

The quantity /n(1 + ﬁ,-,) is the rate of return with continuous compounding
for period ¢, the period covered by the simple return R;;, while In(1 +7¢) is
likewise the rate of return with continuous compounding for subperiod k of
period r.f The continuously compounded return in(l +§,~,) is always less
than the simple return ﬁi,, although we see later that the two are close when
R;, is not large—say, less than .15 in absolute value. Note also from (17) that
the continuously compounded rate of return for period ¢, /n(1 +§,~,), isa
sum of In(1 +ry), the continuously compounded returns for the subperiods
of z, whereas, from equation (16), the simple return ﬁi, involves a product
of the subperiod simple returns 7y .

Finally, the central-limit theorem provides some rationalization for why a
model that hypothesizes normally distributed returns may be reasonable. But
since a model is just a convenient and perhaps temporary way to look at data,
and since a model is in any case always just an approximation to the world,
we can simply propose the normal distribution as a model for daily or
monthly returns and then see what the data say. This is what we do next.

*Note that since we are now talking about returns as random variables, tildes are used.
TThe rate of return with continuous compounding for period ¢ is the value of ¢, such
that
bt

l+R,~,=e N

where ¢ = 2.714 .. . is the base of the natural logarithms and where 1 + R;, is again the
value at the end of period ¢ of $1 invested in security { at the end of ¢ — 1. Thus

¢ = In(1 + R;y).

When we wish to distinguish between the continuously compounded return and the re-
turn defined by (13), the latter is called the simple return.
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B. Daily Returns

Table 1.2, constructed from Tables 1 and 3 of Fama (1965), shows fre-
quency distributions for continuously compounded daily returns for each of
the 30 stocks of the Dow-Jones Industrial Average, for time periods that
vary slightly from stock to stock but which usually run from about the end
of 1957 to September 26, 1962. Column (1) of the table shows the number
of daily retumns, T, for each of the 30 stocks in the sample. Columns (2) and
(3) show the expected and actual numbers of returns in the interval
R - 55(R) <R <R+ .55(R), that is, within .5 sample standard deviations
from the sample mean return. The “expected” frequencies are computed on
the assumption that the daily returns are independent drawings from normal
distributions with means and standard deviations equal to the sample esti-
mates of these parameters for each security. Columns (4) to (9) of Table 1.2
show the total expected and actual numbers of returns that are within inter-
vals of length .5s(R) both to the right and to the left of R. For example,
columns (4) and (5) show the total expected and actual numbers of retumns in
the combined intervals R - 1.0s(R) <R <R - .5s(R) and R + 5s(R) <R <
R + 1.0s(R). Finally, columns (10) to (17) show the expected and actual num-
bers for returns that are more than two, three, four, and five sample standard
deviations from the sample mean return. For example, columns (10) and (11)
show the expected and actual number of returns greater than R + 2.0s(R) or
less than R - 2.0s(R).

The obvious finding in Table 1.2 is that the frequency distributions of the
daily returns have more observations both in their central portions and in
their extreme tails than are expected from normal distributions. For every
stock the actual number of daily returns within .5 sample standard deviations
from the sample mean return is greater than the expected number. Every
stock also has more observations beyond three standard deviations from its
mean return than would be expected with normal distributions; all but one
have more beyond four standard deviations; and all but three have more
beyond two standard deviations.

In more vivid terms, if daily returns are drawn from normal distributions,
for any stock a daily return greater than four standard deviations from the
mean is expected about once every 50 years. Daily returns this extreme are
observed about four times every five years. Similarly, under the hypothesis
of normality, for any given stock a daily return more than five standard de-
viations from the mean daily return should be observed about once every
7,000 years. Such observations seem to occur about every three to four

© years.

Probabilities and relative frequencies must sum to 1.0. If the empirical
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TABLE 1.2
Frequency Distributions for Daily Returns on Dow-Jones Industrials

INTERVALS INTERVALS
R-1.0s(R) < R-15s(R) < R-20slR) <
R<A- 5(R) R<R-10s(R) R<R-15s(R) _ _ _ _
and and R _and R <A -2s(R) R < R - 3s(R) R < R - 4s(R) R <R -5s(R)
R - 5s(R) < R+ 5s(R) < R+ 10s(R) < R +_1,5$(R) < and and and and
R < R+ 5s(R) R <R +10s(R) R < R +15s(R) R<R+20s(R) R >R+ 2(R) R >R+ 3s(R) R >R+ 4s(R) R > R +5s(R)
Expected Actual Expected Actual E xpected Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual
T no. no. no. no. no. no. no. no. no. no. no. no. no. no. no. no.
1 2) (3 (4) (5) (6 n (8) (9) (10} (1 (12 (13) (14) (15) (e - (1n

Allied Chemical 1,223 468.5 562 366.5 349 2248 163 107.7 94 55.5 55 33 16 .08 4 .0007” 2

Alcoa 1,190 455.8 521 356.6 343 218.7 172 104.8 85 54.1 69 3.2 7 .07 0 0007 0

American Can 1,219 466.9 602 365.1 336 224.1 157 , 1074 62 55.5 62 33 19 .08 6 0007 3

AT &T 1,219 466.9 710 365.1 285 224.1 131 107.4 42 55.5 51 3.3 17 .08 9 .0007 6

American Tobacco 1,283 491.4 692 384.4 311 235.8 138 113.0 73 58.4 69 35 20 .08 7 .0008 4

Anaconda 1,193 456.9 513 357.4 331 2193 204 105.1 8s 54.3 57 32 8 .08 1 0007 0

Bethlehem Steel 1,200 459.6 575 359.5 307 2206 180 105.7 76 54.6 62 32 15 .08 4 .0007 1

Chrysler 1,692 648.0 736 506.9 493 311.0 259 149.1 17 77.0 87 4.6 16 A 4 0010 1

Du Pont 1,243 476.1 539 372.4 363 2285 195 109.5 80 56.5 66 34 8 .08 3 .0007 1

Eastman Kodak 1,238 474.2 546 370.9 379 2275 162 109.1 85 56.3 66 33 13 .08 2 0007 2

General Electric 1,693 648.4 784 507.2 479 3112 222 149.2 m 77.0 97 4.6 22 RE 5 .0010 1

General Foods 1,408 539.3 632 4218 423 258.8 194 124.0 84 64.1 75 38 22 .09 3 .0008 1

General Motors 1,446 553.8 682 433.2 396 265.8 203 127.4 103 65.8 62 3.9 13 09 6 0009 3

Goodyear 1,162 4450 539 348.1 331 213.6 164 102.4 n 52.9 57 31 10 .07 4 .0007 2
international

Harvester 1,200 459.6 529 359.5 365 220.6 182 , 1057 61 54.6 63 3.2 15 .08 4 .0007 1
International .

Nickel 1,243 476.1 587 372.4 362 2285 149 : 1095 72 56.5 73 34 16 08 6 .0007 o
International |

Paper 1,447 554.2 643 4335 442 266.0 180 | 1275 100 65.8 82 3.9 19 09 5 .0008 0
Johns Manville 1,205 4615 526 361.0 363 2215 163 | 1062 91 54.8 62 3.2 1 .08 3 .0007 1
Owens lllinois 1,237 473.7 591 370.6 323 227.4 188 | 109.0 69 56.3 66 3.3 20 .08 3 .0007 1
Procter & Gamble 1447 554.2 726 4335 389 266.0 179 ¢+ 1275 n 65.8 90 39 20 .09 6 .0009 2
Sears 1,236 473.4 666 3703 305 227.2 144 - - 1089 58 56.2 63 3.3 21 .08 8 .0007 5
Standard Oil

{California) 1,693 648.4 776 507.2 468 311.2 233 | 149.2 121 770 95 46 14 1 5 0010 1
Standard Oil “

(New Jersey) 1,156 4428 582 346.3 314 2126 139 ' 1018 70 52.5 51 3.1 12 07 3 .0007 2
Swift & Co. 1,446 553.8 672 433.2 409 265.8 194 1274 85 65.8 86 3.9 18 .09 4 .0009 0
Texaco 1,159 4439 533 347.3 311 213.0 164 102.1 95 52.7 56 3.1 14 07 2 0007 0
Union Carbide 1,118 428.1 466 335.0 338 205.5 178 985 69 50.9 67 3.0 6 .07 1 .0007 0
United Aircraft 1,200 459.6 550 359.5 348 220.6 165 . 1057 77 54.6 60 3.2 1 .08 3 .0007 1
U.S. Steel 1,200 459.6 495 359.5 337 220.6 219 . 1057 90 54.6 59 3.2 8 .08 1 0007 0
Westinghouse 1,448 554.6 636 433.8 424 266.1 221 | 1276 95 65.9 72 39 14 .09 3 0009 2
Woolworth 1,445 553.5 718 4329 390 265.6 170 | 127.3 91 65.7 76 3.9 23 .09 5 .0009 2

Source: Adapted from Eugene F. Fama,"The Behavior of Stock Market Prices,” Journal of Business 38 (January 1965): |
47-48. |




24 FOUNDATIONS OF FINANCE

distribution of daily returns on a stock is more peaked than a normal dis-
tribution in the immediate vicinity of its mean return, and if the frequency
of extreme observations is also higher than would be expected from a normal
distribution, then there must be intervals of intermediate distance from the
mean for which observed frequencies are less than would be expected with
a normal distribution. In Table 1.2, for 24 out of 30 stocks there are fewer
observations between .5 and 1.0 standard deviation from the mean return
than are expected with normal distributions; in general, the actual numbers of
daily returns in the intervals between .5 and 2.0 standard deviations from the
mean are systematically less than the numbers expected under the hypothe-
sis of normality.

Although Table 1.2 seems to provide strong evidence against the hypothesis
that daily stock returns are drawings from normal distributions, it is well to
phrase tests of such hypotheses in terms of probabilities. That is, how likely is
it that frequency distributions, like those observed for the daily returns, are
generated from normal distributions? To answer this question, Table 1.3
shows the smallest and largest daily retums and the studentized range (SR)
of the daily returns for each of the 30 DJIA stocks. From Table 1.9 we find
that in repeated samples of 1,000 from a normal distribution, values of SR as
large or larger than 7.99 are expected only about once in every 200 samples.
Since such a value of SR is so rare in samples from a normal distribution,
when a real-world data sample produces a value of SR larger than 7.99, it is
fairly safe to conclude that the sample did not come from a normal distribu-
tion. All but two of the values of SR in Table 1.3 are greater than 7.99 and
most are greater than 10.

The studentized ranges allow us to reject the hypothesis of normality for
the daily returns, but based as they are on the two most extreme returns for
each stock, the values of SR are not in themselves very informative in the
search for alternative distributions. For this purpose, the frequency distribu-
tions in Table 1.2 are better. The frequency distributions tell us that any
alternatives to the normal distribution that are considered should be more
peaked than the normal—that 1s, they should have higher probabilities for
values close to the mean—and the alternatives should also assign higher
probabilities to extreme observations. In the jargon of statistics, we must
look for distributions that are leptokurtic relative to normal distributions.

Finally, some caution in the interpretation of the results in Tables 1.2 and
1.3 is in order. In Chapter 4 we present evidence that successive returns on an
individual security are approximately independent, but that returns on dif-
ferent securities for any given period are not independent. There are common
“market factors” that cause the returns on all securities to move or covary
together. For present purposes, this means that the results for the 30 firms
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TABLE 1.3
Extreme Values and Studentized Ranges for Daily Returns
on the Dow-Jones Industrials

(1) (2} (3) (4)
SMALLEST LARGEST STUDENTIZED
RETURN RETURN RANGE (SR) T
Allied Chemicatl -.0718 .0838 10.83 1,223
Alcoa -.0531 .0619 7.33 1,190
American Can -.0623 0675 11.30 1,219
AT&T -.1038 .0989 20.07 1,219
American Tobacco -.0800 .0724 12.62 1,283
Anaconda -.0573 .0600 7.87 1,193
Bethlehem Steel -.0725 .0619 10.32 1,200
Chrysler -.0805 .1008 10.51 1,692
Du Pont -.0699 0615 10.79 1,243
Eastman Kodak -.0443 0779 9.23 1,238
General Electric ~-.0647 .0565 9.69 1,693
General Foods -.0468 0625 9.00 1,408
General Motors -.0976 .0829 14.31 1,446
Goodyear -.0946 1743 16.79 1,162
International Harvester ~-.0870 .0687 11.17 1,200
International Nickel -.0592 .0567 9.36 1,243
International Paper -.0507 .0633 8.67 1,447
Johns Manwville -.0687 .1193 11.96 1,205
Owens lllinois -.0637 .0606 10.08 1,237
Procter & Gamble -.0635 0656 11.06 1,447
Sears -.1073 .0606 14.48 1,236
Standard Oil (California) -.0633 0674 9.85 1,693
Standard Qil {New Jersey) -.1032 1007 18.29 1,156
Swift & Co. -.0675 .0628 9.18 1,446
Texaco -.0593 .0548 8.84 1,159
Union Carbide -.0456 .0394 8.17 1,118
United Aircraft -.1523 .0849 13.81 1,200
U.S. Stee! ~.0539 .0555 8.06 1,200
Westinghouse -.0804 .0863 11.22 1,448
Woolworth -.0674 .0896 13.63 1,445
Averages -.0727 .0746 11.28 1,310

Source: Adapted from Eugene F. Fama, “The Behavior of Stock Market Prices,”
Journal of Business 38 (January 1965): 51.

in Tables 1.2 and 1.3 cannot be regarded as 30 independent samples. Because
of the covariation of security returns, we can expect some degree of similarity
in the results observed for different securities. This weakens the strong im-
pression of nonnormality drawn from Tables 1.2 and 1.3, since departures
from normality that arise on a purely chance basis would be expected to ap-
pear to some extent in the results for all stocks. The covariation among se-
curity returns is, however, far from complete, and the evidence against
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normality for daily returns is strong and systematically so across stocks. The
conclusion that distributions of daily returns are substantially nonnormal
seems safe.

C. Monthly Returns

Mandelbrot (1963) was the first to question seriously the hypothesis of
normality for distributions of securities returns.* He pointed out that argu-
ments based on the central-limit theorem, like those of Bachelier and Os-
borne, do not uniquely lead to the normal distribution. In particular, if
distributions of sums of variables, such as price changes or continuously
compounded returns, approach a limiting distribution as the number of items
in the sum is increased, then the limiting distribution must be a member of
the stable class of distributions of which the normal is a special case. More-
over, the symmetric nonnormal members of the stable class have the lepto-
kurtic property observed in daily common stock returns; that is, nonnormal
symmetric stable distributions are more peaked and assign higher probabilities
to extreme observations than normal distributions.

Nevertheless, as models for common stock retumns, stable nonnormal dis-
tributions also have undesirable properties. Although Mandelbrot’s 1963
paper led to much new work on the subject (see, for example, Fama and Roll
1968; 1971 ; and Blattberg and Sargent 1971), statistical tools for handling
data from nonnormal stable distributions are primitive relative to the tools
that are available to handle data from normal distributions. Moreover, al-
though most of the models of the theory of finance can be developed from
the assumption of stable nonnormal return distributions (see, for example,
Fama 1971), the exposition is simpler when the models are based on the as-
sumption that return distributions are normal. Thus, the costs of rejecting
normality for securities returns in favor of stable nonnormal distributions are
substantial, and it behooves us to investigate the stable nonnormal hypothesis
further.

Stable distributions are by definition stable or invariant under addition.
This means that if the continuously compounded daily returns on a stock
are random drawings from a stable distribution, then weekly and monthly
continuously compounded returns, which are just sums of the daily returns,
have stable distributions of the same “type’’ as the daily retums. Operation-
ally, if distributions of daily returns are stable and nonnormal, distributions
of returns for intervals longer than a day have about the same degree of

*Indeed, Mandelbrot emphasized that frequency distributions for many economic

variables have the leptokurtic property observed in distributions of common stock
returns.
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leptokurtosis as the distributions of daily returns. Thus, if distributions of
daily returns are stable nonnommal, distributions of returns for longer inter-
vals should be no closer to normal than distributions of daily returns.

The daily returns for the Dow-Jones Industrials summarized in Table 1.2
do not cover time periods long enough to test the preceding statements in
sufficient detail. Thus, we turn to the monthly CRSP retums discussed
earlier. Moreover, we work with simple monthly returns as defined by equa-
tion (13), even though the preceding theory and empirical work are in terms
of continuously compounded returns. The rationale is that in the portfolio
models of later chapters, the simple return and not the continuously com-
pounded return is the variable of interest. Moreover, at least in the “low-
variance” post-World War II period, simple monthly retums, like simple
daily returns, are in general numerically close to their continuously com-
pounded counterparts. Thus, for daily and monthly data, distributions of
simple and continuously compounded returns have the same general
properties.*

There are three considerations in the choice of a time period for the
monthly CRSP returns. First, for comparability the period should include
1957-1962, on which the tests on daily retums are based. Second, the period
should include a sufficient number of months to allow construction of
meaningful frequency distributions. Third, the choice of period must take
account of the earlier finding that the variability of returns was higher in the
1930s than in subsequent periods. One does not want to mix together data
from periods characterized by widely different degrees of return variability.
With these considerations in mind and after a reexamination of the behavior
over time of s(R,,) in Table 1.1, the 210-month period of January 1951-
June 1968 has been chosen somewhat arbitrarily.

The frequency distributions of the monthly returns for each of the 30 Dow-
Jones Industrials are shown in Table 1.4. The intervals in Table 1.4 are the
same as the intervals used for the daily returns in Table 1.2 (that is, the same
in terms of units of sample standard deviations from sample mean returns),
except that Table 1.4 separately examines intervals to the left and to the
right of the sample mean returns. It is convenient to show more intervals for
the monthly returns because, with the exception of Alcoa, the monthly data
for each stock cover the same period. This means that the expected numbers
of observations in different intervals are the same for each stock and can be
shown on a single line.t The sample period of daily returns in Table 1.2

*The reader will be asked to confirm these statements later.
Alcoa was listed on the NYSE in June 1951; thus, its returns cover the 204 months
beginning with July 1951. The loss of six months of data is not serious enough to re-
quire a separate set of expected frequencies for Alcoa.
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varies from stock to stock, so that expected frequencies must be shown
separately for each stock.

The expected frequencies in the different intervals, computed under the as-
sumption that the monthly returns are random drawings from normal dis-
tributions with means and standard deviations equal to the sample estimates
of these parameters for each stock, are shown at the bottom in Table 1.4,
following the results for the individual stocks. The table then shows the av-
erages over the 30 Dow-Jones stocks of the observed frequencies in each in-
terval and the differences between these average actual frequencies and the
frequencies expected under the hypothesis of normality. The average actual
frequencies and average differences provide a convenient summary of the re-
sults for individual stocks.

The first thing we can note about the frequency distributions of monthly
returns is that they are slightly skewed to the right; that is, the frequency of
extreme returns is higher to the right of the mean return than to the left.
For example, on average there are 5.90 returns per stock beyond two stan-
dard deviations to the right of the mean return and 3.60 beyond two stan-
dard deviations to the left. Likewise, on average there are 1.27 returns per
stock beyond three standard deviations to the right of the mean return and
.23 beyond three standard deviations to the left.

PROBLEM VI.C

1. When a distribution is skewed to the right, its mean is greater than
its median. This means that in samples from such distributions there are
more observations to the left of the sample mean than to the right. In
intuitive terms, the higher frequencies of extreme observations to the right
of the mean (as compared to extreme observations to the left of the mean)
are balanced by even higher frequencies of small- and intermediate-sized ob-
servations to the left of the mean (as compared to small- and intermediate-
sized observations to the right of the mean). Check that these statements
apply to the frequency distributions in Table 1.4.

Since retumns in equivalent intervals on either side of the mean are grouped
together, we cannot judge the skewness of the distributions of daily returns
from Table 1.2. Other results in Fama (1965), from which Table 1.2 is drawn,
indicate that distributions of daily returns are close to symmetric. There is
some evidence of this in Table 1.3; for 15 stocks the largest daily return is
larger in absolute value than the smallest daily return, while for 15 stocks the
reverse is true.

The slight right-skewness of distributions of monthly returns is in part due
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to the use of simple returns rather than continuously compounded returns in
the monthly calculations. Recall that if R is the simple return, then the con-
tinuously compounded return is In(l +R). The always positive difference
between R and In(l +R) increases the further R is from O in either the
positive or negative direction, as in the following table.

R -300 -200 -.150 -.100 -050 O .050 .100 .150 .200 .300
m(1+R) -367 -.223 -.162 -.1056 -0561 O .049 095 .140 .182 .262

Using continuously compounded returns would have the effect of pulling in
the right tails of the distributions of monthly returns in Table 1.4 and stretch-
ing out the left tails, thus reducing the degree of right-skewness of the
distributions.

But the right-skewness of the frequency distributions of simple monthly
returns is slight, and we can be comfortable with the assumption of symmetry
as a working approximation. We can return to the question of whether non-
normal symmetric stable distributions provide good approximations to the
daily and monthly returns. A positive answer to this question requires that
distributions of monthly returns have about the same degree of leptokurtosis
as distributions of daily returns. Rough comparison of Table 1.4 with Table
1.2 suggests that this is not the case. Extreme monthly retums are much
rarer in Table 1.4 than extreme daily returns in Table 1.2, and the frequencies
of returns close to mean returns seem less excessive in Table 1.4 than in
Table 1.2.

Such comparisons of frequencies can be misleading. We can expect larger
numbers of extreme daily returns simply because the samples of daily returns
are so much larger than the samples of monthly returns. A convenient way to
abstract from the effects of differential sample sizes is to compare the dis-
tributions of daily and monthly returns in terms of relative frequencies. This
is done in Table 1.5, where the intervals shown are those used for the daily
returns in Table 1.2. Thus, equivalent intervals of s(R) on either side of R in
the monthly returns of Table 1.4 are grouped together in Table 1.5. The first
line of Table 1.5 shows the probabilities that the normal distribution assigns
to the different intervals. The second line shows the averages across the 30
DIIA stocks of the relative frequencies of daily returns in each of the inter-

_vals, while the third line shows the differences between these average relative

frequencies and the normal probabilities. The next two lines then show the
average relative frequencies and the differences between these and normal
probabilities for the monthly returns on the DJIA stocks.

Table 1.5 confirms that distributions of monthly returns are less peaked
about their means and the relative frequencies of extreme returns are smaller
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than for the daily returns. On average, for the daily returns the relative fre-
quency of observations within .S standard deviation of the mean retum is
4667, or .0837 in excess of the corresponding normal probability .3830; for
the monthly returns the average relative frequency is 4021, which is only
0191 in excess of the normal probability. For observations beyond two
standard deviations from the mean, the average relative frequency of .0453
for the monthly returns is almost precisely equal to the corresponding normal
probability of .0456, whereas for the daily returns the average relative fre-
quency of .0522 exceeds the normal probability by .0066. In fact, for every
interval shown in Table 1.5, the average relative frequencies for the monthly
returns are closer to the corresponding normal probabilities than the average
relative frequencies for the daily returns. Thus, contrary to the implications
of the hypothesis that daily and monthly returns conform roughly to the
same type of stable nonnormal distribution, monthly returns have distribu-
tions closer to normal than daily returns.

It is nevertheless clear from Tables 1.4 and 1.5 that distributions of
monthly returns are still slightly leptokurtic relative to normal distributions.
The frequencies of returns close to mean returns and of extreme returns are
still slightly high relative to normal distributions. The impression, however, is
that the monthly returns are close enough to normal for the normal model
to be a good working approximation. It is well, however, to buttress such a
conclusion with formal tests, and again the choice is the studentized range.*

Table 1.6 shows the studentized ranges for the monthly returns of each of
the 30 Dow-Jones Industrials. Recall that in the studentized ranges for the
daily returns in Table 1.3, all but two of the SR values exceed the value
(7.99) of the .995 fractile of the distribution of SR in samples of 1,000 from
a normal population. For the monthly returns, only/of the SR values ex-
ceed the .995 fractile (7.03) of the distribution of SR in samples of 200 from
a normal population. Fourteen of the SR values in Table 1.6 exceed the .9
fractile of the distribution of SR in samples of 200 from a normal population,
but the remaining 16 values are quite consistent with the hypothesis of
normality.

Blume (1968) and Officer (1971) study in detail the distributional proper-
ties of returns on portfolios that vary widely in terms of both number of
securities per portfolio and risk. Their results confirm both the conclusion
that distributions of portfolio returns are of the same type as distributions
of returns on securities, and the conclusion that the normal distribution

*Fama and Roll (1971) indicate that among the many *“goodness-of-fit’ tests they try,
the studentized range performs well as a formal test of normality when the alternative
distribution is nonnormal symmetrical stable. Now that we have studied the properties
of stock return distributions, the reader can appreciate why SR is used so much.



TABLE 1.6

Sample Statistics for Monthly Returns on the Dow-Jones Industrials
for January 1951-June 1968, T = 210

(1) (2) (3} (4) (5)
SMALLEST LARGEST STUDENTIZED
RETURN RETURN RANGE (SR) R s(R)

Allied Chemical -.1451 2917 7.75* .0061 .0563
Alcoa ~.2440 2912 7.00* 0113 .0765
American Can -.1185 .1542 5.86 .0084 .0465
AT &T -.0855 .1499 7.25% .0081 .0325
American Tobacco -.1291 1619 5.65 0097 05156
Anaconda -.1610 2031 5.18 .0120 0703
Bethlehem Steel -.1178 .3650 7.30* 0127 .0661
Chrysler -.2369 2668 6.51* L0131 0773
Du Pont ~.1061 1873 5.87 .0091 .0500
Eastman Kodak -.1163 2289 6.49* 0175 .0632
General Electric -.1374 2431 6.35* .0123 .0599
General Foods -.1460 .2388 7.47* .0140 .0515
General Motors -.1216 .2520 7.00* 0139 .0534
Goodyear -.1465 .2185 5.62 0169 .0649
International

Harvester -.1474 .1502 6.03 0088 .0494
International

Nickel -.1702 .2287 6.91* 0133 .0577
International

Paper -.1296 .2059 5.77 .0097 .0581
Johns Manville -.1162 .1993 5.68 0101 .0556
Owens |Hinois -.1420 .1586 5.87 0096 .0512
Procter & Gamble -.1379 1697 6.12 0117 0502
Sears -.1538 .1687 6.49* 0139 0497
Standard Oil

(California) ~-.1081 .1609 5.71 0106 .0471
Standard Oil

(New Jersey) -.1104 1511 5.73 0121 .0456
Swift & Co. -.1429 2149 5.99 .0076 .0598
Texaco -.1226 1677 5.25 0148  .0534
Union Carbide -.1158 .1362 4.82 .0061 .0522
United Aircraft -.2074 .2903 6.51* 0159 .0764
U.S. Steel -.1848 .3004 7.61* 0092 .0637
Westinghouse -.1250 .2046 5.13 0116 0642
Woolworth -.1386 .2228 6.88* .0081 0526
Averages -.1421 2124 6.26 .0113  .0566

*Exceeds the .9 fractile of the distribution of the studentized range.
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is a good working approximation for monthly security and portfolio returns
in the post-World War II period.

PROBLEMS VI.C

2. In addition to the studentized ranges, Table 1.6 shows the smallest and
largest returns and the mean and standard deviation of the monthly returns
on each of the 30 Dow-Jones stocks. These numbers allow the reader to de-

velop a

deeper understanding of many of the points made in the preceding

discussion.

(a)

()

(©

G

Note that for every stock the largest monthly return in Table 1.6 is
larger in absolute value than the smallest retum. Recall that in the
daily returns of Table 1.3 this was true for only half of the stocks.
What do these results imply about skewness in the distributions of
daily and monthly returns? .

The text claims that the skewness of the distributions of monthly
retumns can be slightly reduced by using continuously compounded
returns rather than simple returns. Convince yourself that this is true
by computing the continuously compounded analogues of the larg-
est and smallest returns in Table 1.6. These computations should
also convince you that, at least for the period 1951-1968, differences
between simple and continuously compounded monthly returns are
generally slight. Recall that the differences are larger the further R
is from 0, so that in the preceding computations you were looking at
the largest differences observed for each stock.

Compute the simple analogues of the largest and smallest contin-
uously compounded daily returns shown in Table 1.3. This should
convince you that the observed differences between simple and con-
tinuously compounded daily returns are indeed trivial. Why are the
differences smaller for daily returns than for monthly returns?

For the period 1951-1968, differences between standard deviations
of continuously compounded and simple retumns are trivial for both
daily and monthly returns. Convince yourself that, in combination
with your computations under (b) and (c) above, this means that
inferences about normality drawn from studentized ranges are not
much affected by whether one uses continuously compounded or
simple daily and monthly returns.

3. Fama (1965) does not present tables of the means and standard devia-
tions of the daily returns on the 30 DJIA stocks. The standard deviations can
be determined from the information supplied here in Table 1.3. Compute
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them and compare them to the corresponding standard deviations of the
monthly returns in Table 1.6. You will find that the standard deviations of
daily returns vary from stock to stock but average about 1.3 percent per day.
In comparison, the average of the 30 standard deviations of monthly returns
on the DJIA stocks in Table 1.6 is 5.66 percent per month, or approximately
4 4 times the figure for the daily returns.

It is, of course, quite intuitive that monthly returns should show more
variation than daily returns, but the number 4.4 (approximately the square
root of the number of trading days per month) has an additional significance
that the reader will fully appreciate after we discuss distributions of sums of
random variables in the next chapter.

ANSWERS
2. Interpreting the data in Table 1.6:

(a) As mentioned earlier in the text, the results suggest that the right-
skewness observed in distributions of monthly returns is probably
not characteristic of distributions of daily returns.

(b) Table 1.7 shows the largest and smallest simple monthly returns for
each of the 30 Dow-Jones stocks (repeated from Table 1.6), the dif-
ference between the largest and smallest simple returns, the largest
and smallest continuously compounded returns, and the difference
between these. For the simple returns, the largest return for every
stock is larger than the absolute value of the smallest return; for the
continuously compounded returns, however, there are five stocks for
which this is not the case. This suggests that using continuously
compounded returns reduces slightly the skewness of the distribu-
tions of monthly returns, but the fact that most of the largest con-
tinuously compounded returns are larger than the absolute values
of the smallest continuously compounded returns suggests that the
distributions of the continuously compounded returns are still
skewed to the right.

(c) The reader can handle this part of the problem without assistance.

(d) Convince yourself.

3. Table 1.3 shows the studentized range and the smallest and largest re-
turn for each stock. Since
_Max (R)) - Min (R))
) s(R)) ’
The value of s(R,) is easily obtained. Go to it!

SR

Comparisons of Largest and Smallest Simple and Con tinuously Compounded Monthly

TABLE 1.7

Returns on the Dow-Jones Industrials, January 1951-June 1968

SIMPLE RETURNS

CONTINUOUSLY

COMPOUNDED RETURNS

SMALLEST LARGEST DIFFER-

SMALLEST LARGEST DIFFER-

STOCK RETURN RETURN ENCE RETURN RETURN ENCE
Allied Chemical -.1451 2917 4368 -.1568 .25660 4128
Alcoa -.2440 2912 6352 -.2797 .2556 5353
American Can -.1185 1542 2727 -.1261 1434 .2695
AT&T -.0855 .1499 .2354 -.0894 1397 2291
American Tobacco -129 1619 2910 -.1382 1501 .2883
Anaconda -.1610 .2031 .3641 -.1755 .1849 .3604
Bethlehem Steel -.1178 .3650 .4828 -.1283 3112 4365
Chrysler -.2369 .2668 5037 -.2704 .2365 5069
Du Pont -.1061 .1873 .2934 -.1122 A717 .2839
Eastman Kodak -.1163 .2289 .3452 ~.1236 .2061 3297
General Electric -.1374 2431 .3805 -.1478 .2176 .3654
General Foods -.1460 .2388 .3848 -.1578 2141 3719
General Motors -.1216 .2620 .3736 -.1297 2247 3544
Goodyear -.1465 .2185 3650 -.1584 1976 .3560
International

Harvester -.1474 .1602 .2976 -.1595 .1399 2994
International .

Nickel -.1702 .2287 .3989 -.1866 .2060 .3926
International

Paper -.1296 .2059 .3355 -.1388 .1872 .3260
Johns Manville -.1162 1993 .3155 -.1235 1817 .3052
Owens IHlinois -.1420 .1586 .3006 ~.1532 1472 .3004
Procter & Gamble -.1379 1697 .3076 -.1484 1567 .3051
Sears -.1538 .1687 3225 ~.1670 .1559 .3229
Standard Oil

(Catifornia) -.1081° .1609 .2690 -.1144 .1492 .2636
Standard Oil

{New Jersey) -.1104 L1511 2615 -.1170 1407 2577
Swift & Co. -.1429 2149 .3678 -.1542 1947 .3489
Texaco -.1226 1577 .2803 -.1308 1464 2772
Union Carbide -.1158 1362 .2520 -1231 1277 .2508
United Aircraft -.2074 .2903 4977 -.2324 .2549 .4873
U.S. Steel —.1848 .3004 4852 -.2043 .2627 .4670
Westinghouse -.1250 .2046 .3296 -.1335 1861 .3196
Woolworth -.1386 2228 .3614 -.1492 2011 .35603
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VII. Conclusions

The frequency distributions in Tables 1.2 and 1.4, the comparisons of average
relative frequencies with normal probabilities in Table 1.5, and the stu-
dentized ranges in Tables 1.3 and 1.6, all lead to the conclusion that distribu-
tions of monthly returns are closer to normal than distributions of daily
returns. (This finding was first discussed in detail in Officer 1971, and then in
Blattberg and Gonedes 1974.) This is inconsistent with the hypothesis that
return distributions are nonnormal symmetric stable, which implies that
distributions of daily and monthly returns should have.about the same de-
gree of leptokurtosis. Moreover, although the evidence also suggests that
distributions of monthly returns are slightly leptokurtic relative to normal
distributions, let us tentatively accept the normal model as a working approx-
imation for monthly returns. Later chapters provide many opportunities to
judge whether this is warranted. In each case, the judgment can be based on
whether the normal model seems to be a useful approximation for the pur-
pose at hand.

Thus, the assumption that distributions of returns on securities and port-
folios are normal is used in later chapters first to develop a model for port-
folio decisions by individual investors, and then to develop a model of securi-
ties prices which derives the implications of the portfolio model for relation-
ships between expected returns on securities and their risks. The usefulness
of the portfolio model depends not on whether the normality assumption
which underlies it is an exact description of the world (we know it is not),
but on whether the model yields useful insights into the essential ingredients
of a rational portfolio decision. Likewise, the usefulness of the model for
securities prices depends on how well it describes observed relationships
between average returns and risk. If the model does well on this score, we can
live with the small observed departures from normality in monthly returns,
at least until better models come along.

TABLE 1.8
r Cumulative Unit Normal Distribution Pr(7F > r)
A 00 .01 02 .03 04 05 06 07 08 09
0 .3000 4960  .4920 4880 4840 4801 4761 4721 -4081 -4641
14602 4362 4522 4483 4443 4404 4364 4825 4286 4247
2 L4207 .4168 .4129 .4090 .4052 .4013 3974 -3936 3897 -3859
.3 3821 .3783 .3745 .3707 .3669 13632 .3594 3557 13520 L3483
4 3446 .3409 .3372 .3336 .3300 3264 .3228 3192 -3156 3121
.5 .3085 .3050 .3015 .2981 12046 12912 .2877 .2843 .281u .2778
6 L2743 .2709 .2676 .2643 2611 .2578 .2546 -2514 .2483 -2451
72420 2389 2358 .2327 2297 .2266  .2236 2206 2177 2148
8 2119 .2090 .2081 .2033 .2005 1977 .1949 1922 1894 -1867
0 184 (1814 .1788 1762 1736 1711 1683 -1660 -1635 161
1.0 1587 1562  .1539 .1515 .1492 .1469 1446 1423 -1401 1379
1.1 1857 1335 L1314 1292 L1271 -1251 -1230 1210 1190 1170
1.2 1151 .1131 (2 .1093 1075 .1056 .1038 -1020 -1003 -00853
1.3 .09680 09510 .09342 09176  .0%012 08851 086yl 08534 08379  .08226
1.4 08076 07927  .07780  .07636  .07493 07353  .07215 .07078  0GY44  .06811
1.5 0668l 06552 .06426 06301 06178 06057  .05938 05821 05705  .0559z
1.6 05480 05370 05262 .05155 .05050 04947 .04846 . 04746 04648 .045.31
1.7 04457 04363 04272 04182 04093 04006 03920 03836 03734 03673
1.8 .03593 03515 03438  .03362 .03288 03218  .03144  .03074 03005  .02938
1.9 02872 02807 .02743 .02680 02619 02559 02500  .02442 02385 02330
2.0 .02275 02222  .02169 .02118  .02068 02018  .01970 01923 01876  .01831
2.1 .01786 01743  .01700 .01659 .01618 .01578 01539 01500 01463 .01426
2.2 .01390 01355  .01321 .01287 01255 01222 01191 01160 01130 01101
2.3 01072 01044  .010t7 1029903  .0%642 . 0%9387  .019137 08894 028656  .0*8424
2.4 .0'8198 07976 .0%7760  .077549 .0%7344 007143  .0%6947 .0%756  _056%  .0%6I87
2.5  .0%210 .0%6037 .0%5868 0?5703  .0'5543 015386  0%5234 05085  .0%940  (r4790
2.6 .0%661 0527 0396 074269 0145 0025 .0%3907 .0t3793 073681 .0%573
2.7 .0'3467 .0W364 073264 073167 07072 072980 .0%2890 02803 .0%2718 (02635
2.8 .072555 .0%2477  .072401  .0°2327  .0"2256 .0°2186 .0%2118 .0'2052 01988 (11926
2.9 01866 00807 .001750 .0'1695 .0'1641 .0*1589 .0%1538 .0t1489 071311 (!1395
3.0 01350 071306 071264 001223 .0%1183 .0*1144 .0'1107 071070 .0'1035 (1001
3.1 .0%676 .0%354 .0%043  .0°8740  0'8447 0'8164 .0'7888 .07622 07364 (7114
3.2 .0%871 .0%6637 .0%410 .0%G190  .0°5976 .0'5770 .0°5571 .0%5377  .0%5190 (0’5009
3.3 .0M834 0665 04501  .0342  .0%189 04041 .0'3897 .0'3758  .0°3624 (3495
3.4 .0%3369 .0'3248 .0'3131  .0°3018  .0*2909 .0°2803 .02701 .0'2602 .0%2507 .0*2415
3.5 .072326 .0%2241 .0'2158  .0°2078  .0%2001 .0*1926 .0°1854 .0*1785 .0'1718 (1653
3.6 .00581 01531 01473  .0'1417  .0°1363 Q%1311 .0%1261 .0°1213 .0'1166 (01]12]
3.7 .0°1078 .0'1036 09961  .0%9574 .0°U201 08842 .0‘8496 08162 07841 Q7532
3.8 .07235 .0'%6048 06673 06407  0'6152 05906 .0'6669 05442  0'5223 (5012
3.9 04810 04615 04427 .04247 04074 03908 .03747 043594 03446 043304
4.0 .03167 .03036 02910 02780 02673  .02561 02454 042351 .02252 Q#2157
4.1 02066 .0'1978 01894 041814 041737 041662 .0‘1501 041523 .041458 041395
4.2 .09335 .041277 .0'1222  0'1168 .0‘1l18  .04069 .041022 .0%9774 .0%9345 Q934
4.3 .0'8540 .0'8163 .0%7801  .0'7455 07124 .0%8807 .0%6503 _0%212 .0'5034 (35668
4.4 .0°5413  .0%5160 04935 0712 0498  .QM204 .0%098 .0'3911 03732 (4356
4.5 .063308 .0'3241 .0°3092  .0'2049  .0%BI3  .02682 .0'2558 .0%2439 .0%325 (w216
4.6 02112 .0'2013 .0'1919  .0*1828  .0%1742 01660 .0*1581 0V506 .0%1434 01366
4.7 .041301 041239  .0%1179  .0°1123  .0%1069 .0*1017 .0°9680 .0%0211  .0%8765 (8339
4.8 07933 07547 07178  .0%827  .0%6402 .0%173 .0%5869 .0%5580 .0%5304 (%5042
4.0 .0%4702  .0%4554 004327 0111  .0'3906 .0'3711 .0°3525 .0°3348 .0%3179 03019

Source: A. Hald, Statistical Tables and Formulas {New York: John Wiley, 1952). Copyright 1952 John
Wiley & Sons, Inc. Reprinted by permission.
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TABLE 1.9

Fractiles SR (p, T) of the Distribution of the Studentized Range in Samples
of Size T from a Normal Population

SIZE OF LOWER PERCENTAGE UPPER PERCENTAGE SIZE OF
SAMPLE POINTS (p) POINTS (p) SAMPLE
T 005 .01 025 050 .10 .90 .95 975 .99 .995 T
1.997 1.999 2.000 2.000 2.000 3
2409 2429 2439 2445 2447 4
2.712 2753 2.782 2.803 2813 5
2949 3.012 3.056 3.095 3.115 6
3.143 3.222 3.282 3.338 3.369 7
3.308 3.399 3.471 3543 3586 8
3.449 3.552 3.634 3.720 3.772 9
10 247 251 259 267 277 357 3685 3.777 3.875 3.935 10
1 253 258 266 274 284 368 380 3.903 4.012 4.079 1"
12 259 265 273 280 291 3.78 391 4.01 4.134 4.208 12
13 265 270 278 286 297 387 4.00 4.11 4234 4325 13
14 270 275 283 291 3.02 395 409 421 434 4431 14
15 275 280 288 296 3.07 402 417 429 443 4583 15
16 280 285 293 3.01 3.13 409 424 437 451 4.62 16
17 284 290 298 3.06 3.17 415 431 444 459 469 17
18 288 294 302 310 3.21 421 438 451 466 4.77 18
19 292 298 3.06 3.14 3.25 427 443 457 473 484 19
20 295 3.01 3.10 3.18 3.29 432 449 463 479 4N 20
30 3.22 327 337 346 358 470 489 506 525 539 30
40 341 346 357 366 3.79 496 5.15 534 554 569 40
50 357 361 3.72 382 394 615 635 554 577 59N 50
60 369 3.74 385 395 4.07 629 6550 570 593 6.09 60
80 3.88 393 4.05 4.15 4.27 651 673 593 618 6.35 80
100 402 400 420 431 444 668 690 6.11 636 654 100
150 430 436 447 459 472 596 6.18 6.39 664 684 150
200 450 456 467 4.78 4.90 6.15 6.38 659 685 7.03 200
500 506 5.13 5.25 537 549 672 694 7.15 742 17.60 500
1000 560 557 568 579 592 7.11 733 754 780 799 1000
Source: H. A. David, H. O. Hartley, and E. S. Pearson, "“The Distribution of the Ratio, in a Single

Normal Sample, of Range to Standard Deviation,”

permission.

Biometrika, 61 {1954): 491. Reprinted by

CHAPTER

The Distribution
of the Return
on a Portfolio

The next empirical question concerns the relationships between the returns
on individual stocks and market returns. To what extent are returns on indi-
vidual securities associated with or explained by market retums, as repre-
sented, for example, by the return R,,; on the equally weighted index or
portfolio of NYSE common stocks?

Study of this topic requires two chapters of preliminary discussion of
statistical concepts. Many of these concepts are also relevant for the model
of portfolio selection pursued at length later in the book. Thus, to enliven the
discussion of the new statistical tools and to set the stage for the later work in
portfolio theory, this chapter introduces some concepts from portfolio theory
and uses them as the framework for the discussion of new statistical tools.

The first step is to show how the return on a portfolio is related to the re-
turns on the individual securities in the portfolio.

I. A Portfolio’s Return as a Function of Returns on Securities

Consider a particular portfolio (call it p) and let A;,, be the number of dollars
invested in security i at the end of month # - 1 (which, in a discrete time
framework, is also the beginning of month ¢). Let R;, be the simple return on



42 FOUNDATIONS OF FINANCE

the security from the end of month ¢ - 1 to the end of month ¢. The return is
as defined by equation (13) of Chapter 1, so that R~,~, is the return from the
end of month 7 - 1 to the end of month ¢ per dollar invested in security i at
the end of month ¢ - 1. As in Chapter 1, the tilde (™) on R~,-, indicates that
the return is a random variable at ¢ - 1.

At the end of month ¢, the dollar value of the investment hyp is

hip + hipRy; = Rip(1 + Ry,);

that is, the end-of-month value is the initial investment hip plus the dollar

return h,pR,, If n is the number of securities, the end-of-month doliar value
of the portfolio is

3

Z tp(l + ﬁir)'

The end- of-month value of the portfolio can also be expressed as A(1 +
p,) where R pr i8 the return on the portfolio p for month ¢ and

h=3 hip, )

i=t

are the total funds invested at the beginning of the month. It follows that

5
+
E%z
1]
M=
&

b1
+
M:
N
W M:

so that
thr = Z hipRir; )
that is, the dollar return on the portfolio can be expressed either as the total

investment times the return on the portfolio or as the sum of the dollar re-
turns on the investments in each of the securities. If we let

i (3)
so that

2 xp=1, Gy

then dividing through both sides of equation (2) by h, we have

n ~
= .; XipRiz. &)
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The quantity X;, is the proportion of total portfolio funds # invested in
security i to obtain portfolio p. Thus equation (5) says that the return on
portfolio p is a weighted average of the returns on the individual securities
in p, where the weight applied to a security’s return is the proportion of port-
folio funds invested in the security.

One example of a portfolio is the equally weighted index of NYSE stocks
studied in Chapter 1. For this portfolio

~

where n is the number of securities on the NYSE at the end of month ¢ - 1.

In describing the collection or set of portfolios from which an investor can
choose, it is convenient to let n be the total number of securities that are
candidates for inclusion in portfolios. Then, given the returns on the n secu-
rities for month ¢, the only reason that different portfolios have different
returns is that the weights or proportions of portfolio funds invested in
securities vary from portfolio to portfolio. In this sense, the weights x;,,
i=1,2,...,n,define or characterize the portfolio p. It is understood that
some of the x;, can be zero, which means that some securities do not appear
in portfolio p.

II. The Mean and Variance of a Portfolio’s Return

As indicated by the tilde notation, at the end of month ¢ - 1 the returns for
month ¢ on securities and portfolios are random variables; that is, the values
of the returns that will be observed can be thought of as drawings from prob-
ability distributions. Since the return on a portfolio is a weighted sum of the
returns on the securities in the portfolio, determining how the distribution of
the return on a portfolio is related to the distributions of returns on securities
involves, in statistical terms, determining how the distribution of a weighted
sum of random variables is related to the distributions of the individual
summands.

The problem is simplified by the fact that the portfolio models of this book
are based on the assumption, supported by the empirical work of Officer
(1971) and Blume (1968), and the data presented in Chapter 1, that, at least
for monthly post-World War II data, distributions of portfolio returns, like
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distributions of returns for individual common stocks, are approximately
normal. A normal distribution can be completely characterized from knowl-
edge of its mean and standard deviation. Thus, the problem reduces to one of
determining how means and standard deviations of portfolio returns are re-
lated to the parameters of distributions of returns on securities. In statistical
terms, the problem is to develop expressions for the mean and standard devia-
tion of a weighted sum of random variables.

Since the object of the book is to teach finance, not statistics, most of the
relevant results are just stated in the text, with proofs left for the problems.

i
t

A. The Mean or Expected Value of the Return on a Portfolio

Since a portfolio’s return is a weighted sum of returns on securities, to
describe the mean and standard deviation of a portfolio’s return we must first
know something about the means and standard deviations of weighted ran-
dom variables. There are two general results. First, the mean (or expected
value, or expectation) of a constant times a random variable is the constant
times the expected value of the random variable. Thus, for any constant a
and any random variable y,

E(ap) = aE(Y). ©)

Second, the variance of a constant times a random variable is the constant
squared times the variance of the random variable, so that the standard de-
viation of a constant times a random variable is the absolute value of the con-
stant times the standard deviation of the random variable:

o' () =a’e*(y) ™
o(@y) = lalo(y). ®
The absolute value sign is necessary in (8) since the constant a could be

negative and the standard deviation of ay, like any standard deviation, must
be nonnegative.

PROBLEM ILA
1. Derive equations (6) and (7).

ANSWER

1. Let f(») be the density function for the random variable y, assumed to
be continuous. Then
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E(y)= f ayf(y)dy
y

=a f yf(y)dy

y

and

0*(0y) = E{[oy - E(&)]*}

=J- [y - E(a))*f(y)dy

y
- f Ly - EG)*F(»)dy
y

= a?g*(y).

Although this interpretation is not rigorous, the nonmathematical reader
can consider the integral notation [, dy as calling for a “sum” over all pos-
sible values of ¥. Note that since we are summing over all possible specific
values of ¥, in the above equations there are no tildes over the y’s that follow
an integral sign.

The reader will find it instructive to rewrite the expressions above for a
discrete random variable y. This involves interpreting f( y) as a probability
function rather than as a density function and substituting the summation
symbol Z,, for the integral notation [, dy. The reader should always interpret
what he or she does in words.

The return on a portfolio is a weighted sum of random variables. The mean
or expected value of a random variable which is itself a weighted sum of ran-
dom variables is the sum of the weighted means or expected values of the
variables that make up the sum. Thus, if ¥y, . . ., ¥, are n arbitrary random
variables and a;, . . . , a, are arbitrary weights, then

n n
E(Z 0‘1)’.’) =3 a,E(y). &)
i=1 i=1

Expressed verbally, the expectation of a sum of weighted random variables is
the sum of the weighted expectations.

Applying (9) to equation (5), the expected return on any portfolio p is
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- n ~ n -
ER,) = E( 5" xipRu) = 3 xipERy). (10)
i=1 i=1

Thus, the mean or expected return on a portfolio of n securities is the
weighted average of the means of the returns on individual securities, where
the weight applied to the expected return on a given security is the propor-
tion of portfolio funds invested in that security.

The results stated in equations (6) through (10) are used repeatedly in this
and later chapters.

PROBLEM ILA
2. Establish (9) for the two-variable case; that is, show that for any two
constants a; and a, and any random variables ¥, and y,,

E(a,yy + ay)3) = o, E(3)) + 0 E(73).

The answer requires some familiarity with the concepts of joint, conditional,
and marginal probabilities, and some familiarity either with multiple integrals
or multiple sums.

ANSWER

2. Let f(y1,y2) be the joint density for the random variables 3, and 7, ;
that is, f(y,, y,) gives the likelihood that a joint drawing of y; and §, will
yield the particular pair of values of the variables shown as arguments of the
function. The expected value of @, 7, + a, ¥, is then the weighted average of
@13 t azy, over all possible combinations of y; and y,, where the weight
applied to any specific combination is its joint density f(y; , y,).

E(a, ) +azy;) = (@yy + y)f(¥1,y2)dy dy,,
Yu¥a
where fy“y’ dydy, is loosely read “sum over all possible combinations of
Yiand y,.”
Let f(y1ly2) be the density function for ¥, conditional on some given
value y; of y;, and likewise let f( y,|y,) be the conditional density function
for y, given that y, is observed in the drawing of 7, . Let

f(y) = f f(¥1,y2)dy2
Y2
be the marginal density function for y,; that is, f( ) shows the likelihood
that y, is observed in the drawing of ', when no constraint is imposed on
what is observed in the drawing of 3. Thus, f()y,) is just the sum of f(y;, y,)
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over all possible values of y,. Likewise, the marginal density function for 3,
is

f(}’z)=f f(y1,y2)dy,.

N

Since the joint density f(y,, y;) can always be expressed as

f(y1,y2) =f(ily)f(y2)

or as
fr1,y2) = (2l y)f(31),

the equation for E(a; y, + @,¥,) given above can be developed as

(Step 1) E(a,y, + a2y2) = f oy f(y1,y2)dy.dy,
VY

+ f 2y2f(y1,y2)dy dy;
¥

(Step2) =a1J. Sy )f(y1)dy.dy,
NisYa

+a f Yo Sl y2)(y2)dy dy,
yl ryi

(Step 3) =a1f yxf(y.)J f(y2ly1)dy.dy,
Ya

N

+a f y2f(y2) f f(»ly2)dydy,

Ya M

»f(ydy, +a, f y2f(y2)dy,
Y2

(Step4) =aq, f

N
(Step 5) = E(Jy) + &z E( 7).

Step 2 makes legitimate rearrangements of the terms in step 1. Step 4 takes
account of the fact that the conditional probability distributions of step 3 are
bona fide probability distributions; that is, for any given y, the sum of
f(»1ly,) over all possible values of y, is 1:
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f fnlydy, =1;
B4

and likewise

f(y2ly)dys =1.
Y

Again, the reader may want to rework this problem for the case where the
random variables y; and y, are discrete rather than continuous.

The expected value of a portfolio’s return is the weighted sum of the ex-
pected values of returns on its constituent securities irrespective of the pres-
ence or absence of dependence among the security retums. This is not gen-
erally true for the variance of a portfolio’s return. The variance of a portfolio’s
return is in part determined by the variances of security returns, but it is also
determined in part and often primarily by the degree of dependence or co-
movement in the returns on different securities.

The notation used in the discussions that follow gets rather involved. To
simplify things a little, we no longer explicitly include the subscript ¢ on re-
turns and on the parameters (e.g., means and variances) of distributions of
returns. This should not cause confusion, since the specific period ¢ to which
the various quantities refer is of no particular importance. Thus, we now write
equations (5) and (10) for the return and expected return on portfolio p as

R Z xtp (11)

E(Rp) E x‘ighs Z xlpE(Rl) 12)

B. The Variance of the Return on a Portfolio

As for any random variable, the variance of the return on a portfolio is
*(R,) =E{[R, - ER,)]*} .
With equations (11) and (12), 6*(R,) can be rewritten as

2
o’(ﬁp) =E<[Z xip(ﬁi - E(ﬁi))] )
i=1
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This expression calls for the expected value of a sum of weighted random
variables. To see what is involved, it is best to begin with the simple case, n =
2. Then the preceding expression becomes

0*(R,) = E([x1p (R, - E(R))) + x3,(R, - E(R;))]?)
=E(x, (R, - EQR)]? +x3, [Ry- E(R)))?
+2x1pX2, [Ry - ERD] (R, - ERRY)]).

Since ﬁl and R, are random variables, the cross-product [R, - E(R,)]
[R2 - E(R;)] is a random variable, as are the squared differences from means
[R, - ER))? and [R; - E(R;)]?. In general, the value of any nonconstant
functicn of one or more random variables is itself a random variable. Thus,
the preceding equation says that az(ﬁp) is the expected value of a sum of
weighted random variables. Since the expectation of a sum of weighted ran-
dom variables is the sum of the weighted expectations of the component
variables, we have

0*(R,) = xHE([R, - EQR)I?) + x3,E(R; - E(R,)]?)
+2x,,x2,E([R, - ER)] R - ERRY)]). (13)

The expressions E([R, - E(R,)]*)and E([R; - E(R,))?)are the return vari-
ances 0*(R,) and 0(R,). To complete the interpretation of the preceding
equation, we need only interpret the quantity E([R, - ER)) [R2 E(ﬁz)])
called the covariance between R, and R, . The covariance E([R, - ER))]
[R; - E(Ry)))isan expected value which is evaluated by weighting each possible
value of [R, - E(R,)] [R; - E(R1)] by f(R,, R,), the joint density or likeli-
hood of observing that combination of R, and R, in a joint drawing of R,
and R;, and then “summing” over all possible combinations of R; and R,.
In formal terms, the covariance between the returns on any two securities i
and j is denoted either as cov (ﬁ,-, ﬁi) or as 0;;, and is defined as

cov (ﬁ,—,ﬁ,-) =0;= E([R; - ER))] [ﬁ/ - E(ﬁi)])

= f [Ri - ER))[R; - ER)]S(Ri, R)dR;dR;. (14)
R, R;
As in Problem ILLA.2, the integral notation fR R dR;dR; calls for a “sum”
over all possible combinations of R; and R;.

As its name implies, the covariance is a measure of the degree of covaria-
tion (or comovement or association) between the returns on securities i and
J. In intuitive terms, the covariance is positive if deviations of ﬁ,- and ﬁ/ from
their respective means tend to have the same sign, and it is negative if the
deviations tend to have opposite signs. When the covariance is positive, we say
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that there is positive association or dependence between R; and R;; roughly
speaking, the returns on the two securities tend to move in the same direction.
A negative covariance indicates negative association or dependence; the
returns on the two securities tend to move in opposite directions. The covari-
ance concept appears so frequently in future discussions that a thorough
understanding evolves naturally.

PROBLEM IL.B .
1. The random variables 7, ¥, . . . , 7, are statistically independent if

fuya, ) =f)f(2) - fyn);

that is, if their joint density is always the product of their marginal densities.
Equivalently, statistical independence says that the likelihoods of different
specific values of J; do not depend on the values observed for the othern -1
random variables. Show that if for all possible y; and y;

fny) =ff(y),
then
cov (¥;,5;) = 0;
that is, independence implies zero covariance. Warning: The reverse is not
true; zero covariance does not necessarily imply independence.

ANSWER
1. From the general definition of a covariance in equation (14),

[vi - EGD [yj - EGPLf(yi, y))dyidy.
Yiryj

cov (i, ¥j) =
Since y; and y; are assumed to be independent,

(i~ EGDY Ly - EGGPILA(v)f(yj)dyidy;
Yio¥j

cov (31, yj) =

= f Ly - EGDf(r)dy; f Ly, - EGLF(»,)dy;
Yi Vi

= [EGY) - EGDIEG) - EGI
=0.
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With all the terms in equation (13) now interpreted, the variance of the
return on a portfolio of two securities becomes
0*(Rp) =x3p0*(Ry) + x3,0%(R1) + 2x,pX35012, n=2.

Following precisely the same arguments for portfolios of three securities, we
obtain

0*(Rp) = x},0*(Ry) + x3,0%(R,) + x3,0%(R,)
+2x1pX2p0 + 2x1pX3p013 + 2X2pX3p03.

The new terms are the variance of the return on security 3 and the covariances
between the returns on security 3 and the returns on securities 1 and 2.

PROBLEM IL.B.
2. Derive the preceding equation for a’(Rp) when n = 3.

ANSWER

2. Go back to the beginning of Section II.B and retrace the development of
the equations, but for the case n = 3.

The same arguments also produce the general result that the variance of the
return on a portfolio of n securities is the sum of the weighted variances of
the returns on the individual securities in the portfolio plus twice the weighted
sum of all the different possible pairwise covariances between the returns on
individual securities. The weight applied to the variance of the return on
security 7 is the square of the proportion of portfolio funds invested in secur-
ity i, while the weight applied to the covariance between the returns on
securities # and j is the product of the proportions of portfolio funds invested
in these two securities. In formal terms, in the n security case, a’(ﬁp) is

2B V=+2 2D 2 _2p 2 2p
0 (Rp) =x1p 0" (R) + x3,0%(Ry) +. ... +Xup 0 (Ry)
+ 2X1PX2p012 + 2x1px3pa,3 +...+ 2x1px,,pal,,
+2X2pX3p023 + 2XopXapOaa ... + 2X2pXnpO2n

+2x3pX4p03q + 2x3pX5p03st ...t 2X3pXnp0Oan

+2xn—l,pxnpan—-l,n§ (15)
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or equivalently,
2(R )= Z x:p 2(R )t2 Z Z XipXjpOij, (16)
i=1 j=i+t
where, as indicated by equation (15), the double sum
i=1 j=i+l
is read “for each value of i fromi=1toi=n- 1,sumoverjfromj=i+1 to
j = n;then sum the results over i fromi=1toi=n-1."
Equation (16) is not the only expression for the variance of the return on a

portfolio. For example, from (14), it is clear that the order of the terms in the
cross-product that defines a covariance is irrelevant:

0 = E(IR; - ER)][R; - ER)])
= E(IR; - ERDY R, - ER))) = 0j;.
It follows that in equation (16)
2XipXjp0ij = XipXjp 0ij + XjpXip Uji,
so that an expression for oz(ﬁp) equivalent to (16) is
2(Rp) Z x}p0 0*(R;) + 'Z; Zl XipXjp Oij. amn
=1 j=
j*i

Here the double sum notation

is read “for each value of i from i = 1 to i =n,sumoverjfromj=1toj=n,
but omitting terms where j = i; then sum the results over i fromi=1toi=
n.” Equivalently, the double sum can be read, “sum over all possible combi-
nations of i and j except those where j =i.”

Equations (16) and (17) still do not exhaust the possibilities. The variance
of the return on a security can always be regarded as that return’s covariance
with itself:

0*(R;) = E(IR; - ER)I?)
=E(IR; - ER)][R; - ER)])

= 0.

The Distribution of the Return on a Portfolio 53

With this notation, the security return variances in equation (17) can be in-
cluded in the double sum, so that

~ n n
0*(Rp) = 33 XipXjp0yj. (18)
i=1 j=1
The double sum here is read “for each value of i from i =1 to i = n, sum over
J from j =1 toj = n;then sum the results fromi=1to i=n";or equivalently,
“sum over all possible combinations of i and j.”
Since

i=
equation (18) expresses oz(ﬁp) as a weighted average of the n? variances and
covariances 0;(i,j =1, 2, . . ., n). Equation (17) treats the n security return
variances embedded in the double sum of (18) separately from the n(n - 1)
“true” covariances oy, j # i, while equation (16) emphasizes that since 0;; =
0j;, only n(n - 1)/2 of the covariances in (17) are different.
Finally, at the moment we are concerned with the variance of the return on
a portfolio, but the preceding analysis is general. That is, (11) can be regarded
as a general expression for a sum of weighted random variables. Equations
(16) to (18) are general expressions for the variance of such a sum, ex-
pressed in terms of the weights applied to the individual summands, the
variances of the individual summands, and their pairwise covariances.

PROBLEMS II.B
3. Show that

n n
22 XipXjp =10
i=1 j=1
4. For the case n =4, show that equations (16), (17), and (18) are equiva-
lent expressions for 62(R},).
5. Lety,,¥,,...,¥, be arbitrary random variables.

(a) What is the variance of their sum?
(b) What is the variance of their sample mean

~

Sty t9,,
- .

AN

(c) What is E(7) in terms of £(3)),i=1,2, . ..,n?
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- Note that the sample mean is itself a random variable. That is, the value of
y varies from one sample to another, since each of the y;,i =1, ..., n, varies
from one sample to another. Thus, this problem and those that follow are
concerned in large part with determining the sampling distribution of the
sample mean.

6. Suppose Jy,¥2, - ..,V are independent random variables. What is the
variance of their sum? What is the variance of their sample mean? What is
E(y)?

7. Suppose that y,,¥,, ...,JV, are independent and identically distributed.
What is the variance of their sum? What is the variance of their sample mean?
What is £())?

8. As an application of the results of Problem II.B.7, suppose successive
monthly returns on security i are independent and identically distributed
with mean E(R;) and variance ¢? (ﬁi). What are the mean and standard devia-
tion of the distribution of the average return on security i for T months?

9. As another application of the results of Problem 11.B.7, suppose succes-
sive daily continuously compounded returns on security i are independent
and identically distributed. What are the mean and standard deviation of the
distribution of the continuously compounded monthly return on security i in
terms of the mean and standard deviation of the continuously compounded
daily return?

10. As an application of the results of Problem I1.B.9, look again at Prob-
lem VI.C.3 of Chapter 1.

ANSWERS
3.
n n
2 Xp=1 and 3 x;,=1.
i=1 j=1
Therefore
n n
(Z xip) (Z xip) 1
i=1 j=1
But
n n n n
2 Xip T X Xjp = DD XipXjp
i=1 =1 i=1 j=1
4. Do it.
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5. Withy,,7,, ..., 7, as random variables,

"))

n n
=22 cov (J -

j=

-
"

[

—

Thus the variance of a sum of random variables is just the sum of all
the pairwise covariances, which also includes, of course, the n vari-

ances 62(9)),i=1,...,n.
1
(b) From equation (18), with each Xip =—,
n
2¢= 2 l n ~
0*(5) =o?(= 3 ,-)
n 3

X |-
2
=

M=
.M=
N |-

i=1j
1

n2

Ojj.

-
il

M
M

1

Alternatively, this result follows from the answer to (a) and the fact
that the sample mean is just the sum of random variables treated in
(a) multiplied by the constant 1/n.

© EGG) =E( zy.) -1y L)

i=1

!

6. Ify1,...,V, are independent, o;; = 0, i # j. Therefore
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Thus, the variance of a sum of independent random variables is the sum of
the variances of the component variables, while the variance of the sample
mean is (1/n)? times the sum of the variances. Finally,
| L 1 2 -
E<— > .Vi) =— 2 E(y).
R iz nin
7. 1f ,,...,9, are identically distributed, o*(7;) = 0*(;) for all i

and j; equivalently, o2(5,) = d*(¥), i=1,...,n. Moreover, E(¥1) = E(¥),
i=1,...,n. Then

| O 1 &z S (e ~
(s 3 5i) =y 3 B < 3 BB
n n n
These are important results. Thus, suppose y;,i =1,...,n are n indepen-
dent drawings of a random variable J, and we want to use the sample to esti-
mate the population mean E(j). If we use the sample mean

Vit... .+, 19)

as the estimator of the population mean £(j), then the preceding results tell
us that the estimator is unbiased, which means that E(%), the mean of the
sampling distribution of the sample mean i is equal to £(J'), the mean of the
distribution of . Moreover, since 62(J) = 6*(7)/n, the larger is the sample
size n, the more tightly packed the sampling distribution off about its mean
E(3)=E(¥). In intuitive terms, the larger the sample size on which y is
based, the more reliable is the sample meanf as an estimator of £(¥). In the
limit—that is, as n becomes arbitrarily large—a(f) approaches zero, so that
the sampling distribution of the sample mean becomes arbitrarily tightly
packed about E(¥) = E().

The preceding paragraph introduces some new statistical terms whose
definitions should be emphasized. A procedure for estimating a parameter
from a hypothetical sample is called an estimator. For example, the sample
mean y defined in equation (19) is an estimator of the population mean
E(F). The value 7 of 7 obtained from a specific sample y,, . . .,V is called
an estimate of the population mean. The properties of an estimator are de-
scribed by its probability distribution, which is usually called its sampling
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distribution. The estimate obtained from a specific sample is a drawing from
the distribution of the estimator.

One property that an estimator might have is unbiasedness. This means that
the mean or expected value of the estimator is equal to the value of the
parameter being estimated. Thus, the sample meanf is an unbiased estimator
of the population mean E(7), since £(3) = E(F).

Another example of an estimator is the sample variance

n ~
S$(P)=3Y (Fi-y)n-1),
i=1
which is an estimator of the population variance 62(J’). Now that we know
what unbiasedness means, we can state (without proof) that the purpose of
dividing by n ~ 1 rather than n is to ensure that the sample variance is an un-
biased estimator of the population variance; that is, dividing the sum of
squares by n - 1 leads to the result that E[s?(5)] = 0®(F). We might also
note (without proof) that the sample variance has the desirable property that

the larger the sample size, the more tightly the sampling distribution is packed
about o ().

8. ER) =ER))

o~ 1 ~
*(R) = T *(Ry)

oR;) = ‘/; o(R)).

Note again that the distribution of the average return has a smaller standard
deviation than the distribution of the return itself; the larger the sample size
T, the smaller the standard deviation of the average return.

9. Suppose there are T days in the month. If 7, is the simple return for day
t, then the continuously compounded return for day ¢ is In (1 + 7;,). From
equatiorl (17) of Chapter I, the monthly continuously compounded return,
In (I + R;) is related to the daily continuously compounded returns as

~ T
In(L+R) =Y In(1+7,).
=1
Let
EGn(1+F))=n,  t=1,...,T

An(1+F))=0*, t=1,...,T.
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From Problem I1.B.7,
E(in (1+ R;)) = Ty
o*(in (1 + R})) = To?
oln (1 +R)) =T o.

10. The answer to Problem 11.B.9 above tells us that if successive daily
returns are independent and identically distributed, the standard deviation of
the monthly returns is approximately the square root of the number of trad-
ing days times the standard deviation of the daily returns. Thus, the results of
Problem V1.C.3 of Chapter 1 are consistent with a world where daily returns
are independent and identically distributed.

III. Portfolio Risk and Security Risk

The preceding results allow some simple insights into the measurement of risk
when probability distributions of returns on portfolios are normal. In such a
world, knowledge of its mean and variance is sufficient to describe com-
pletely the probability distribution of the return on a portfolio, and compari-
sons of portfolios can be made solely in terms of the means and variances of
their returns. Thus, a portfolio model for a world where portfolio return dis-
tributions are normal is called a rwo-parameter model.

In this book, it is also assumed that investors like expected portfolio return
but are risk-averse, which in a two-parameter world means that they are risk-
averse with respect to variance of portfolio return; the most preferred port-
folio among all those with the same level of expected return is the one with
the lowest variance of return. In short, in portfolio models based on normal
return distributions, the risk of a portfolio is measured by the variance of its
return, and investors are assumed to dislike variance of portfolio return.

It is tempting to jump to the conclusion that the risk of a security is also
measured by the variance of its return. In portfolio theory, however, the
presumption is that the primary concern in the investment decision is the
distribution of the return on the portfolio. Investors look at individual
securities only in terms of their effects on distributions of portfolio returns.
In a two-parameter world, an investor looks at an individual security in terms
of its contributions to the mean and variance of the distribution of the retun
on his portfolio.

The mean or expected return on a portfolio is just the weighted average of
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the expected returns on the securities in the portfolio. The contribution of a
security to the expected return on a portfolio is xipE(ﬁi), the expected
return on the security weighted by the proportion of portfolio funds invested
in the security.

From inspection of equations (16) to (18), it is clear that the contribution
of a security to the variance of a portfolio’s return is a somewhat more com-
plicated matter. One important point, emphasized by writing oz(ﬁp) as in
equation (17), is that when the number of securities n in the portfolio is
large, individual security return variances are much less numerous in o2 (ﬁ p)
than are covariances. In particular, oz(ﬁp) contains only n terms for the
security return variances, whereas there are n(n - 1) covariances. For ex-
ample, with a portfolio of 50 securities, oz(ﬁp) contains 50 variance terms
and 2,450 covariance terms.

The large number of covariances relative to security return variances in
? (ﬁp) does not in itself imply that the covariances dominate the variances in
the determination of oz(ﬁp). Relative magnitudes are also important. This
question is studied empirically in Chapter 7, where the portfolio model is
presented in detail. To foreshadow the results, at least for NYSE common
stocks, pairwise covariances between individual security retumns are nontrivial
in magnitude relative to variances of individual security returns. In portfolios
of 20 or more common stocks, ¢ (ﬁp) is primarily determined by the pair-
wise covariances of security returns.

All this assumes that the portfolios are diversified in the sense that funds
are spread fairly evenly across the securities in the portfolio, or at least that
funds are not concentrated in a few securities. For example, if most of the
portfolio is in one security, then that security’s return variance is important
in determining the variance of the return on the portfolio, regardless of how
many other securities are also included in the portfolio.

We have strayed. What about the risk of a specific security? What is the con-
tribution of an individual security to the variance of the return on a port-
folio? To study this question, it is convenient to work with equation (18) and
to rewrite it as

- n
*(Rp) =3 xip
i=1

( )i Xjp 0ii>- (20)

=1

In equation (20), ¢2 (ﬁp) can be interpreted as the sum of n terms, one for
each security in the portfolio. The term for security i is

n
xip(z:xipoif>; i=1,2,...,n.

/=1
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This is the contribution of security i to the variance of the return on portfolio
p. This contribution of security i to 02(Rp) is itself made up of two parts:
X;p, the proportion of portfolio funds invested in security /, and

n
Zx,poii, (21)
J=1

the weighted average of the pairwise covariances between the return on secur-
ity i and the returns on each of the n securities (including security i) in the
portfolio. If we call this weighted average of covariances the risk of security i
in portfolio p, then equation {20) says that the risk of p, as measured by the
variance of its return, is the weighted average of the risks of the securities in
the portfolio where the risk of security 7/ in portfolio p is weighted by the
proportion of portfolio funds invested in this security.

There are two points in this analysis that should be emphasized. First, to be
precise we must always say “the risk of security i in portfolio p” since the
risk of a given security is different for different portfolios. That is, the pair-
wise covariances 0y; in (21) are parameters of the joint distribution of security
returns and thus are the same for all portfolios. The weights x;,,/=1,2,...,n,
vary from portfolio to portfolio, however, and this is why the risk of security
i, as measured by the weighted average of pairwise covariances in (21), is
different for different portfolios.

Second, one of the terms in the risk of security 7 in portfolio p is the vari-
ance of the return on that security, o? (ﬁ,) = gy;, which is weighted by x,,.
There are, however, n - 1 covariance terms in (21). If the covariances are not
trivial in magnitude relative to o® (R)), then in a diversified portfolio the risk
of security i is determined primarily by the covariances of its return with the
returns on each of the other n - 1 securities in the portfolio.

Finally, expression (21) can be put into a form that provides a natural in-
troduction to the next chapter. In particular,

n ~ o~
ZX”,U,',‘=COV (R,',Rp). (22)
j=1

That is, the risk of security i in portfolio p, as described by (21), is also the
covariance between the return on the security and the return on the portfolio.

PROBLEMS III

1. Derive equation (22).

2. Show that, in general, the covariance of a random variable y with a ran-
dom variable Z = Z]_, a;Z; which is itself a sum of weighted random variables
is the weighted sum of the pairwise covariances:
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n
cov (J,2) =cov ()7, > a,-E',)
i=1

3

=3 aicov (5.5,
ANSWERS
1. The steps are as follows:
~ ~ n ~
cov (R,-,Rp)=cov( Z R) (22a)

-F [R ER)) [ 3,

G o(Ewi)])

-£(IR,- E(R,)][Z":xj,,ﬁ,-- ix,,,E(ﬁ,-)]) 22¢)

i=1 i=1

-F (lﬁi - E®)) [ 3" xR, - E(ﬁ,-»]) (224)
i1

=E(_Zn:xjp (Ri- ER)] IR; - E(ﬁj)]> (22¢)
1=1
=3 B(UR - Y 1Ry~ ECR) (22)
= }":l Xjp9ij- (22¢)
£

In going from (22a) to (22b), we make use of the definition of a covariance as
an expected value. The step from (22b) to (22¢) makes use of the result that
the expectation of a sum of weighted random variables is the sum of the
weighted expectations, which is also used to go from (22¢) to (22f). The final
step from (22f) to (22g) then makes use of the definition of g;;as an expected
value.

2. Except for a trivial change in notation, the steps are (22a) to (22g). The
only point of this problem is to get you to recognize the generality of the
development of equations (22a) to (22g).

It is also convenient to define
_cov R, R p)

ip = Oz(ﬁp) > (23)
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which is the risk of security 7 in portfolio p relative to the risk of the port-
folio. From equations (20) and (22),

n N
0*Rp) =3 xip cov (R, R,); (24)
i=1
that is, g2 (ﬁp) is the weighted average of the values of cov (ﬁi, 1?,,) for all the
securities in the portfolio. Thus if B;, is greater than 1.0, then the risk of
security i in p is greater than the weighted average risk of securities in p,
whereas a value of §;, less than 1.0 implies a security with less than average
risk in portfolio p.
Again, bear in mind that §;,, the relative risk of security i in portfolio p,
varies from portfolio to portfolio. Indeed, neither component of the ratio
that defines §;, is generally the same from portfolio to portfolio.

IV. Conclusions

One measure of the relative risk of security i that appears frequently in the
remainder of this book is

_cov (R, Ron)
0*(Rpm)

im s
where R',,, is the return on an equally weighted portfolio of the securities
assumed to be available to the investor. Like any other measure of relative
risk, B;, is the risk of security i in m, cov (R, R,,), measured relative to the
risk of m, az(ﬁm). If the available securities are all those in the market, or in
some market like the NYSE, then §;,, can be interpreted as a measure of the
“market risk” of security i, and this interpretation enhances our interest in
ﬁim .

Indeed, much of the material in the next two chapters is concerned with
developing the interpretation of B, and with estimating this measure of
“market risk.” The time is well spent. In the process of studying 8;,, , we can

“introduce all of the statistical concepts needed for the more interesting
theoretical and empirical work in the rest of the book. Thus, 8;, is the con-
venient medium through which we complete our technical toolbox.

Finally, the two-parameter portfolio model is developed in detail in Chapter
7. The model is credited to Markowitz (1952; 1959), who is rightfully re-
garded as the founder of modern portfolio theory.

CHAPTER

The Market Model:
Theory and Estimation

We now consider the relationships between the returns on securities and
portfolios when the probability distributions of returns on portfolios are
normal. This chapter studies the statistical foundations of these relation-
ships and considers their estimation from a theoretical viewpoint. Chapter
4 presents the results produced by the estimation procedures when applied
to actual data on New York Stock Exchange common stocks.

I. The Multivariate Normal Distribution of Returns
on Securities*

A. Normal Portfolio Returns and Multivariate Normal Returns
on Securities

Let y,,...,%, be n continuous jointly distributed random variables with
joint density function f(y,, ... »¥n)- The value of the joint density function
can be thought of as the likelihood that a joint drawing of the random vari-
ables yy, ..., 7, will yield the particular combination of the variables shown
as arguments of the function. Except for the fact that we are thinking in
terms of a joint drawing on n random variables, the notion of a drawing and

*The statistical results on multivariate normal distributions that are discussed in this
chapter can be found in Anderson (1958, chap. 2) and Cramer (1946, chaps. 21, 29).
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a probability distribution on its outcome are the same as in the case of one
variable.
Define a new random variable,

n ~
=2 a¥i,

i=1

which is a linear combination, that is, a sum of weighted valuesofy,, . . ., J,.
If every such linear combination of the J; has a normal distribution (that is,
if the distribution of ¥ is normal for any choice of weights a,,...,a,),
then the joint distribution of ¥,,...,¥, is multivariate normal, and the
joint density function f(y,,...,¥p) is the density function of a multivari-
ate normal distribution. Conversely, if the joint distribution of ¥;,...,¥,
is multivariate normal, then the distribution of any linear combination of
Yi,...,Vnis normal.

The two-parameter portfolio model introduced in the preceding chapter
assumes that probability distributions of returns on all portfolios are normal.
The return on any portfolio is a linear combination of the returns on the n
securities available for inclusion in portfolios,

n

=3 xipﬁit’ Q)]
i=1

where, following the notation of preceding chapters, tildes are used to de-
note random variables, ﬁi, is the simple return on security / from time ¢ - 1
to time ¢, 13,,, is the return on the portfolio p, and the portfolio p is defined
by the proportions x;,,i=1,...,n,of Eortfolio funds invested in individual
securities at time ¢ - 1. To assume that R, has a normal distribution for any
choice of x,p, ..., xpp (that is, for any portfolio p) is equivalent to assuming
that every linear combination of R,,,...,R,, has a normal distribution.
Thus, the joint distribution of ﬁ,,, Ceey ff,,, must be multivariate normal.

B.  Some Properties of the Multivariate Normal Distribution

Multivariate distributions do not lend themselves to facile interpretation.
" Fortunately, we can use the properties of multivariate normal distributions
that we need without getting into the more complicated aspects of multi-

variate statistics. There are, however, three interesting properties of multi-

variate normal distributions that we can note briefly.
First, just as a univariate normal distribution (which we have heretofore
called a normal distribution) can be described from knowledge of its mean
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and variance, a multivariate normal distribution can be described from
knowledge of the means and variances of the component univariate random
variables and the n(n- 1)/2 pairwise covariances between the component

variables. Thus, the multivariate normal distribution of R“, . R,,, can be
described from knowledge of the n expected returns E(R“), .-, E(Ry), the
n security return variances o 2R 12)s - , 02(R,,;), and the n(n - 1)/2 distinct

pairwise covariances, gij = cov (R,,, R,,) between returns on securities.

Second, Problem II.B./ in the preceding chapter asked the reader to show
that independence implies zero covariances. The multivariate normal distribu-
tion is a special case where the reverse is also true. Thus, if R,,, - R,,,
have a multivariate normal distribution, then the condition o =0 for all i
andj, i # j, implies

fRyts .-, Rp) = f(R1)fR2y) . . . [(Rpy)-

Equivalently, for any {

f(Rithlta R ’Ri—l,t’RH’l,t’ e s Ry = f(Ry).

In words, multivariate normality and zero covariances between all retumns

imply independence of returns in the sense that the conditional distribution

of the return on any security i, f(R;IR,;, ... sRit, s Rivt 05+ - s Rpg), IS

the same for all possible combinations of the returns on other securities,

and thus the conditional distribution is identical to the marginal distribution,

f(th) Moreover, if returns on securities are multivariate normal and any
i = 0, then R,, and R,, are independent, so that

fRilRy) = f(Ryr) and f(R;¢|Ry) = f(R}y).
We use this result several times below.

Finally, if R Lesevos ﬁn, have a multivariate normal distribution, then each
R, has a univariate normal distribution. Thus, multivariate normality implies
that returns on both securities and portfolios have normal distributions.
Conversely, our empirical conclusion (see Chapter 1) that distributions of
monthly portfolio returns and security returns are approximately normal is
consistent with the assumption that the joint distribution of returns on
securities is multivariate normal.

C. Bivariate Normality of Pairwise Security and Portfolio Returns

There is one property of multivariate normal distributions that we investi-
gate in some detail. If the joint distribution of ﬁ,,, ... ,Rv,,, is multivariate
normal, then the joint distribution of any two different linear combinations
of ﬁ,,, .. ,15,,, is bivariate normal, which is just the name given to the
multivariate normal distribution when it applies to two jointly distributed
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random variables. This result implies that the joint distribution of the retums
on any two different portfolios is bivariate normal. Since securities are
special types of portfolios, the result also implies that the joint distribution
of the return on any security i and the return on any portfolio p is bivariate
normal, as is the joint distribution of returns on any two different securities.

Bivariate normality of security and portfolio returns is the foundation of
our theoretical and empirical work on the so-called “market model™ relation-
ships between the returns on securities and the return on a portfolio of
securities taken to be representative of “the market.” The model takes up
the rest of this chapter and all of the next. Since we concentrate so ex-
clusively on the market model, it is well to emphasize that the model’s sta-
tistical properties are a direct consequence of the assumed bivariate normality
of the return on a security and the return on the chosen market portfolio.
If bivariate normality is assumed—or better, if bivariate normality is implied
from the more fundamental assumption that the joint distribution of security
returns is multivariate normal—then similar statistical properties hold for
the relationship between the returns on any two securities or portfolios.

II. Bivariate Normality and the Market Model

Let 13,, be the return on any security and let ﬁm, be the return on a “market”
portfolio of all securities, where each security is given an equal weight in the
portfolio at time r- 1. If the joint distribution of ﬁi, and ﬁm, is bivariate
normal, then the conditional distribution of the return on the security has
an especiglly simple form, which in turn implies that the relationship between

R and R,,,; has an especially simple form. We first summarize the results and
then offer some formal justification.

A. The Market Model: Fundamental Properties

The mean or expected value of the distribution of ﬁi, conditional on some
value R,,;; of Ry, is

ERy\Rpme) = |  RifRi|Rpp)dRy.
Rit

As usual, the mean or expected value is a weighted sum of all possible values
of the random variable R,; but since we are taking a conditional expected
value, the weight given to R; is its conditional density f(R;|R,,,) rather
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than the marginal density f(R;) which is used in the definition of the un-
conditional expected value £ ;)

Since the conditional density function f(R;|R,,,) is generally different for
different values of R,,;, the conditional expected value £ (ﬁi,IRm,) in general
depends on the value of R,,,. If the joint distribution of ﬁ,-, and ﬁm, is
bivariate normal, E(R;¢|R ) is the linear function

E(Ri!Rpme) = & + BiRym, 2
where the intercept a; and slope f; are
_ cov Rz Rome)
R
Moreover, if the joint distriblition of IE, and 13,,,, is bivariate normal,
the conditional distribution of R; given R,,; is normal; that is, the condi-

tional density function f(RilR,,,) is that of a normal distribution, with
mean given by equation (2) and variance

, and o; = E(R ) = BiERpmy)- A3)

02(§itIRmt) = J‘ [Ri¢ - E(ﬁ,-,iRm,)] 2f(Rg|Rme)dR Y]
Rjt
=0 (Ry) (1 - plw), %)

where p;,, is the correlation coefficient between R i and ﬁ,,,,,
- cov (ﬁita Rpmy)
a(Rit)a(Rmt)

The definitional equation (4) emphasizes that the conditional variance
involves weighting squared deviations of R; from its conditional mean
E(R4IR,,,) by the conditional density f(R|R,,,). This is in contrast with
the unconditional variance o2(R;,), which involves weighting squared devia-
tions of R; from its unconditional mean E(R;) by the marginal density
f(R;). Equation (5) then states that with bivariate normality, the condi-
tional variance az(ﬁi,lRm,) has the same value for all values of R,,,. This
follows from the fact that a’(ﬁ,»,) and p;,, have the same values for all values
of R,,;,. That the conditional variance a’(ﬁthm,) is as described in equa-
tion (5) is established later.

The results expressed by equations (2) and (5) are summarized in Figure
3.1. As in equation (2), the figure shows the conditional expected return
E(ﬁi,lR,,,,) as a linear function of R,,,. The figure also shows conditional
density functions f(R|R,,,) for three different values of R,,,. Since ER;)
R,,,) is a function of R,,,, the location of these conditional distributions
changes with R,,,, but otherwise the conditional distributions are the same

(6)

Pim
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FIGURE 3.1
Conditional Distributions for Rjs Given Ry

fRi¢| Rmye)

Rjt

/I>’ EFigl Amy)

——

Rme

for all values of R,,,. The conditional distributions are normal with means
given by equation (2) but constant variance given by (5).

Since the conditional distributions of ﬁi, are normal with variance inde-
pendent of R,,;, the deviation of R ;; from its conditional expected value has
a normal distribution with mean equal to zero and variance given by equa-
tion (5). That is, for any and every value R, of the return 13,,,,, the condi-
tional distribution of

€4 = ﬁir - (o + BiR ) Q)]
is normal with mean
E(€;!Rpme) = E(€) =0 (8)
and variance
0* (€| Ry = Uz(ﬁithmr) = oz(ﬁit) (1 - pkn) = 0* (&) &)
Thus the deviation € has the same normal conditional distribution for all
values of R,,,;, which means that €;, and R,,,, are independent.

PROBLEMS II.A _
1. Use equations (2) and (7) to show that

E(€y!Rpmp)=0.
2. Show that
0* (€ |Rme) = 0*(Rit|Rmye);
that is, show that the variance of the distribution of €; conditional on Ry, is
the same as the variance of the distribution of R;, conditional on R ;.
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ANSWERS
1. From equation (7):

E(€x|Rpe) = E(ﬁir]Rmt) - (o + BiR ).
Then from (2):
E(€41Rpme) = (0 + BiR ) - (& + BiRpmy)
=0.

~

2. The “disturbance” €, is the difference between R,, and its conditional
expected value E(Ry|R,,). For any given R,,,, E(R;IR,,,) is a constant.
Subtracting a constant from a random variable has no effect on the variance
of the variable.

Brmgmg all these results together, if the joint distribution of R,, and
R me is bivariate normal, the relationship between R,, and R,,,, can be ex-
pressed as

Rig= 05+ BiRppe + €. (10)
Equation (10) is (7) with a tilde inserted over R,,,. This is legitimate, since
the results concerning the distribution of ﬁ,, conditional on R,,, hold for all
values of R,,,. Thus, we can now change our viewpoint slightly (but appro-
priately) and say that with bivariate normality there is a hnear relationship
between the jointly distributed random variables R,r and R,,,, with coeffi-
cients a; and §; defined by (3). This linear relationship is, however, subject to
a “disturbance” €;, that has a normal distribution with mean and variance
given by (8) and (9). The disturbance € is independent of the return on the
market portfolio ﬁmt.

B. Some Formal Justification

Having stated the form of the relationship between ﬁ,-, and fim, implied
by bivariate normality, the next steps are to establish equation ( (9) and then
to interpret the correlation coefficient p, between R,, and R,,,, We first
show that the bivariate normality of R,, and Rm, implies that R,,,, and the
disturbance e,, in (10) are independent, which in turn implies (9). We then
show that p}, is the proportion of g*(R;,) that can be attributed to the re-
lationship between R,, and Rm,

From (7), we can see that €, t €y isa linear combination ofﬁ,, and R ;. Thus,
if the joint distribution of R,, and Rm, is bivariate normal, the joint distribu-
tion of €; and R,,,, is also bivariate normal. It follows that € and Rm, are
independent if cov (€, R,n;) = 0. Using (7),
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cov (€, Emt) =cov (ﬁit A ﬂiﬁmn Emt) (11)
= cov (Rig, Rg) = 10 (Romy). (12)
- "~ cov (R, R -
coV (€, Rpyy) = cov (Ri¢, Rpny) - M o Rm)=0. (13)

Uz(ﬁmt)
In going from (11) to (12) we make use of three statistical facts: (a) as shown
in equatlons (22a-g) of Chapter 2, the covariance of a random variable (m this
case R,,,,) with a linear combination of random variables (in this case R

-8R ,,,,) is the linear combination of the covariances; (b) by deﬁnmon
cov (R,,,,, Rmi)=0 2(R ne); and (c) as the reader can easily show, the covari-
ance between a constant and a random variable is always 0, so that
cov (a;, ,,,,) 0. To go from (12) to (13), we just substitute for §; from
(3).

Given the bivariate normality of €, and R,,,,, the fact that cov (€it» Rynp) =
0 implies that these two random variables are independent. Since €y and
Ry are independent, the distribution of €; conditional on R,,, is the same
for all values of R,

f(€it| Rme) = f(eg).
This means that the expected value of €, conditional on R,,, is the same for
all values of R,,,,,

EleyIR) = E(E).
In fact, from Problem I1.A.I above we already know that the expected value
of E,-,~ is always zero, so that equation (8) is established. Moreover, since €,
and R,,,; are independent, the variance of &, conditional on R,,,, is the same
for all values of R,,,;,
0*(€itRmy) = 0* (&)

To go from here to (9), however, we must first interpret the correlation coef-
ficient p,,, defined by (6).

Since €;and Rm, are independent, equatlon (10) expresses R,, as a weighted
sum of the independent random variables R,,,r and €, so that

Uz(Rir) = ﬂ? Uz(Rmt) + 0% (€). (14)

PROBLEM II.B
1. Derive equation (14).

ANSWER
1. Since &; and f; in (10) are constants and cov (&, ﬁ,,,,) =0,
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0*Rig) = *(BiR s + &)
= 312 02(§mt) + oz(git) +2 ﬁi cov (Eit, jimt)
=B202(R) + 0*(E
Biyo (&)v:ko (i)

If the steps are not clear, the reader should review Section I1.B of Chapter 2.

Equation (10) expresses the return on security / in terms of the return on
the market portfolio m and the disturbance €;. Equation (14) likewise
breaks the variance of the return on security 7 into two parts: the first part,
B20%(R,my), is due to the term ;R in (10); the second part, 0® (&), is due
to the disturbance € in (10). To examine the proportion of a2(R,,) attribu-
table to each of these two components, we divide through equation (14) by
02(R;,) to get

2 2(%
| B R) | ) s
g (Rn) 02(R,-t)
With the definitions of §; and p;, in equations (3) and (6), this equation
becomes

_ 2 Uz(git)
1=p%, + az(ﬁi,) . (16)
Equivalently,
-1 S PR - ) .
0 (Ry) 0*(Rir)

In words, the development of equations (14) to (17) tells us that p},,
the square of the correlation coefficient between the returns on securities i
andy;, is the proportion of the variance of the return on security i that can be
attributed to the term B;R,,, in (10), while 1- p?, is the proportion of
0*(R;;) that can be attributed to the disturbance € in (10). Intuitively,
; + B; Ry in (10) is the component of R;, that can be attributed to the re-
lationship between ﬁ,, and ﬁ,,,,, and € is the disturbance in this relationship
Thus, pZ,, can be interpreted as the proportlon of the variance ofR,, that can
be attributed to the relationship between R,, and Rm,, while 1 - p2, is the
proportion of a’(R,,) that can be attributed to the disturbance €.

From equation (17), we determine that

> (&)= o*Rir) (1 - p}n).
Since the independence of &, and R,,, implies that 0%(€,|R,,,) is the same
for all values of R,,,;,
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0% (&R ) = 0* (&),
and equation (9) is established.

Finally, from equations (3) and (6), it is clear that the measure of the
degree of association between 13,-, and ﬁm, in both the slope coefficient
B; and the correlation coefficient p;, is the covariance between 13,-, and
15,,,,. The slope B; is cov (ﬁ,-,, ﬁ,,,,) scaled by the variance of 15,,,,, while
Pim IS cov (ﬁi,, 15,,,,) scaled by the product of o(ﬁ,—,) and o(ﬁm,). The sign
of both coefficients is the sign of the covariance.

PROBLEMS 11.B
2. Consider the dollar returns

D," = h,'R," and D” = h/RI'

on the dollar investments 4; and ; in securities i and j. Show that
cov (Dy, Djp) = hihj cov (Ry, Rjy),

whereas the correlation coefficient
cov (By, i)
a(Dy)o (D/'t)
In words, 5,7 and D~,~, represent a change from proportions to dollars in the
units used to measure returns. Your answer to this problem shows that the
covariance between random variables depends on the units in which the vari-
ables are measured but that the correlation coefficient does not.

3. What are the maximum and minimum possible values of p;, and when
are they attained?

corr (Dy, 5/,) = = corr (R, 15,-,).

ANSWERS
2. cov (Dip D”) = cov (h ﬁi’ h, ﬁ/)
= h,h, cov (ﬁi!’ ﬁ/')
This step follows from equations (22a-g) of Chapter 2.
~ o~ cov D~~,5‘ h;h; cov ﬁ‘,ﬁ-
COl’l’(Dit,Dﬁ)= ~( it ~/t)= iy - ( it ~/t)
0(Di)o(Dy)  hjo(Ry)hjo(R)y)
cov Ry, R; L
= ——:,(——LNL') = corr (R, Rp).
O(Rit)o(R/'t)
If the steps are not clear, the reader should review Section I1.A of Chapter 2.
3. Since both terms on the right of the equality in equation (14) are non-

negative, 0%(€;) < 0%(R,,). From equation (16), it is then clear that the maxi-
mum value of p, is 1.0, and this value is attained when ¢*(&;,) = 0. In this
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case, the relationship between ﬁi, and ﬁm, of equation (10) is exact; that is,
the disturbance € is always 0. Since the maximum value of p},, is 1.0, the
maximum and minimum values of p;, are 1.0 and -1.0. In addition to the
condition 0%(&;) =0, pyn = 1.0 requires cov (R, Rpng) >0, while pjp, =-1.0
requires cov (ﬁi,, 15,,,,) <0.

C. Some Additional Properties of the Model

In Section III of Chapter 2 we argued that since the risk of the portfolio m,
as measured by the variance of its return, is the weighted average

~ n ~ o~ 1
02(Rm') = Z Xim COV (RihRmt)’ Xim = ; > i= 1’ B (5 (18)
i=1

it is appropriate to interpret cov (ﬁi,,ﬁmt) as the risk of security / in m.
Thus, as defined by (3), the slope coefficient §; in the market model relation-
ship of (10) can be interpreted as the risk of security i measured relative to
the risk of the portfolio m. Equivalently, §; is the risk of security i relative to
the average risk of securities in m. A value of §; greater than 1.0 indicates that
security / has higher than average risk, while a value of §; less than 1.0 indi-
cates a security with less than average risk among securities in m.

PROBLEM II.C
1. Show that, according to the definitions of §; and «; of (3),

n n
> XimBi=1 and 3 Xiymo;=0;
i=1 i=t
that is, that the weighted average of the §; is 1.0, and the weighted average of
the a; is 0.

ANSWER
1. From (3) and (18),

n n cov (ﬁita ﬁmt) o? (ﬁmt)
X; .= . = = =
i=zl im P Z Fim o (Rmz) o’ (Rme)

i=1

Then, from (3) we have

3 %im o= 3 Xim (ERic) - BiERnr)]
i=1

i=1

= ERpm) - 3" Xim BiERpmg) = 0.

i=1




74 FOUNDATIONS OF FINANCE

An interesting feature of the market model relationship between K;, and
R,n; of (10) is that the average of €;;, computed across securities, is always
identically zero. To see this, note that with (10) and the answer to the pre-
ceding problem we can determine that

Rppe = ximkit (19a)

o

-~
H

Xim (0 + 5i§mt + €;) (19b)

M=

-.
I
-

M=

n - n -
Xim @t D XimBiRme + 3 Xim €1 (19¢)
i=1 ‘

1 i=1

-
L}

=Rt Y Xim &, (19d)

e

=1

which implies that

n ~
> Xim € =0.
i=1

Thus, in the relationships between returns on individual securities and the
return on m that are defined by equations (3) and (10), there are interdepen-
dencies among the disturbances €;, for different securities which guarantee
that the weighted average of the €, is always zero.

When R,,,, is written as in (19b), we can see that the market model distur-
bance for security i, €, is part of the return on the portfolio m. Nevertheless,
(13) tells us that €;, and ﬁm, are independent. There has been some confu-
sion in the finance literature on this point, for which the author, Fama (1968;
1973) is, unfortunately, to some extent responsible.

Finally, if the joint distribution of the security returns 13“, . ,ﬁ,,, is
multivariate normal, the joint distribution of the returns on any two different
portfolios is bivariate normal. It follows that the market model can be used to
describe the relationship between the return on any portfolio p and the re-
turn on the market portfolio m. Thus, repeating only equations (10) and (3),
we have

Rpt=ap +ﬁp§mt+ é'ph (20)
where

- cov (Eph ﬁmt)

S TRy = ERe) ~ B ER ). @1
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PROBLEM II.C.
2. Let x;p, be the weight of security 7 in portfolio p. Show that

n n n
ﬁp = Z Xip Bi, Qp = Z Xipa;, and €pr = Z Xip €it.
i=] i=1

Interpret these results.

ANSWER
2. For 8, we have

- cov (Rpr, ﬁmr)
P 02(Rmt)

n ~ ~
cov (Z xipRih Rmr)
i=1
Oz(Rmr)

n cov (ﬁihﬁmt)
= Xipy ————mg—————
Z P o (Romt)

Then, for o, we have

Qp = E(Rpt) - Bp E(ﬁmt)

= Zn: X,'pE(R‘“)" Zn: X,'pﬁ,‘E(ﬁmr)

i=1 i=1

= Zn: Xip [ERir) - ﬁirj/E(ﬁmr)]

With these results we can rewrite (20) as
~ n n - N
Rpt = Z Xip & + Z Xip BiRme * €pt-
i=1

i=1

Using equation (10), we can also express ﬁp, as

(22)
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pt ipRir

-.
n
—

X
i
™
*®

Xip(&ti + BiRms + €;)

M=

I
—

M=

n - n
Xipo; t z xipﬁiRmt + z Xip €ir.
i=1 i=1

1

-~
"

It follows that
~ n ~
€pr = z Xip €jt-
i=1
Taken together, these results imply that the market model equation (20)

for portfotio p is just the weighted average of the market model equation (10)
for individual securities in p; that is,

Rpt =ap t ﬁpRmt + €p;

n ~ ~
=3 Xip(ai+ BiR s + &).
i=1

D. The Market Model in the Empirical Literature

The market model plays an important role in the empirical literature of
finance. In our analysis, the model arises as an implication of the assumption
of the two-parameter portfolio model that the joint distribution of returns on
securities is multivariate normal. Moreover, we can note again that there are
many valid statistical models (one for each possible choice of portfolio p)
that describe a statistical relationship between the return on security i and the
return on any portfolio p which is similar in form to the market model.

In the empirical literature, however, the market model is interpreted as
more than a statistical description of the association between bivariate normal
random variables, and this special interpretation accounts for its special place.
The return on the market portfolio is assumed to capture the effects of vari-
ables that affect the returns on all or at least most securities, whereas the dis-
turbance €, is presumed to be due to the effects of variables more specific to
the prospects of security #. In this view, a type of causation is proposed that is
not implied by our purely statistical analysis; part of the return on security i,
in particular ﬁ,-k,,,,, is presumed to be caused by marketwide or common vari-
ables. In this interpretation, p},, measures the proportion of the variance of
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the return on security i that is explained by marketwide factors, the term
B20*(Rpm;) in (14) is the component of 62(R;,) that is due to marketwide
variables, while ¢%(&;,) is the component of the variability of the return on
security 7 that is due to variables more specific to the prospects of security i.
The coefficient §;, which we earlier interpreted as the risk of security i in m
measured relative to the risk of m, is now interpreted as the market sensitivity
of the return on security i. That is, §; summarizes the sensitivity of ﬁ,-, to
marketwide factors. A value of f; greater than 1.0 implies a security with
both above average market sensitivity and above average risk in m, while a
value of f3; less than 1.0 indicates below average market sensitivity and risk
inm*

In Chapter 5 we shall find that the market model is widely used in studies
of the adjustment of securities prices to new information. Most of these stud-
ies are concerned with the reaction of returns to company-specific informa-
tion, such as a stock split or an earnings announcement, rather than to infor-
mation about marketwide factors. In the market model, the effects of
company-specific information should show up in the disturbance €;;. Thus,
these studies use the market model disturbances to abstract from the effects
of marketwide factors on returns in order to concentrate on the reaction of
returns to company-specific information.

III. The Estimators

In discussing the market model above, we assume that the parameters—means,
variances, and covariances—of the joint distribution of Rv,, andﬁm, are known.
This is never true. The next task is to consider, from a theoretical viewpoint,
the estimation of the market model. Chapter 4 examines empirically the
properties of the model when fitted to monthly returns on NYSE common
stocks.

Most of the material in the remainder of this chapter can be found in
Cramér (1946) and Anderson (1958). Other specific references are also given
along the way. Since many results are stated without proof, the statistically
curious reader may find some of these references interesting.

*In the finance literature, §; is also called the systematic risk of security i, and o2(&;p
n

is called the unsystematric risk of the security. The idea is that since X Xime€ir =0, the
i=1

disturbance €;, is *diversified away” in the market portfolio m, and §; completely cap-
tures the contribution of security i to the risk of m. We do not use the terms systematic
risk and unsystematic risk in this book.
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A. The Generality of the Procedures

If the joint distribution of ﬁ,-, and ﬁm, is bivariate normal, then, as stated
in (2), the conditional expected value of R;; is a linear function of Ry, with
parameters §; and o; defined by (3). Moreover, bivariate normality of ﬁu and
R implies that the distribution of the disturbance €, in (10) is normal and
that €;, has the additional properties described in equations (8), (9), and (13),
which can be summarized by saying that the distribution of €;, is indepen-
dent of ﬁm,. The properties of the procedures for estimating o; and f; dis-
cussed below follow from the normality of the disturbance €;; and the prop-
erties of the disturbance described by equations (8), (9), and (13).

These conditions on the disturbance are, however, all one needs to deter-
mine the properties of the estimation procedures. Thus, if instead of assum-
ing that the joint distribution of 13,-, and ﬁm, is bivariate normal, one assumes
directly that the conditional expected value of ﬁ,-, is the linear function
described by (2), then equation (8) is implied. If the coefficients in (2) are as
defined in (3) then (13) is unplled and if the variance of the conditional dis-
tribution of R,, is independent of R,,,,, then (9) is implied. If we also assume
that the distribution of € is normal, then all the conditions required below
in the discussion of estimation procedures will hold. Equivalently, the proper-
ties of the estimation procedures can be based on the assumptions that the
conditional distribution of ﬁ,-, given ﬁm, is normal, with mean given by (2)
and variance independent of ﬁm,. These assumptions about the conditional
distribution of ﬁ,, are less restrictive than the assumption that the joint dis-
tribution of R,, and R,,,, is bivariate normal. For example, the assumptions
about the distribution of R,, given Rone say nothmg about the distribution of
R,,,,. With bivariate normality, the distribution ofR,,,, is normal.

In the context of the market model, this additional generality of the prop-
erties of the estimation procedures is not important. Most of the work in this
book is based on the assumption that the joint distribution of returns on
securities is multivariate normal, so that bivariate normality of ﬁ,-, and ﬁm, is
implied. We do, however, also have occasion to estimate relationships be-
tween random variables that are not returns on securities or portfolios and
where the assumption of bivariate or multivariate normality is less acceptable.
In these cases, we want to know what minimal assumptions are needed to es-
tablish the properties of estimation procedures. Thus, although the discussion
that follows is in the market model context, for the purpose of applying the
results in other contexts we discuss periodically the generality of the proper-
ties of the estimation procedures when bivariate normality is not assumed.
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B. The Estimating Equations

In the preceding theoretical presentation of the market model, we omit the
time subscript # that might in principle appear on the parameters a;, ;, and
Dim. When it comes to estimating the model, this is more than a simplifica-
tion of notation. Estinlation must be based on time series—that is, on succes-
sive paired values of R;; and ﬁm,. If such estimates are to be interpretable
without the aid of advanced statistical methods, we must assume that all
properties of the relationship between ﬁi, and ﬁm, are approximately sta-
tionary or constant and thus independent of . To put it more directly, we
now assume that the bivariate normal joint distribution of ﬁi, and ﬁm, is
constant or stationary during the sample period This means that the parame-
ters of the joint distribution, E(R;,), ERpme), o 2R;p), o (R,,,,) and
cov (R,,, R,,,,) and any derived parameters, like a; and f;, also do not change
during the sample period.

Consider a hypothetical sample of T successive months, ¢ = 1,2,...,T,of
paired values of the monthly returns ﬁi, and ﬁm,. Assume that successive
monthly returns are statistically independent, so that the sample is a random
sample from the bivariate normal distribution of ﬁ,-, and ﬁm,. How might
such a sample be used to estimate the market model coefficients o and G;?
One procedure is to plug sample estimators ofE(R,,) E(R,,,,) o (R,,,,) and
cov (R,,, R,,,,) Oim into (3). From our previous work, we know that we can
estimate E(R;,), E(R,,,,), and 0% (Rym,) as

T .
2 Ri
=1

T 3

M~
N
3

-
-
L}
—

ﬁi=

Rpy="—— (23)

and

3 &,

s (Rm) = ——-Tl* . 24)

The tildes indicate that these equatlons define methods or procedures for
estimating E(R;,), E(R,,,,) and 0*(R,,,) from hypothetical random samples
of size T. We do not at this point have a SpelelC sample of T observations in
mind. Since from [hlS perspectlve the sample R; it and R my are random vari-
ables, the values of R R,,, ,and s (R,,,) produced by these methods are also
random variables. Methods or procedures for estimating parameters are called
estimators. For example, s*(R,,,) of equation (24) is an estimator of o2 Rome).
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The value of the estimator obtained in a particular sample is called an esti-
mate. An estimator defines a random variable; thus, it has a probability dis-
tribution, typically called its sampling distribution. An estimate is then a
drawing from this sampling distribution. .

In direct analogy with the estimator for 0%(R,;) given by equation (24), an
estimator of the covariance 0;, = cov (ﬁ;,,ﬁm,)—call this estimator §j,, —is
defined as

(25)

The covariance 0;,, is the expected value
Oim = E([Rit = ER?)) [Rme= ERm)]).

The estimator §;, of (25) estimates this expected value of a cross-product of
random variables by the average value of the cross-product in the sample. As
in the case of the sample variance, however, 3;, is not exactly the average of
the sample cross-products, since the sum of the cross-products is divided by
T- 1 instead of by T. As in the case of the sample variance, division by T - 1
ensures unbiasedness*; that is,

E(5im) = Oi.-
With equations (23) to (25) we define estimators for §; and ¢; in equation
(3), call these estimators b; and &, as

S R R) R BT 1) Y R R) R~ Ron)
B e im _ f2l == (26)
Y7 5% S R T . -
Rone - R ((T- 1) S ot~ R
=1 ot
&;=Ri- BRpm. @7)

An estimator of the disturbance €;, (call it €;,) is then obtained as
&= Rie- (d;+ bRpmy). (28)
Such a disturbance estimator is called a residual. The estimated form of the
market model is
Rip=a;+ bR+ &y, t=1,2,...,T. (29)
In the statistics literature, equation (2) for the conditional expectation of

R;, as a function of R, is called the regression function of R;; on Rp,, and

*An estimator of a parameter is unbiased if the mean of the sampling distribution of
the estimator is the true value of the parameter (cf. Problem IL.B.7 of Chapter 2).
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the coefficients o; and B; of (3) are called regression coefficients. The g; and
l;,» of equations (27) and (26) are then called the regression coefficient esti-
mators, and

iéit=5i+l;iRmt (30
is the estimated regression function.

Two comments are in order.

First, note that whereas the regression coefficients §; and ¢; defined by (3)
are constants, the estimators E, and g; of (26) and (27) are random variables.
Since we are talking about a hypothetical sample of unknown values of R;,
and ﬁm,, the values of 5, and g; to be observed are unknown and are governed
by probability distributions. Describing the properties of the sampling dis-
tributions of b; and a; is the major remaining task of this chapter. When we
have a specific sample of known values of ﬁi, and ﬁm,, we move from the
realm of estimators to that of estimates, and all the tildes are dropped.

Second, just as 4; and 5,— are estimators of ¢«; and f;, the residuals
€iu,t=1,..., T, observed in a sample are estimators of the disturbances
€ t=1,...,T. Since one never observes the true coefficients a; and §; in
(10), one never observes the disturbances. We get to observe returns on secu-
rity i and on portfolio m, but we only get to compute estimates of the regres-
sion coefficients and the regression disturbances.

C. Some Algebraic Properties of the Estimators
The estimated form of the market model has many properties that parallel
those of the “true’’ model. Thus, from (2) we know that
EQR;p) = 0+ B ERmy).
Likewise, from equation (27) we know that
Ri=a;+ bR m. (31)
In short, just as the regression function E(R;sIR,,,) of (2) passes through the
point corresponding to the expected values of ﬁi, and ﬁm,, the estimated
regression function of (30) passes through the point corresponding to the

sample means ofﬁi, and ﬁm,.
Equation (31) also implies that

T
> €:=0, (32)
=1

which is somewhat parallel to the condition that the expected value of the
disturbance €;; in the market model equation (10) is always zero. To show
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that (32) holds, note that if we sum equation (29) overf froms=1tot=T
and then divide through by T, we get

If (31) holds, then (32) must also hold.

The estimated form of the market model has three additional properties
parallel to those of the true model, whose proofs are left as problems for the
reader. Thus, the condition cov (ﬁm,, €;;) = 0 of (13) also holds for the sam-
ple covariance between Ry and &y

T o
Z Rme - Rm)éir
Ry, &)= =0 33
s(Rm, &) T-1 (33)
With equation (33) it is then easy to show that

S R~ RB)? =52 S Rone- B + z &, (34)
t=1

t=

-

which is parallel to the market model condition (14). In words, just as the
population variance of R,, can be divided into one component, f?o 2(R,,,,),
attributable to the linear market model relationship between R,, and R,
and a second component, 0 2(&), atmbutable to the random disturbance €;,,
so the sample sum of squares Z(R;e - R ;)? can be split into a sum of squares,
B ZRpme - R.)?, attributable to the estimated market model relation and
the sum of squared residuals from the fitted relation, T €%;. Finally, equation
(34) can in turn be shown to 1mply that Just as the square of the populatlon
correlation coefficient between R;, and R, is the proportlon of o (R,,)

attributable to the linear relationship between R;, and R s, so the square of
the sample correlation coefficient 77, , where

T I~
3" Rt~ R) Rons - Ron)

~ Sim _ t=

Tm SR sRom) T . T -
1/;_:1 (R - Ri)2 ‘/E Rpne - Rm)2
= =1

—

, o (39)
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, (36)

the proportion of the sum of squares T(R;, - R;)? attributable to the fitted
linear relationship.

PROBLEMS III.C

1. Derive equation (33). Hint: substitute for €;, from (28) and then for d;
and b; from (27) and (26).

2. Derive equation (34).

3. Derive equation (36).

ANSWERS
1. Substituting from equation (28):

T - - T o ~ ~ ~
121 (Rmt' Rm) (eit) = Z (Rmr_ Rm) (Rit_ Ex’" biRmt)
= t=1

T ~ ~ ~ A
From (27) = Z (Rome - m) (th +biRpm = biRmy)
t=1
T ~ O ~ -3 ~ T ~ =3
= Z (R~ Rm)(Rie- R)) - b; Z Rme - Rm)2
t=1 t=1
From (26) =0.

2. First substitute (27) into (29) to get
Rit =R;- BiR,y + bR e + &,
Then proceed as follows:
Rit= Ri=biRyne- Rom) + &
Rie= R = B Rons = R} + 8 4 25:@Rome - Rom)&is

T -~ T
Z (Rit_Ri)2=b1? Z (Rmt m)2 + Z en +2b Z (Rmr m)en
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3. From equation (26):

IV. The Sampling Distributions of the Estimators

The coefficient estimators d; and 5,- are random variables. The next task is to
discuss the probability or sampling distributions of these estimators.

A. Unbiasedness

Our understanding of the statistical work of this section will be enhanced if
we first study in some detail the reasons why the regression coefficient esti-
mators l;i and a; are random variables. To this end, let us rewrite equation
(26) for 5,- as

T -~ =3 ~
Z (Rmt_ Rm)Rit
> =

b;

-

. (37)
(ﬁmt - ﬁm)z

M~

-
L
—

PROBLEM IV.A
1. Derive equation (37) from (26).

ANSWER
1.
T . o ~ =~ T . >~ ~ T P
Z (Rt~ Rm)(Rir - Ry = Z (Rme~ Rm)Ri - R; E (R~ Rm).
t=1 t=1

t=

=

But

T ~ =3 = Dt
S Rme- Rm) =TRm - TRy =0.
t=1

The Market Model: Theory and Estimation 85

The general result is that in any sample, the sum of the deviations of a vari-
able from its sample mean is always zero.

If we substitute the market model equation (10) for R;, in (37) and then
make use of the general result stated in Problem 1V.A./, we get

~

T ~ ~ ~ N
E (Rime~ Rm) (0; BiRm: t+ €;)
t=1
b,' =

T . P
Z (Rmt" Rm)2
t=t

T . ~ - T ~ -
Z (Rt - Rm) Ry Z (Rmt_ Rm) €t
=1 t=1
=B — N tTrT N .
Z Rme- Rm)2 Z Rome - Rm)2
t=1 t=1

Then

Romi- Rm) &y
(38)

M- [0S

Rpnt- Rm)?
t

U]
-

The estimator 5,- is a random variable because in a hypothetical sample the
values of ﬁi, and ﬁm, are random variables. Equation (38) implies, however,
that it is equivalent to say that 5,- is a random variable because the sample val-
ues of Ry, + and the market model disturbances €;, are random variables.

Much of the later discussion deals with the conditional distribution of 5,~,
conditional on fixed values Ry, , ..., R, . We then rewrite (38) as

T = -~
Z Rmi= Rm) €
~ t=1
Bi=p+ (39)
(Rmt - Ry )2
t=1
that is, the tildes on 1?,,, and the ﬁm, in (38) are dropped. One can think of
the conditional distribution of b; as resulting from repeated samples of size T
of the disturbances €, but where the values R, ... , Rm7 are the same
from sample to sample. Although the values R,,;,, ... , R, are fixed, the

estimator b; is still a random variable, since the disturbances are random
variables.
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There is, however, a more relevant interpretation of the conditional distri-
bution of ;. Although the sampling scenario involves random drawings from
the joint distribution of 1?,-, and ﬁm,, when a sample is to be drawn, the un-
certainty in the estimator of f; that arises because we do not know the values
of R, that will tumn up is unimportant. The sample will resolve this uncer-
tainty. The primary interest is in the uncertainty about §; that cannot be re-
solved by the sample. To characterize the uncertainty about §; that will
remain after a sample is drawn, we examine the distribution of 5,~ when only
the €;,..., €7 in (38) are treated as random variables. From (39) we can
see that this is equivalent to looking at the distribution of b; conditional on
le,. .. ,RmT.

Expressions similar to (38) and (39) can be obtained for the coefficient
estimator d; of (29). Skipping the tedious details, we write

T 1 Rmt\" ﬁm

G=at Y [ R (40)
= Z (Rmt_Rm)2
t=1

This equation, which is similar in form to (38), says that the estimator a; is a
random variable because the values of 1?,,,, and €;, in a hypothetical sample
are random variables. To concentrate on the uncertainty that will remain
after the sample is drawn, we again work with the distribution of &; condi-

tional onR,,;,, ... ,Ryur. Thus, (40) becomes
~ T f1 = Rm:- R -
G=ait y (7 Rm _T‘-L_?— €ir- (41)
=t Z (Rmt_ Rm)2
t=1

With equations (38) to (41) it is easy to establish that the coefficient esti-
mators b; and &@; of (26) and (27) are conditionally and unconditionally un-
biased. In words, conditional on any combination of R, , . .., RmT, the ex-
pected values (the means of the sampling distributions) of &; and 4; are B;and
a;. Since this is true for any combination of R,,,, ..., R,;7, the uncondi-
tional expected values of the estimators are also §; and a;. Thus:

E(biRmy, ..., Rmr) =E(b)) =B; (42)
E(@iRmy, - - -, Rmr) = E(@) = ;. (43)
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PROBLEM IV.A.
2. Derive (42) and (43).

ANSWER

2. The bivariate normality of R;; and R,,, implies that E(&;|R,,;) = 0 for
all values of R,,,,. Since random sampling is also assumed (that is. successive
pairs of values of 1~?,~, and 15,,,, are assumed to be independent), €;, is indepen-
dent of all market returns in the sample, and

E(€Rmys. .- Ry =E(€y) =0. (44)

It follows that the expected values of all the terms in the summations of
equations (39) and (41) are zero, and (42) and (43) are established.

B. The “t” Distributions of the Standardized Estimators

The next step is to discuss the distributional properties of @; and ;. We
first state the results and then provide some justification.

THE STANDARD ERRORS OF THE COEFFICIENT ESTIMATORS
When the estimators ; and d@; of (26) and (27) are based on a random sam-
ple of size T from the assumed stationary bivariate normal distribution of
R;; and R,,,, the standard—devietions of the conditional distributions of 5;
and a;, conditional on R,y,,, . . . , R,,, are
2 o
WG
o’(EilRm,,...,RmT)=7———('—'l———— (45)
Z R~ R )2
r=1
2 2z (1 Ry
*(@Rm1, - Rpr) =0 @) [+ 52— (46)
Z Rme~ Ry, )2
t=1

The conditional variances of b; and &; both involve the one unknown parame-
ter 02 (€;;), the variance of the market model disturbance. The unbiased esti-
mator of 62 (§;,) is

t
T-2

s (&)= 47

M\—U.d
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To get estimators of the conditional variances of b; and d;, we substitute
s2(€;) into (45) and (46):

" s2(§
sz(billea~--»Rm’)= T ( l)_ (48)
Z (Rmr_Rm)2
=1
i R
s2(@|Rpys . . o, Rin7) = 5°(€) "7‘,+ - . 49)

Z Ry - R—m)z
t=1

The conditional standard deviations of B; and &;, the square roots of the
variances described by (45) and (46), are typically called the standard errors
of the regression coefficient estimators 3; and g;; the estimators of these
standard deviations, the square roots of the variances described by (48) and
(49), are the estimators of these standard errors. The idea is that b;- B; or
d; - oy is the error in the estimator of the regression coefficient, so the stan-
dard deviation of the error is called the standard error of the estimator. Like-
wise, the standard deviation of the market model residuals, s(€;), is typically
called the sample standard error of residuals, while o(€;,) is called the stan-
dard error of the disturbances. The idea here is that the disturbance €, is the
“error” of the regression function (2); it is the deviation of R ;¢ from its con-
ditional expected value E(ﬁ,—,lRm,), and the residual &, is the error in the
estimated regression function.

THE MAJOR RESULT

Consider now the random variables

o~ bi- B
= Gl Roms - Rong) (50)
7= 4 % (51)

s@|Rp1s- - s Romr)
The 7 random variable of (50) can be interpreted as a standardized version of
b; where one first subtracts f; (the conditional expected value of b,) from
b; and then divides this difference by the estimator of the conditional stan-
dard deviation of 5. There is, of course, an analogous interpretation of (51).
When the estimators 3; and d; are based on a random sample of size T from
the assumed bivariate normal distribution of ﬁi, and ﬁm,, which is also as-
sumed to be stationary during the sampling period, then the f random vari-
ables of (50) and (51) have the student or “t” distribution with T - 2 degrees
of freedom.

A few comments are in order concerning the class of *“t” distributions. A

The Market Model: Theory and Estimation 89

“t” distribution is symmetric about O and can be completely characterized
from knowledge of its one parameter, the degrees of freedom. The degrees-of-
freedom parameter can take any positive value. The “t” distribution for in-
finite degrees of freedom is the unit normal distribution, the normal distribu-
tion with mean equal to 0 and standard deviation equal to 1.0. Like the
nonnormal symmetric stable distributions discussed in Chapter 1, nonnormal
“t» distributions are thick-tailed relative to the unit normal; that is, a non-
normal “t” distribution assigns higher probabilities to extreme observations,
and the lower the degrees-of-freedom parameter, the more thick-tailed the
“t” distributions. Most statistics books contain tables of fractiles of “t” dis-
tributions for various degrees of freedom. Such tables are not necessary here.
The “t> distribution is close to the unit normal distribution when the degrees-
of-freedom parameter is greater than 30, and we rarely work with less than
T = 60 observations.

C. Why the “t” Distribution?

In the conditional distributions of 3; and 4;, the sample values of R,,,; are
taken as given; that is, they are treated as constants. The coefficient estima-
tors are random variables because the disturbances E},’ ..., €7 are random
variables. With random sampling from the assumed stationary bivariate nor-
mal distribution of ﬁ,-, and ﬁm,, the values of €;, are independent identically
distributed normal variables. A weighted sum (or linear combination) of inde-
pendent normal random variables itself has a normal distribution. From in-
spection of equations (39) and (41), we can see that, conditional on
Rty .. Ry, B; and d@; are weighted sums of the &;,. Thus, the conditional
distributions of 5; and &; are normal with conditional means §; and «; and
conditional variances given by equations (45) and (46). It follows that

E, -
R

T —
Z Rone - Rm)2
t=1

and

173
a(e,)/(z Roms - m)ﬁ) 0@ 3+

2 (52)

have unit normal distributions. That is, as usual, when we take the difference
between a normal random variable and its mean and divide the difference by
the standard deviation of the variable, the variable that results has the normal
distribution with mean equal to 0 and standard deviation equal to 1.0. (See
Section 1.D of Chapter 1.)

It is an interesting and important statistical fact (which, like most of the
others in this section, we state without proof) that when normal random
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variables are transformed into unit normal random variables in the manner of
(52), then the same transformation, but with the population standard devia-
tion in the denominator replaced by the sample standard deviation, yields a
random variable that has a “t” distribution. For example, if y has a normal
distribution with mean E(3) and variance o%(J), then the distribution of the
sample mean ¥ in random samples of size T is normal with expected value
E (%) and variance % (y)/T. (See Problem I1.B.7 of Chapter 2.) Thus,.

y-E(p)
o(MINT

has the unit normal distribution, while

y-EQ)
sGINT (53)

;‘:

has a “t” distribution.

The value of the degrees-of-freedom parameter of the 7 random variable is
the degrees of freedom of the standard deviation in the denominator. Without
going into details, it is generally the case that the value of the degrees-of-
freedom of the sample standard deviation is just the denominator of the un-
biased estimator of the standard deviation. For example, in equation (53),
52(¥), the unbiased estimator of a2(¥), is

T ~
> G-y
G =",
T-1

and s*(y) has T- | degrees of freedom. The random variable £ of (53) has
the “t” distribution with T - 1 degrees of freedom. Likewise, the unbiased
estimator of the disturbance variance 0(€;;) is (47), and the f random vari-
ables of (50) and (51) have the “t” distribution with T - 2 degrees of
freedom.

Two points about this analysis should be noted.

First, the properties of the conditional distributions of 5; and @; do not
require any particular combination of R,,,,...,R,r; the results apply to
any combination of R,,,, ..., R,,r. For example, the result summarized in
equation (50) is that if, in any sample to be drawn, the estimator &; is to be
transformed by first subtracting from &; its conditional mean §;, and then
dividing this difference by the conditional standard deviation of &; (which
is conditional on whatever values of R,,,,...,R,,r turn up in the sample),
then the resulting variable 7 of equation (50) has the “t” distribution with
T - 2 degrees of freedom.

Second, the properties of the conditional distributions of 5; and &; are im-
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plied by the assumption that there is random sampling from the bivariate nor-
mal distribution of 13,-, and ﬁm,, which is stationary during the sample period.
But all of the distributional properties of the estimators hold if (a) the regres-
sion function E(ﬁ;,lRm,) is the linear function of equation (2), with regres-
sion coefficients a; and B; that are constant during the sampling period; (b) the
distribution of the disturbance €;; is likewise stationary; (c) there is random
sampling from the distribution of €;; and (d) the distribution of €; is
normal. Assumptions (a) to (c) are sufficient to establish that ; and d; are
unbiased estimators of the regression coefficients §; and «;, with conditional
variances given by (45) and (46). Normality of the disturbances then pro-
duces the result that the 7 random variables of (50) and (51) have the “t”
distribution with T - 2 degrees of freedom. '

Indeed, econometrics textbooks—for example, Theil (1971)—develop the
properties of the estimators from assumptions (a) to (d). In our frame of
reference, the market model, it is simpler to develop the properties of the
estimators as implications of bivariate normality. Rigorous examples of this
approach can be found in Anderson (1958) and Cramer (1946).

V. The Reliability of the Estimators

In an application of the market model, a sample of values R;; and R,,,,

t=1,...,T, is available; regression coefficient estimates b; and a@; are com-

puted, as are sample standard errors s(b;|R,;y,...,R,r) and s(@;1R,,,
., Rpm1). The preceding analysis tells us that the sample

bi- Bi a;- o
t= and t= !
s(bille)---aRmT) s(aille)~--,RmT)

6y
t

distribution with T- 2 degrees of freedom.* This
result allows us to make probability statements concerning how far the esti-
mates b; and a; are from the true values §; and o;. In short, our analysis of the
sampling distributions of the estimators 5; and &; has given us the means to
evaluate the reliability of estimates, and this is always important in
applications.

There are two formal approaches, “classical” and “Bayesian,” and we shall
discuss both of them shortly. In both approaches, the determinant of reliabil-
ity is the magnitude of the conditional variances of the regression coefficient

are drawings from the

*Note again that when we talk about estimates obtained from a specific sample, tildes
disappear.
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estimators. The smaller these variances, the more tightly packed the distribu-
tions of the estimators about the true values of the regression coefficients.
Equations (45) and (46) tell us that the variances of the estimators depend
directly on the strength of the relationship between ﬁ,-, and ﬁm,, as measured
by the disturbance variance 0?(€,); the larger the value of 6%(&;,), the larger
the conditional variances of the estimators. Equations (45) and (46) also tell
us that the variances of the estimators depend on the sample size; the larger
the value of T, the smaller the conditional variances.*

Although we can do'nothing about the magnitude of 0 (;,), it would seem
that the variances of the coefficient estimators can be made as small as one
likes by taking larger sample sizes. There are, however, two problems. First,
the time period for which we have samples of ﬁ,-, and ﬁm, may be limited.
Second, the properties of the estimators depend on the assumption that the
joint distribution of 13,-, and ﬁm, is stationary during the sample period. This
assumption may be acceptable for “reasonable” periods of time, but it is un-
likely to be acceptable for a period of indefinite length. These issues arise
naturally in the empirical work of Chapter 4. We turn now to a discussion of
the two approaches, classical and Bayesian, for judging the reliability of the
regression coefficient estimators.

A. Classical Confidence Intervals

If there is random sampling from the joint distribution of ﬁ,-, and ﬁm,
which is bivariate normal and stationary during the sampling period, the 1
random variable of equation (50) has the *“t” distribution with T - 2 degrees
of freedom. For the rest of the discussion, we assume that T is large (say,
greater than 40), so that the “t> distribution with 7- 2 degrees of freedom
is well approximated by the unit normal distribution.

From Table 1.8 at the end of Chapter 1, the .975 fractile of the unit
normal distribution, which we write as ¢ g5, is f 975 = 1.96. This means that

~ bi- B
Pr[t= = : > 1.96}=.O25. 54
$(bilRm1s - - -, Rpur) 9
In words, if we consider taking a sample from the bivariate normal distribu-
tion of R;; and R,,,, the probability that the sample will generate a value of
? greater than 1.96 is .025. Equivalently, in repeated samples of size T, we can
expect values of £ equal to or less than 1.96 in 97.5 percent of the samples.

*Typically, the variance of an estimator grows smaller as the sample size increases. For
example, this result appears (but without comment) in the brief discussion above of the
sampling distribution of the sample mean. See also Problem 11.B.7 of Chapter 2,
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The probability statement of (54) can be rewritten as
Pr [B;- 1.965(b; IRy, - - . ,Rmt) > B;] = .025. (55)

In words, if in a hypothetical sample we compute the point that is
1.965(5; | Rpm1, - - - , Rmr) to the left of B;, the probability that the value of
this point will be greater than §3; is .025. Alternatively, in repeated samples we
expect the sample values of the point to be equal to or less than §; in 97.5
percent of the samples.

From the symmetry of the normal distribution, if ¢ 955 = 1.96, then ¢ 4,5 =
-1.96. Thus, following the arguments of (54) and (55),

~ bi- B ]
Prif=—s <-196|=.025, (56)
[ s(b;|Rp1, - . ., Rypt)
Pr[b;+1.96 s(B;IRm1, .- .,Rur) < Bi]=.025. 57

The interesting probability statement comes, however, from combining
(55) and (57). 1t follows from (55) and (57) that the probability that in a
hypothetical sample, the interval

[B:- 1.96 s(B;|Rpm1, - - -, Rn7)] to [B;+1965(B;|Rm1,- .., Rm7)] (58)

will include B; is .95. Alternatively, in repeated samples we expect the sample
values of the interval defined by (58) to include 8; in 95 percent of the
samples.

The interval defined by (58) is the 95 percent confidence interval for g;. It
is just the interval from the point that is 1.96 s(5;|R,n1, . . . , Rmr) léss than
b; to the point that is 1.96 s(b;|R,n1, . . . , R,nr) greater than ;. Such con-
fidence intervals are one way to judge the reliability of 5;, and they are the
way usually suggested in the classical approach to statistics.

In interpreting and applying (58), one must choose words carefully. Since
b; and s(BjR,my,. .., Rm7) are random variables, the confidence interval
defined by (58) is arandom variable. Thus, in making a probability statement,
one talks either about a hypothetical sample or about expected frequencies in
repeated samples. One can say that in a hypothetical sample, the probability
that the 95 percent confidence interval will contain f; is .95; but in applying
(58) to a sample in hand, one cannot say that the probability that the .95
confidence interval observed includes §; is .95. The .95 confidence interval
computed from a particular sample is a drawing from the probability distribu-
tion of the interval; it either does or does not include ;. Alternatively, an ap-
propriate probability statement is that if repeated drawings are made from
the probability distribution of the .95 confidence interval, then we expect 95
percent of the sample intervals to include §;.

To make these statements more concrete, let us poach a little from the
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empirical results of Chapter 4, where we find that for the five-year period
July 1963 to June 1968, monthly returns on a share of the common stock of
IBM and on the equally weighted portfolio of NYSE stocks produce the esti-
mates b; = .67 and s(b;[R,,,...,R,,r) = .13 for IBM. Thus, the sample
value of the .95 confidence interval for §; for IBM is

b;i- 196 s(Bi|Rpmy, . .., Ry) = 42 to 92 =5;+ 196 s(B; IRy, - - ., Ronr)-

We would like to be able to say that the probability that g; is in this interval
is .95, but B; either is in the interval or it is not. All the theory of classical
confidence intervals allows us to say is that the sample interval is a drawing
from the distribution of the .95 percent confidence interval for IBM and that,
in repeated samples, 95 percent of such sample confidence intervals can be
expected to include the true value of the parameter.

This is a rather unsatisfying way to calibrate uncertainty about §;, but such
are the limitations of the classical approach to probabilities as long-run fre-
quencies in repeated samples. We see later that the Bayesian approach pro-
vides more direct probability statements to summarize uncertainty about ;.

There is no magic in .95 confidence intervals. The choice of degree of con-
fidence is arbitrary, and if confidence intervals are to be used, it is well to
look at several of them. The mechanics of the procedure are always the same,
as is the interpretation of the numbers obtained. Moreover, it should be clear
that the same development of the theory of confidence intervals applies to
a; and its estimator a;.

B. Classical Hypothesis Testing

Closely related to the classical theory of confidence intervals is the classical
theory of hypothesis testing. Suppose we want to test the hypothesis that for
IBM, ;= 1.0. Thus, the hypothesis is that the risk of a share of IBM in m, the
equally weighted market portfolio of NYSE shares, is equal to the average
risk of shares in m. In order to test this hypothesis, we must specify an alter-
native hypothesis. A simple alternative is 8; # 1.0.

The next step is to specify what sort of sample result would cause us to re-
ject the hypothesis 8; = 1.0, usually called the null hypothesis, in favor of the
alternative hypothesis §; # 1.0. This amounts to choosing the chance we are
willing to take of rejecting the null hypothesis when it is in fact true. To see
what is involved, note that if §; = 1.0,

~5;- 1.0
S(E,"le, .. Ryur)

has the “t” distribution with 7~ 2 degrees of freedom. Since such a f random

?:
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variable is continuous and unbounded, any value is possible for 7 (and thus
for &,), no matter how far from 1.0. For example, if we decide that we will
reject the null hypothesis 8; = 1.0 if the sample value of 7 turns out to be less
than -1.96 or greater than 1.96, then we are saying that we are willing to
take a 5 percent chance of rejecting the null hypothesis when it is in fact true.
That is, even when the null hypothesis §; = 1.0 is true, there is a 5 percent
probability that a sample will yield a value of 7 that is either less than - 1.96
or greater than 1.96.

Although the choice is arbitrary, suppose we decide that the hypothesis
B: = 1.0 for IBM will be rejected for values of ¢ less than -1.96 or greater than
1.96. Then, from the sample estimates for the period July 1963-June 1968,
we determine that

- b;- B; _67-1.00
s(BilRpm1s- - -, Ront) 13

=-2.54.

Since this is less than the chosen critical value - 1.96, we reject the null hy-
pothesis that §; = 1.0. Indeed, from Table 1.8 we determine that ¢=-2.54 cor-
responds to about the .005 fractile of the unit normal distribution; in samples
from the unit normal distribution, a value of ¢ equal to or less than -2.54 is
expected in only about S of every 1,000 samples. Since the sample value of ¢
is so extreme, we can conclude that the sample is truly unlikely if §; = 1.0.

Once we choose critical values of ¢ that will cause us to reject a null hy-
pothesis, there are in fact intervals of values of the parameter of interest that
a given sample will reject as null hypotheses. For example, suppose we say
that we will reject a null hypothesis about §; on the basis of a sample value of
t that is less than -1.96 or greater than 1.96. Then, any hypothetical value of
B; in the interval

[bi = 1.96 s(b;1 Ry, - - - s Rynr)] o [b;+ 1.96 s(b; 1Ry, - - - s Rywr)]

could not be rejected, while any value of B; outside the interval would be re-
jected. This interval is precisely the .95 confidence interval discussed earlier.
When we decide to reject a hypothesis about §; if the hypothetical value is
outside the interval, we are deciding to accept a $ percent chance of rejecting
a true hypothesis. The basis of the 5 percent chance of error is the fact that
in repeated samples we can expect that the .95 confidence interval will not
include the true §; in 5 percent of the samples.

There is an important insight to be gained here. The fact that a test is
consistent with a null hypothesis does not always mean that the test provides
much support for the hypothesis. Once we choose the values of ¢ that will
cause us to reject hypotheses about ;, then in a sample there will be a range
of values of f; that cannot be rejected, so that the sample is consistent with
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any number of hypotheses about ;. For example, in the case of 1BM, when
the (arbitrarily) chosen rejection values of ¢ are -1.96 and 1.96, then any null
hypothesis about 8; cannot be rejected so long as the hypothetical §; is in the
interval [.42 to .92]. Since there is a wide range of possible values of f8; that
cannot be rejected on the basis of the July 1963-June 1968 data, the fact
that we cannot reject a specific hypothesis (for example, §; = .5) is not really
positive evidence in support of this hypothesis. In general, appropriate con-
servative statements are that the null hypothesis cannot be rejected on the
basis of the data at hand, or that the data are consistent with the hypothesis.
Any conclusions about the merits of the hypothesis that are more positive
than this must be justifiable from the specifics of the case.

C. The Bayesian Approach

Having computed the 95 percent confidence interval for §; for IBM, we
would like to be able to say that the probability that the sample confidence
interval [.42 to .92] contains f; is .95. To the classical statistician, how-
ever, such a statement is anathema. The statement assigns a probability to a
specific interval of possible values of §; and thus implies a probability distribu-
tion on f;. The classical statistician argues that since §; is a constant, any
assignment of probabilities to different possible values is illogical.

In contrast, the Bayesian argues that the fact that §; is a constant is irrele-
vant, since its value is unknown. To the Bayesian, the essence of the problem
of making inferences about §; is to assign probabilities to the possible values
of ﬁi in such a way that the resulting probability distribution on ﬁi is the best
possible summary of his uncertainty about ﬁi.

When the Bayesian goes through the process of summarizing his uncertainty
about E,-, his first step is to assess a prior distribution on Ei. This can be based
on anything, other than the sample at hand, that the Bayesian considers
relevant. His prior distribution may, for example, be based on previous
samples of ﬁi, and R, and on his judgments concerning the implications of
nonmarket, that is, nonreturn evidence for the value of §;. The idea of a
probability distribution based in any way on judgments is again anathema to
the classical statistician. For him, the only probability distributions are those
from which samples can be drawn. In contrast, the goal of the Bayesian is to
get the best possible summary of his uncertainty about 5,-, and from this view-
point his judgments are relevant. The next and final step in the Bayesian
analysis is to combine the prior distribution with the evidence from the
sample at hand to get what is called the posterior probability distribution on
E,'. This posterior distribution is what the Bayesian regards as the best possible
summary of his uncertainty about §;.

Although the personal judgments of the Bayesian are certainly relevant for
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assessing his uncertainty about the value of the unknown parameter, there are
circumstances where personal judgments are not relevant. This is probably
generally true in scientific investigations. I may agree that uncertainty about
the value of an unknown parameter should be stated in terms of a probability
distribution on the parameter, but 1 would prefer that the posterior distribu-
tion on the parameter which is the end result of a scientific investigation is a
reflection primarily of the evidence from the sample. The way the Bayesian
satisfies my preferences is to assign his prior distribution in such a way that,
as long as the sample at hand is reasonably large, the posterior distribution is
dominated by the sample evidence. Prior distributions that have this property
are called diffuse.

In the case of the market model coefficients §; and a;, the use of diffuse
priors leads to simple results with respect to posterior distributions. In “large”
samples, the posterior distributions of Ei and @, conditional onR,,,;, . .. ,Rpr,
are normal with means equal to b; and a;, the estimates of the parameters ob-
tained from the sample at hand, and with variances 6*(;|Rm1 - - - » Rpnr)
and 0*(&;|Rpm1s - - - » Rpmr), €qual to s2(b;I1R 1, . . ., Rnr) and s> (a;|Rpy,

., Ry7), the usual sample estimates of the conditional variances of b; and
a;. Thus, the standardized variables

;'= Ei_E(Eillea“"RmT)= Ei—bi (59)
0BilRp1s - - sRmr)  $ilRpmy, ... ,Rmt)
~ ~ S
;,= ai‘E(aleml,...,RmT)= a,-—ai (60)

0(&i|le’~--aRmT) s(aille’“- aRmT)

have the unit normal distribution.

Note that in the 7 random variables of (59) and (60), the roles of §; and b;
are reversed vis-a-vis the classical approach, summarized in the corresponding
f variables of (50) and (51). In the classical approach, f; is always treated as a
constant, and probability statements derive from the characteristics of varia-
tion from sample to sample in b; and s(b;|R,,,, . .., Ry7)- In contrast, in
the Bayesian approach one is concerned with judging the uncertainty about
B; that remains in light of the given sample. Thus, ﬁ,- is treated as the random
variable, and probability statements derive from the fact that, with a diffuse
prior, the posterior distribution of E,- is normal with mean E(f;) = b; and
standard deviation o(B;|Rpm1, - - - , Rm1) =5Bi 1R m1s - - - » Rm1)-

For example, with equation (59) and Table 1.8 we can determine that

~ Bi- b; ]
Pr|t= <-196]| =.025,
[ S(b,‘!le,...,RmT)

which implies that
Pr [B; < b; - 1.96 s(b;|Rpm1, - . . , Rpr)] = .025. 61)
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In words, the uncertainty that remains about the value of §;, summarized by
the posterior distribution of §;, is such that we assign probability .025 to the

possibility that §; is less than b; - 1.96 s(b;|R,1, . . . , Rpr). Likewise,
. G.~ b,
Pr [r= Bi- b > 1.96]=.025,
s(biIlev v ,RmT)
or
Pr[B;>b;+1965(b; IRy, . ..,Rmr)] =025, (62)

so that we assign probability .025 to the possibility that §; is greater than
bi+196s(b;|R ;- -.,Rmr). Finally, combining equations (61) and (62),
the posterior uncertainty about §; is such that we assign probability .95 to
the possibility that f; is in the interval

[bi- 1.965(b; |Rmy» .- - s Rmr)) to [b;+1.965(Bi 1R mys - - . »Rmz)]. (63)

Expression (63) is numerically identical to the classical .95 confidence
interval of (58) when applied to a specific sample. When one takes the
Bayesian viewpoint, however, the probability statement made from the sam-
ple confidence interval is more direct than in the classical approach. In the
Bayesian approach, there is no talk about a hypothetical sample or repeated
samples. One simply says that the probability that §; is in the interval given
by (63) is .95.

If there is some special interest in a particular possible value of 3;, then the
Bayesian can use the posterior distribution of E, to make a direct probability
statement about the value of interest. For example, if for [BM there is special
interest in the possibility that §; = 1.0, the Bayesian computes

. Bi- bi _10- 67
sGi|Rmi, ... . Rmr) 13

=2.54. (64)

From Table 1.8 he then determines that the posterior probability that §; is
greater than 1.0 is about .005. In other words, the posterior distribution
assigns low probability to the possibility that g; is as large as 1.0. Again, un-
like the classical approach, the probability statement is made without refer-
ence to repeated samples.

VI. Conclusions

We have spent much time discussing the market model and its estimation
from a theoretical viewpoint. We pass on now to the data.

CHAPTER

4

The Market Model:
Estimates

The first step in applying the estimation techniques of Chapter 3 to stock
market data is to give a detailed example for an individual stock. Then sum-
mary results for two samples of 30 stocks are presented, after which we ex-
amine some of the practical problems associated with fitting the market
model.

1. Estimating the Market Model: A Detailed Example

A. The Market Model: Summary of Equations and Properties

It is helpful at this point to summarize the market model equations. Bivar-
iate normality of R;; and R,,,, implies that the regression function of R;, on
R,,,, the expected value of R;; conditional on R,,;,, is

ERulRm) =i+ iRpmes t=1,...,T, ()
with
- cov (kih iémr)

i3 da;=E®R;)-BERy,), t=1,...,T. 2
0*Romp) and a; (Rit) - BiE(Rpy) V3]

B;
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The relationship between ﬁi, and km, implied by bivariate normality can be
described as

Ri=a;+BiRpps+ &, t=1,...,T, 3)

where the disturbance €;; has mean zero and is independent of ié,,,,, so that
E(€lRpy) =E(€;)=00, r=1,...,T, 4)

0*(Rit| Rmi) = 02 (€it|Rpme) = 62 (Eir) = 0* (&), t=1,...,T, (5)

cov (€, Rmg)=00, =1,...,T. 6)

It is also helpful to restate the properties of the correlation coefficient p;,,
between R;; and R,,, that are described in Chapter 3. Thus,
cov (ﬁih iémt)

Pim=——=—"—=—, t=1,...,T @)
" o(Ri) oRome)

and
(€)= Ri)(1-p%,), t=1,...,T, (®)
so that
2(p 2(x
2 0> (Ryp) - 0*(€;)
p;, = ——————=,  t=1,...,T. 9
o oz(R“) ©
Since the independence of €;; and km, implies
P Ri) =B 0* Rong) + 0* (&), 1=1,...,T, (10)

the square of the correlation coefficient, henceforth called the coefficient of
determination,

2 _ Oz(kit)" Oz(git) = ﬁtz o (kmt)
o 0*(Ri) 0*(R;r)

, t=1,...,T, (11)

is the proportion of thg variance of k,-, that can be attributed to the market—
t~hat is, to the term f;R,,, in the market model relationship between ﬁi, and
R, of equation (3)—while 1 - p?, is the fraction of oz(ﬁi,) that can be at-
tributed to €iry t~he error or disturbance of the market model relationship
between R;; and R,,,.

Since the estimation techniques of Chapter 3 are based on the assumption
that the joint distribution of iéit and 13,,,, is the same for each month of the
sampling period, the assumption is maintained in this chapter. We indicate
this in the preceding statement of the properties of the market model by
appending the notation =1, ..., T to each equation. Since all properties of
the joint distribution of ﬁ,-, and ié,,,, are constant or stationary during the
sampling period, there is no need for a subscript ¢ on any parameters. We
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make use of this prerogative in writing a;, f;, and p;, without f subscripts,
but in other cases the prerogative goes unused.

B. Market Model Estimates for IBM

The estimators of the market model coefficients f; and o; involve iubstitut-
ing unbiased estimators of E(R;;), E(Rpm), 0> (Rm;), and cov (Rir, R,yy) into
(2). The unbiased estimators of these parameters are

T T
Z R,-, Z Rmt
x =1 = t=1
R;=% 7 and Ry =""r— (12)

T ~
Y R~ Rn)?

5 _t=1
S Rp)= =277 (13)

T ~ pg -~ -
Z (Rit ~Ry) (Rmt - Rm)

~ t=1
Sim = T-1 s (14)
so that the estimators of §; and o, are . ‘ /
v
T ~ o~ -~ o~
~ Z (Rit‘Rvﬁ)(Rmt_Rm)
~ S; t=1
bij=——= (15)
© R T~ &
Z (Rmt_Rm)
t=1
E"=§i" Elﬁm- (16)

Recall that techniques or procedures for estimating parameters, like those
described in equations (12) to (16), are called estimators. When such tech-
niques are applied to. particular samples of data, the numbers that they
produce are called estimates. An estimator is a random variable, which we
indicate with the usual tilde. An estimate is a drawing from the sampling
distribution of the estimator, so that when an estimate is referred to, the tilde
is dropped. The reader should check that these words and notation are used
consistently in what follows.

Suppose now that the common stock i of interest is the common stock of
IBM, and we wish to estimate f; and &; from the monthly returns on IBM and
the equally weighted market portfolio m for the five-year period from July
1963 through June 1968. In this chapter, m includes only NYSE common
stocks. The monthly returns, R;; and R,,,, are shown in Table 4.1. From
equation (15) we can see that to estimate §; and a;, we must first compute
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TABLE 4.1
Monthly Returns, Rjt, on I1BM and on Rpyg, the Equally Weighted
Version of the Market Portfolio, for the Period
July 1963-June 1968

MONTH  Rj; Rmt MONTH  Rj; Rme
7/63 -.0040 -.0095 1/66  -.0060  .0435
8/63 0259 .0506 2/66 0413 0109
9/63 0163  -.0184 3/66 0019 -.0219

10/63 0929 0163 a/66 0804 0337
11/63  -.0152 -.0068 5/66 -.0220 -.0724
12/63 0448 0075 6/66 -.0296 -.0048
1/64 0690  .0201 7/66 -.0278 -.0127
2/64 0521 .0270 8/66 -.0562 -.0931
3/64 0444 0314 9/66  -.0094 -.0143
4/64  -.0404 -.0031 10/66 0457 0127
5/64 0549 0116 11/66 1358 .0382
6/64 -.0063  .0154 12/66 -.0120 0162
7/664 -.0314 0277 1/67 0754 1428
8/64  ~.0438 -.0090 2/67 0791 .0209
9/64  -.0091  .0370 3/67 0488 0520
10/64 -.0378  .0170 4/67 1009 0365
11/64 -.0149 0007 5/67 -.0352 -.0179
12/64  ~.0073 -.0069 6/67 0670 0516
1/65 0952  .0587 7/67 0206  .0709
2/65 0195 0278 8/67 -.0136  .0028
3/65 -.0033  .0053 9/67 0970  .0378
4/65 0677  .0359 10/67 0825 -.0359
5/66 -.0113 -.0079 11/67 0330  .0067
6/65 -.0418 -.0743 12/67 0245 0584
7/65 0459  .0291 1/68 -.0518 -.0035
8/65 0449 0451 2/68 -.0222 -.0416
9/65 0271 .0308 3/68 0560  -.0045
10/66 0400 0474 4/68 1061 L1164
11/65 -.0122  .0300 5/68 .0568  .0586
12/65  -.0495  .0327 6/68 -.0001  .0192

the sample means R; and R,,,. Applying (12) to the returns in Table 4.1 (and
the reader may find it instructive to check the calculations that follow), we
get

— _ 1.2694 — 9739
R;= =0212, R, = W=.0162.

Thus, the average monthly return on IBM is 2.12 percent, while the return on
the market portfolio is 1.62 percent per month. During this period the share-
holders of IBM did quite well, but the market portfolio also had a substantial
average monthly return. The sample mean returns, the returns in Table 4.1,
and equations (13) to (16) can now be used to compute
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$*(Rp) = @—5?% = 001516
Sim = 2(??;’—15 = 001022
e 2
a;= 0212 - 6745(.0162) = .0103.

Thus, corresponding to the regression function of equation (1), we have the

estimated regression function
Ri=a;+b;Rps.
= 0103 + .6745R ;.
Corresponding to equation (3), we have the estimated market model equation
Riyt=a;+biRm:* €ir
= 0103 + .6745R,,,; + ;4.

The results of the computations are perhaps best appreciated from Fig-

ure 4.1, which presents a plot of the sample points (the sample paired values

FIGURE 4.1
Plot of Sample Points and Estimated Market Model Regression Function for |BM for
July 1963-June 1968
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of R;; and R,,,), indicated by stars, and of the estimated regression function.
The slope of the line is b;, and a; is the point on the line where R, = 0.0.
The residual ¢;, for any sample point is the vertical distance from the dot
corresponding to that sample point to the point on the estimated regression
function along the (imaginary) line from the dot that is perpendicular to the
R, axis. One such residual is indicated in the figure.

C. The Fit of the Estimated Regression

The impression given by Figure 4.1 is that there is a relationship between
the monthly returns on a share of IBM and the monthly retumns on the market
portfolio m, and the relationship appears to be linear. But it does not seem to
be strong, since the dispersion of the sample points around the estimated re-
gression function is substantial. There are several ways to give formal content
to this visual impression.

First, from the equation (10), the disturbance variance 0?(€;,) measures
that part of the variance of the return on security / that cannot be attributed
to the market model relationship between ﬁi, and ﬁ,,,,. The unbiased estima-
tor of 02(&;,) is

T

2 <
§2 o=l
@)= a7)
Applying this estimator to the residuals for IBM we get
09164
s2 )= =
(e) 58 .00158.
Using the unbiased estimator of 62 (R,,),
T ~ o=
Z (R ~R))?
5 =1
®)= ————T : (18)
we can also determine that
13260
sz R Q= = R
R) 59 00225.
Since
s2(e; 00158
2( ) _ =.702,
s?(R;) .00225
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the sample estimate is that slightly more than 70 percent of the variance of
R; ;¢ is unexplained by the market model relationship between R,, and R,,,,
Conversely, since

s*(e) _ 2(R.) s*(ed) _
2(Rx) s*(R))
slightly less than 30 percent of the sample variance of R,, can be attributed to
the estimated market model relationships between R,, and R,,,,

There is another approach to the same question, and it gives a slightly dif-
ferent answer. Just as equation (10) says that the variance of 7(,, has two
components, so we know from Section I1I of Chapter 3 that

T ~
Z (th—
t=1

that is, in any sample the sum of squared deviations of fii, from its sample
mean can be split into “explained” and residual sums of squares. Moreover,
from Section III of Chapter 3 we also know that the sample coefficient of
determination (the square of the sample correlation coefficient), which is

1.0- 298, (19)

R
i
[§)

~ T . o T ~
=5 Y R RP+ Y @0
t=1

t=1

defined as
< Sim __\?
o (i) @
can be expressed as
=~ & x .,
7 = g e - B Rm) 22)
im T . = sPR)
Y Ry~ RY

-
L}
-

Thus, 7,?," can be interpreted as the fraction of the sample variance of INQ,-,
that can be attributed to the fitted market model relationship between fé,-,
and R mt-

When equation (21) or (22) is applied to the monthly returns on a share of

IBM, the sample coefficient of determination is
= .307.

Thus, slightly more than 30 percent of the sample variance of R;; can be at-
tributed to the estimated market mode] relationship between R;;and Ros.
Note that (19) gives a slightly lower measure of the strength of the rela-
tionship between R, and Ry than (21) or (22), even though the equations
purport to measure the same thing. Indeed, (19) and (22) are just the sample
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counterparts of the two versions of the population coefficient of determina-
tion given in equation (11).

Although they are closely related, (19) and (22) are not identical sample
quantities. The reason is that although equations (10) and (11) hold for the
population variances and although (20) holds for the sample sums of squares,
nevertheless

2 (R) < B2s*(Rpm) +52(&). (23)
To see this, simply note that the estimators s*(R;) and s*(R,,, ) involve divid-
ing the sample sums of squares Z(R;, - R;)? and TR, - R, by T- 1,

whereas in s2(€;) the sum of squared residuals Zé7 is divided by T~ 2. Note
also that if we define

- 2 R 205
Fa __M 0 s_z(i;)_ 24)
Ry s*(R;)
then it follows from (23) that
b2s*(R 2(R.) - 52 (¢
;«lzm . ] E m) > N ( l) ~s (e) = ”:;:,"2 (25)

s*(R) s*(Ry)

Because 72 takes account of the fact that the unbiased estimator s%(&;)
has fewer degrees of freedom than the unbiased estimators s*(R;) and
s*(R,,), 722 is usually called the sample coefficient of determination, ad-
justed for degrees of freedom, whereas 7fm is called the sample coefficient of
determination. In applications of the market model, the difference be-
tween these two measures of fit is usually negligible. Since the sample size T
is generally large, a correction involving one degree of freedom has a trivial
effect on the estimator.

For example, for IBM, the choice between rj,; = .298 and r =307 is of
no consequence. In either case only about 30 percent of the sample variance
of the stock’s return can be attributed to the estimated market model rela-
tionship between ﬁ,-, and ﬁm,. Thus, the impression given by Figure 4.1—
that the estimated regression function leaves much of the variation in the
sample points unexplained—receives formal confirmation.

D. The Reliability of the Market Model
Coefficient Estimates for IBM

The estimate of §; for IBM from the monthly retumns for July 1963-June
1968 is .67. From Chapters 2 and 3 we know that §; can be interpreted as the
risk of security / in the market portfolio m measured relative to o2 (ﬁm,), the
risk of m, which is also the average risk of all the securities in m. Since m in-

The Market Model: Estimates 107

cludes all the common stocks on the NYSE, the estimate b; = .67 suggests
that the risk of a share of 1BM is substantially less than the average risk in m
of all stocks on the exchange. Alternatively, if one interprets B; as the market
sensitivity of security i, then the estimate b = .67 suggests that the return on a
share of IBM has substantially less than average sensitivity to marketwide
factors.

An estimate like b; = .67 is, however, just a drawmg from the probability
distribution of possible values of the estimator b of equation (15). To draw
any conclusions from a specific estimate, one must measure its rehablhty The
first step is to compute the sample estimate of the variance of b From Chap-
ter 3, the variance of the estimator b,, conditional on Ry, - . . s Ry, 8

0?(€&x) - a* (€ir)

5 G- Ry DT

The variance of the estimator depends on the strength of the relationship be-
tween R;; and Rym:, as measured by the disturbance variance o 2(€;y); the
weaker the relationship—that is, the larger the value of ¢ 2 (€;;)—the larger
the conditional variance of the estimator. The variance of the estimator also
depends on the sample size; the larger the value of T', the smaller the condi-
tional variance of l;i. Analogous statements apply to the sample estimator of
the conditional variance,

0*(bilRmy» - -, Rmr) = (26)

@) s@E)
T _ (T-1)s*(Rm)’
Z (Rmt_ ?
t=1

where s2(¢,) is the estimator of 0? (€;) given by (17).
For IBM: the estimate of the conditional variance ofb for July 1963-June
1968 is

s2(B;|Rmys -+ - »RmT) = en

.00158
s2(bilRm1,- - - Rm7) = 08942 = 0177,
so that
s(bilRmys .-« Rmr) = 1331,

This number seems to say that there is substantial uncertainty about the value
of B; for IBM, but let us try to give more formal content to this impression.
Recalling the discussion in Section V.C of Chapter 3, from the Bayesian
viewpoint, the uncertainty about f; that cannot be resolved by the sample at
hand is summarized by the posterior distribution on ﬁ, For a large sample
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z}‘nd given a diffuse prior distribution on 5,-, the posterior distribution on
Bi, conditional on the sample values R,y,,, ..., Rz, is approximately nor-
mal, with mean

EBilRmy, ... ,Rpr)=b;= 6745

and standard deviation

0(BilRmys -+ s Rur) =5Bil Ry . .\ Ropp) = 1331.

If we standardize 5,- as

EI_E(Billex"')RmT)z Ei_bA:
0(61"le,--'va7‘) x(bl'lle’-"’RmT)’

then we can use the unit normal distribution tabulated in Table 1.8 to com-
pute some fractiles of the posterior distribution and so get a more concrete
feeling for the uncertainty about the value of §; that the sample does not re-
solve~. For example, the 025 and 975 fractiles of the posterior distribution
on f; (corresponding to ¢ 4,5 = ~1.96 and 9,5 = 1.96) are §; = 414 and
B; = 935. Likewise:

?:

(28)

Some Fractiles of the Posterior Distribution of {?, for |18BM

Cumulative probability .025 .05 .10 25 .50 .75 .90 .95 975
Fractile 414 455 504 585 674 .764 .845 .893 935

These fractiles suggest that there is substantial remaining uncertainty about
the value of 8;. The posterior probability is .25 that §; is less than .585, and
the probability is .25 that §; is greater than .764. Thus the probability is .5
that §; is outside the interval from .585 to .764. Alternatively, the Bayesian
50 percent confidence interval on §; is from .585 to .764; that is, the poste-
rior probability that §; is in this interval is .5. Likewise, the interval from .504
to .845 covers a fairly wide range of possible values of §;, but the probability
that the true f; is outside this interval is .2, so that the interval is the 80 per-
cent Bayesian confidence interval for ;. If one prefers the classical to the
Bayesian approach to measuring reliability, the fractiles of the Bayesian pos-
terior distribution shown above are nevertheless relevant, since sample esti-
mates of Bayesian and classical confidence intervals are identical.

We soon see that the results for IBM are typical. With samples of five years
of monthly returns, there is always substantial uncertainty about the values
of §; for individual common stocks.
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E. Testing the Assumptions Underlying
the Coefficient Estimators

With either the classical or the Bayesian approach, there are two major as-
sumptions from which the properties of the market model regression coef-
ficient estimators derive. The first assumption is that the joint distribution of
R,, and R,,,, is bivariate normal. The second assumptlon is that there is ran-
dom sampling from the stationary joint distribution of R; ¢ and Rm, The pur-
pose of this section is to describe how one might judge the validity of these
two assumptions. This is an important task. The validity of the inferences
from estimates of parameters depends on whether the assumptions that
underlie the statistical techniques used are a good approximation to the data
at hand. It is always well to check that this is true.

THE IMPLICATIONS OF BIVARIATE NORMALITY

The assumption that the joint distribution of 1~2[, and 1~2,,,, is bivariate nor-

mal has three major implications that are the basis of the market model and
of the properties of the market model coefficient estimators. First, bivariate
normality implies that the regression function £ (R | Rpmy) is a linear function
of R,,;;. Second, the market model disturbance €;, has a normal distribution,
as do the returns R, and R ;. Third, the expected value of €, is zero, and
€;r is independent of R,,,,, that is, the conditional distribution of €, is the
same for all values of R,,,. The first and third implications are summarized in
equations (1) to (6).
" Using the sample results for IBM for July 1963-June 1968, let us ex-
amine first the implication of bivariate normality that the distributions of
1~2,-,, 13,,,,, and €, are normal. We rely on the studentized range introduced
and used extensively in Chapter 1. Recall that the studentized range is the
difference between the largest and smallest of the sample values of a random
variable, divided by the sample standard deviation. From the sample results
for July 1963-June 1968, we get

Studentized Ranges

Ri¢(IBM) Rmt ejt

4.05 6.06 4.56

From Table 1.9 we determine that the sample studentized range (SR) for
R,.¢, 606, is between the 99 and 995 fractiles of the distribution of the
studentized range in samples of size 60 from a normal population. Thus, in
sampling from a normal population, there is less than a 1 percent chance that
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a sample will yield a studentized range as large as or larger than 6.06. On the
other hand, the studentized range for the monthly returns on IBM is 4.05,
which is between the .05 and .10 fractiles of the distribution of the student-
ized range, while the studentized range of the residuals is 4.56, which is al-
most midway between the .10 and .90 fractiles. The range of the returns on
m is unusually large for a sample from a normal population; the range of the
returns on IBM is slightly small for a sample from a normal population, while
the range of the market model residuals is not at all unusual for a sample
from a normal population. One might conclude that the sample returns for
R;, and e;, are consistent with normality but those for R,,,, are not.

From one viewpoint, nonnormality of ﬁm, is not critical. Recall from
Chapter 3 that the distributional properties of the market model coefficient
estimators do not require that the distribution of 1?,,,, be normal. The critical
assumptions are random sampling and normality for the disturbances €;,, and
the studentized range of IBM’s residuals is consistent with the hypothesis of
normality for €;,. From the viewpoint of the two-parameter portfolio model,
however, which is based on the assumption that all portfolio return distribu-
tions are normal, it is disturbing if the market portfolio m, which is repre-
sentative of a diversified portfolio, has a return distribution that is substan-
tially nonnormal.

There is the possibility that the extreme studentized range for R,,, for July
1963-June 1968 is due to chance, so that the distribution of ﬁm, is not so
nonnormal as this five-year period might suggest. To check this possibility, we
examine the studentized ranges for R,,, for various subperiods from Feb-
ruary 1926 to June 1968:

Period 2/26-12/30  1/31-12/35  1/36-12/40  1/41-12/45 1/46-12/50

SR{Rm) 4.75 5.29 5.94 442 4.46
T 59 60 60 60 60

Period 1/51-12/55  1/56-12/60 1/61-12/65 1/66-6/68

SR(Rm) 442 5.12 5.78 4.83
T 60 60 60 30

Two of these studentized ranges, those for 1/36-12/40 and 1/61-12/65, are
extreme in the sense that they exceed the 975 fractile of the relevant sam-
pling distribution of SR in Table 1.9; and two, those for 1/31-12/35 and
1/66-6/68, are also extreme (but less so) inasmuch as they exceed the .90
fractile of the relevant sampling distributions of SR. On the other hand, the
studentized ranges for the remaining five periods are quite consistent with
what would be expected from normal populations. Three of them, those for
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the three five-year periods 1941-1955, might even be said to fall slightly into
the left tail of the relevant sampling distribution of SR.

In short, the results are consistent with a distribution for 1~2,,,, that is slightly
leptokurtic relative to a normal distribution, but much less nonnormal than
one might infer from the one studentized range for July 1963-June 1968.
This is, of course, similar to the conclusion that we draw with respect to dis-
tributions of monthly returns on securities and portfolios in Chapter 1, where
frequency distributions and studentized ranges of monthly returns are studied
in detail, and where we conclude that for monthly returns normal distribu-
tions are a workable approximation.

Next we consider the implications of bivariate normality that there is a
linear relationship between k,-, and ﬁm, and that the disturbances €;, from
this linear relationship are independent of ﬁm,, so that the conditions of
equations (1) to (6) hold. Perhaps the best—or, at least in practice, the most
common—way to judge the validity of these propositions is by inspection of
a plot of the sample combinations of R;; and R,,, like that shown in Fig-
ure 4.1, with the estimated regression function also included on the graph.
Obviously, visual inspection can only lead to impressionistic judgments about
the validity of the propositions.

Thus, to judge the validity of the proposition that the regression function
E(Rit|R ;) is a linear function of R, which is what we mean when we say
that there is a linear relationship between the two variables, we can visually
inspect a graph like Figure 4.1 and judge whether some nonlinear function
might provide a better fit to the sample points. If, as in Figure 4.1, a linear
function seems appropriate, then we can conclude that linearity of the re-
gression function is an appropriate approximation. This allows us to conclude
that the proposition of equation (4), that the conditional expected value of
€;; is independent of R,,,, is also an appropriate approximation to the data;
that is, if the regression function E(R;;|R,) is a linear function of Ry,
then E(gi,lR,,,,) must be zero for all values of R,,,,.

A graph like Figure 4.1 can also be used to judge the validity of the state-
ment of equation (5) that the variance of €;; is independent of Ry, but a
combination of care and artistry is needed. In terms of its implications for a
sample, equation (5) says that the dispersion of the sample points about the
estimated regression function should be about the same for different values
of R,,;. But one must be careful in interpreting the word “dispersion.” Ex-
treme values of R,,, are, after all, much less likely than values close to the
mean of Ry, Thus, in a sample there are likely to be fewer drawings from
the distribution of €;, corresponding to extreme values of R,,, than there
are for more moderate values of R,,,. As a consequence, even though
0%(€;;| Ryns) may be the same for all values of R,,,, more extreme observa-
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tions on €, should be more numerous the closer one is to .016, the mean of
Ry, since the expected frequency of sample points is higher for intervals
closer to the mean of R,,,. The range of sample points about the estimated
regression function should, however, be about the same at points that are
equal distances to the left or right of the mean of R,,,, and extreme devia-
tions of sample points from the estimated regression function should be less
numerous the further one looks away from the mean of R,,,. To my eye,
the results for IBM shown in Figure 4.1 are consistent with these qualitative
statements.

A more formal approach to examining the proposition that 0% (€i|Rm1t)
is the same for all values of R,,, is to divide the sample range of R, into
intervals that contain the same number of sample observations and then to
compute the standard deviations of the residuals in each interval. If the
proposition that 0*(€;;|R,,) is the same for all R,,, is valid, these sample
standard deviations should be approximately the same for all the intervals of
R,n;. Note that, according to the comments of the preceding paragraph, if
each of the intervals of R,,; contains the same number of sample points, then
the closer the interval is to R,,, the smaller the range of values of R, it
will cover.

Finally, recall from Section III.C of Chapter 3 that the sample mean re-
sidual cannot be used to test the proposition of equation (4) that the un-
conditional expected value of the disturbances E(€;,) = 0, since the coef-
ficient estimates b; and a; are defined in such a way that in any sample

T
2 et
&= ’“T =0.

Moreover, it is also always true that in any sample,
T —
Z Rme - Rm)ein=0,
t=1

so that the sample covariance between R,,,, and e;, cannot be used to test the
proposition of equation (6) that cov (€1, R =00.

STATIONARITY AND RANDOM SAMPLING

Having examined the implications of bivariate normality, we now tum to
the questions of whether the joint distribution of ﬁi, and ﬁm, is constant
or stationary during the sampling period, and whether successive paired values
of the monthly returns can be regarded as independent drawings from the
joint distribution of the returns.
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Time series plots of returns and residuals. Figures 4.2 to 4.4 present plots
against time of the monthly IBM returns, the monthly returns on the market
portfolio m, and the monthly residuals from the estimated market model re-
gression function. Such time series plots allow us to judge whether the distri-
butions of the returns and residuals remain constant during the sampling
period. Specifically, the time series plots are excellent for judging whether

FIGURE 4.2
Time Series Plot of Monthly Returns on |18BM for July 1963-June 1968
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FIGURE 4.4
Time Series Plot of the Market Mode! Residusls for IBM for July 1963-June 1968
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the variances of the variables change through time, and this is an important
question. For example, the assumption that the disturbance variance 6%(&;,)
is constant through time is used to derive the expressions for the conditional
variances of the market model coefficient estimators. The plot of the residuals
in Figure 4.4 does not seem to raise serious doubts about this assumption.
The plots of R; and R,,, likewise do not suggest any obvious changes during
the sampling period in the behavior of the monthly returns on IBM and on
the market portfolio m.

With plots like Figures 4.2 to 4.4, however, one can only judge changes in
the separate behavior of the returns and residuals, whereas the assumption is
that the joint distribution of ﬁi, and ﬁm, is stationary during the sampling
period. This assumption indeed implies that the distributions of returns and
residuals are stationary, but it also implies that the market model regression
coefficients o; and §; are constant during the sampling period. We discuss
this proposition later.

Autocorrelations of returns and residuals. To some extent, Figures 4.2 to
4.4 can also be used to judge the assumption of random sampling With ran-
dom samp]mg from the bivariate distribution of R, and R,,,,, successive
values of R,, are independent, as are successive values of R,,,, and €. In
terms of Figures 4.2 to 4.4, this means that there should not be runs of higher
than average or lower than average returns or residuals, above and beyond the
runs that would be expected by chance. Equivalently, through time the re-
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turns and residuals should be randomly scattered about their respective
means.*

Although the plots always provide valuable insights and familiarity with the
properties of the data, some amount of bunching through time of high or
low returns or residuals is to be expected on a purely chance basis. This
makes visual inspection of the behavior of the variables a tricky procedure for
judging whether any patterns observed are consistent or inconsistent with the
assumption of random sampling. However, quantitative procedures for testing
the assumption of random sampling are also available. Fortunately, these
procedures are based on statistical concepts that we have already studied.

Let us illustrate the approach in terms of the returns R,, The goal is to
measure the relationship between the returns R,, and R, 1, that is, returns
7 months apart. Suppose we are willing to limit attention to a possible linear
regression function relationship of the form

ERy\Ri1-1) =87 * YrRi 1o (29)
so that the return can be expressed as
ﬁit =6+ 71’Ri,t-f + & (30)
Finally, we assume that the process generating the returns is stationary
through time; that is, the process is the same for all ¢, so that, as indicated
in (29), the coefficients 8, and v, in the relationship between R;, and Ri¢r
are the same for all ¢.

From Section II of Chapter 3, we know that if §, and v, are defined in the
usual way as

cov(Ryp, R 1)

T 8:= ERi) - ¥rER;, 1-1), €2}
then
cov (E, Ry, 4-1) = 0.0, 32)
so that
0*(Ri) = 720 (R, 1-1) + 0*(Eyy). (33)

*The statistical properties of the market model coefficient estimators discussed in
Chapter 3 require random sampling from the distribution of the disturbances ¢; €is- But
when the properties of the estimators are not based on assumed bivariate normality for

i and R, random sampling from the distributions of K,,,,, and R; it Is not necessary.
We find in Chapter S, however, that independence through time of security and port-
folio returns is an important issue in its own right. Thus, it helps to set up our later
work if we now discuss testing for time series independence both for the returns R,,
and R, and for the disturbances ;.
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It then follows that if we define the correlation coefficient between ﬁi,
and RV,;,_T as
o~ cov(ﬁ-,ﬁ-,_)
PRy, Ryyog) =~ 2t (34)
0(Ri)o(R; +-7)

then the coefficient of determination

cov (ﬁih ﬁi,t—r)>2 - 712' 02(Ri,t-'r) (35)

2 -

P Rue RM_T) <O(§it)o(§i,t—r) Oz(Rit)
is the proportion of the variance of R; ;¢ that can be attributed to the linear
relationship between R,, and R, +-r—that is, to the term 7,.R, -7 in (30)—
while 1 - p* (R, R; 1) is 0*(£i)/0*(R;), the proportion of the variance of
ﬁi, that can be attributed to the disturbance £;, in (30).

The correlation coefficient between R:-, and 15,-,,_, is given a special name:
it is called the autocorrelation for lag 7. It is also sometimes called the serial
correlation for lag 7. The assumption that the statistical process is the same
for all ¢ implies that the standard deviation of ki, is the same for all ¢,

0(Ris) = 0(R; 1-+) = o(R)). (36)

It follows from (36) that the autocorrelation for lag 7 is also the linear regres-
sion coefficient ,. Under the latter interpretation, it is called the autore-
gression coefficient for lag 7.

The sample estimators of 5., ¥,, and p(ﬁi,, ﬁi,,_,) are defined in the usual
way: we simply plug in sample estimators of the covariance, the means, and
the standard deviations that appear in (31) and (34). We have

T ~ -3 -~ >
~ ~ Z (R't“ R~,)(R~,,_ - R',r— )
SRit, Rijtog) tdgm 0T TR

gT = 2(D = T (37)
S Rii-r) > (Ri¢-7 - Ri,t-'r)2
t=T+1
J‘r =R - g‘rRi,t-f (38)

T ~
2 Ri

2 1=7+1
it= T-7 ’ (39)
T ~
Z Ri,t—'r
2 1=T+1
Rigr= " (40)
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To see the logic in these expressions, note that a sample of T observations
on R,, only yields T- 7 paired observations on R,, and R, -7 that can be
used to estimate the coefficients of (30). That is, the sample points, the
paired values of R;, and R; ;_, that can be used to estimate the coefficients
are the T - 7 pairs

(Ri,f+l ’ Ril )7 (Ri,T+2 ’ RiZ)’ DS | (RiT’ Ri,T—T)'

The estimators of the sample means, variances, and covariances then simply
reflect the fact that the sample observations on R;, are Rirers o Rips
while the sample observations on R; ;_, are Ry, ..., R; 7.

One consequence of this way of looking at the sample is that although the
assumed stationarity of the process implies

ERip) = ERy-1) = E(R),
this equality does not hold for the sample estimators; that is,
Rit # Ry g1
Likewise, although stationarity implies (36), nevertheless in any samplé
sz(ﬁit) #* sz(ﬁi, t-1)-
Finally, if the sample estimator of the autocorrelation coefficient for lag 7
is defined as
s(ﬁin R'i,t-‘r)

;(RJA’R',’ _ )=——————~ = (41)
ke S(Rit)s(Ri,t—r)

T ~ =4 ~ x
Z (Rit - Rit) (Ri,t—r - Ri,t—f)

t=T+1

T ~ =3 T -~ x
Z (Rit“Rir)2 Z (Ri,t—r'Ri,t—r)2

t=7+1 t=7+1

>

then

§,— #* "~(Rita Ri,t~r);
that is, although v, = p(ﬁ,—,, ﬁi,,_T),the sample estimators of the two quanti-
ties are not the same.

This last result seems to cause a problem, since either g, or ?(ﬁi,, 13,;,-,.)
can be regarded as an estimator of the autocorrelation for lag 7. In practice,
however, as long as the sample period T is long—more specifically, as long as
7 is small relative to T—then g, and F(R,,, 15,; +-7) will be nearly identical.

The property of the sample autocorrelation that we use most in later
discussions is the fact that, like any sample coefficient of determination,

"r(R,,, R, +-r)% can be shown to be
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T
~ o~ -4
g"? Z (Ri,!—T - Ri,r—r)2

~ ~ ~ =7T+1
Ryt Rit-7)= TT R (42)
Z (Rit - Rir)2
1=7+1

which can always be interpreted as the proportion of the sample sum of
squares

T o
Z (Rit - Rir)2

1=7+1

that can be attributed to the estlmated linear relationship between R,, and
R,,, r- Alternatively, 7 (R,,, R, +-7) is an estimator of p (R,,, R, t-7)s

which, from (35), can be interpreted as the proportion of the variance of
R,, that can be attributed to the linear relationship between R,, and R, -1+

In applications, we commonly rely on this “proportion of variance explained”
interpretation of r (R,,, R, +-7) as an indication of the degree of dependence
between values of R,, that are 7 months apart. If the proportlon of variance
explained by the linear relationship between R,, and R, (-7 is close to zero,

then we conclude that the assumption that returns which are separated by 7
months are independent is a reasonable approximation to the data.

As usual, we generally want to judge the reliability of r(R,,, R, f-r) as an
estimator of p(R;;, R; , ). Like any other estimator, r(R,,,R, (—7) is a ran-
dom variable with a sampling distribution; as always, we want to know how
tightly concentrated the distribution is about the true value of the param-
eter of interest. The analysis of this problem is in general quite difficult,
but fortunately there are some simple results for the case of most interest.
In the applications of this and later chapters, we are almost always interested
in the distribution of r(R,,,R, 1 ) under the hypothesis that R,, and R, -
are independent, so that p(R,,,R, +~7)=0.0. When p(R,,,R, -7) = 0.0,
the distribution of r(R,,, R, ¢-r) in large samples is approximately normal,
with mean and standard deviation

1

E[T(R”, Rx,r ] =- ;__— (43)
1

T-71°

o [F(Rip, Ry g-r)] = (44)

An individual sample autocorrelation r(ﬁir, ﬁ,- ¢-7) allows us to judge
whether returns T months apart are independent. The discussion above applies
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to any 7, however, so we can compute the vilues of r(Ry, Rvi',_T) forr=1,
T =2, etc., and use these to judge the degree of dependence between values
ofﬁ,-, that are separated by one month, by two months, and so forth. If there
does not seem to be an important amount of dependence for any 7, then we
can conclude that the assumption of random sampling—that is, the assump-
tion that successive values of ﬁi, are independent—is a reasonable approxima-
tion to the data.

Moreover, although for purposes of illustration the preceding discussion
has been carried out in terms of the returns ﬁ,-,, the analysis and results apply
to any random variable that can be regarded as a time series. Thus, they can
be used now to help us decide whether the assumption of random sampling
is a reasonable approximation for the monthly returns on IBM, the monthly
returns on the market portfolio m, and the market model residuals for IBM
for July 1963-June 1968. Table 4.2 shows the sample autocorrelations of

TABLE 4.2
Autocorrelation Estimates for the Monthly Returns on |BM,
the Market Portfolio m, and the Market Model Residuals
for 1BM for July 1963-June 1968

LAG 7 R,’t(i ={BM) Rmt et O(TT)
1 139 m 213 130
2 .022 .013 -.07m A3
3 -.003 .103 -.114 132

the three variables for lags 7= 1,2, 3. The standard deviations of the coef-
ficients, computed from (44), are also shown. For example, the table says
that the sample correlation between values of the return on IBM one month
apart is .14. Thus, we estimate that approximately (.14)* = 02, or only 2
percent, of the variance of fi,, for IBM can be attributed to the linear rela-
thnShlp between R,, and R, -1, which is consistent with the proposition
that R; it and R, (-1 are independent. Indeed, all of the sample autocorrela-
tions shown in Table 4.2 are in this sense small, as are the coefficients for
lags greater than 3, which are not shown. We conclude that the assumption
of random sampling is consistent with the data.

We close by noting that since the interpretation of an autocorrelation is
linked to a linear regression function relationship like (29), the autocorrela-
tion is a measure of linear dependence. A linear relationship is just one pos-
sible form for the relationship between lagged values of a random variable.
In practice, however, autocorrelations are the primary tool used to measure
serial dependence.



120 FOUNDATIONS OF FINANCE

PROBLEM LE.

1. Below are the monthly returns on a share of Xerox common stock for
July 1963-June 1968. For convenience, the returns on the market portfolio
m are also shown. Fit the market model to these data. Specifically, compute
by, a;, SBilRmys. s Rnt)y S@i\Rmys - s Rpr), 12, the studentized
ranges of R;, and e;, and the autocorrelations of R; and e; for lags
7 =1, 2, 3. The estimating equation for s(a;/ Ry, .., Rmr) is (49) of

Chapter 3.

MONTH (t) Rj¢ Rme MONTH (t) Rj¢ Rme
7/63 .2471 ~.0095 1/66 0755 .0435
8/63 .1653 0506 2/66 0834 0109
9/63 -.0075 -016a K 3/66 0454 -.0219
10/63 .2954 0163 4/66 0269 0337
11/63 0274 -.0068 5/66 -.0406 -.0724
12/63 .1389 0075 6/66 .0155 -.0046 ‘{
1/64 -.0772 .0201 7/66 -.0738 -.0127
2/64 .0095 0270 8/66 -.2191 -.0931
3/64 0784 0314 9/66 -.0148 -.0143
4/64 1141 -.0031 10/66 -.0736 0127
5/64 .2228 0116 ©11/66 .2670 .0382
6/64 -.0013 .0154 12/66 -.0366 0162
7/64 ~.0935 0277 1167 1703 1428
8/64 ~.0420 -.0090 2/67 .0784 0209
9/64 2213 .0370 3/67 .1250 .o}zo J
10/64 -.1221 .0170 4/67 0228 0365
11/64 -.1168 .0007 5/67 -.0506 -.0179
12/64 0450 -.0069 6/67 .0055 0516
1/65 .1255 0587 ¥ 7167 -.0183 0709
2/65 1239 .0278 8/67 -.0173 .0028
3/65 -.031 .0053 9/67 0551 0378
4/65 1253 .0359 10/67 0531 -.0359
5/65 .0791 -.0079 11/67 -.0022 .0067
6/65 -.0358 -.0743 12/67 0395 .0554
7/65 0947 0291 1/68 -.1650 -.0035
8/65 1022 0451 2/68 -.0253 ~-.0416
9/65 -.0088 0308 3/68 -.0183 -.0045
10/65 0356 0474 4/68 .1489 .1164
11/65 1219 .0300 5/68 .0904 .0586
12/65 0313 0327 6/68 -.0182 0192

ANSWER

1. The values of the coefficients, their standard deviations, and so forth
are shown in Tables 4.3 and 4.5.
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II. Evidence on the Risks or Market Sensitivities
of NYSE Common Stocks

A. Comments on Market Model Estimates for Larger and
Smaller Firms

Table 4.3 shows the market model coefficient estimates b; and a;, com-
puted from monthly returns for July 1963-June 1968, for the thirty
common stocks that account for the largest fractions of the total market
value of outstanding shares on the NYSE at the end of 1971. The estimates
of the conditional standard deviations of the coefficients are also shown.
Henceforth we refer to these as the standard deviations or standard errors of
the coefficients; that is, we no longer explicitly include the word conditional,
and the estimates are denoted as s(;) and s(a;). For each of the stocks, Table
4.3 also shows the sample standard deviation of the market model residuals,
s(e;); the sample coefficient of determination, r},; and the sample mean
and standard deviation, R; and s(R;), of the stock’s return. Table 4.4 shows
the corresponding results for a random sample of NYSE stocks.

The first thing to note is that in the results for the larger firms in Table 4.3,
only two of the b; (Xerox and Ford) are greater than 1.0, and most are sub-
stantially less than 1.0. The average of the b; in Table 4.3 is only .61. Inter-
preting B; as the risk of security i measured relative to the average risk of
securities in m, the estimates imply that the risks of the common stocks of
larger firms tend to be substantially less than the average risk of stocks in m.
Alternatively, interpreting f; as the sensitivity of the return on security i to
marketwide factors, the larger stocks seem to have less than average market
sensitivity. In contrast, in Table 4.4, 15 of the randomly selected stocks have
b; > 1.0, 15 have b;<1.0, and the average of the b; is 1.00. Thus, these
stocks do not tend to have either systematically more or less risk than the
average risk in m of all common stocks on the exchange. This is, of course,
exactly what we expect from a random sample.

The second point to note from Tables 4.3 and 4.4 is that there seems to be
a relationship between s(R;) and b;. Generally, the larger the value of b;, the
larger the sample standard deviation of the security’s returns. This result has
two causes, one algebraic and one that is just an empirical finding. First, the
sample sum of squares from which s(R;) is computed can be expressed as

T . T _ T
Z (Rir_ Ri)2 = b,? Z (Rmt— Rm)2 + fv_;, e,?r (45)
t=1 .

1=1
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TABLE 4.3
Market Model Parameter Estimates for 30 Largest Firms for July 1963-June 1968

% OF 1971
MARKET
NAME VALUE  b; sby) 4 sa)) o, B slA) sle)
International Business Machines 5.473 67 .133 010 0056 .31 0212 047 040
American Telephone and Telegraph 3.477 A9 110 -.002 .0046 .05 0008 .ouw .oww
General Motors 3.275 .87 .145 -006 .0061 .39 ”oom_ “omm Ho\—w
Exxon 2.336 24 2 000 .0051 .06 .0043 .037 036
Sears, Roebuck 2.244 45 150 003 0063 13 0105 .048 .o&w
Eastman Kodak 2,222 65 147 011 0062 .25 .ow_ 5 .omo .O\S
General Electric 1.609 .78 .187 -.007 .0079 .23 ”oomm ”omw .omm
wmax 1.389 120 310 .021 .0130 .20 .0400 .103 .093
exaco 1324 43 134  -001 0056 .15 .0059 .043 .040
Ford Motor 1.087 1.04 1561 -.012 .0063 .45 .0054 .061 .045
Minneapolis Mining and Manufacturing 1.073 .79  .158 001 0066 .30 .0133 .omm .o&.\
Coca-Cola 1.027 .38 147 .016 0062 .10 .0221 HOhm .O\S
Du Pont 969 65 134 -.009 0056 .20 0013 .047 040
_u_.on”m_” and Gamble 907 .30 .129 001 .0054 .08 .0063 HOho ”oum
Gulf Oil .848 26 137 009 0057 .05 .0124 042 .041
Mobil Oil .784 27 161 .005 0068 .05 .0095 .049 048
Johnson and Johnson 777 91 176 .007  .0074 .31 0222 .omu .omu
Standard Oil {California) 688 35 126 -.001 0053 .12 0046 040 038
Standard Oil (indiana) 679 42 184 007 .0077 .08 .0140 057 .055
Royal Dutch Petroleum .659 62 .180 -.000 .0075 .17 .ooww .omw .omb
Shell Transport and Trading 649 b5 178 008 .0075 .14 Hod 73 .omu .omu
American Home Products 639 .83 .161 003 .0068 .32 .0166 .omm .Obm
Merck and Company .639 .60 .159 011 .0066 .20 .0212 .omu .th
International Telephone and Telegraph 594 99 .160 .001 0067 40 .0168 Homd ”oam
J. O...um::m< 578 .89 177 .000 .0074 30 .0145 063 .053
Emm”_:n_..o:.mm Electric 539 99 .207 .001 .0087 28 0169 .072 .062
Dow Chemical .533 70 173 ~.003 .0072 22 .0085 .058 052
Kresge, S. S. 513 49 220 .033 .0092 08 0410 .068 .066
General Telephone and Electronics .497 .48 .136 .004 0057 .17 .0116 .044 040
Atlantic Richfield .460 .40 149 014 0063 .11 0203 .047 “Obm
Averages 1.282 61 .161 .004 .0068 .20 .0141 .054 .048
TABLE 4.4
Market Model Coefficient Estimates for 30 Randomly Selected Firms for July 1963-June 1968
NAME bj sib;) a; slaj) JNS R; s(R;)  slef)
IPL 1.20 .340 -.013 0142 .18 .0070 111 102
Lehigh Portland Cement 1.07 .207 -.014 .0087 .32 .0034 .074 062
Hotel Corporation of America 1.60 .338 .009 .0142 .28 .0356 118 101
Portec 1.51 272 -.005 0114 .35 0196 .100 .081
Richardson Merrill .69 .245 .002 .0103 12 0128 .078 .073
Van Raalte .73 179 .009 .0075 .22 .0208 .060 .054
Ex-Cell-O 1.11 191 ~.002 .0080 37 .0157 .07 .057
Keebler 1.14 .202 .002 .0085 .36 .0201 .075 .060
Canadian Breweries .08 .259 .024 .0108 .00 .0253 .077 077
Gulif, Mobile and Ohio Railroad 1.30 .201 .004 .0084 42 .0247 .078 .060
Dana Corporation 84 123 -.007 .0051 .45 .0066 .049 .037
Union Pacific Railroad .66 .140 -.002 .0059 .28 .0086 .050 .042
Cyclops Corporation .87 A77 -.005 .0074 .30 .0095 .063 .053
Ohio Edison .28 .128 .002 .0053 .07 .0069 .039 .038
Central Foundry 2.24 413 -.018 0173 34 .0188 .150 124
United States Gypsum 1.01 .180 -.011 .0076 .35 .0053 .066 .054
Eversharp 1.22 334 -.017 .0140 19 .0032 110 .100
Dayton Power and Light .58 145 -.002 .0061 .22 .0072 .049 .043
Cluett, Peabody and Company 67 .196 .009 .0082 17 0197 .064 .059
Washington Gas Light 14 .028 -.002 .0039 .04 -~.0001 .028 .028
Lowenstein, M., and Sons 1.21 214 -.001 .0089 .36 .0189 .079 .064
International Telephone and Telegraph .99 .160 001 0067 .40 .0168 .061 .048
Carpenter Steel .83 227 .006 .0095 .19 0197 .075 .068
Greyhound .93 176 -.008 .0074 .32 .0074 .063 .053
Allegheny Ludlum Steel .66 .184 .004 .0077 .18 .0142 .060 .055
United Air Lines 1.30 .286 .000 0120 .26 .0210 .099 .086
Adams Express .40 .087 .006 .0036 .27 0122 .030 .026
Ambac Industries 2.03 .265 -.004 0111 .50 .0287 111 079
Masonite J 1.39 224 -.006 .0094 .40 .0170 .086 .067
Lehigh Valley industries 1.34 522 032 .0219 .10 .0533 .163 .156
Averages 1.00 221 .000 0093 .27 .0158 .078 .067
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Since Z(R,,; - R,,)? is the same for every security, we can see that the larger
the value of b, the larger the value of s*(R;) = Z(R; - R)*/T - 1. Second a
universal empirical finding in the literature is that larger values of b, tend to
be associated with larger values of s*(¢;) = £ e}, /(T - 2). This relationship can
be seen in Table 4.3, but it is more evident in Table 4.4, where there are more
pronounced differences in the b, of different securities.

Although both components of T(R;, - R,)? in (45) tend to increase with
b,, the residual sum of squares, T e,’,, must increase less (in percentage terms)
than b} Z(R,,, - R,,)*. This conclusion is implied by the observation that
the sample coefficients of determination, r2.,, seem also to increase with b;.
For example, the average values of b, and r?,, for the stocks in Table 4.3 are
.61 and .20, whereas the average values of b; and r?,, for the randomly
selected stocks in Table 4.4 are 1.00 and .27. Since r?,, can be written as

T —
biz Z (Rmt“ Rm)2
2 _ t=1
r,m = s

(th - Ei)2

t=

a positive relationship between r;,, and b; implies that the numerator of this
equation, b} (R, ~ R,,)?, increases with b, more (in percentage terms)
than the denominator, Z(R;, - R;)?, which in tum implies that = e}, does
not increase with b; as much (in percentage terms) as b} Z(Rme~ Rm)?.

The final point to note from Tables 4.3 and 4.4 is that for July 1963-
June 1968, marketwide factors always explain 50 percent or less of the
sample variances of the returns on the individual stocks shown in the tables.
The sample coefficients of determination r?,, are all .5 or less.

B.  Evidence on the Assumptions Underlying the Market
Model Estimates

Table 4.5 shows sample statistics that can be used to test the assumptions
underlying the market model regression coefficient estimates in Table 4.3.
For each stock in Table 4.3, Table 4.5 shows the studentized ranges, SR(R))
and SR(e;) of the stock’s returns and of its market model residuals for July
1963-June 1968, along with the sample autocorrelations r(Ris, R; ¢-7) and
riey, €;,-;), 7=1,2,3. Table 4.6 shows the corresponding studentized
ranges and sample autocorrelations for the randomly selected securities in
Table 4.4.

Interpreting the squared sample autocorrelations as estimates of the pro-
portion of the variance of fi,-, or €;, that can be attributed to a linear rela-
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tionship between 15',-, and 1}',-,,_, or between ¢€;, and €, ¢-r, the autocorrela-
tion estimates for both R;, and e;, seem consistent with the assumption that
successive values of ﬁ,-, and of €, are independent. The largest measured
autocorrelations are in excess of .3 in absolute value, implying a 9 percent
estimated explanation of variance, but most of the measured autocorrelations
are much closer to zero. Moreover, when so many autocorrelations for so
many different securities are computed, one can expect a few extreme values
to be observed on a purely chance basis. Attributing the large measured auto-
correlations to chance seems reasonable, since their signs are not systemati-
cally positive or negative.

The studentized ranges shown in Table 4.5 are consistent with the hypo-
thesis that the returns and market model disturbances for the large firms are

~ from normal distributions. As would be expected under the hypothesis of

normality for 13“, most of the values of SR(R;) in Table 4.5 fall into the
central portion of the sampling distribution of SR; and of the “extreme”
values of SR(R;), four are less than 4.07, the .10 fractile of the sampling
distribution of SR, and four are greater than 5.29, the .9 fractile of the sam-
pling distribution of SR. The average of the SR(R,) is 4.62, which is just
about halfway between the .1 and .9 fractiles of the sampling distribution of
SR. Similar comments apply to the studentized ranges SR (e;) for the market
model residuals of the companies in Table 4.5.

A slightly different picture emerges for the randomly selected firms in
Table 4.6. For 12 of the 30 firms, the values of SR(R;) exceed 5.29, the .9
fractile of the sampling distribution of SR in samples of 60 from a normal
population. The distributions of returns for these firms show slightly higher
frequencies of extreme returns than would be expected under the hypothesis
of normality. The studentized ranges for the market model residuals of the
firms in Table 4.6 likewise suggest slight leptokurtosis; nine of the SR (e;) ex-
ceed the .90 fractile of the sampling distribution of SR, while only two of the
SR(e;) are less than the .10 fractile of the sampling distribution of SR. Thus,
the assumption of normality is a better approximation for the returns of larger
firms than for those of randomly selected firms, but even for the latter we
shall continue to see how far the normality assumption can take us in our
theoretical and empirical work.

It would be well to use plots like Figures 4.1 to 4.4 to check the assump-
tions that the joint distribution of ﬁi, and 13,,,, is bivariate normal and that
the return distributions are stationary through time for each of the 60 securi-
ties in Tables 4.3 to 4.6. This would, however, consume much space. Suffice
it to say that the graphs for IBM are typical. For other common stocks, plots
of Ry, against R,,,, like Figure 4. » seem roughly consistent with the implica-
tions of bivariate normality; and time series plots, like Figures 4.2 to 4.4,
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seem consistent with the assumption that return distributions are stationary,
at least for five-year subperiods.

Finally, the essence of the market model is that, to a greater or lesser ex-
tent, depending on the value of B, the returns on all securities are related to
the return on the market portfolio m. That is, the market model equation (3)
says that part of the return on any security i for which g; # 0 is the return on
m. Thus, although we have 60 different firms in Tables 4.3 to 4.6, we do not
have 60 independent samples of returns. One implication of this is that
there can be much interdependence across firms in the sample values of a
given statistic. For example, from equation (45) we can determine that as
long as b; is nonzero, the sample variance of the return on the market port-
folio is a component of the sample variance of the returns on any common
stock. Thus, the sample estimates of return variances for individual firms are
interdependent because each depends on the sample variance of the return on
the market. Likewise, the values of other sample statistics, such as SR (R;) and
PRy, Ry ¢_.), are interdependent across firms when there are common fac-
tors that affect the returns on all firms.

One might suspect that there is little or no dependence across firms in the
values of sample statistics, such as SR(e;) and r(ey,, €; ,-,), which are com-
puted from the market model residuals. However, this is only true if the retum
on the market portfolio m does a good job in capturing the effects of com-
mon factors on the returns of individual firms, so that there is little depen-

dence across firms in the market model disturbances €. We shall retum to
this point in Chapter 9.

C. Comparison of Prewar and Postwar Market Model
Parameter Estimates

In Chapter 1 we found that there is a dramatic downward shift in the vari-
ance of the return on the market portfolio m sometime in the late 1930s. We
stated there, without evidence, that a similar downward shift in the variances
of the returns on individual stocks can also be observed at about the same
time. We now present some evidence on this point. We also discuss some
interesting changes in the properties of the market model.

Table 4.7 shows estimates of the market model parameters for 1934-1938
for those securities of Table 4.3 that were listed on the NYSE throughout
the 1934-1938 period. Table 4.8 reproduces the results in Table 4.4 for those
firms in Table 4.4 that were on the NYSE throughout the 1934-1938 period.
The decline in the variability of returns on individual securities from 1934-
1938 to 1963-1968 is evident. Only one firm, Richardson Merrill, shows a
higher value of s(R;) in the later period than in the earlier period. There is
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also a clear-cut decline in residual standard deviations from the earlier to the
later period. Given that s(R,,) also declined, we can use these results and
equation (45) to conclude that the decline in the variability of a security’s re-
turn generally reﬂgcts a decline both in the variability of marketwide factors,
as summarized by R,,,, and in the variability of the disturbance ¢€j,.

Perhaps the most interesting evidence is that the decline in the variability
of ﬁm, is sharper, in percentage terms, than the typical decline in the vari-
ability of €;,. The evidence on this point is in the substantial decline in the
coefficients of determination, r?,,, from the earlier to the later period. On
average, marketwide factors account for 56 percent of security return vari-
ances in 1934-1938 for the securities in Table 4.8, whereas for July 1963-
June 1968, the corresponding average value of r3, in Table 4.4 is only .27.
Likewise, in the later period the average value of r},, for the stocks of larger
firms in Table 4.3 is .20, as compared to .52 for the earlier period (Table
4.7). Thus, a much smaller fraction of the variance of the return on a iecurity
can typically be attributed to its market model relationship with R,,, for
July 1963-June 1968 than for 1934-1938.

The decline in the explanatory power of the market model was first docu-
mented by King (1966); Blume (1968) later documented the declines in
ri., 52 (R)), s*(R,,), and s?(e;) in more detail and suggested that the declines
are best interpreted as a shift that took place sometime around 1940. Finally,
Officer (1971) corroborated Blume’s results and investigated several possible
reasons for the decline in r?,.. None of the explanations turned out to be sup-
ported convincingly by the evidence.

D. The Reliability of the Risk Estimates

In discfjssing the detailed results for IBM for July 1963-June 1968, we
concluded that the sample estimate b; = .67 left substantial uncertainty with
respect to the value of §;. The same conclusion holds for the other common
stocks we have examined. Thus, from the Bayesian viewpoint, the uncertainty
that remains about f; after a sample has been analyzed is summarized by the
posterior distribution on the parameter. With a diffuse prior, a large sample,
and under the assumption that the joint distribution of ﬁi, and ﬁm, is bi-
variate normal, the posterior distribution on the parameter is approximately
normal, with mean E(f;) = b, and standard deviation o(B;) = s(b,). The values
of b; and of s(b;) for July 1963-June 1968 for each of the stocks in the two
samples discussed above are in Tables 4.3 and 4.4. The impression is the
same as for IBM. The values of s(b,) are large, so that the sample estimates
leave substantial uncertainty about the values of §; for the individual stocks.
We leave it to the reader to buttress this impression by computing some
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fractiles of the posterior distributions of §; for each of the stocks, as was
done for IBM.

One apparently direct solution to this problem is to work with a sample
period that covers more than five years of monthly data. We can see from
equations (26) and (27) that in sampling from the assumed stationary bi-
variate normal distribution of R',-, and ﬁm,, the variance of the sampling
distribution of b; decreases as the sample size increases. Thus a larger
sample would seem to be the most direct way to reduce uncertainty about
B;. The validity of this approach depends, however, on the assumption that
the joint distribution of ﬁi, and ﬁm, is stationary through time, and espe-
cially on the implication of this assumption that g; itself is stationary through
time. If this is not true, then a larger sample does not necessarily imply a more
reliable estimate of the value of §; at the end of the sampling period.

The evidence of Blume (1968), Gonedes (1973), and L. Fisher (1970)
indicates that over long periods, the B; values of individual stocks do indeed
change. The work of Gonedes and Fisher further indicates that with monthly
data, the assumption that §; is constant is a reasonable approximation for
periods of up to seven years. With more than seven years of data, the estimates
of the B; of individual securities are likely to be less reliable than if shorter
periods are used. With monthly data, the optimal estimation period is ap-
parently five to seven years.

II1. Conclusions

It seems that, at least for individual securities, we must learn to live with sub-
stantial uncertainty about the values of 8;. For many purposes, the problem
is not serious. When we conduct tests requiring estimates of B;, it is often pos-
sible to work with estimates for portfolios rather than individual securities,
and it turns out that the Bp’s of portfolios can be estimated far more reliably
than those of individual securities. This is a matter we shall study in more
detail when the need arises.

CHAPTER

Efficient
Capital Markets

Much of the recent literature in finance is concerned with capital market
efficiency. This chapter introduces the theory and discusses tests. The ideas
and tests of them reappear in later chapters.

I. An Efficient Capital Market: Introduction

An efficient capital market is a market that is efficient in processing informa-
tion. The prices of securities observed at any time are based on ‘“correct”
evaluation of all information available at that time. In an efficient market,
prices “fully reflect” available information.

An efficient capital market is an important component of a capitalist sys-
tem. In such a system, the ideal is a market where prices are accurate signals
for capital allocation. That is, when firms issue securities to finance their
activities, they can expect to get “fair” prices, and when investors choose
among the securities that represent ownership of firms’ activities, they can do
so under the assumption that they are paying “fair” prices. In short, if the
capital market is to function smoothly in allocating resources, prices of se-
curities must be good indicators of value.
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The statement that prices in an efficient market “fully reflect™ available
information conveys the general idea of what is meant by market efficiency,
but the statement is too general to be testable. Since the goal is to test the
extent to which the market is efficient, the proposition must be restated in
a testable form. This requires a more detailed specification of the process of
price formation, one that gives testable content to the term “fully reflect.”

The process of price formation described below is far from the most general
model that can be used to give testable content to the theory of capital mar-
ket efficiency. The goals are (a) to present a simple model but one that is
nevertheless sufficient to illustrate the problems that arise in testing market
efficiency and (b) to describe and give some critical perspective on the types
of tests that are commonly done.

II. An Efficient Capital Market: Formal Discussion

Assume that all events of interest take place at discrete points in time, - 1,
t,t+1,etc. Then define

¢,_; = the set of information available at time ¢ - 1, which is relevant for
determining security prices at £ - 1.

@7, =the set of information that the market uses to determine security
prices at £ ~ 1. Thus ¢72, is a subset of ¢;_,; $7*, contains at most
the information in ¢,_,, but it could contain less.

Pj,e-1 = price of security j at time ¢-1,j=1,2,...,n, where n is the
number of securities in the market.

Fm(P1,rers - -+ s Pn,eer|®72,) = the joint probability density function for
security prices at time ¢ + 7(7 > 0) assessed
ty the market at time ¢ - 1 on the basis of
the information ¢7,.

Py ters - - s Pn ear|@p-1) = the “true” joint probability density func-

tion for security prices at time r + 7(7 >
0) that is “implied by” the information
b1

To keep the notation manageable, the security prices py ¢47, . . . , Pn s+ that
appear as arguments in f and f,,, are taken to be the prices of the securities at
time ¢ + 7, plus any interest or dividend payments at ¢ + 7. The prices p, ,_,,

. »Pn,t-1 > are just actual prices at time ¢ - 1.
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The set of information ¢,_, available at time ¢ -~ 1 includes what might be
called the “state of the world” at time ¢ - 1: e.g., current and past values of
any relevant variables, like the earnings of firms, GNP, the “political climate,”
the tastes of consumers and investors, etc. Since ¢,_, includes the past history
of all relevant variables, ¢,_; includes ¢,_, ; equivalently, ¢,_, is a subset of
¢:., - In addition to current and past values of relevant variables, ¢,., is also
assumed to include whatever is knowable about relationships among variables.
This includes relationships among current and past values of the same or dif-
ferent variables, and also whatever can be predicted about future states of the
world from the current state. In short, ¢;_, , the information available at £~ 1,
includes not only the state of the world at ¢ - 1, but also whatever is know-
able about the process that describes the evolution of the state of the world
through time. We assume that one of the things that is knowable about the
process is the implication of the current state of the world for the joint
probability distributions of security prices at future times. Thus ¢,_, is as-
sumed to imply the joint density functions f(py,¢ers- -+ > Pnrerl®r1)s 7=
0,1,2,...

The process of price formation at time ¢ - 1 is then assumed to be as fol-
lows. On the basis of the information ¢7",, the market assesses a joint dis-
tribution of security prices for time ¢, fu(P1ts- - - » Pnel®7%,). From this
assessment of the distribution of prices at f, the market then determines
appropriate current prices, Py ¢-1,- - - » Pn,s-1, for individual securities. The
appropriate current prices are determined by some model of market equilib-
rium—that is, by a model that determines what equilibrium current prices
should be on the basis of characteristics of the joint distribution of prices at
t. The term “equilibrium” has its usual economic meaning. A market equilib-
rium at time ¢ - 1 is achieved when the market sets pricespy,s.1,-- - Pn,t-1
for individual securities at which the demand for each security by investors
is equal to the outstanding supply of the security. In other words, a market
equilibrum implies a market-clearing set of prices for individual securities.

When we say that “the market” assesses a joint distribution of security
prices for time ¢ and then uses the characteristics of its assessed distribution
to determine equilibrium prices for securities at ¢ - 1, we speak metaphori-
cally. To say that “the market” does something is just a convenient way of
summarizing the decisions of individual investors and the way these decisions
interact to determine prices. The metaphor allows us to save for the end of
the chapter, when the issues can be better appreciated, the discussion of some
of the subtle and not too subtle simplifications of the world that are built
into the model.

In our model of price formation, the hypothesis that the capital market is
efficient is stated as



136 FOUNDATIONS OF FINANCE

Ot = e 1)
that is, ¢72,, the information that the market uses to determine security prices

at ¢ - 1, includes all the information available. Market efficiency also implies
that

S (Prts - - JPrel 875 ) = f(pys, - - Pt Br ) ()

that is, the market understands the implications of the available information
for the joint distribution of geturns. Since ¢,_; , the set of available informa-
tion, includes whatever is knowable about the process that describes the
evolution of the state of the world through time, equation (1) can be taken to
imply (2). Stating the two conditions separately, however, emphasizes that
market efficiency means that the market is aware of all available information
and uses it correctly.

Having correctly assessed the joint distribution of prices for #, the market
then uses some model of equilibrium to set prices at # ~ 1. The model says
what the current prices of securities, py ;_;, . .., Pn ;- »should be in light of
the correctly assessed joint distribution of security prices for ¢. In this sense,
both the joint density function f,,, (pys, - - -, Prs |97, ) and the current prices
Pi,t-15 - - - » Pn,¢-1 that are based on this joint density function “fully reflect”
all the information available at - 1.

Tests of market efficiency are concerned with whether or not the market
does correctly use available information in setting security prices. Most com-
mon are tests that try to determine whether prices fully reflect specific sub-
sets of information. For example, one possible source of information about
future prices is the history of past prices and returns on securities. A nontrivial
segment of the empirical literature on efficient markets is concerned with
whether current security prices fully reflect any information in past prices
and returns. Other sources of publicly available information are also fertile
ground for tests of market efficiency. For example, there are studies of the
adjustment of stock prices to the information in a stock split, a merger, an
earnings announcement, the announcement of a new issue of securities by a
firm, and so forth. In these tests, the goal is to determine whether prices ad-
just fully and instantaneously to the public announcement of the event of
interest. Finally, another sort of test of market efficiency is concerned with
whether there are individuals or groups—for example, managers of mutual
funds—who are adept at investment selection in the sense that their choices
reliably provide higher returns than comparable choices by other investors.
If prices always fully reflect available information, this sort of investment
adeptness is ruled out. For if such adeptness exists, it implies that some in-
vestors either have access to information that is not utilized by the market
in setting prices or that they are better able to evaluate available information
than the market. In either case, the market is not efficient.
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The process of price formation in an efficient market, as described so far,
is not sufficient for such tests of market efficiency. All we have said is that an
efficient market correctly uses all available information in assessing the joint
distribution of future prices, which is the basis of current equilibrium prices.
Since we cannot observe f,,(pis,.-., Pnldi,), wWe cannot determine
whether (2) holds, and so we cannot determine whether the real-world capital
market is efficient. Equations (1) and (2) are formal notation for the state-
ment that prices in an efficient market fully reflect available information, but
this is not sufficient to make the statement testable.

What the model lacks is a more detailed specification of the link between
fm(Pits - PaplOT)and py 4y, ..., Py, - We must specify in more de-
tail how equilibrium prices at ¢ - 1 are determined from the characteristics of
the market-assessed joint distribution of prices for ¢. Some model of market
equilibrium, however simple, is required. This is the rub in tests of market
efficiency. Any test is simultaneously a test of efficiency and of assumptions
about the characteristics of market equilibrium. If the test is successful—
that is, if the hypothesis that the market is efficient cannot be rejected—then
this also implies that the assumptions about market equilibrium are not re-
jected. If the tests are unsuccessful, we face the problem of deciding whether
this reflects a true violation of market efficiency (the simple proposition that
prices fully reflect available information) or poor assumptions about the
nature of market equilibrium.

It turns out that a few simple models of market equilibrium produce many
successful tests of market efficiency or, more precisely, many successful joint
tests of market efficiency and of the models of market equilibrium. We now
discuss the most popular models and tests of market efficiency derived from
them.

III. Four Models of Market Equilibrium

Four basic models of market equilibrium are used in tests of market effi-
ciency. We discuss them in order of complexity.

A. Expected Returns Are Positive

The joint distribution £, (¢, . . ., Pusl @7, ) of security prices for time ¢
assessed by the market at time f-1 implies a marginal distribution
Jm(Pje|97%)) for the price at 7 of any security j. This marginal distribution has
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mean or expected value E,,, (D;;|¢7-,).* The first model of market equilibrium
simply says that at any time ¢ - 1 the market sets the price of any security j
in such a way that the market’s expected return on the security from time
t - 1 to time ¢ is positive.
Formally, the one-period return on security j from time ¢ - 1 to ¢ is
R'jr =E£;£L'_‘l ) 3)
Dj,t-1

At time ¢ ~ 1 the market assesses a probability distribution on f)',-, given by
the density function f,,(pj1¢7,). A distribution for the return R;, is not de-
fined, however, until the market sets p; ,_, . The model of market equilibrium
which we are discussing posits that thg market always sets p; ;_; so that the
mean of the resulting distribution of Rj, is strictly positive. That is, the mar-
ket always sets p; ;_, so that, given its assessment of the expected price at t,
Em(Biel67),

Em(17,-rl¢§'11) ~ Pj,t

Pj,t-1

Em(Rjtl¢;’:l) = >0. @)
Equivalently, the market sets p; ,_, at a value less than its assessment of the
expected future price, £, ( 5j;|¢72,). )

Suppose now that we join this model of market equilibrium with the
proposition that the market is efficient. Market efficiency says that in assess-
ing distributions of future prices, the market uses all available information
and uses it correctly:

fm(Pjr|¢ﬂ1)=f(Pjt|¢r-1)) ®)
which implies

Em(l';jt|¢;’:1)=E(5jtl¢r—1) 6)

Em(Rji1971) = ERjel 811). )

In words, market efficiency says that at time ¢ - 1 the market correctly as-
sesses the distribution of the price of any security for time ¢, which means
that the expected value of the future price assessed by the market is the true
expected value, which in turn means that when the market sets the prices of
securities at time ¢ - 1, its assessment of the expected return on any security
is the true expected return. If the market sets prices so that equation (4)
holds, then the true expected return on any security is always positive:

*Tildes (™) are used to denote random variables. When referring to any specific value
of a random variable, the tilde is dropped. Thus, E,,,(ﬁ'l-,lda;’j,) is the expected value of
the random variable pj;, but we write fi,,(pjrl¢}?,) to denote the density function for
specific values of the variable.
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ERjel¢-1)>0. @)

This is not to say that a positive return on security j will be observed at ¢.
The return observed at ¢ will be the result of a drawing from f( p;i¢;,), and
the drawing may yield a negative return. Rather, the hypothesis that the mar-
ket is efficient (prices correctly reflect available information), when combined
with a model of market equilibrium which says that E,, (ﬁith)’,'l,) > 0 (the
market sets current prices so that its expected returns on securities are posi-
tive), implies that at time ¢ - 1 the true expected return on any security j,
E(ﬁi,|¢,_,), is positive.

If the market is efficient and if this model of market equilibrium is correct,
then any investor or market analyst who disagrees with the market and posits
a negative expected return on a security is incorrect. Many stock market
analysts feel that they can identify times when expected returns on individual
securities or on the market, as represented by some portfolio of securities, are
negative. These analysts would agree with the proposition that the market
always sets prices so that its assessed expected returns £, (Rvith&;’ll) are posi-
tive. But they would disagree with the proposition that the market is efficient.
They feel that in setting prices, the market sometimes neglects relevant infor-
mation or draws incorrect inferences from it, so that sometimes the true
expected returns E(R'j,lqb,_,) are negative. They feel that they see more in-
formation or are better able to analyze available information than the market.

Such analysts are potentially a fertile source of tests of market efficiency.
If they record the times when they assess negative expected returns on securi-
ties, then one can simply compute the returns that are later realized. One or a
few such observations are not much evidence for or against market efficiency;
but as a history of the predictions of an analyst is built up, a reliable average
return for periods when he assesses negative expected returns can be obtained.
If the average is negative and if the sample of predictions is sufficiently large
to make the negative average return a low-probability event if true expected
returns are positive, then we can conclude that the analyst is able to identify
periods when true expected returns E(I?,—,I(bt_,) are negative. If we are willing
to stick by the model of market equilibrium which says that the market
always sets prices so that its expected returns £, (ﬁitl¢ﬂl) are positive, then
the predictions of the analyst establish that the market sometimes either
neglects available information in setting prices or analyzes information in-
correctly. In either case, the analyst is living evidence for the existence of
market inefficiency.

The model summarized by equations (4) to (8) has been used to test the
claims of one group of analysts about market inefficiency. This group, col-
lectively known as chartists or “technical” analysts, claims that market prices
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only react slowly and over fairly long periods to new information. If new in-
formation implies a price increase, the increase will be spread across time, as
will any decrease in prices that is implied by negative information. This slow
adjustment process posited by the chartists is in sharp contrast to the theory
of efficient markets. When the market is efficient, prices fully reflect available
information, which means that the market adjusts prices fully and instanta-
neously when new information becomes available.

The chartists further claim that the reaction of the market to new informa-
tion is so slow that one need not be concerned with the information itself. By
studying patterns in the sequence of past prices, they argue, one can leam
how the price of the security tends to react to new information. The patterns
in the price sequence will be strong enough and will recur frequently enough
for a trained eye to predict the future price movement of a security on the
basis of its recent past movement and knowledge of the typical patterns in
the price behavior of the security. In short, the chartists claim the market is
inefficient in the sense that in setting prices, the market does not even take
full account of the obvious information in the historical behavior of prices.

Given the expected return model summarized by (4), an empirical con-
frontation between the claims of the chartist and those of the theory of
capital market efficiency is easily devised. The basic proposition of the
chartist is that because the market adjusts slowly to new information, price
movements tend to persist. When prices have moved up in the recent past,
one can expect them to continue to move up, and there is likewise persistence
in downward price movements. Consider the following trading rule, suggested
by Alexander (1961; 1964) and close in spirit to the various trading rules pro-
posed by chartists. If the price of a security moves up at least y percent, buy
and hold the security until its price moves down at least y percent from a sub-
sequent high, at which time simultaneously sell and go short.* The short posi-

*In the jargon of the capital market, when one buys a security, this is known as going
long. When one owns the security, this is called a long position in the security. The
opposite of a long position is a short position. Selling short involves borrowing a security
from someone who has a long position in the security, with the borrower promising to
return the security to the lender at some future date and to pay to the lender any divi-
dends or interest that are paid on the security while the short position is “open,” that is,
before the securities are returned. Upon borrowing the security, the borrower or short-
seller immediately sells the security in the market. He then repurchases the security in
the market when it comes time to return it to the lender, and in this way “closes” or
“covers” his short position. If the price of the security falls during the period the short
position is open, and if it falls by more than the amount of any dividends or interest
paid on the security, then the short-seller profits. Otherwise he loses.

A short sale is equivalent to issuing a security with precisely the characteristics of the
security that is sold short. Short-selling is thus a device whereby investors can issue se-
curities that are identical to those issued by firms—assuming, of course, that the investor
can deliver on the promises involved in the short sale. These concepts are discussed in
Chapter 7.
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tion is maintained until the price rises at least y percent above a subsequent
low, at which time one covers the short position and goes long. Moves less
than y percent in either direction are ignored. Such a system is called a y per-
cent filter. Its sequence of successive long and short positions formalizes the
proposition of the chartists that upward price movements tend to persist and
to be followed by downward movements, which also tend to persist and to be
followed by upward movements, and so on.

If the capital market is efficient and if the market sets prices so that its ex-
pected returns are positive, then filter rules are nonsense. If the market cor-
rectly uses available information and if it sets prices so that expected returns
are positive, then the best trading rule for any security is to buy and hold. If
the market is efficient, then the buy-and-hold strategy has higher expected
returns or profits than any strategies that involve periods when the security is
not held or, like the filter rules, involve periods when the security is sold
short. In contrast, the chartist would say that because the market does not
correctly use available information, there are periods when true expected re-
turns are negative. This implies that there are strategies for trading in a se-
curity that have higher expected returns or profits than the buy-and-hold
strategy. Most chartists would believe that some of the filters could systemati-
cally beat a buy-and-hold strategy.

Tests of filter rules are reported by Alexander (1961; 1964) and by Fama
and Blume (1966). To present their results would involve a long discussion of
technical details, none of which would be useful in any of our future work.
We shall simply discuss conclusions and let the reader check the original
sources. Thus, Alexander (1961; 1964) reports extensive tests of filter rules
using daily data on price indexes from 1897 to 1959 and filters from 1 to 50
percent. In his final paper on the subject, Alexander concludes (1964, p.351):

In fact, at this point I should advise any reader who is interested only in
practical results, and who is not a floor trader and so must pay commis-
sions, to turn to other sources on how to beat buy and hold.

Further evidence is provided by Fama and Blume (1966), who compare the
profitability of various filters to a buy-and-hold strategy for daily data on the
individual stocks of the Dow-Jones Industrial Average. (The data are those
discussed in Chapter 1.) Fama and Blume conclude that for the most part
their evidence is in favor of buy and hold, and they reject the hypothesis that
there is any important information in past prices that the market neglects in
setting current prices.

Looking hard, however, one can find evidence in the filter tests of both
Alexander and Fama-Blume that is inconsistent with capital market effi-
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ciency, if efficiency is interpreted in a strict sense. In particular, the results
for very small filters (1 percent in Alexander’s tests and 0.5, 1.0, and 1.5 per-
cent in the tests of Fama-Blume) indicate that it is possible to devise trading
schemes based on very short-term (preferably intraday, but at most daily)
price swings that on average outperform buy and hold. The average profits
on individual transactions from such schemes are minuscule, but they gener-
ate transactions so frequently that over longer periods and ignoring commis-
sions they outperform buy and hold by a substantial margin. These results are
evidence of persistence in very short-term price movements of the type posited
by the chartists.

When one takes account of even the minimum trading costs that would be
generated by small filters, however, their advantage over a buy-and-hold strategy
disappears. For example, even a floor trader—that is, a person who owns a seat
on the New York Stock Exchange—must pay clearinghouse fees on his trades
that amount to about 0.1 percent per turnaround transaction (sale plus pur-
chase). Fama and Blume show that because small filters produce such frequent
trades, these minimum trading costs are sufficient to wipe out the advantage
of the small filters over buy and hold. Strictly speaking, then, the filters un-
cover evidence of market inefficiency, but the departures from efficiency do
not seem sufficient for any trader to reject the hypothesis that the market is
efficient so far as his own activities are concerned.

Remember that no null hypothesis, such as the hypothesis that the market
is efficient, is a literally accurate view of the world. It is not meaningful to
interpret the tests of such a hypothesis on a strict true-false basis. Rather, one
is concerned with testing whether the model at hand is a reasonable approxi-
mation to the world, which can be taken as true, at least until a better ap-
proximation comes along. What is a reasonable approximation depends on the
use to which the model is to be put. For example, since traders cannot use
filters to beat buy and hold, it is reasonable for them to assume that they
should behave as if the market were efficient, at least for the purposes of
trading on information in past prices.

B Expected Returns Are Constant

The filter tests are the only tests of market efficiency based on the model
of market equilibrium which simply assumes that expected returns are posi-
tive. Somewhat more common are tests based on a model in which the ex-
pected return is assumed to be constant through time. Specifically, at time
t - 1 the market assesses a joint distribution for security prices at time ¢,
Sm(Puts -, Pnel®f2,), which implies a distribution fn(pjel®tly) for the
price of security j at f, and this distribution has mean or expected value
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Epn(Pj197.1). Having assessed Ep,(Dj|¢7-,), the market then sets the price
of the security at ¢ - 1 so that the expected return on the security from ¢ - 1
to t is equal to some constant, call it E(ﬁ,-), which is the same for every pe-
riod. Formally, at every time ¢ - 1, the market sets the current price of se-
curity j so that, given its assessment of the expected value of the future price

Em(Djel071),

~moN_
Em(ﬁjt|¢’t'11)= Em(p;tl¢t-l) Dj,1-1 =E(ﬁi)' ©)
Dj,t-1
The model says that E(ﬁ,-) is constant through time, but different securities
are allowed to have different expected returns, based perhaps on differences
in risk, and some may even have negative expected returns.

If the market is also efficient—that is, if it correctly uses all available infor-
mation to assess f,,, (Pt - - - , Pne|®721 )—then this assessed distribution is the
true distribution f(pj¢, . . . , Prrl ¥ ), which implies that equations (5) to (7)
hold. Combining (7) with the assumption of a constant expected return, we
have

E(ﬁ;’tl¢t—l) =Em(ﬁjt|¢’t'11) =E(IN?'i). (10)

In words, at any time ¢ - 1 the market sets the price of security j in such a
way that its assessment of the expected return on the security, E,,, (R i 071),
is the constant E(R) Since an efficient market correctly uses all available
information, E(R) is also E(R,,Id), 1), the true expected return on the
security.

This particular combination of a model of market equilibrium with market
efficiency has a directly testable implication. There is no way to use any in-
formation available at time ¢ - 1 as the basis of a correct assessment of the
expected return on security j which is other than E(ﬁi). If the market is ef-
ficient and sets prices so that the expected return on security j is constant
through time, then any market analyst who assesses an expected return for
security j that is different from E(ﬁi) is necessarily incorrect. But if the
analyst systematically shows an ability to identify periods when the expected
return on security j is not equal to E(ﬁi), and if we insist on the model of
market equilibrium which says that the market sets prices so that its expected
return on security j is always E(ﬁ,-), then the predictions of the analyst are
evidence that the market does not correctly use all available information in
setting prices. In this case, equation (7) does not hold, and the market is
inefficient.

For the statistically sophisticated, equation (10) implies that for all ¢,_, ,
E(R,,Id), 1), the regression function ofR,, on ¢,_, is the constant E(R ;). Thus,
if one takes any elements from the set of information available at ¢ ~ 1 and
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then estimates the regression of ﬁ,-, on these information variables, all the co-
efficients except for the intercept should be indistinguishable from zero. If
some of the variables have nonzero coefficients, (10) must be rejected; that is,
the joint hypothesis that the market is efficient and that it sets prices so that
equilibrium expected returns are constant through time is rejected.

Tests of market efficiency based on the assumption that equilibrium ex-

pected returns are constant have focused primarily on one subset of ¢,_ , the
potential information about current expected returns that appears in time
series of past returns. If the market is efficient and equilibrium expected re-
turns are constant through time, the past returns on security j are a source
of information about E(l'é'i), which, after all, is unknown.* If the market is
efficient, however, the past returns are not a source of information about the
expected value of the deviation of ié’ir from E(f"'i). For any sequence of
past returns R; ., ,R; ;5 , . . . , the conditional expected value

ERilRj 11 Rt as ... ) =ER)).

In words, if the market is efficient, there is no way to use any information
available at time ¢ - 1 as the basis for a correct assessment of an expected
value of R,r which is different from the assumed constant equilibrium ex-
pected return E(R,) Since part of the information available at ¢ - 1 is the
time series of past returns, there is no way to use the past returns as the basis
for a correct assessment of the expected return from ¢ - 1 to t which is other
than E(l'é',-).

This proposition is easily tested with a tool introduced in Chapter 4. If the
correct assessment of the expected value of 13,-, is E(ﬁi), then for any R; .,

E(R;4|R;, 1) = ER)); (11)

that is, there is no way to use the past return Rj ¢ as the basis of a current
assessment of an expected value of R,, which is other than E(R -). In formal
terms, the regression function of R,r onR;; E(R,,IR, ¢-7), is the constant
E(R ).

To test this proposition, we introduce an alternative hypothesis which says
that the regression function is linear in R; ;_:

ERjf|Rj,¢r) =85+ V7R ¢ _r. (12)

From Chapter 4 we recognize <y, as the autoregression or autocorrelation
coefficient for lag 7, also denoted p(Ri,, R,;,_,,). Thus market efficiency, in

*If we are willing to assume that the distribution of &; jr is constant through time, then
frequency distributions of historical returns are information about the distribution of
R,, This is the basis of the empirical work in Chapter 1. The assumption that the distri-
bution of R;r is constant through time is, of course, stronger than the assumption that
the mean of the distribution is constant.
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combination with the assumption that equilibrium expected returns are
constant through time, implies that the autocorrelations of the retusns on
any security j are zero for all values of the lag 7.

In Chapter 4 we looked at sample autocorrelations of monthly returns for
common stocks on the NYSE and concluded that the autocorrelations were
close to zero. There we used the sample autocorrelations to test the assump-
tion of random sampling that underlies the statistical inferences drawn from
market model coefficient estimates. Now that we want to examine sample
autocorrelations to test the hypothesis that the market is efficient, it is well
to look at more of them.

Table 5.1, taken from Fama (1965), shows sample autocorrelations of daily
returns for each of the 30 Dow-Jones Industrials, for time periods that vary
slightly from stock to stock but usually run from about the end of 1957 to
September 26, 1962. (The data are discussed in Chapter 1.)* For each stock,
the table shows sample autocorrelations for lags of from one to ten days. Re-
call from Chapter 4 that when the true autocorrelation is zero, the sampling
distribution of the sample autocorrelation, r(k'i,, ﬁi,,_,), is approximately
normal, with approximate mean and standard deviation

~

E[r(R;t, R 1)l = -1(T- 1)
O[I'(R,,, ~[,t D] = Vl;(T_ ),

where T is the number of returns in the sample.

In Table 5.1 the sample autocorrelations that are at least two standard de-
viations to the left or to the right of ~1/(T - 7) are indicated by asterisks. The
values of sample autocorrelations so marked might be regarded as extreme in
the sense that they are low-probability events if the true autocorrelations are
zero. Of the 30 sample autocorrelations between successive daily returns
(7 = 1), 11 are extreme in this sense and 9 of these 11 are positive. Moreover,
22 of the 30 sample autocorrelations between successive daily returns are
positive. Since market efficiency says that the true autocorrelations between
successive returns are zero, one might interpret the results as evidence against
market efficiency: there seems to be positive autocorrelation between suc-
cessive daily returns.

There are several reasons why one might conclude that the results in Table
5.1 are not sufficient to overturn the hypothesis of market efficiency. First,
the 30 autocorrelations for lag 7 = 1 (or for any other specific lag) are not
independent. From our study of the market model in Chapter 4 we know
that returns on individual securities are all related to the return on the mar-

*These are continuously compounded returns, but recall from Chapter 1 that con-
tinuously compounded daily returns are numerically close to simple returns.
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ket. For current purposes, this means that the sample autocorrelations of the
returns on individual securities all reflect to some extent the sample autocor-
relation of the return on the market. Thus, it is not necessarily surprising that
for a given lag the sample autocorrelations in Table 5.1 are predominantly
positive or negative.

Even if we are willing to conclude that there is evidence in Table 5.1 of
positive dependence between successive daily returns, it is reasonable to argue
that the evidence is not sufficient to reject the hypothesis that the market is
efficient. With 1,200 to 1,700 observations per stock, a sample autocorrela-
tion as small as .05 is for some stocks more than two standard deviations to
the right of its expected value under the hypothesis that the true value of the
coefficient is zero. Thus, a sample coefficient as small as .05 is extreme in the
statistical sense, and so is fairly convincing statistical evidence against the
hypothesis that the true value of the coefficient is zero. Suppose, however,
tllat the true value of an autocorrelation is as much as t:vice .05~, or p(ﬁ,,,
R;,¢-7) = .10. The square ofthg autocorrelation between Rjcand R; ,_. is the
proportion of the variance of Rj, thjlt can tle attributed to the linear regres-
sion function relationship between Ry and R; ,_.. Thus, the squaied autocor-
relation can be interpreted as a measure of the informatiog that R; ,_, carries
for Rj,; it tells how much we can reduce the variance of R;, if we have exact
Iinowledge about the linear regression functign relationshjp between ﬁiL and
Rj ;. In these terms, an autocorrelatiog P(Rit, Rj-r) = .10 says that Rj ¢+
doesn’t carry much information about Ry, since only 1 percent of thi vari-
ance of R;, can be attributed to the linear relationship between Rijand R;,_,.
Thus, even though the true autocorrelation is nonzero, it is close enough to
zero for us to conclude that market efficiency is a reasonable description of
the world.

The evidence in Table 5.1 is actually good support for the hypothesis that
the market is efficient. The sample autocorrelations are close to zero in
magnitude and in terms of “proportion of variance explained.” Although the
true autocorrelations might be nonzero, given the large sample sizes and the
small observed autocorrelations it is unlikely that the true autocorrelations
are much different from zero, which means that is is unlikely that the devia-
tion of ﬁ,-‘,-T from E(ﬁ,') carries much information about the deviation of
15,', from E(ﬁ,-). Thus, at least with respect to potential information in past
daily returns, the hypothesis that the market is efficient seems to be a good
approximation to the world.

For each of the 30 Dow-Jones Industrial stocks, Table 5.2 shows sample
autocorrelations of monthly returns for lags 7 =1, 2, 3, that is, for returns
one, two, and three months apart. The time period is July 1963-June 1968.

Although the sample autocorrelations in Table 5.2 are generally close to zero,
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they are also more variable and thus larger in absolute value than those for
the daily returns in Table 5.1. This is to be expected, since the sample size in
Table 5.2 is only T = 60, whereas in Table 5.1 the samples include from 1,200
to 1,700 daily returns. As a consequence, the standard deviations for the
autocorrelations in Table 5.2 are about .13, while those for the autocorrela-
tions in Table 5.1 are generally less than .03. Thus, the results in both tables
are consistent with market efficiency, but those for the larger samples in
Table 5.1 give a much more precise feeling for how close the true autocorrela-
tions of returns are to zero.

TABLE 5.2
Avutocorrelations of Monthly Returns on the Dow-Jones Industrials
for July 1963-June 1968

COMPANY r{Rjt, Rj t—y) r(Ri,, Rj¢—2) r(Rjg, Rj¢-3)
Allied Chemical 017 ~.236 144
Alcoa -.306" .076 172
American Can ~-.061 .003 162
AT&T =117 .096 73
American Tobacco -.282" -.058 156
Anaconda -.097 -170 .156
Bethiehem Steel -.034 -.044 -.101
Chrysler .207 -.020 -.093
Du Pont -.076 -.023 234
Eastman Kodak 098 -.175 .088
General Electric ~-.028 -.093 -.006
General Foods ~.001 -.023 070
General Motors -.091 ~.060 .254
Goodyear -.034 -.294" -.114
International Harvester -.050 236 .140
International Nickel ~-.196 -.043 ~-.058
International Paper -.010 -.367"7 .089
Johns Manvilie .080 -.128 ~.113
Owens Hlinois 139 ~.176 -.288"
Procter and Gamble -.193 .193 -.077
Sears -.105 -.020 253
Standard Qit (Calif.) -.111 .093 207
Standard Oil (N. J.) -.025 -.032 .242
Swift and Co. .020 .005 -.020
Texaco .076 -.148 .004
Union Carbide -.080 022 .047
United Aircraft -.143 136 .169
U.S. Steel -.113 .023 .067
Westinghouse .099 -.005 -.094
Woolworth .078 .062 .098
Averages -.044 -.016 065

*Sample autocorrelation is at least two standard deviations to the left or
to the right of its expected value under the hypothesis that the true auto-
correlation is zero.
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The success of the tests of market efficiency based on autocorrelations is
somewhat fortuitous. The tests derive from a model of market equilibrium in
which the equilibrium expected return on any security is constant through
time. If this assumption is incorrect, tests of market efficiency based on auto-
correlations could fail even though the market is efficient. For example, sup-
pose the equilibrium expected return on security j, ,,,(R,,kb, 1), instead of
being constant at the value of E(R /), tends to wander around E(R i), which
we now interpret as the long-run average value of E,,,(R,,l(br 1)- Moreover,
suppose, as indicated in Figure 5.1, ,,,(R ir|6721) tends to stay above

FIGURE 5.1
Hypothetical Behavior of Returns in an Efficient Market Where Equilibrium Expected
Returns Wander Substantially Through Time

(RleT1) = ER o,

E(R) ER)

or below E(R) for fairly long periods. If the market is efficient, then
E,,,(R,,|¢r 1) = E(R,,I(b, 1), the equilibrium return expected by the market
is the true expected return. With an efficient market, the deviations of R
from E(R,,I¢,_1) would be more or less as shown in Figure 5.1; the current
deviation is unpredlctable from the past deviations. In this example however,
the deviation of R,, from E(R ;) is quite predictable from the behavior of the
most recent past deviations. Thus, if we used autocorrelations computed from
an assumed constant average return to test market efficiency, we would con-
clude that the market is inefficient, when in fact the high autocorrelations in
the returns would be due to the wandering of the equilibrium expected return.
This sort of behavior of the equilibrium expected return is in no way ruled
out by market efficiency.

The point, of course, is that any test of market efficiency is simultaneously
a test of assumptions about market equilibrium. Since tests based on autocor-
relations yield evidence consistent with the hypothesis that the market is
efficient, the tests can also be interpreted as evidence consistent with the
assumption that, at least for common stocks, equilibrium expected returns
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are constant through time. This does not say, however, that the evidence
proves the assumption. Like any statistical evidence, it is at best consistent
with the general model in the sense that it does not lead to rejection either of
the hypothesis that the market is efficient or of the hypothesis that equilib-
rium expected returns are constant through time. This just means that, at
least as far as the evidence from the autocorrelations is concerned, the hy-
potheses are reasonable models of the world. Like any models, however, they
are just approximations that are useful for organizing our thinking about the
phenomena of interest. They do not necessarily rule out other models which
might also be reasonable and useful approximations.

For example, the evidence from the autocorrelations is also consistent with
a world where the equilibrium expected return is not literally constant but
where its variation is trivial relative to other sources of variation in the return
on the security. Such a world might be as shown in Figure 5.2. The equilib-

FIGURE 5.2
Hypothetical Behavior of Returns in an Efficient Market Where Equilibrium Expected
Returns Wander Through Time, but Only Slightly

it

ER|#T1) = ERS,)
. L £y

rium expected return Em (R,-,|¢;'11) wanders through time about its long-run
?verége value E(R;), but its wanderings are slight compared to those pictured
in Figure 5.1. In Figure 5.2, the deviations of £, (R;;|¢72,) from E(ﬁi) are
SO s i iati R ' (R

. mafll relat~1ve t:)” the deviations of R}, from E,,, (R;;|¢72,) that the wander-
11'1gs of Ep(Rj¢l9:2) would~only be a source of slight positive autocorrela-
tions in successive values of R;;.

Thus, autocorrelations of RD—, that are close to zero are consistent with a
world where the market is efficient and equilibrium expected returns are con-
stant through time. But they are also consistent with a world where the
market is efficient and where equilibrium expected returns wander over time,
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but not sufficiently to have any important effect on the autocorrelations of
ﬁit- Since we are primarily concerned with testing market efficiency, the
choice between these two models of equilibrium expected returns is not im-
portant. All we need to say about equilibrium expected retumns is that ap-
parently they do not wander enough or in such a way as to invalidate auto-
correlations as a tool for testing the hypothesis that the market is efficient,
at least with respect to any information in historical returns.

C. Returns Conform to the Market Model

The tests of market efficiency discussed above are concerned with whether
prices of securities fully reflect any information in past prices or returns.
Historically, this was the first concern. When the results seemed to support
the market efficiency hypothesis (see, for example, the various studies re-
ported in Cootner 1964), attention turned to tests in which the concern was
the speed of price adjustment to other publicly available information, like
announcements of stock splits, earnings reports, new security issues, mergers,
and so forth. As the tests of market efficiency moved in the direction of new
information subsets, the models of market equilibrium on which the tests
were based also became more complex.

THE MARKET MODEL AND MARKET EQUILIBRIUM

One of the models used extensively in more advanced tests of market ef-
ficiency is the market model of Chapters 3 and 4. In these chapters the mar-
ket model is treated as an implication of the assumption that the joint distri-
bution of security returns is multivariate normal. For current purposes, we
formulate the model in part as an outgrowth of the process by which market
equilibrium is attained.

The return on security j from time £ - 1 to time £ is

~ Pj: - Pj,t-1 Djt
= = L_-10. @13)

Pj,t-1 Pj,t-1

If the true distribution of Bje, f(Pje|®r-1), 18 normal, then for any given price
set by the market at time £ - 1, the distribution of Rj¢, f(Rj¢|$r-1), will also
be normal, since R;, is just a linear transformation of pje. Moreover, if the
true joint distribution of the prices of different securities at time £, f(Pys,

., Pntl$¢-1) is multivariate normal, the joint distribution of security re-
turns, f(Ry¢, - - - » Rutl e ), is multivariate normal. According to Chapter 3,
this implies that the market model holds. Thus,

E(ﬁjtl¢t-1,Rmt)=aj+5ijt 14)
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with

cov (R'[b ﬁmt) ~ ~
B;= 5 and a; = E(Rjr1$;1) = B;ERm¢lr-1)- 15)
0*(Rpmy)

As in earlier chapters, the market portfolio m contains all common stocks on
the NYSE, and R,,; is just the average of the returns on these stocks from
t - 1 to ¢. The return on security j at time ¢ will not, of course, be equal to its
conditional expected value as given by (14). The returns at £ can be described
in terms of the market model equation

ﬁl, al+ﬁl ,+e,,, (16)

where the disturbance €, is the deviation of Rit from its conditional expected
value, and equation (14) implies

E(%}t|¢t»1 »Rmt)=0.0. 17

Equations (14) to (17) describe properties of the true bivariate normal joint
distribution of R,, and R,,,,,f(R,,, R t19:-1), implied by the assumption that
the joint distribution of security prices for time ¢, f(py;,-. ., Puel®p_y ) is
multivariate normal, and given the security prices set by the market at time
t - 1. The market is assumed to set prices at time £ - 1 in the usual way. That
is, on the basis of the information ¢7?,, the market assesses a joint distribu-
tion on prices at time £, f,(Pys,- - -, Pnel®7L1 ), and then sets equilibrium
prices at time ¢ — 1 on the basis of characteristics of f,, (P11, - - - » Pnel®7T01)-
If fu(P1ts .- > Puzl®rey) is the density function of a multivariate normal
distribution, then f,,, (R}, R,,,¢|97,) is the density function of a bivariate
normal distribution, and the market’s assessments imply market model equa-
tions, which, by analogy with (14) to (17), are

Em (R‘itl‘p't’:l yRmt) = a;n + ﬁ;’ant (18)
COV,,,(E-,,E,,,,) ~ ~
7= — " and of = Ep (R 97) - B Em(Romel97%) (19)
Om(Rmz)
Rjs = + BT Ry + & (20)
m(f 16721, Rme) =00. @D

To indicate that equations (18) to (21) describe the market model as seen
by the market, subscript and superscript m’s are included in the notation for
the various parameters. As usual, if the market is efficient, the market’s view
is the correct view, so that ¢7%, = ¢,_, and f,(Pys,- . ., Pnel®T)) = (P11

-, Pntl®s-1). Then the various parameters in equations (18) to (21) are
identical to those in (14) to (17).
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With all of the additional interpretation in terms of the process by which
market equilibrium is attained, we still have only presented the market model
as an implication of multivariate normality. In tests of market efficiency, an
interpretation in economic terms is also given. The market return ﬁm, is pre-
sumed to reflect information that becomes available at time ¢ that, to a greater
or lesser extent, affects the returns on all securities. When security prices are
set at time f- 1, R,,, is unknown. It has a true distribution f(Rn¢|¢r_;)
which, in formal terms, is implied by the joint distribution of security prices,
f(Pis, - - ,Pnel @), and the prices of securities set at ¢~ 1. But in economic
terms, f(R¢!®,-,) is presumed to capture the uncertainty at time f- 1
about information that will become available at time ¢ which will affect the
returns on all securities. The market model coefficient g; in (14) to (16)
therefore measures the sensitivity of the return on security j to ﬁm, and thus,
indirectly, to information about marketwide factors.

While ﬁm, is presumed to reflect new information at time f that affects
returns on all securities, the disturbance €, in (16) is presumed to reflect
information that becomes available at t that is more specifically relevant
to the prospects of security j. The disturbance €j, has a true distribution
f(€j:19¢-1, Rypye) that summarizes the uncertainty about the company-specific
information which will become available at time ¢. The value of €, observed
at t will be a drawing from this distribution. Tests of market efficiency based
on the market model are primarily concerned with the adjustment of prices
to company-specific information, like earnings announcements, new issues of
securities, stock splits, and so on. Thus, the tests concentrate on the behavior
of €, or, more precisely, on the behavior of estimates of €;,.

Specifically, in empirical tests of market efficiency based on the market
model, it is (implicitly) assumed that during each period the market sets prices
so that f,, (R,,, Ryt 1071,), its perceived bivariate normal joint distribution of
R,, and Rm,, is constant through time. This means that the market sets prices
so that a, s ﬁ, , and its perceived distribution on e,, are the same, period after
period. Moreover, it is assumed that it is possible for the market to set prices
so that the true joint distribution of ﬁit and ﬁm,, f(Rjs, Ryt 9:-1), is con-
stant through time, which means that a;, §; and the true distribution of E',-,
are the same, period after period.

Suppose now that the market is efficient, so that f,,,(R,-,,R,,,,I¢;"_,) and
f(Rjs, Ryt 1 ¢;y) coincide. If the joint distribution of security returns is
stationary through time, then the market model can be estimated from time
series data on ﬁ,-, and ﬁm,, using the least squares procedures of Chapters 3
and 4. The result is the estimated version of (16),

Rn a, +b; Rmt + e,z,

t -/
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where 4, 1;, and €j, are unbiased estimators of o; = a]", f; = B;", and €, = €]
in (16) and (20). Thus, when the market is efficient and the joint distribution
of security returns is constant through time,

\/E(E[\I/WE(EII |¢r—1 ’ Rmr) = Em (g["t'l(p;':l > Rmt) =0.

In words, with an efficient market and stationary return distributions, the
deviation of €;, from zero results solely from new information that becomes
available at ¢; there is no way to use information available at ¢ - 1 as the basis
of a correct nonzero assessment of the expected value of &,. For example, if
new information about the earnings of firm j is available at ¢ - 1, this affects
the price of the security set at ¢ - 1, which in turn determines € ¢ - Butin
an efficient market, the earnings information available at ¢ - 1 is fully utilized
in setting the price of the security at ¢ - 1. This means that at ¢, the deviation
of &;, from zero cannot be due to the earnings information that was available
at ¢ - 1. On the other hand, if the market is inefficient, and in particular if
there is some lag in the adjustment of prices to new company-specific infor-
mation, then the residual for period ¢ is to some extent predictable £67 infor-
mation available at ¢ - 1;that is, ¢,_, and ¢}, no longer coincide, so that

E(Ejr @121, Rmy) #0.

Rather than continuing this general and excessively formal discussion of
how tests of market efficiency can be approached in the context of the
market model, we let the details of the approach arise naturally in the course
of a discussion of a specific study, the work on stock splits by Fama,
Fisher, Jensen, and Roll (1969), henceforth FFJR, which is the first study
that uses the market model as the basis of a test of market efficiency.

SPLITS AND THE ADJUSTMENT OF STOCK PRICES TO NEW INFORMATION

Since the only apparent result of a stock split is to multiply the number of
shares per shareholder, without changing any shareholder’s claims on the
firm’s assets, splits in themselves are not necessarily sources of new informa-
tion. The presumption of FFJR is that splits may be associated with more
fundamentally important information. The idea is to examine security returns
around split dates to determine whether there is any unusual behavior and, if
so, to what extent it can be accounted for by relationships between splits and
more fundamental variables.

The FFJR sample includes all 940 stock splits (involving 622 different com-
mon stocks) on the NYSE during 1927-1959 where the split was at least 5
new shares for 4 old shares, and where the security was listed for at least 12
months before and after the split. Since any information in a split is likely to
be company-specific, the search for unusual behavior in the returns on split
securities is confined to market model residuals. Thus, the first step is to
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obtain estimates of the market model coefficients a; and f; of (16) for each
of the 622 different securities in the sample. To estimate @ and f;, FFJR use
all of the monthly return data available for security j during the 1926-1960
period. They then compute the market model residuals for each security for
the period from 29 months before to 30 months after any split of the security.

FFJR are concerned with generalizations about the types of return behavior
typically associated with splits, rather than with the effects of a split on any
individual common stock.* To abstract from the eccentricities of specific
cases, they rely on the process of averaging. They concentrate attention on
the behavior of cross-sectional averages of estimated regression residuals in
the months surrounding split dates. The procedure is as follows: For a given
split, define month O as the month in which the effective date of a split
occurs. Thus, month O is not the same chronological date for all securities.
Some securities split more than once and hence have more than one month 0.
Month 1 is then defined as the month immediately following the split month,
month -1 is the month preceding, and so forth. Now define the average
residual for month s, with s measured relative to the split month, as

NS
2 €js
_

e = N,
where e, is the sample market model residual for security j in month s and N
is the number of splits for which data are available in month s. The principal
tests involve examining the behavior of € for s in the interval -29 < s < 30,
that is, for the 60 months surrounding the split month. Since FFJR are also
interested in the cumulative effects of abnormal return behavior in months
surrounding the split month, they also study the behavior of the cumulative
average residual Ug, defined as
§
Us= Y &
k=-29

The average residual & can be interpreted as the average deviation, in
month s relative to the split month, of the returns of split stocks from their
normal relationships with the market. Similarly, the cumulative average resid-
ual Us can be interpreted as the cumulative deviation from month -29 to
month s; it shows the cumulative effects of the wanderings of the returns of
split stocks from their normal relationships with the market.

Since the hypothesis about the effects of splits on returns developed by
FFJR centers on the dividend behavior of split shares, in some of their tests

*Much of the discussion that follows is taken directly from FFJR.
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they separately examine splits that are associated with increased dividends
and splits that are associated with decreased dividends. In order to abstract
from general changes in dividends across the market, “increased” and “de-
creased” dividends are measured relative to the average dividends paid by all
securities on the New York Stock Exchange during the relevant time periods.
The dividends are classified as follows: Define the dividend change ratio as
total dividends (per equivalent unsplit share) paid in the 12 months after the
split, divided by total dividends paid during the 12 months before the split.
Dividend “increases” are then defined as cases where the dividend change
ratio of the split stock is greater than the ratio for the NYSE as a whole,
while dividend “decreases” include cases of relative dividend decline. FFJR
then define &, & and Uy, U; as the average and cumulative average resid-
uals for splits followed by “increased” (*) and “decreased ( ~) dividends.

The most important empirical results of the FFJR study are summarized in
Table 5.3 and Figures 5.3a-b and 5.4a-d. Table 5.3 presents the average resid-
uals, cumulative average residuals, and the sample size for each of the two
dividend classifications (“increased” and “decreased”) and for the total of
all splits for each of the 60 months surrounding the split. Figures 5.3a-b.

FIGURE 5.3a
Average Residuals—All Splits
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FIGURE 5.3b
Cumulative Average Residuals—All Splits
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Source: Eugene F. Fama, Lawrence Fisher, Michael Jensen, and Richard Roll, “The
Adjustment of Stock Prices to New Information,” International Economic Review
10(February 1969): 1-21. Reprinted by permission.

present graphs of the average and cumulative average residuals for the total
sampl¢ of splits, and Figures 5.4a-d present these graphs for each of the two
dividend classifications.

Figures 5.3a, 5.4a and 5.4b show that the average residuals in the 29 months
prior to the split are uniformly positive for all splits and for both classes of
dividend behavior. This can hardly be attributed entirely to the splitting pro-
cess. FFJR cite evidence that in only about 10 percent of the splits was the
time between the announcement date and the effective date greater than four
months. Thus, it seems safe to say that the split cannot account for the be-
havior of the residuals as far as 2% years in advance of the split date. Rather,
FFJR suggest that there is probably a sharp improvement, relative to the
market, in the earnings prospects of a company sometime during the years
immediately preceding a split.

Note from Figure 5.3a and Table 5.3 that when all splits are examined to-
gether, the largest positive average residuals occur in the three or four months
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FIGURE 5.4a

Average Residuals for Dividend "'Increases’
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FIGURE 5.4b
Average Residuals for Dividend ""Decreasas"
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Source: Figures 5.4a-5.4d from Eugene F. Fama, Lawrence Fisher, Michael Jensen, and
Richard Roll, “The Adjustment of Stock Prices to New Information,” International
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FIGURE 5.4c
Cumulative Average Residuals for Dividend “'Increases”
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FIGURE 5.4d
Cumulative Average Residuals for Dividend *'Decreases’
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immediately preceding the split, but that after the split the average residuals
are randomly distributed about 0. Equivalently, in Figure 5.3b the curmulative
average residuals rise up to the split month, but there is almost no further
systematic movement thereafter. During the first year after the split, the
cumulative average residual changes by less than one-tenth of one percentage
point, and the total change in the cumulative average residual during the 24
years following the split is less than one percentage point. This is especially
striking because 71.5 percent (672 out of 940) of all splits experience greater
percentage dividend increases in the year after the split than the average for
all securities on the NYSE.

The explanation offered by FFJR for this behavior of the average residuals
is as follows. When a split is announced or anticipated, the market interprets
this, and correctly so, as greatly improving the probability that dividends will
soon be substantially increased. In many cases the split and the dividend in-
crease are announced at the same time. If, as Lintner (1956) suggests, firms
are reluctant to reduce dividends, then a split, which implies an increased
expected dividend, is a signal to the market that the company’s directors are
confident that future earnings will be sufficient to maintain dividend pay-
ments at a higher level. If the market agrees with the judgments of the direc-
tors, then it is possible that the large price increases in the months immedi-
ately preceding a split are due to altered expectations concerning the future
earning potential of the firm and thus of its shares, rather than to any in-
trinsic effects of the split itself.

If the information effects of actual or anticipated dividend increases explain
the behavior of common stock returns in the months immediately surround-
ing a split, then return behavior subsequent to the split should be substan-
tially different in cases where the dividend increase materializes than in cases
where it does not. It is apparent from Figures §.4a-d that the differences are
in fact substantial, and FFJR argue that they are in the direction predicted by
their hypothesis.

Thus, the fact that the cumulative average residuals for both dividend
classes rise sharply in the few months before the split is consistent with the
hypothesis that the market recognizes that splits are usually associated with
higher dividend payments. In some cases, however, the dividend increase, if it
occurs, is declared sometime during the year after the split. Thus, it is not
surprising that the average residuals (Figure 5.4a) for stocks in the “increased”
dividend class are in general slightly positive in the year after the split, so that
the cumulative average residuals for these stocks (Figure 5.4c) drift upward.
The fact that this upward drift is only slight can be explained in two ways.
First, in many cases the dividend increase associated with a split is declared
and the corresponding price adjustments take place before the end of the split
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month. Second, according to the FFJR hypothesis, when the split is declared,
even if no dividend announcement is made, there is some price adjustment in
anticipation of future dividend increases. Thus, only a slight additional adjust-
ment is necessary when the dividend increase actually takes place. By one
year after the split, the returns on stocks which have experienced dividend
“increases” have resumed their normal relationships to market returns, since
from this point onward the average residuals are small and randomly scattered
about zero.

FFIR contend that the behavior of the residuals for stock splits associated
with “decreased” dividends provides the strongest evidence for their split hy-
pothesis. For stocksin the “decreased” dividend class the average and cumula-
tive average residuals (Figures 5 4b and 5.4d) rise in the few months before the
split but then plummet in the few months following the split, when the anti-
cipated dividend increase is not forthcoming. These split stocks with poor
dividend performance on the average perform poorly in each of the 12 months
following the split, but their period of poorest performance is in the few
months immediately after the split, when the improved dividend, if it were
coming at all, would most likely be declared. The hypothesis is further rein-
forced by the observation that when a year has passed after the split, the
cumulative average residual has fallen to about where it was five months prior
to the split, which is probably about the earliest time reliable information
concerning a possible split is likely to reach the market. Thus, by the time it
becomes clear that the anticipated dividend increase is not forthcoming, the
apparent effects of the split seem to be completely wiped away, and the
stock’s returns revert to their normal relationship with market returns. In
sum, FFJR suggest that once the information effects of associated dividend
changes are properly considered, a split per se has no net effect on common
stock returns.

Finally, and most important, although the behavior of post-split returns is
very different depending on whether or not dividend “increases” occur, and
despite the fact that a substantial majority of split securities do experience
dividend *increases,” when all splits are examined together (Figures 5.3a-b),
the average residuals are randomly distributed about O during the year after
the split, so that there is no net movement either up or down in the cumula-
tive average residuals. Thus, the market apparently makes unbiased forecasts
of the implications of a split for future dividends, and these forecasts are fully
reflected in the price of the security by the end of the split month. After
considerably more data analysis than we can summarize here, FFJR conclude
that their results are consistent with the hypothesis that the stock market is
efficient, at least with respect to its ability to adjust to the information im-
plicit in a split.
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One point from the remainder of the FFJR analysis should be mentioned.
FFJR especially emphasize that the persistent upward drift of the cumulative
average residuals in the months preceding the split is not a phenomenon that
could be used to increase expected trading profits. The reason is that the
behavior of the average residuals is not representative of the behavior of the
residuals for individual securities. In months prior to the split, successive
sample residuals for individual securities seem to be independent. But in most
cases, there are a few months in which the residuals are abnormally large and
positive. The months of large residuals differ from security to security,
however, and the differences in timing explain why the signs of the average
residuals are uniformly positive for many months preceding the split.

Since one purpose of this book is to encourage the reader to develop a
critical eye for discussions of empirical work, some comments about the
FFJR analysis are relevant. First, FFJR are somewhat ““aggressive” in inter-
preting their empirical results. In their view, the unusual behavior of the
returns on a splitting security in the months immediately preceding a split
reflects the information content of the dividend change that usually accom-
panies a split. There is, however, no direct evidence in their data that divi-
dends or splits convey real information to the market about the future
prospects of a firm. For example, an alternative view, completely consistent
with their empirical results, is that dividends are a passive variable in the
whole process. That is, companies tend to increase dividends when earnings
increase and to decrease dividends when earnings decrease. In this view, the
FFJR data suggest that splits tend to occur when firms have experienced
unusual increases in earnings, which accounts for the positive average resid-
uals of splitting shares in the months preceding the split. As chance will have
it, however, the good times do not persist for all firms. Some of them experi-
ence earnings declines in the year after the split, which in the FFJR data
show up as decreased dividends. Thus, the behavior of dividends is merely
a proxy for the behavior of earnings, and neither dividend changes nor splits
are a source of information.

It is still the case, however, that in this alternative view the FFIR evidence
is consistent with the hypothesis that the market is efficient. Thus, about 30
percent of the firms will come on relatively bad times (decreased earnings)
subsequent to splitting their shares, and this will be reflected in decreased
dividends. If the market is efficient when adjusting security prices to the high
earnings for the period preceding the split, it will take full account of the
chances of good and bad times in the period following the split, so that split-
ting shares will not, on average, experience unusually high. or low returns in
the period following the split. In Figures 5.3a—b the behavior of the average
residuals in the years after the split is consistent with this implication of
market efficiency.
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OTHER STUDIES OF PUBLIC ANNOUNCEMENTS

Variants of the method of residual analysis developed by FFIR have been
used by others to study the effects of different kinds of public announce-
ments, and all of these studies are in most respects consistent with the hypoth-
esis that the market is efficient.

For example, using data on 261 major firms for the period 1946-1966, Ball
and Brown (1968) apply the method to study the effects of annual earnings
announcements. They use the residuals from a time series regression of the
annual earnings of a firm on the average earnings of all their firms to classify
the firm’s eamings for a given year as having “increased” or “‘decreased”
relative to the market. Residuals from estimates of the market model ob-
tained from monthly data are then used to compute cumulative average
return residuals separately for those earnings that “increased” and those that
“decreased.” The cumulative average return residuals rise throughout the year
in advance of the announcement for the “increased” earnings category, and
fall for the “decreased” earnings category. Ball and Brown conclude that no
more than about 10-15 percent of the information in the annual earnings
announcement has not been anticipated by the month of the announcement.

Further evidence consistent with the hypothesis that the market is efficient
is provided in the work of Scholes (1972) on large secondary offerings of
common stock, that is, large underwritten sales of existing common stocks by
individuals and institutions. He finds that, on average, large secondary issues
are associated with a decline of between 1 and 2 percent in the cumulative
average residual returns for the corresponding common stocks. Since the
magnitude of the price adjustment is unrelated to the size of the issue, Scholes
concludes that the adjustment is not due to “selling pressure,” as is commonly
believed, but rather results from negative information implicit in the fact that
somebody is trying to sell a large block of a firm’s stock. Moreover, he pre-
sents evidence that the value‘of the information in a secondary offering de-
pends to some extent on the vendor. As might be expected, by far the largest
negative cumulative average residuals occur where the vendor is the corpora-
tion itself or one of its officers, with investment companies a distant second.
The identity of the vendor is not generally known at the time of a secondary
offering, however, and corporate insiders need only report their transactions
in their company’s stock to the Securities and Exchange Commission within
six days after a sale. By this time, the market on average has fully adjusted to
the information in the secondary, as indicated by the fact that the average
residuals behave randomly thereafter.

To avoid giving a falsely monolithic appearance to the evidence consistent
with the hypothesis that the market is efficient, we should note that although
Scholes’s work indicates that prices adjust efficiently to the public informa-
tion in a secondary, his work is also evidence that corporate insiders at least
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sometimes have important information about their firms that is not yet
reflected in prices. This is evidence against market efficiency, since it says
that prices do not fully reflect all available information.* Moreover, other
evidence of the same sort is offered by Neiderhoffer and Osborne (1966),
who point out that specialists on the NYSE apparently use their monopolistic
access to information concerning unfilled limit orders (orders to buy and sell
at given prices) to generate monopoly profits.

Like any null hypothesis, however, the hypothesis that the market is effi-
cient is not likely to be a completely accurate view of the world. We might
look at the various tests as providing the evidence that helps us to judge the
extent to which the market is efficient and the extent to which it is inefficient.
The evidence discussed so far is consistent with market efficiency in the sense
that prices fully reflect publicly available information, such as past prices,
splits, earnings announcements, etc., but there is also evidence that the market
is not completely efficient, since corporate insiders and NYSE specialists ap-
parently have access to information that is not fully reflected in prices. In
practical terms, the evidence suggests that if an investor or investment coun-
selor only has access to publicly available information, then the hypothesis
that the market is efficient is an appropriate approximation to the world.
If prices fully reflect publicly available information, then such information
cannot be used to beat the market. On the other hand, market efficiency is an
inappropriate view of the world for a corporate insider or an NYSE specialist,
since they sometimes have access to and can trade on information that is not
fully reflected in prices.

D. Returns Conform to a Risk-Return Relationship

The most recent tests of market efficiency make use of a model of market
equilibrium in which the market sets prices at any time ¢ - 1 so that there is a
positive relationship between the expected return on a security from time
t -1 to time ¢ and the risk of the security. For example, one such study, by
Mandelker (1974), is concerned with the adjustment of prices to the an-
nouncement that two firms will merge. Another, by Jaffe (1974), is con-
cerned with the adjustment of prices to any information implicit in insider
trading.

We cannot do justice to tests of market efficiency based on risk-return
models of market equilibrium until we consider these models in some detail.
This is the topic of Chapters 7-9. Tests of market efficiency that are based on
these risk-return models are discussed in Chapter 9.

*Evidence that insiders have monopolistic access to information about their firm is
also to be found in the work of Lorie and Neiderhoffer (1968) and Jaffe (1974). Jaffe’s
work is discussed in Chapter 9.
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IV. Conclusions and Some Fine Points of the Theory

In the model of price formation presented in this chapter, at any time ¢ - 1
the “market” assesses a joint distribution for security prices at time ¢, f,,,(p,,,

> Pl ®7L1). The characteristics of this distribution, along with some
propositions about the nature of market equilibrium (for example, equilib-
rium expected returns are positive), are then the basis of the equilibrium
prices of securities, py sy, ... ,DPn, -y, set at £ - 1. This is clearly a simplified
view of the world, and we now discuss some of the ways in which it is not
completely realistic.

First, in the description of the process of price formation given above, the
“market” assesses probability distributions and the “market” sets prices. This
can only be a completely accurate view of the world if all the individual
participants in the market (a) have the same information and (b) agree on its
implications for the joint distribution of future prices. Neither of these condi-
tions ts completely descriptive. Nor is it completely realistic to presume that
when market prices are determined, they result from a conscious assessment
of the joint distribution of security prices by all or most or even many
investors.

Pushing this line of attack even further, the two-step process of price forma-
tion assumed in this chapter masks some even stronger assumptions about the
analytical capabilities of investors. Thus, prices set at ¢~ 1 result from an
assessment of the joint distribution of prices for time ¢. But the world is not
presumed to end at time ¢, so the prices that turn up at t must themselves be
the consequences of a market equilibrium. That is, pushing the two-step
process of price formation one period ahead, prices at time ¢ will be set on
the basis of characteristics of the joint distribution assessed at t on prices for
t+ 1. And the process will be repeated at each future point in time. Thus,
when at time ¢ - 1 the market assesses a joint distribution on prices for ¢, it
must assess what the state of the world at ¢ - 1 implies about the likelihoods
of different states at r, and it must assume something about how it will
respond to different states in setting security prices at t. To do this, it must in
turn make assessments about the likelihoods of different states of the world
at t+1 and how it will respond to them in setting prices and so forth. In
short, the discussion of a two-step process of price formation in the simple
model glosses over the fact that the first step, assessment of the joint distribu-
tion of prices for time ¢, also implies assessments of the joint distributions of
prices at each future point in time, with all of the judgments about future
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interactions between the market and the state of the world that these assess-
ments imply *

Looking at the model in these terms, the student who is newly exposed to
scientific research is often tempted to conclude that the model has no value.
To draw such a conclusion solely on the basis of the model’s unrealistic
assumptions is to forget what modeling is all about. The first purpose of a
model is to improve understanding of some real-world phenomenon. If the
phenomenon is a complicated one, like the adjustment of stock prices to new
information, then to abstract from unimportant and potentially confusing
details and to focus on the important aspects of the problem, we must impose
some simple structure on the world. Since the structure is simplified and is
thus not a completely realistic view of the world, we call it a model.

Thus, in deriving testable implications of the hypothesis that the capital
market is efficient, we structure the world in terms of a “market” that
assesses probability distributions on future prices and then sets current prices
on the basis of these assessed distributions. Strictly speaking, this implies that
investors have monolithic opinions about available information and act single-
mindedly to ensure that their assessments are properly reflected in current
prices. What we really have in mind, however, is a market where there is
indeed disagreement among investors but where the force of common judg-
ments is sufficient to produce an orderly adjustment of prices to new infor-
mation. Such an intuitively appealing statement is, however, too unspecific to
be the basis for formal tests. Formal tests require formal models, with their
more or less unrealistic structuring of the world. And we are, after all, ulti-
mately interested in judging market efficiency on the basis of tests.

The models we have used so far are extreme simplifications of the world. In
later chapters we discuss more sophisticated models, which are nevertheless
still far short of, and are not meant to be, completely realistic views of the
world. The simple models of this chapter have, however, been useful. They
seem to lead to meaningful tests of market efficiency, tests which, on the
whole, suggest a market that responds well to new information. At the very
least, the tests contribute to our understanding of the phenomenon of in-
terest, the behavior of security prices, and this is all we require in order to
conclude that the simple models from which they are derived are useful.

‘Actany, the notation presented in Section II allowed for all this, and the reader who
was a bit puzzled then might look back at that discussion now.

/5y

CHAPTER

Short-Term Interest
Rates as Predictors
of Inflation

Chapter 5 discussed the theory of an efficient capital market and tests of the
theory on common stocks. We turn now to the bond market. First, however,
there are a few pages of background material.

I. The Market for U.S. Treasury Bills

A. Treasury Bills: What Are They?

Every week the U.S. Treasury issues at auction certain bonds called Trea-
sury bills, each of which represents a promise to pay $1,000 on the maturity
date of the bill. Bills with three months to maturity have been issued since
as early as 1935; both three- and six-month bills have been issued since 1959;
and one-year bills have been issued since late 1964. A Treasury bill pays no
interest, and any return comes from the fact that bills are issued and subse-
quently sell in the market at “discounts,” that is, at prices below their matu-
rity value of $1,000.

This chapter is an expanded version of Eugene F. Fama, “Short-Term Interest Rates
as Predictors of Inflation,” American Economic Review 65 (June 1975): 269-282.
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Although Treasury bills are not traded on organized exchanges like the New
York Stock Exchange, an active market for them is maintained by dealers.
For any given Treasury bill, a dealer stands ready to quote both a “bid”
price, the price at which he is willing to buy the bill, and an “asked” price,
the price at which he is willing to sell. Thus, although the Treasury issues
bills for three, six, and twelve months, there is always an active secondary
market for bills that acquire intermediate maturities with the passage of time.

This chapter is concerned with efficiency in the market for one- to six-
month Treasury bills, that is, bills that have one to six months before pay-
ment of the promised $1,000. Theory and evidence are first presented for
one-month bills. The results are then generalized to bills with longer
maturities.

B. Real and Nominal Returns on a One-Month Bill

The return on a one-month Treasury bill from the end of month -1 to
the end of month ¢ is
Rt=u,—u,_l =$],000—u,_l , 1

Ur-t Ve

where v, is the “price” of the bill at r and v,_, is its price at - 1.* Since the
bill has one month to maturity, at time - 1 we know that its “price” at ¢
will be $1,000. Thus, once v,., is set, the return R, on the bill that will be
realized at 7 is known for certain, and R, can be interpreted as the one-
month rate of interest, set in the market at the end of month 7~ 1 and
realized at the end of month r.

PROBLEM I.B

1. Convince yourself that the return from the end of month 7 - 1 to the
end of month 7 on a bill with two or more months to maturity at ¢ - 1 is un-
certain at 7 - 1. Convince yourself that if the interval from - 1 to ¢ is two
(or three, or n) months, then the return from ¢ - 1 to ¢ on a bill with two (or
three, or n) months to maturity is known at 7 - 1.

ANSWER

1. The return from ¢ - 1 to ¢ on a one-month bill is known at ¢ - | only
because v,, the “price” of the bill to be obtained at ¢, is known to be $1,000.
For bills with maturities longer than one month, prices to be observed at the
end of month ¢ are uncertain at the end of month ¢ - 1.

*We often say “at time f - 1" or “at t - 1”* in place of the longer statement “at the
end of months - 1.”
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If the interval from ¢ - 1 to ¢ is two months, then equation (1) is the two-
month return on a two-month bill. Since the price of the bill at the end of
two months, v, = $1,000, is known at time ¢ - 1, once v,., is set, the return
on the bill for the two months from ¢ - 1 to t is known at £ - 1. In general,
the n-month return on an n-month bill is known once the price of the bill is
set at £- 1. It is important to keep this in mind when we later generalize the
model of bill market efficiency to bills with two or more months to maturity.

The prices v,-; and v, and the return R, are in ‘“‘nominal” terms, which
means that they are stated in units of money, or dollars. Investors, however,
are assumed to be concerned with the “real” values of securities and returns.
The real value of a security is its price in terms of consumption goods and
services, and its real return is likewise its return in units of consumption
goods and services. Since the concepts are important, we explain them in
some detail.

Although prices are stated in terms of money, it is always possible to use
these nominal prices to compute prices in units of any specific good or
security. For example, on July 31, 1974, the price of a share of IBM was
$201 and the price of a bushel of wheat was $4.50. The implied price of a
share of IBM in terms of bushels of wheat was 201/4.50 = 44.67 bushels.
That is, one dollar purchased 1/4.50 bushel of wheat. One share of IBM
purchased 201 dollars. The exchange value or price of a share of IBM in
terms of bushels of wheat was 201(;;—0) =44.67 bushels. One can likewise
compute the price of a share of IBM, or anything else, in terms of shares of
the common stock of GM or in the units of any other commodity.

The term “real” price or “real” value pushes these ideas one step further.
The real price or real value of a commodity is its price in units of some
“representative” bundle of consumption goods and services. In this chapter,
the bundle of consumption goods and services on which the U.S. Consumer
Price Index (CPI) is based is taken as representative. The CPI, which is com-
puted monthly by the U.S. Bureau of Labor Statistics, is the nominal or
money value of a “market basket” of consumption goods and services (food,
housing, entertainment, etc.), where the weights given to individual items
in the bundle are based on the proportions of family budgets allocated to
these items by a large sample of primarily urban wage earners.* The proce-

*For a complete description of the CPI, see U.S. Bureau of Labor Statistics, Hzndbook
of Methods for Surveys and Studies, BLS Bulletin no. 1458 (1971). The CPl is actually
an index number; the quoted value of the CPI for time ¢ is the price of the CPI consump-
tion bundie for time ¢ divided by the price of the bundle in 1967. Since this rescaling
has no effect on anything we do, we refer to the index as the nominal price of the CPI
consumption bundle.
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dure for determining the price of a commodity in units of the consumption
bundle represented by the CP1 is exactly as in the wheat example above.
One divides the nominal or money price of the commodity by the CPL.

The real price can also be interpreted as follows. Let p; be the value of the
CP1 at the end of month ¢. Since p; is the nominal price of a particular bundle

of consumption goods,
n, = 1/p, 2

is the number of units of the bundle that can be purchased with one dollar;
in other words, @, is the purchasing power of one dollar in terms of the
bundle of consumption goods on which the CPI is based. To get the price or
exchange value of a commodity in units of the CP1 consumption bundle, one
multiplies the nominal or money price of the commodity, which is the num-
ber of dollars that it can be exchanged for, by m,, which is the number of
units of the CP1 consumption bundle that can be purchased with one dollar.
We now examine what is meant by a real return. If v,; is the nominal
price of a Treasury bill with one month to maturity at the end of month
t- 1, then the real price or value of the bill at £~ 1 i Uy Tr-y- The real
return on the bill from the end of month 7 - 1 to the end of month £ is the
change in its real value during the month, divided by its real value at £~ 1.

Thus the real return r, is

Uyl = Uy Myoy
r, = tMe” Vea et 3)
Up-1T¢-1

The real return is the return on the one-month bill in units of the CPI con-
sumption bundle per unit of the bundle invested at the end of monthz - 1.1n
contrast, the nominal return R, of equation (1) is the return in units of
dollars per dollar invested at the end of month 7- 1. Thus, the difference
between nominal and real prices or returns is a difference in units of mea-
surement. Nominal prices and returns are in dollars, while real prices and
returns are in units of a representative consumption bundle.

The real return can be given a convenient interpretation in terms of the

nominal return R, and
Mg~ Mgy _ Pr-1 ~ Pt @)

A=
Myt Dt

which we call the rate of change in the purchasing power of money from the

end of month £ - 1 to the end of month ¢. First rewrite (3) as

T SR S (5)
Vgy T
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From (1) and (4) we then determine that
re=(1+Ry)(1 +4)-1
=R, + A, +R,A,. (6)

In monthly data the cross-product R,A, is generally negligible relative to

either R, or A,.* Thus although the i
: ' equality only holds as imati
no harm is done if (6) is reduced to Y as an approximation,

re=R,+ A, )
In words, the real return from the end of month ¢ - 1 to the end of month ¢
on a Treasury bill with one month to maturity at ¢~ 1 is the nominal ret
plus the rate of change in purchasing power from z - 1 to ¢ .
Note i.'rom (4) that the sign of A, is opposite to the sig.n of p, - th
Fhange in the nominal price of the CPl consumption bundie “:he: tt-hl , 'e
fnflatlon (the nominal price of the consumption bundle goes u;;), the pure;:r;:a.:cj
ing power. of money goes down,. while deflation (the nominal price of the
consumption bundle goes down) implies an increase in the purchasing pow
of money. In terms of returns, inflation (a decrease in the purchasing Fower
of money), implies that the real return is less than the nominal returrgl pol‘:/iir
real returns are greater than nominal returns when there is deflation e

PROBLEMS 1.B

beZt. Convince yourself. that the preceding statement about the relationship
w<.aen real and nominal returns and inflation or deflation appli
oouty plies to any
n)j'. Corrllvmce )fourself that if the interval from ¢ - 1 to ¢ is two (or three or
nTont s and if r;, R,, and A, are the returns and the rate of change in pu
chasing power for two (or three or n) months, then (6) and (7) still hgold o
4. Show that if tl?e continuously compounded rate of change in purcl;asing
gi)e\:/lez;;m.i the continuously compounded real and nominal returns are used
: 1s an exact expression; that is, using asterisks to denote the ’
tinuously compounded versions of r,, R,, and 4,, o

=Ry +A;.
ANSWERS

2. Just check that the algeb i i
i gebra of equations (3) to (7) is the same for any

fr(.)i'l.n TtTie 1algebra of eql.lations (3) to (7) does not depend on the time interval
to z. If the interval is two (or three or n) months, then (6) and @)

*Evidence on this is discussed below in Problem VI.C.3
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are appropriate expressions for the relationships among r,, R,, and A, for two
(or three or n) months.

4. The continuously compounded real return is the value of r; that satisfies
1+r,= et ’ %

where r, is the simple real return of (3) or (6) and e = 2.7 l/is the base of the
system of natural logarithms. Likewise, the continuously compounded
nominal return and the continuously compounded rate of change in purchas-
ing power are the values of R; and A; that satisfy

1+R,=eRt and 1+4,=¢"".

Thus,

1+r,=(1+R)(+4)
implies

er,‘ =eR,‘eA,‘ :eR,‘+A,‘
and

ri =R; +4;.

Since the theory and empirical work that follow build on (7), it is clear that
everything could be done in terms of the continuously compounded versions
of the variables, and the sleight of hand used in going from (6) to (7) would
be avoided. Any advantages of one approach over the other, however, are
more apparent than real. Although the continuously compounded results
are not reported, all tests have been done with both versions of the variables
and the results are numerically almost identical. The reason is that for periods
of one to six months, the periods we eventually use in the tests, the simple
and continuously compounded versions of the variables have almost the same
numerical values. If this seems puzzling, the reader might review Section VI
of Chapter 1.

We are ready to discuss the theory of market efficiency as it applies to one-
month Treasury bills. It is well to note from the outset, however, that the
theory applies directly to bills with longer maturities. To “generalize” the
theory in this way, one need only change the interpretation of the interval
of time from ¢ - 1 to t—for example, from one month to two months.
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II. Inflation and Efficiency in the Bill Market: Theory

For bills with one month to maturity, the task of the market at time ¢ - 1 is
to determine an equilibrium nominal price Ur-y- As usual, an equilibrium
price is a market-clearing price, a price at which the demand for one-month
bills by investors is equal to the supply. In analyzing the efficiency of the
market, we concentrate on one issue: In setting the nominal price of a one-
month bill at ¢ - 1, does the market correctly use available information about
A,, the rate of change in the purchasing power of money from ¢ - 1 to £? If
the answer to this question is affirmative, then we say that the price v,_,
“fully reflects” available information about A, and that the market for one-
month bills is efficient.

A. Market Efficiency in a World o f Perfect Foresight

We examine first the case where there is perfect foresight: that is, the un-
realistic world where =,, the purchasing power of money at time ¢, is costless
information available to all investors at time ¢ - 1. In such a world, when the
market sets v,_,, all quantities in the real return equation (3) are known. In
terms of equation (7), when the market sets Uy, the real and nominal re-
turns r, and R, are set. Since v,_, is an equilibrium price, r, and R, can be
interpreted as the equilibrium real and nominal rates of interest set in the
market at £ - 1 and realized by investors at ¢.

Although an equilibrium nominal price U,y sets both r, and R,, the nomi-
nal rate is a passive variable. The ultimate purpose of investment is assumed
to be consumption. Although prices are stated in nominal terms, investors are
assumed to make their decisions on the basis of real quantities, that is, on
the eventual value of their investments in terms of consumption goods and
services. When an equilibrium nominal price v, is set at £ - 1, what is really
determined is the equilibrium real rate of interest re. In terms of (7), the
equilibrium nominal rate is just the value of R, which ensures that the bill
will yield the equilibrium real rate, given that the rate of change in purchasing
power from ¢ - 1 to ¢ will be A,. Market efficiency then simply says that in
setting v,_, , the market does not ignore the costless information about Ay, so
that v, _; fully reflects the available information about A,.

B. Market Efficiency in a World of Uncertainty

RETURNS AND THE INFLATION RATE IN AN UNCERTAIN WORLD
The world in which we live is uncertain. In an uncertain world, 7, is a ran-
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dom variable at ¢ - 1, indicated by the usual tilde, which means that the real
return
7, = Vglly = Upoy Moy ®)
Up-1Te—
is likewise a random variable at ¢ - 1. Note, however, that 7, is a random
variable at ¢- 1 only because 7, is a random variable. Equivalently, with
uncertainty about 7,

F,=R,+A,; )
that is, the real return from ¢ - 1 to ¢ on a bill with one month to maturity
at r- 1 is a random variable at ¢ - 1 only because 5,, the rate of change in
the purchasing power of money from ¢~ I to ¢, is uncertain at t- 1. The
nominal return R, is known for certain at £ - 1.

This property of bills explains why we focus on them. The goal is to ex-
amine how well the market uses information about future inflation in setting
bill prices. If investors are concerned with real returns on securities, then
since all uncertainty in the real return on a one-month bill is uncertainty
about the change in the purchasing power of money during the month, one-
month bills are the clear choice for studying how well the market absorbs
information about inflation one month ahead. For the same reason, n-
month bills are the logical choice for studying how well the market predicts
inflation n months ahead.

We pause also to note that the introduction of uncertainty changes slightly
our use of words. We use the term “rate of interest” only for rates that
represent returns that will be realized for certain over the period covered by
the rate. Thus, in a world of perfect foresight, we refer to r,, which is known
at t - 1, as either the real return or the real rate of interest from - 1 to t. In
a world of uncertainty, since 7, is unknown at ¢ - 1, we refer to it only as
the real return. Since the existence of uncertainty does not change the fact
that R, is known at 7 - 1, we continue to call it either the nominal return or
the nominal rate of interest.

GENERAL DESCRIPTION OF AN EFFICIENT MARKET

In an uncertain world, efficiency requires a somewhat more sophisticated
market than when there is perfect foresight. In a perfectly certain world, ef-
ficiency only requires that in setting the nominal price of a bill at 7- 1, the
market uses the information about the known value of A,, the rate of change
in purchasing power from ¢ - 1 to ¢. In an uncertain world, market efficiency
requires that in setting v,._, ,ihe market correctly use/ all available information
to assess the distribution of A,.

In the notation of Chapter 5, if ¢,., is the set of information available at

P
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t-1, and if ¢7%, is the set of information used by the market to assess the
distribution of A,, then market efficiency means that

Oy = brers (10)

the information used by the market is all the available information. More-
over, efficiency means that the market understands the implications of any
set of information for the distribution of A,, so that

Fm(Be19) = f(A,19), (1

where f,,(A;|9) is the probability density function for 5, assessed by the
market from the information ¢, f(A,|¢) is the true density function implied
by ¢, and ¢ is any set of information. Together, equations (10) and ¢9))
imply

Im(Br1721) = f(Asigey), (12)

which is the concise, formal way of saying that at # - 1 the market correctly
uses all available information to assess the distribution of 5,.

When the market sets the nominal price of a one-month bill at ¢ - 1, R, is
also set. Given the relationship among 7;, R;, and A, of equation (9), the
market’s assessed distribution for the real return 7, is implied by R, and its
assessed distribution for 5,. If (12) holds—that is, if the market is efficient—
then the market’s assessed distribution for 7, is the true distribution

fm(rt'¢;'il’Rt)=f(rtl¢t—l»Rt)' (13)

In sum, if the market is efficient, then in setting the nominal price of a
one-month bill at ¢~ 1, the market correctly uses all available information to
assess the distribution of 5,. In this sense, v,_, fully reflects all available
information about 5,. Since an equilibrium value of v,_, implies an equilib-
rium value of R,, the one-month nominal rate of interest set at £ - 1 fully
reflects all available information about 5,. Finally, when an efficient mar-
ket sets R,, the distribution of the real return 7, it perceives is the true
distribution.

PROBLEM IL.B
1. Why does the conditioning argument R, appear in (13) but not in (12)?

ANSWER

1. Given equation (9), a distribution for , cannot be specified until a value
of R, is specified. It is assumed, however, that the distribution of 5, can be
specified without knowledge of R,. The assumed process of price formation
is that the market uses ¢, to assess the distribution of 5,, and this assess-
ment is the basis of the equilibrium value of R,.
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Note that, as in Chapter 5, the information sets ¢, and ¢,_, do not in-
clude prices of securities set at r ~ 1. Rather, the prices set at # - 1 are based
on assessments derived from ¢}.,, which, in an efficient market, coincides
with ¢,_, .

III. A Model of Market Equilibrium

A. Why Do We Need a Model of Market Equilibrium?

The preceding description of an efficient market for one-month Treasury
bills is so general that it has no testable implications. All we have said is that
in pricing a one-month bill at ¢ - 1, an efficient market correctly uses avail-
able information to assess the distribution of 5,. Equations (10) to (13) are
formal notation for this statement, but the quantities that would be needed
to test the statement are unobservable. Since we cannot directly observe
either f,,,(A,187,) or f(A;1¢,-,), we cannot determine whether the two are
the same. Thus, we cannot, on the basis of what has been said so far, deter-
mine whether the bill market is efficient.

What the model lacks is a more detailed specification of the link between
fm(A107,) and v,_; ; we must specify how the equilibrium price of a bond
at - 1 is related to the characteristics of the market-assessed distribution of
5,. This is the point made repeatedly in Chapter 5: A test of market effi-
ciency must be based on a model of market equilibrium, and any test is
simultaneously a test of efficiency and of the assumed model of equilibrium.
Fortunately, a simple model of market equilibrium produces successful joint
tests of bill market efficiency and of the model of market equilibrium. We
first discuss the model and then, in Section IV, the types of tests that can be
derived from it. Finally, in Sections V and VI we turn to the data.

B. The Model

The first assumption is that in decisions concerning one-month bills, the
primary concern of investors is the distribution of the real return on a bill.
The real return 7,, the nominal return R, and the rate of change in purchas-
ing power A, are related according to equation (9). A value of the nominal
price v,_; implies a value of R,. Given R, and the market’s assessed distribu-
tion of &,, the market’s assessed distribution of 7, is implied. A market
equilibrium depends visibly on a market-clearing value of the nominal price
U;-y, but it is assumed that what really causes investors to demand exactly
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the outstanding supply of bills is the nature of the implied “equilibrium
distribution” of the real return f,,,(r, 167, , R,).

Testable propositions about market efficiency require propositions about
the characteristics of the “equilibrium distribution™ £, (r, 14", , R,) that re-
sults from an equilibrium price v,.; at#- 1. As in Chapter 5, we concentrate
on the mean of the distribution, and the proposition about E,,,(7, 147, , R,)
is that for all r and ¢/ |,

Ep(Fe 1oLy, Ry = E(P). (14)

Thus the model of bill market equilibrium is the statement that each month
the market sets the price of a one-month bill so that it perceives the expected
real return on the bill to be E(F). The equilibrium expected real return is
E(F) for every time ¢ - 1 and for any set of information ¢?, that the market
might use to set v, . In short, the model of equilibrium is the simple state-
ment that the equilibrium expected real return on a one-month bill is the
same every month.

The assumption that the expected real retum on a bill is constant through
time is anathema to many economists. The reasons are many, but there is no
need to discuss them here. For our purpose, the assumption is a useful ap-
proximation if it leads to meaningful tests of efficiency, and this is a question
that can be left to the data.

IV.  Testable Implications of Market Efficiency When the
Equilibrium Expected Real Return Is Constant Through Time

A. The Real Return

Equation (13) says that in an efficient market, the market’s perceived dis-
tribution for the real retumn, f,(r,1¢7*,,R,), is the true distribution
frelde—y, R,). Since the market-assessed and true distributions are identical,
the means of the distributions are identical,

Em(?t|¢'t'!-l’Rt)=E(;t|¢t—l’Rt)- (15)
1f market equilibrium is characterized by (14), then with the efficiency con-
dition (15), we have

E(Ft|¢t—l)Rr)=E(;)- (16)

In words, at any time ¢~ 1 the market sets the price of a one-month bill in
such a way that its assessment of the expected real return is the constant
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E(F). Since an efficient market correctly uses all available information,
E(F) is also the true expected real return on the bill.

The general testable implication of this combination of market efficiency
with a model of market equilibrium is that there is no way to use ¢,_,, the
set of information available at time ¢ - 1, or any subset of ¢,_, , as the basis of
a correct assessment of the expected real return on a one-month bill which
is other than E(F). One subset of ¢,_, is the time series of past real returns.
If equation (16) holds, then

E(relriey,reas .. ) = E(F); (17)

that is, there is no way to use the time series of past real returns as the basis
of a correct assessment of the expected real return from ¢ - 1 to ¢ which is
other than E(F). One way to test this statement is with sample autocorrela-
tions of F,. If (17) holds, the autocorrelations of 7, for all lags are equal to
zero. The reasoning is the same as that in Section 111.B of Chapter 5.

Sample autocorrelations of 7, are presented later, but it is well to empha-
size one point now. Like any tests, the autocorrelations are joint tests of
market efficiency and of the model for the equilibrium expected real return.
If the hypothesis that the autocorrelations of 7, are zero is rejected, then
(17) is rejected; such a result would indicate that the true expected real re-
turn from f- 1 to ¢ is not a constant, but rather varies according to the se-
quence of past returns. Since the sequence of past real returns is a subset of
¢,-1, nonzero autocorrelations of real returns imply that (16) can be rejected.

Equation (16), however, is a combination of the market efficiency condi-
tion of (15) with the equilibrium expected retum model of (14). If we insist
on (14), then the hypothetical evidence indicates rejection of (15). In this
interpretation, the market sets the price of a one-month bill so that it per-
ceives the expected real return to be the constant £(F), but it neglects rele-
vant information, with the result that the true expected real return varies
from month to month as a function of the time series of past real returns.
Thus, the market is inefficient. On the other hand, nonzero autocorrelations
are also consistent with a world where (15) holds but (14) doés not; the mar-
ket may well be efficient, and the nonzero autocorrelations may reflect
equilibrium expected real returns that change as a function of the sequence
of past real returns. Market efficiency is no way rules out such behavior in
the equilibrium expected returns.

B. The Nominal Interest Rate as a Predictor of Inflation

There are tests that distinguish more precisely the hypothesis that the mar-
ket is efficient from the hypothesis that the equilibrium expected real return
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is constant through time. Once the nominal interest rate R, is set at time
¢t - 1, from (9), the relationship between the market’s ex pectation of the rate
of change in purchasing power, the nominal rate of interest, and the market’s
expectation of the real return is

Em(Bi1871) = E (710721, R,) - Ry. (18)
If the expected real return is the constant £(F), then (18) becomes

En(B80L,) = E(F)- R,. (19)

Since E(F) is a constant, this equation says that all variation through time in
the nominal rate R, is a direct reflection of variation in the market’s assess-
ment of the expected rate of change in purchasing power. If the market is
efficient, then

Em(B107,) = E(A,19,-1), (20)

the market’s assessment of the expected value of E, is the best possible assess-
ment. Equations (19) and (20) then imply that

E(B/1¢4-1) =E(F) - R,. (21)

In words, if the market is efficient, and if the equilibrium expected real re-
turn on a one-month bill is constant through time, then all variation through
time in the nominal rate R, mirrors variation in the best possible assessment
of the expected value of 5,. In this sense, the nominal rate R, observed at
t - 1 is the best possible predictor of the rate of inflation from ¢ - 1 to ¢.

Tests of (21) are easily devised. Given (21), we can write the true expected
value of 5,, conditional on ¢,_, and R,, as

E(Al¢;-1,R) = E(F) - R,. (22)

Thus, once R, is set at r - 1, the details of ¢,_, , the information that an effi-
cient market uses to set R,, become irrelevant. The information in ¢,_, about
the expected value of ﬁ, is summarized completely in the value of R,.

To build these propositions into separate tests of the market efficiency
hypothesis and of the hypothesis that the equilibrium expected real return is
constant through time, we introduce a new class of equilibrium models that
includes (14) as a special case. Suppose that at any time f- 1 the market
always sets the price of a one-month bill so that it perceives the expected real
return to be

Epn(Fi187%, R) =ag +YR,. (23)
This equation implies that

Ep(Feldfty,R,) - Epp(Fry 16722, Reoy) = Y(R, - R ),
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so that 7y can be interpreted as the proportion of the change in the nominal
rate from one month to the next which reflects a change in the equilibrium
expected real return. With the expression for E,(r 1971, R,) in (23), (18)
becomes

En(B,1¢7 ) =0 +o,R,, a; =7y~ 1.0. (24)

Thus, in the new model, v is the proportion of the variation of the one-month
nominal rate that reflects variation in the equilibrium expected real return,
and -a, =(1 - v) is the proportion of the variation in R, that reflects varia-
tion in the market’s assessment of the expected rate of change in purchasing
power. In the special case where the equilibrium expected real return is con-
stant t}lrough time, ¥ =0, a; =-1, and all variation in R, mirrors variation
in B (&, 1407, ).

If the market is efficient, then true expected values can be substituted for
market assessments, and (23) and (24) become

E(7yl¢,- s R;)=ag +YR, (29)
E(&1|¢t—1)=a0 taR,, o =y-10. (26)

Alternatively, by analogy with equations (21) and (22), equation (26) can be
igterpreted as saying that once R, is set at 7~ 1, the true expected value of

A, conditional on ¢,_, and R, is
E@B1¢,,R)=ao +ayR,, a, =v-10. (27)

From Chapter 3 we recognize the conditional expected value E(/X,Id),_,,
R;) as the regression function of A; on ¢, and R,. Thus, estimates of a,
and a; can be obtained by applying least squares to

5t=°lo ta R, +€, (28)

where the disturbance €, is the deviation of 5, from its conditional expected
value. Equation (22) tells us that if the equilibrium expected real return is
constant through time,

ap =E(F) and o, =-1.0. (29)

If the regression coefficient estimates are inconsistent with this hypothesis,
the model of a constant equilibrium expected real return is rejected. The
more general interpretation of (23)—that is, with unrestricted values of the
coefficients—can then be taken as the model for the equilibrium expected
real return, and other results from the estimates of (28) can be used to test
market efficiency.

Thus, like (22), equation (27) says that in an efficient market, R, summa-
rizes all the information about the expected value of A, which s in &r-y-In
terms of (28), this means that
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E(&19,.,)=0.0. (30)

That is, since all available information about the expected value of E, is sum-
marized in the value of R, set in the market at 7 - 1, there is no way to use
any information available at ¢ - 1 as the basis of a correct nonzero assessment
of the expected value of the disturbance €, in (28). Part of the information
available to the market at ¢~ 1 is the time series of the historical values of
the disturbance. Equation (30) implies that

E(€l€rey,€0-9,...)=00; 31

that is, there is no way to use the time series of past values of the disturbance
as the basis of a correct assessment of a nonzero expected value of &,. One
implication of (31) is that the autocorrelations of the disturbance €, are zZero
for all lags. We can use autocorrelations of the residuals from estimates of
(28) to test this proposition.

The approach is easily generalized to obtain other tests of market effi-
ciency. Equation (27) says that when the market is efficient, the nominal rate
of interest R, set in the market at 7 - 1 summarizes all available information
about the expected value of 5,. In formal terms, the regression function of
K, on ¢,_, and R, is a function only of R,. To get a test of this proposition,
we formulate an alternative hypothesis which says that the regression func-
tion of 5, on ¢,_, and R, is a function of elements in ¢,_, as well as of R,.
In other words, the alternative hypothesis is that R, does not summarize all
the information available at time 7 - 1 which is relevant for assessing the ex-
pected value of K,. In formulating the regression function for the alternative
hypothesis, we could include, in addition to R,, any variables that might be
relevant for assessing the expected value of 5,, whose values are known at
¢~ 1 and might be ignored by the market when it sets R, at £ - 1.

For example, one item of information available at # - 1 is A,_,, the rate of
change in the purchasing power of money from ¢ - 2 to ¢ - I. If periods of in-
flation or deflation tend to persist, then A,_; is relevant information for
assessing the expected value of A,. If the information in A, is not cor-
rectly used by the market in setting R,, then the coefficient e, in

E(&,IR,,A,_1)=a0 to R tm A, (32)
is nonzero. On the other hand, if the market is efficient and the equilibrium
expected real return is described by (23), then the value of R, set at ¢ - 1
summarizes all the information available about the expected value of 5,,
which includes any information in A,_,, so that in (32) a; = 0. Moreover, if
the market is efficient, the analysis of equations (30) and (31) applies to the
disturbance €, in

K,=ao +a1R,+a2A,_l +gt’ (33)
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so that the autocorrelations of the disturbance are zero for all lags. Finally, if
the equilibrium expected real retum is constant through time, then aq =
E(f)and a; =-1.

All of these propositions can be tested with estimates of &g, &y, a3, and the
time series of €, obtained with a generalization of the least squares methods
of Chapter 3. We do not discuss the statistical theory underlying the generali-
zation. It is much the same as that in Chapter 3. For the reader who is un-
familiar with the topic, good outside references are available—for example,
Johnston (1972, chap. 3)—that are no more difficult than Chapter 3 of this
book.

PROBLEM IV.B
1. Why are there tildes over A, and €, in (33) but not over A, and R,?

ANSWER

1. Throughout the development of the model, we are at time £ - 1 looking
ahead to time . At £- 1, R, and A,_, are known, but 5, and €, are random
variables. A similar comment applies to equation (28).

C Summary and Reinterpretation of the Proposed Tests

In sum, the tests outlined are as follows. First, autocorrelations of the real
return 7, are joint tests of the hypotheses that the market is efficient and that
the equilibrium expected real return is constant through time. In contrast,
tests based on (28) and (33) provide separate results on the two facets of the
model. Equations (28) and (33) allow for a world where the market sets the
price of a one-month bill at any time ¢ - 1 so that the expected real return on
the bill is described by the more general model of (23). Estimates of the coef-
ficients &y and a, in (28) and (33) allow us to test the hypothesis that the
equilibrium expected real return is constant through time, while estimates of
@, in (33) and of the autocorrelations of the disturbances in (28) and (33)
are tests of market efficiency.

The proposed tests of efficiency are limited in scope. In setting Ry at r- 1,
an efficient market correctly uses all available information ¢, to assess the
expected value of 5,. Like most tests of market efficiency, however, the
tests we propose look only at limited subsets of ¢;., . The sample autocorrela-
tions of 7, examine whether in assessing the expected value of Z,, the market
correctly uses any information in the time series of past real returns. Esti-
mates of the autocorrelations of the disturbances from (28) and (33) are con-
cerned with any information in the time series of the past values of the dis-
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turbances; and tests based on the estimate of &, in (33) are directed at any
information in A,_, that the market may have underutilized in assessing the
expected value of 5,.

Even this description of the information that the tests examine overstates
the case. All of the proposed tests of market efficiency are different ways to
examine whether, in assessing the expected value of K,, the market correctly
uses any information in the past values A;_,,A;_,, . ... The point is obvious
with respect to tests based on the coefficient a, in (33). It is less obvious
with respect to the autocorrelations of 7, and of the disturbances €, in (28)
and (33); we see now that these different autocorrelations are autocorrela-
tions of the deviation of 5, from different versions of its conditional ex-
pected value.

The argument is simplest for the autocorrelations of the disturbance €, in
(28). If (23) is the model of the expected real return, then (24) describes the
market’s assessment of the expected value of 5, as a function of R,. It
follows that the disturbance &, in (28) is the deviation of A, from its condi-
tional expected value, '

&=4,- Em(ﬁrlqb':"_,) = Kr - (xg + a1 Ry),

when E,,(&,1¢™,) is given by (24). The autocorrelations of €, allow us to
decide whether the time series of past values of these deviations are used
correctly by the market when it assesses the expected value of A . that is, the
autocorrelations of the disturbance in (28) tell us whether the past values of
the deviations are part of ¢, in E,,(A;1¢™,), given that this expected
value is as described in (24). Nonzero autocorrelations imply that the market
is inefficient; one can improve on the market’s assessment of the expected
value of Z, by making correct use of information in past values of A,. Like-
wise, the disturbance €, in (33) can be interpreted as the deviation of A,
from its conditional expected value when the latter is allowed to be a func-
tion of A,_, as well as of R,. Finally, if the equilibrium expected real return
is constant through time, then the market’s assessment of the expected value
of&, is described by (19). In this world,

from (9) Fo~ E(F)=4A, +R, - E(F) (34a)
=4, - [E(F)- R,] (34b)
from (19) =A,~ Em(A,i0T)). (34c)

In words, the deviation of 7, from its expected value is the deviation of A,
from the market’s assessment of its expected value, when the latter is as
described by (19). Thus, tests of market efficiency based on the autocorrela-
tions of F,, like all the other proposed tests, are concerned with whether
the market correctly uses any information in the time series of past values
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A y,A¢,,... when it assesses the expected value of Z,, on which R; is
then based. Any such test must assume some model of market equilibrium.
That is, it must assume some proposition about the equilibrium expected
real return E,,(7;1¢7%,), which in turn implies some proposition about
En(8,1¢T,), and this is where the tests differ.

There is, however, no need to apologize for the fact that the tests of market
efficiency concentrate on the reaction of the market to information in the
time series of past rates of change in the purchasing power of money. Begin-
ning with the pioneering work of Irving Fisher (1930), researchers in this area
have long contended, and the results below substantiate the claim, that past
rates of inflation are important information for assessing future rates. In
short, the evidence is that periods of high or low inflation tend to persist.
Moreover, previous empirical research almost uniformly suggests that the
market is inefficient; in assessing expected future rates of inflation, much of
the information in past rates is apparently ignored. (For a summary of the
literature, see Richard Roll 1972.)

This conclusion, if true, indicates a serious failure of a free market. The
value of a market is in providing accurate signals for resource allocation,
which means setting prices that more or less fully reflect available informa-
tion. If the market ignores the information from so obvious a source as past
inflation rates, its effectiveness is seriously questioned. The issue deserves
further study.

V. The Data

The one-month nominal return or rate of interest R, used in the tests is the
return from the end of month r - 1 to the end of month ¢ on the Treasury bill
that matures closest to the end of the month . The data are from the quote
sheets of a particular dealer, Salomon Brothers. In computing R, from (1),
the average of the bid and asked prices at the end of month 7 - 1 is used for
the nominal price v,_,.

The Consumer Price Index, compiled by the Bureau of Labor Statistics, is
used to estimate A,, the rate of change in the purchasing power of money
from the end of month ¢ - 1 to the end of month . The use of any index to
measure the level of prices of consumption goods can be questioned. For
example, the weights assigned to individual items in the CPI may not yield a
“representative consumption bundle,” if indeed the notion has any precise
meaning in a multigood world where consumers differ with respect to both
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tastes and resources. But there is no need to speculate about the effects of
shortcomings of the CPI on the tests. If the results of the tests seem meaning-
ful, the data are probably adequate.

Note, however, that the model does call for some measure of the prices of
consumption goods and services. The focus on real returns and equilibrium
expected real returns comes from the assumption that investors invest in
order eventually to consume. Thus, although one may legitimately be con-
cerned with shortcomings of the CPI, the price level of interest is the price
level of consumption goods.

Some details of the calculations should also be mentioned. First, the bill
used to compute the nominal rate generally does not mature on the last day
of month ¢. Thus, if left unadjusted, the nominal rate and the rate of change
in purchasing power for “month” ¢ might be for periods that could differ by
up to a week. To avoid any problems this might cause, the values of R, and
A, are always adjusted to an equivalent 30.4-day basis. It turns out that this
adjustment has little effect on the tests. Second, the prices quoted on bills
are for delivery usually two days after the day of the quote. In the adjust-
ment process described above, the number of days covered by a bill is com-
puted from delivery date to maturity.

The first tests reported cover the period from January 1953 through July
1971. Tests for periods prior to 1953 would be meaningless. First, during
World War II and on up to the Treasury-Federal Reserve Accord of 1951,
interest rates on Treasury bills were pegged by the government. In effect, a
rich and obstinate investor saw to it that Treasury bill rates did not adjust to
predictable changes in inflation rates. Second, at the beginning of 1953, there
was a substantial upgrading of the CPI. The number of items in the index
increased substantially, and monthly sampling of major items in major
metropolitan areas became the general rule. For tests of market efficiency
based on monthly data, monthly sampling of major items in the CPI is critical.
Less frequent sampling, as was the general rule prior to 1953, meant that
some of the changes in prices for month 7 showed up in the index in months
subsequent to . Since nominal prices of goods tend to move together, spread-
ing changes in prices for month ¢ into following months induces spurious
positive autocorrelations in monthly changes in the index. This gives the ap-
pearance that there is more information about future inflation rates in past
inflation rates than is really the case. Since the spurious component of the
information in measured inflation rates is not easily isolated, tests of market
efficiency on pre-1953 data would be difficult to interpret.

There is also a problem with the values of the CPI from August 1971
through mid-1974. During this period, the Nixon administration made a
series of different attempts to fix prices; the controls were effective in creat-



Lal

188 FOUNDATIONS OF FINANCE

ing shortages of some important goods. (Who can forget the gas queues of the
winter of 1973-19747) Thus, for this period there are nontrivial differences
between the observed values of the CPI and the true costs of goods to con-
sumers. For this reason, we first study the “clean” pre<controls period,

January 1953 to July 1971, and then later extend the results through June
1974.

VL. The Major Results for One-Month Bills

For the pre-controls period and for various subperiods,* Part 1 of Table 6.1
shows sample autocorrelations of the rate of change in purchasing power A,
for lags 7 of from one to 12 months. Since the symbol r is used for the real
return, in this chapter the symbol for sample autocorrelations is p,, where the
“hat” (™) indicates that §, is an estimate of the true autocorrelation Py

Table 6.1 also shows sample means, standard deviations, and studentized
ranges of A,, and

o() =VIT-T1), (3%)

where T~ I is the number of observations used to compute p, and o(p,) is
the approximate standard error of §, under the hypothesis that the true auto-
correlation is zero. From equation (44) of Chapter 4, the expression for the
approximate standard error of 9, under the hypothesis that p, = 0, is

o(P)=VINT-T7).

Thus, for the longer periods—that is, for periods where T is large—the values
of o(p,) and o(p,) are similar. Parts 2 and 3 of Table 6.1 show autocorrela-
tions and other sample statistics for the real return r, and fordR, =R, - R,_, .
Although, for simplicity, the development of the theory is in terms of the
approximation given by (9), the exact expression (8) is always used to com-
puter,.

Part 1 of Table 6.2 shows summary statistics for the estimated version of
(28),
A'=a0 +a,R,+e,. (36)

In addition to the least squares regression coefficient estimates a, and a,,the
table shows the sample standard errors of the estimates, s(aq) and s(a,); the
coefficient of determination, adjusted for degrees of freedom; the standard

*The rationale for the choice of subperiods becomes clear when the tests are later ex-
tended to bills with maturities longer than one month.

‘uolssIwIad
130408

Butjduses syl 40 a|1108s} GE™ Y SPaadxa sbues Paziluapnlg,
LL/L-99/8

$9/L-65/€
66/2-€5/1

Lo’ 84

00’
€0~
Lo
10

81’
80°

gL -
Lo

10~
ZL-

b=

Ge' -

[4s)
el

90 -

ucNEe|jU| JO SIO1DIPal4 SB SIley 1SaJalu| wua[-UoYS,, ‘Bwed "4 auabn3
8L’

v -
Lo~

80"
oL~

gL

13

10000
10000
00000
10000

-UONEINAOd [euLIOu © WO} SSIdWes Ut abue) Paziluapnls 3yl 0 UOINGLISIP

£€000°

S2000°

t1'S

«89'S

AQ palunday ‘8LZ ‘GLZ :(GLEL 3UNf) GO MIINFY JJWOU0D T uBdLBWY |,

8
€9
L

1L/L-€S/1L

28

€T
13

9 - €0- LI 10 0 -
vz~ 90 oL’ gEL- 90 - €0 -

9L’ -
S0 -

«L1'9 82000 45
819  ZE£000 Lo

1zz

aoid3d

Id
v

3yp 30 SNOILYI3HHOO0LNY € L1HVd

(g0

L

(4P)s

(YyP)HS

I -1

LL/L-99/8
$9/L-65/€
66/2-£9/1

80
10

10~
0z -

80
00

S~ L0
60 - LO

L
€T -

g8

St Lo’- 20 -
61" oOL'- L0

(3%
el

89100° SL000
ZL100° L1100

[A]
so'v

82

oL~
o0

LWL/L-€S/1

SO g8L’- ¢1'- IO [A A )
0’ 20~ ¢o- 10- 20- eV

1)
1%

(4}
oL’

88

al’
6l

1Z’S ObZ00 8E000° zv
.0b'9  LBLOO°  ¥L00O0 L

L
e

’

aold3ad
LL/L-¥9/8
¥9/L-65/€

aotd3d

65/Z-€S/1
LL/L-ES/1L

lg
v
se’
60°
g
v

60" -
8z’
Le

e

9z
T AR
oL
LT

€T
S0 -
al’
og’

£e
€0
1o

og’
60°
10~
6T

‘1 14vd

90~
S0
sz’

-1

Le
oz -
-1
ve

£l
\z
9g”

1<4
1’9 3718vL

iz
)w-
e

4, 40 SNOILYI3HHO01NY :Z LYVd
oz

iv 40 SNOILY13HHOI01NY

8l
60"~
60’
L

og’
Ly
8L’
LE

tig
v

L
%
4%
Lo
v

(1d)o
1261 Anr-g661 Asenuer ‘sijig puow-auQ Jos 13y -3y =3yp pue 41 1y 0 suoneraiiod0iny

12£00 -

80100 -

11100~

88100 -
4

(s
S6100°
69100
86200°
Y£200°

(v)s

(NYS
1zs
Yo'
9SS’V
9C’s
(V)¥S

L-4
€8
e
1-4

v9

€L



/9¢

Short-Term Interest Rates as Predictors of Inflation 191
deviation of the residuals, s(e); the first three residual autocorrelations,
P1(e), B2(e), and p;(e); the studentized range of the residuals, SR(e); and T,

the number of observations used to compute the regression coefficients.
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Table 6.2 gives further support to the market efficiency hypothesis. When
applied to (33), the hypothesis says that a,, the coefficient of A,_,, should
be zero, and the autocorrelations of the disturbance &, should be zero for all
lags. The residual autocorrelations reported in Part 2 of Table 6.2 are close to
zero. The values of a,, the sample estimates of a, in (33), are also small and
always less than two standard errors from zero. When applied to (28), the
market efficiency hypothesis is again that the autocorrelations of the distur-
bance €, should be zero. The residual autocorrelations in Part 1 of Table 6.2
are close to zero. Comparing the estimates of (28) and (33) in Table 6.2
shows that dropping A,_; from the model has almost no effect on the coef-
ficients of determination. This is consistent with the implication of market
efficiency that the value of R, set at time 7 - 1 summarizes any information
in A,_, about the expected value of 5,.

Closer inspection of Tables 6.1 and 6.2 seems to provide slight evidence
against market efficiency. Except for 3/59-~7/64, the first-order (r = 1) auto-
correlations of r;, though small, are nevertheless all positive. The estimated
regression coefficients @, of A,_, in the second part of Table 6.2 are likewise
small but generally positive, as are the first-order residual autocorrelations
for (28) shown in the first part of the table. Even after the upgrading of the
CPl in 1953, however, there are some items and cities for which prices are
sampled less frequently than monthly; and items that are sampled monthly
are not sampled at the same time during the month.* Again, since prices of
goods tend to move together, these quirks of the sampling process induce
spurious positive autocorrelations in measured rates of change in purchasing
power. Since an efficient market does not react to “information” that is
recognizably spurious, the small apparent discrepancies from efficiency pro-
vide more “reasonable” evidence in favor of the efficiency hypothesis than if
the data suggested that the hypothesis does perfectly well.

C. The Expected Real Return

The evidence is also consistent with the hypothesis that the expected real
return on a one-month bill is constant for 1953-1971. First, autocorrelations
of the real return r, are joint tests of the hypotheses that the market is ef-
ficient and that the expected real return is constant through time. Since the
autocorrelations of r, in Table 6.1 are close to zero, the evidence is consistent
with a world where both hypotheses are valid.

The regression coefficient estimates for (28) and (33) in Table 6.2 are,

*Indeed some items in the CPIl are only sampled annually. The spurious autocorrela-
tions introduced by annual sampling might, to a large extent, explain the apparent
easonals (high autocorrelations at lag 12) in Agand 7.
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however, more direct evidence on the hypothesis that the expected value of
T: is constant. The hypothesis implies that in (28) and (33) the intercept ag is
the constant expected real return £(7) and the coefficient a; =-1.0. The
estimates @, of o, in Table 6.2 are always well within two standard errors of
-1.0. And statistical considerations aside, the estimate @, = -.98 for (28) for
the overall pre-controls period is impressively close to -1.0. Given estimates
a, of a; in (28) and (33) that are close to - 1.0, and given the earlier observa-
tion that the estimates a, of a, in'(33) are close to zero, it is then not surpris-
ing to find that the intercept estimates a, of &, in (28) and (33) in Table 6.2
are close to the sample means of the real return in Table 6.1.

PROBLEMS VI.C

1. Show that equation (9) and the least squares formulas for a4 in (36) and
(37) guarantee that if the estimates a, for (36) and (37) are close to-1.0 and
the estimates a, for (37) are close to 0.0, then the estimates a, for (36) and
(37) are close to the sample means of r,.

2. The results for the longer periods 1/53~7/71 and 8/64-7/71 in Parts 1
and 2 of Table 6.2 are clear evidence in favor of the hypotheses that the
market is efficient and that the equilibrium expected real return on a one-
month bill is constant through time. The results for the shorter subperiods
seem more ‘‘erratic.” What is the reason for this?

ANSWERS
1. From (9), the sample mean of r, can be expressed in terms of the sample
means of A, and R, as

F=A+R.

The least squares estimate aq in (36) is

ag = Z - a; R—
It follows that if a, is close to - 1.0, then ay must be close to 7. Likewise, the
least squares estimate aq in (37) is

ap=A-a,R - a,A.

Ifa, is close to - 1.0 and a, is close to 0.0, then ay, must be close to 7.

2. Chapter 3 emphasizes that regression coefficient estimators are more
reliable; that is, the larger the sample size, the more tightly their sampling
distributions are concentrated about the true values of the parameters. There
is clear manifestation of this in Table 6.2. The standard errors of the regres-
sion coefficient estimates decrease as the length of the period increases. The
same phenomenon is observed in the standard errors of the sample autocor-
relations in Table 6.1.
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The practical implication is that the best or most reliable tests of the hy-
potheses are those for the longer periods. The results for the shorter periods
provide a check that the world is pretty much the samg throughout the
sampling period. The check is a rough one, however, sin Athe sample sizes
of the shorter periods, a large amount of apparently “erratic” behavior of the
estimates from one period to anotler is consistent with the model.

The sample autocorrelations of r, and the regression coefficient estimates
ao and g, in Table 6.2 are consistent with the world of equation (21), where
the equilibrium expected real return is constant and all variation through
time in the nominal interest rate R, mirrors variation in the expected value of
Z,. There is, however, another interesting way to look at this conclusion.
From the discussion of (34) it follows that the standard deviation of the real
return 7, is the standard deviation of the disturbance €, in (28) when the
coefficients a and a, in (28) are constrained to have the values ay = E(F)
and a; =-1.0, which are appropriate under the hypothesis that the expected
real return is constant through time. If this hypothesis is incorrect, letting the
data determine values of ay and @, , as in Part 1 of Table 6.2, should produce
lower estimates of the disturbance variance than when the values of the coef-
ficients are constrained. Yet the results indicate that, especially for the longer
periods, not only are the values of s(r) in Table 6.1 almost identical to the
values of s(e) in Part 1 of Table 6.2, but the sample autocorrelations and
studentized ranges of r, and e, are also nearly identical. In short, the hypoth-
esis that the expected real return is constant fits the data so well that the
residuals from (36), the estimated version of (28), are more or less identical
to the deviations of r, from its sample mean.

Finally, the results from (36) on the hypothesis that the expected real
return is constant through time can be presented differently. Instead of
developing the tests from the regression function E,,,(/E,I¢',"_,) of (24), one
can work directly with the regression function E(F o7, R,) of (23).
With (23) the relationship between ¥, and R, can be expressed as

Fr=ag t YR, + €, 39
If the expected real return is constant through time, then ap = E(r) and y = 0.
The results obtained when the least squares approach is used to estimate the
regression coefficients in (39) are in Part 3 of Table 6.2. The estimated ver-
sion of (39) is (38).

Given the relationship among 7,, 5,, and R, of (9), ao in (28) is the same
as ag in (39), y=a, + 1.0, and the disturbances in the two equations are
identical. From comparison of Parts 1 and 3 of Table 6.2 we can see that the
least squares estimates preserve these relationships between the two equations.
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Thus, consistent with the hypothesis that the expected real return is constant
through time, values of @, in (36) that are close to -1.0 imply values of g in
(38) that are close to zero and values of g, in both equations that are close to
the sample average values of the real return r,. Tests based on the regression
coefficient estimates ao and g in (38) emphasize the implication of the
hypothesis that the expected value of the real return 7, is unrelated to R,.
Tests based on the coefficient estimates @y and 4, in (36) emphasize the con-
verse implication of the hypothesis; that is, if the expected value of 7, is un-
related to R, then all the variation through time in R, mirrors variation in
the expected value of Z,.

In fact, the only new numbers in Part 3 of Table 6.2 are the coefficients of
determination, which are nevertheless interesting. They are for all periods
zero or trivially different from zero. In other words, consistent with the
hypothesis that the expected real return is constant through time, we observe
no relationship between R,, the nominal interest rate on a one-month bill
observed at the end of month ¢ -1 and realized at the end of month ¢, and
the real return r, which is realized on the bill at the end of month ¢.

PROBLEMS VI.C

3. In all of the empirical work, the real return r, is calculated from the
exact expression (8) rather than from the approximate expression (9) which
is used in the development of the theory. Show that if (9) were used to com-
pute ry, the agreement between the numbers in Parts 2 and 3 of Table 6.2
would be exact; that is, the values of ao for (36) and (38) would be identical,
the values of g in (38) would be equal toa, + 1.0 in (36), and the residuals in
(36) and (38) would be identical. The fact that the agreement between the
observed numbers is almost exact is evidence that, as assumed in (9), no
harm is done when the cross-product term R;A, in (6) is dropped in the
development of the theory.

4. In line with the discussion of Chapters 3 and 4, we can interpret the
coefficients of determination in Part 3 of Table 6.2 as the proportions of the
sample varidnces of r, that can be attributed to the estimated regression func-
tion relationship between r, and R,. Some of the coefficients of determina-
tion in Table 6.2 are negative! Given that

T T _— T
SO-F =g YRRy +Y e
t=1 t=1 t=1

so that
T

Ze?<2(’t_7)2,

t= t=

-
—

how does one explain these negative values?
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5. Comment on the magnitude of the average real return 7 = .00074 for the
1/53-7/71 period in Part 2 of Table 6.1.

ANSWERS
3. The least squares estimates @, and a, in (36) are

> (8, BYR, - F)
ay= (40)
Z (R, - R‘)z

ao=—A—"alR. (41)

The least squares estimate g in (38) is
T - —
Z (re-7)R:-R)
t=1

g= b
T —
Z (R~ R)2
t=1

which, if (9) is used to compute r,, can be reduced to

T o _
Z_: (A +R,-(A+R)(R,~-R)

t=1

g:
T —
Z (Rt“R)2
t=1
T — — T _
Z(At'A)(Rt'R) Z:(Rt'R)2
_t=1 t=1
= - — - —
2 R,-R) 2 R.-R)
t=1 =1
g=a, t+ 1.0.

We can then write the least squares estimate a, in (38)
ap=F-gR=A+R- (10+4,)R
=A-aR.
Finally, the residuals in (38) would then be
e =ry-ao - gR,
=A;+tR,-ag-(1.0+a,)R,

=At_ao -alR,.
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4. The coefficients of determination in Table 6.2 are adjusted for degrees
of freedom. (Review Section I.C of Chapter 4.) The formula for the coeffi-
cient of determination, adjusted for degrees of freedom, between r, and R, is

2
pre1-50 “2)
where
T
H
s*(e) = le_ 2
T
> (e -F)
7)== T-1

The sum of squares Z(r, - F)? is necessarily equal to or greater than the sum
of squares e, but because of the difference of one degree of freedom in
their denominators, s?(e) can be larger than s2(r), which means that §2 can
be negative.

5. The average monthly real return 7 = .00074 for the 1/53-7/71 period
implies an average annual real return of less than 1 percent. Apparently, a
large expected real return is not necessary to induce investors to hold one-
month bills. On the other hand, although the average real return is small, the
evidence in Table 6.1 is quite consistent with the hypothesis that the ex-
pected real return is greater than zero. The sample standard error of 7 for the
1/53-7/71 period is

o(F) = s() _ 00197 _ 00197
NT V223 1493

Thus, the average real return 7 = .00074 is more than five sample standard
errors from zero.

= .00013.

VII. The Behavior of E,

The results above allow some interesting insights into the behavior through
time of A,. We can always write

A =EQA;1¢r-)+ & (43)
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That is, B, has two components, its expected value at £ - 1 and the deviation
of the value observed at r from this expected value. Since the data are con-
sistent with the hypotheses that the market is efficient and that the expected
real return on a one-month bill is constant through time, the expected value
of A, in (43) is described by (21). In brief, the statement of (21) is that all
the information available at r -1 about the expected value of A, is sum-
marized in the value of the one-month nominal rate R, set in the market at
t -1, and all variation through time in R, mirrors variation in the correctly

assessed expected value of A Substituting (21) into (43), the model of A,
suggested by the data is

A, =E(F)- R, +&,. (44)

The coefficients of determination in Part 1 of Table 6.2 suggest that about
30 percent of the variance of A, can be attributed to the regression function
relationship between A, and R, of equation (21); that is, variation through
time in the expected value of A,, as mirrored by the variation through time
in R,, accounts for 30 percent of the sample variance of A,. In terms of
equation (43), the estimate is that 70 percent of the variance of A, can be
attributed to the disturbance €,, while 30 percent can be attributed to varia-
tion through time in the expected rate of change in purchasing power.

The conclusion drawn from the residual autocorrelations in Table 6.2 and
the sample autocorrelations of r, in Table 6.1 is that the disturbance &, in
(43) is uncorrelated through time. This is consistent with the hypothesis that,
in effect, there is random sampling from the distribution of €;. The time
series of past values is no help in predicting the next value. Quite the opposite
sort of behavior characterizes the expected value of K, in (43). Since varia-
tion in R, through time mirrors variation in the expected value of 3,, the
time series properties of R, are the time series properties ofE(K, ¢s-1). The
sample autocorrelations of R;, which we shall not bother to show, are close
to 1.0. For the overall pre-controls period, the first 4 sample autocorrelations
are all in excess of .93, and only | of the first 24 is less than 9. Thus, the
autocorrelations of R, indicate that there is much persistence through time in
the level of R, and thus in the level of the expected value of Z,. The time
series of past values of R, has substantial information about future values.

Autocorrelations that are all close to 1.0 are consistent with the representa-
tion of R, as a martingale. This means that at the end of month 7 - 1 we can
express ﬁ,ﬂ , the one-month nominal rate to be set at the end of month ¢, as

§t+1 =R+ 7, (45)
In words, looking forward from the end of month 7 - 1, the value ofﬁ,,l to

be observed at the end of month ¢ is the one-month nominal rate R, observed
at the end of month 7 - 1, plus a change or disturbance 7, that has expected
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value equal to zero and is uncorrelated through time .* The expected value of
RHl at time £ - 1 is the one-month nominal rate R, observed at £~ 1. Thus,
the most recent observed value of the one-month nominal rate is the best
information about the rate to be observed one month hence.

This discussion helps explain the bEhavior of the sample autocorrelations of
5, in Table 6.1. As stated in (43), A, has two components. One component
of A,, its expected value, behaves like a martmgale its autocorrelations are
close to 1.0 for all lags. The other component of A,, the disturbance €, is
essentially random noise; its values are uncorrelated through time. The auto-
correlations of its expected value cause the autocorrelations of A, to have
approxunately the same magnitude for different lags The uncorrelated dis-
turbance €, however, causes the autocorrelations of A,, unlike those of Ry,
to be far below 1.0.

The sample autocorrelations of R, suggest that the expected value of A,
behaves through time much like a martingale. The sample autocorrelations of
the month-to-month changes in R,, shown in Part 3 of Table 6.1, suggest, how-
ever, that we can improve on this description of the behavior of E(A,1;-,)-
For example, the first-order autocorrelations of the changes are cogsnstently
negative. From the first-order autocorrelations for the longer periods, the
change in R, might reasonably be represented as

ﬁt+l ’Rr='-25(Rr'Rt—1)+ﬁt» (46)

- oras

Reoy =Ry= 25(R; - Ryy) + iy “7n

Thus, the process that generates the nominal rate is no longer just a martin-
gale. Looking forward from time ¢ - 1, we now predict that RHl R,, the
change in the one-month nominal rate from the end of month ¢ -1 to the
end of month ¢, will reverse by 25 percent the change observed from the end
of month - 2 to the end of month £ - 1. In other words, the change in the
expected inflation rate from one month to the next reverses itself, on average,
by about 25 percent. N

From the sample autocorrelations of the changes in R, in Table 6.1,it is
perhaps possible to read further into the behavior through time of the.ex-
pected rate of change in purchasing power. For example, the autocorrelations
are consistently positive for lag T =4 and consistently negative for lags =7
and 7 = 10. Our purpose, however, is not to develop the most detailed possi-
ble description of the behavior of the expected values of A, The discussion is

*Note that a tilde appears over R,,l in equat)on (45). This is because we are looking
forward from time r - 1. At ¢ the value of Ry is known, but at earlier points in time,
R,ﬂ is a random variable.
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sufficient if the reader appreciates that in our model, variation through time

in R, mirrors variation in the best possible assessment of the expected value
of Z,.

VIII.  Results for Bills with Longer Maturities

The presentation of theory and tests of bill market efficiency has concentrated
so far on one-month bills and one-month rates of change in purchasing power.
As far as the theory is concerned, the interval of time over which the variables
are measured is arbitrary. The theory applies, for example, to one-week bills
and one-week rates of change in purchasing power, or to six-month bills and
rates of change in purchasing power. To “generalize” the theory in this way,
one simply changes the interpretation of the time interval between successive
values of ¢. In testing the theory, the fact that the CPI is reported monthly
limits us to tests based on intervals that cover an integral number of months.
We present tests now for one- to six-month intervals. In these tests the inter-
val from ¢t~ 1 toris1,2,...,0r6 months; R, is the 1-,2-, ..., or 6-month
nominal return or rate of interest from ¢ - | to f on a bill with 1,2,...,0r6
months to maturity at ¢ - 1; and the real return 7 and the rate of change in
purchasing power 7&, are likewise measured for nonoverlapping 1-, 2-, . . . , or
6-month intervals.

Since the theory and tests are the same for bills of all maturities, the market
efficiency hypothesis is that in setting the nominal rate R, at time t - 1, the
market correctly uses any information about the expected value ofﬁ, which

is in the time series of past values A,_;,A,_,,.... The model of market
equilibrium on which the tests are based is the assumption that the 1-,2-, . . .,
or 6-month expected real returns on bills with 1,2,...,0r 6 months to ma-

turity are constant through time. The tests of these propositions are in Tables
6.3 and 6.4, and the tests are the same as those for one-month bills in Tables
6.1 and 6.2. Results for the one- to three-month versions of the variables are
shown for the 1/53-7/71 and 3/59-7/71 periods. Since complete data for
four- to six-month bills are only available beginning in March 1959, results
for the four- to six-month versions of the variables are only shown for the
3/59-7/71 period.

Implicit in the tests of market efficiency is the assumption that past rates
of change in purchasing power have information about expected future rates
of change. The autocorrelations of A, in Table 6.3 support this assumption.
The autocorrelations are large for all six intervals used to measure A,. But
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consistent with the hypotheses that the market is efficient and that the equi-
librium expected real returns on bills with different maturities are constant
through time, the autocorrelations of the real returns in Table 6.3 are close to
zero. Remember that the n-month real return on an n-month bill is approxi-
mately the n-month rate of change in purchasing power plus the n-month
nominal return on the bill. Thus the evidence from the autocorrelations of
A, and ry in Table 6.3 is that when R, is added to 5,, the substantial auto-
correlations of 5, drop to values close to zero. This is consistent with a world
where R,, the n-month nominal rate set at 7 - 1, summarizes all the informa-
tion about the expected value of the rate of change in purchasing power over
the n months from ¢ ~ 1 to ¢ which is in the time series of past rates of change
in purchasing power.

The model gets further support from the regression tests in Table 6.4. Con-
sistent with the hypothesis that expected real returns are constant through
time, the values of a; for (36) in Part 1 of Table 6 4 are all impressively close
to -1.0; none is as far as .1 away from -1.0. Consistent with the hypothesis
that the market is efficient, the residual autocorrelations in Part 1 of Table
6.4 are close to zero for bills of all maturities.

The only hint of evidence against the model is in the results for (37) for
five- and six-month bills in Part 2 of Table 6.4. As predicted by the model,
the values of @, and a, for one- to four-month bills are close to - 1.0 and 00,
and the residual autocorrelations are close to 0.0. For the five- and six-month
bills, the values of a, for (37) are far from - 1.0 and the values of a; are far
from 0.0. When one conducts so many different tests for so many different
bills, however, some results are likely to turn out badly, even though the
model is a good approximation to the world. This argument gains force from
the fact that the autocorrelations of the real returns in Table 6.3 and the
results for (36) in Part 1 of Table 6.4 do not produce evidence for five- and
six-month bills that contradicts the model.

Finally, the fact that the values of the autocorrelations of A, in Table 6.3
increase as the interval used to measure A, increases suggests that past rates
of changef in purchasing power contain more information about expected
future rates of change the longer the interval used to measure 4A,. The re-
sults in Table 6.4 are consistent with the hypothesis that the nominal rate
of interest R, set in the market at ¢ - 1 summarizes completely the informa-
tion about the expected value of 5, which is in the time series of past values.
Since the longer the interval covered by A,, the greater the information con-
tained in past values, the information which R, summarizes varies directly
with the maturity of the bill. This shows up in the coefficients of determina-
tion in Table 6.4, which increase as the interval covered by A; and R,
increases.

v/
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PROBLEM VIII

1. The statements in the preceding paragraph are anomalous. They say
that, at a given point in time, there is more information available about the
rate of change in purchasing power two, three, or » months ahead than there
is about the rate of change in purchasing power one month ahead. In what
sense does this mean that the further one looks into the future, the better one
can predict inflation? Is the uncertainty about the accuracy of the prediction
lower the further one looks ahead?

ANSWER

1. Recall from the discussion of autocorrelations in Chapter 4 that the
square of an autocorrelation measures the proportion of the variance of the
variable that can be attributed to its linear regression function relationship
with the lagged value of the variable. Thus, the larger autocorrelations of
A, that are obtained when longer intervals are used to measure A, mean
that the longer the interval used to measure A, the greater the proportion of
the variance of A, that can be explained by relationships with lagged values.
In this sense, the longer the interval used to measure A,, the more informa-
tion past values have about future values.

Although a larger proportion of the variance of the two-month rate of
change in purchasing power can be explained in terms of past two-month
rates of change, the variance of the two-month rate of change is larger than
the variance of the one-month rate of change, and the variance of the predic-
tion error is larger for predictions two months ahead than for predictions one
month ahead. One can see this most easily in the results for (36) in Part 1 of
Table 6.4. The longer the interval covered by A,, the larger the coefficient of
determination for the regression of A, on R,. In other words, R, summarizes
more information about A, as the interval covered by the variables increases.
On the other hand, the fact that the residual standard deviation s(e) also in-
creases with the interval covered by A; and R, means that, as one would
expect, predictions of inflation rates are increasingly uncertain the further
one tries to look into the future.

IX. Interest Rates as Predictors of Inflation:
Comparison with the Results of Others

In a world where equilibrium expected real returns on bills are constant
through time, aside from the additive constant £(F) in (19), the nominal rate
R, set at time ¢ - 1 is in effect the market’s prediction of the rate of change in
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purchasing power from ¢ - 1 to t. The coefficients of determination in Part 1
of Table 6.4 indicate that variation through time in these predictions accounts
for 30 percent of the variance of the subsequently observed values of A, in
the case of one-month bills, and the proportion of the sample variance of 4,
accounted for by R, increases to about 65 percent for five- and six-month
bills. Thus, nominal interest rates observed at f - 1 contain nontrivial informa-
tion about the rate of change in purchasing power from f - | to ¢. Moreover,
the evidence on market efficiency suggests that the market’s prediction of Z,
is the best that can be made on the basis of information available at time
t - 1; or, more precisely, it is the best that can be done on the basis of infor-
mation in past rates of change in purchasing power.

The results reported here differ substantially from those of most of the rest
of the literature on interest rates and inflation. Irving Fisher (1930) first
postulated that interest rates contain predictions of inflation rates; indeed,
the hypothesis is usually called the “Fisher effect.” But Fisher’s empirical
work, and that of most others who came after him, suggests that the market
does not perform efficiently in predicting inflation. The common finding is
that there are no statistically reliable relationships between the interest rates
observed in the market at a point in time and the rates of inflation sub-
sequently observed. (For a summary, see Roll 1972.)

Such a result suggests an inefficient market. If the rate of inflation is to
some extent predictable, there should be relationships, such as the ones we
observe, between interest rates and subsequent inflation rates. If inflation
rates are predictable and no such relationships exist, the market is inefficient
in the sense that, in setting interest rates, it is not making full use of relevant
available information. In such a market, informed traders can reap abnormal
returns—that is, expected real returns above equilibrium expected real returns—
by trading on the basis of the information about inflation that the market
does not fully utilize. In contrast, an efficient market, such as the one we
apparently observe, uses all relevant information in setting interest rates, so
that trading rules with expected returns higher than equilibrium expected
returns do not exist.

I suspect that the negative results on market efficiency obtained by others
reflect to a large extent the fact that earlier studies, including of course
Fisher’s, are based primarily on pre-1953 data. The negative results may to a
large extent reflect poor commodity price data. By the same token, the posi-
tive results on market efficiency reported here are probably to a nonnegligible
extent a consequence of the availability of good data on commodity prices
beginning in 1953.

Poor commodity price data might also explain why the empirical literature
is replete with evidence in support of the so-called Gibson Paradox, the prop-
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osition that there is a positive relationship between the nominal interest rate
and the level of commodity prices, instead of the relationship between the
interest rate and the rate of change in prices posited by Fisher.* With a poor
price index, the Fisherian relationship between the nominal interest rate and
the true inflation rate can be obscured by noise and by spurious autocorrela-
tions in measured inflation rates. But over long periods of time (and the
Gibson Paradox is usually posited as a long-run phenomenon) even a poor
index picks up general movements in prices. Thus, if inflations and deflations
tend to persist—an implication of the evidence presented here that E(K,Id),_,)
is close to a martingale —there may well appear to be a relationship between
the level of the interest rate and the measured levels of prices which merely
reflects the more fundamental Fisherian relationship between the interest rate
and the rate of change of prices that is obscured by poor data. In the rela-

tively clean data of the 1953-~1971 period, however, the Fisherian relation-
ship shows up clearly.

X. Extension of the Results to the Period of Price Controls

The results for one- to six-month bills for the pre-controls period are consis-
tent with the hypotheses that the market is efficient and that equilibrium
expected real returns on one- to six-month bills are constant through time.
The model does not seem to fare so well when the tests are extended into
the period of price controls that began in August 1971. Tables 6.5 and 6.6
reproduce the results in Tables 6.3 and 6.4 but for data extended through
June 1974. As in Table 6.3, the autocorrelations of A, in Table 6.5 are large,
which indicates that there is substantial information about future rates of
change in purchasing power in past rates of change. The autocorrelations of
the real returns r, in Table 6.5, are, however, generally positive and substan-
tially larger than the autocorrelations of r, for the pre-controls period in
Table 6 3.

Since the autocorrelations of r, are a joint test of market efficiency and of
the hypothesis that equilibrium expected real returns are constant, we turn to
the regression estimates in Table 6.6 for information about whether it is one
or both facets of the model that are contradicted by the data. Contrary to the
hypothesis that expected real returns are constant through time, the values of
a, for (36) in Part | of Table 6.6 are much different from - 1.0. There is also
some evidence in the systematically positive residual autocorrelations for (36)

*For a discussion of the Gibson Paradox and a review of previous evidence, see Roll
(1972). A more recent study is Sargent (1973).
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g f ? f f g that the market efficiency hypothesis is in conflict with the evidence. This
] N N 3 5|° shows up more clearly in the results for (37) in Part 2 of Table 6.6. The esti-
g w mates a, of the regression coefficient for A,_, are all positive and generally
slovswnas wo=|F © large relative to their standard errors. For the period of price controls the
3 - DA BDWN = WN - |~ R . .
® - nominal rate R, set at time ¢ - | apparently does not summarize all of the
?“: 8 8888 'g 3 '8 8. ‘ § information about the expected value of 5, which is in the most recent
g §§§§§3 Boz1° 98.98%‘8%8‘8 ® 3 observed value A, _, .
o aENa RY83aN ABS|° 2 Th ither the market efficiency hypothesis nor the hypothesis that ex-
f'-,r . | NOoodn I8 2 us, nel Y YP. yp :
gleadony Lez]e ::': pected 'real retur'ns are constant through time does well on data that mclud‘e
§ 2538538 88 LLLLLL LU, 8 the period of price controls from August 1971 to June 1974. One can at this
2l mribins Mibolae NN&&22 BER|™ g point discard the model or the data. 1 shall argue for the latter. Specifically,
QNP w Naw}n i: I shall argue that the CP1 data for the period of price controls are not appro-
g 552888 288« g S ?, 88 § § g g & 13 priate for testing the model, and that conclusions about the model should be
§i8aB=235 2 g gls |3] & 28 8s ge8|Z 8 based on the pre-controls period.
s[8888e E RN 3 -] 3 Let me first describe what happens in the data for the period of controls.
“2 . w ~ cnnnng aanlE 3 g When controls on different prices were slowly lifted in the last months of
Z168B88co san|~ ~‘-: FERLIZ 5582 j § 1973 and the first few months of 1974, successive large negative values of A,
E:f “ 3 ol® ? > were observed. As anyone who lived through this period knows, reported
SlBRzz=R = 285 ;, ) ] 1o 8la g E monthly inflation rates were extremely high. Interest rates on Treasury bills
2 T > 832888 29| m L % ; o were high, but not nearly so high as the model would predict. The extreme
§ Sfa ) -:, 8 negative values of A,, when combined with insufficient adjustment of R,,
g 2IN2RE Ban r_?.. $ :f> % 3 pull the estimates a; in (36) down below the theoretical value - 1.0, which
2 o -'-+ 2358538 838|« ~ 5 shows up so nicely in the tests for the pre-controls period. Since the insuffi-
5 e § § & g g S g 8 Bl= 5 cient adjustment of R, and the large negative values of A, persist for some
g 8883838 § 28w CRardw Cu~ E time, R, seems to be ignoring the information in past inflation rates. Thus,
? Y § ] 89 22 3= \ o> 3 the coefficients of A,_, in (37) turn out substantially positive, and positive
; gRg=238 ak9ls g autocorrelation is observed both in real returns and in the residuals from (36).
gl o @ - a The reason that such a relatively short period can have such a large impact
a: R35228 SBR|& \ ©> 9; on the results is that the period generates extreme observations. These get
g . : > 88538z 3¢e3 % § heavy weight in least squares estimates, which, after all, are concerned with
SIBRSY 8: 2o > :’.: ‘g’ minimizing sums of squared errors.
g (I ) > 3 The presence of extreme observations or “‘outliers™ is not in itself a basis
L PRI, > vB83828 388 |= s for concluding that CPI data for the controls period are inappropriate for
g |#o@ B3RS 888|¢% testing the model. An efficient market does not shut down because inflation
gj_ mapnany oG oas ; &o 2oy ;; rates are extreme. The conclusion that data for the period of controls are in-
S|3E283% 88 ils NONIIN NOqQIE appropriate must be based on the argument that the CPI for this period does
not accurately measure true price changes. I think the case is clear. Quoted
BRegagem gRal SEa28e gRA [~ prices during periods of controls do not reflect true cost of goods to con-

sumers. If the prices of goods are fixed at levels below equilibrium prices, /
there are shortages, queues, and other distortions that raise the eﬂi:/live cost4/
of goods to consumers above quoted prices. For example, anyone who waited
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in line for an hour or more during the winter of 1973-1974, attempting,
often futilely, to purchase gasoline at prices fixed below equilibrium levels,
was aware that the effective price of gasoline was well above the quoted price.
When the quoted price was allowed to rise in successive months of early
1974, pulling the CPI along with it, the gas lines eventually disappeared. The
effective price of gasoline, if it rose at all, certainly did not rise as much as the
quoted price. Similar statements can be made for other goods.

The argument, then, is that the large increases in the CPI—and, consequently,
the extreme negative values of A, observed as price controls were lifted early
in 1974—reflect the adjustment of quoted prices to levels more like what con-
sumers were effectively paying during the immediately preceding period of
controls. Measured changes in the CPI for this period overstate true price
changes. Conversely, measured changes in the CPI during the period of con-
trols but prior to the lifting of controls probably understate true price changes.
Thus, one would expect higher interest rates during this period than if one
took measured inflation rates at face value. Fama and MacBeth (1974) report
a regression of the one-month version of A, on the one-month bill rate for
1953-1972. Their estimate of 4, in (36) is -.90, as compared to ~ .98 for the
1/53-7/71 period in Table 6.2 and -1.25 for the 1/53-6/74 period in Table
6.6. Thus, consistent with our interpretation of the effects of controls, the
interest rate overshoots the measured inflation rates in the period (ending in
1972), that includes the controls but not the lifting of controls, while the
interest rate undershoots the measured inflation rates for the period (ending
in 1974) that includes the lifting of controls.

In any case, it seems safe to argue that the price controls create distortions
in the market which make the price data for this period of questionable value
for tests of market efficiency. Conclusions about the hypotheses that the
market is efficient and that equilibrium expected real returns are constant
through time are probably best based on tests for the free-market period
1953-1971. The results in Tables 6.1 to 6.4 indicate that for this period
both hypotheses are good approximations to the world.

XI. Conclusions

The two major conclusions of this chapter are as follows. First, during 1953-
1971, the bond market seems to be efficient in the sense that in setting one-
to six-month nominal rates of interest, the market correctly uses all the infor-
mation about future rates of change in purchasing power that is in the time
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series of past rates of change. Second, one cannot reject the hypothesis that
equilibrium expected real returns on one- to six-month bills are constant
during the period. When combined with the conclusion that the market is
efficient, this means that one also cannot reject the hypothesis that all varia-
tion through time in one- to six-month nominal rates of interest mirrors varia-
tion in correctly assessed one- to six-month expected rates of change in pur-
chasing power.

For our purposes, the conclusion that the market is efficient is of more
interest than the conclusion that expected real returns are constant through
time. To test market efficiency, it is always necessary to have a model of
market equilibrium. The results indicate that for Treasury bills, and for the
1953-1971 period, the assumption that equilibrium expected real returns are
constant is close enough to reality to be a meaningful vehicle for tests of ef-
ficiency. But it would have been a matter of indifference if the data had indi-
cated that some other model of market equilibrium were more appropriate,
so long as it also yielded meaningful tests of efficiency.

Moreover, our tests of the assumption that expected real returns are con-
stant are narrow in scope. We look for variation in expected real returns that
would lead to nonzero autocorrelations of observed real returns, and we look
for variation in expected real returns as a linear function of the level of
nominal rates. There are many other interesting possibilities that remain un-
tested. For example, equilibrium expected real returns might be related to
variation in economic activity, to changes in the rate of change in the money
supply, to foreign investment in bills, and so forth. On the other hand, any
such variation through time in expected real returns must be random in
character or small relative to the variation through time of real retuns.
Otherwise, it would show up more systematically in the sample autocorrela-
tions of the real returns.
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CHAPTER

The Two-Parameter
Portfolio Model

I. Introduction

In Chapter 2 the two-parameter portfolio model was introduced. We now
consider the model in more detail. We proceed in three steps. This chapter
discusses portfolio decisions by investors in a two-parameter world. The
model is credited to Markowitz (1952; 1959), who is rightfully regarded as
the founder of modern portfolio theory. The next chapter considers the im-
plications of the portfolio model for the pricing of securities. That is, if
investors make portfolio decisions according to the two-parameter model,
what does this imply about the way securities are priced in the capital
market? In particular, how does the capital market view risk? In the setting
of prices, what is the relationship between expected return and risk? Finally,
Chapter 9 presents empirical tests of the expected return-risk relationships
developed in Chapter 8.

In discussing the two-parameter portfolio model in this chapter, we first
give a general treatment of its major features. We then discuss different as-
pects of the model in more detail.
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II. Normal Distributions, Risk Aversion, and the Efficient Set

A. The Framework

In the most common version of the two-parameter portfolio model, and the
only version that we treat here, it is assumed that at time ¢ = 1 the investor
has wealth w, which he must allocate to current consumption ¢, and to an
investment (w, - ¢;) in some portfolio of securities. The value of his port-
folio at time ¢ = 2 provides his consumption ¢, for time 2. Thus, the investor
consumes and invests at time 1, and at time 2 he consumes the market value
of the investment made at time 1. Since only one period passes between time
1 and time 2, we call this a one-period model.

The investor’s wealth w; is the market value of all his resources at time 1. It
includes the market value of securities, real estate, and any other assets pur-
chased in previous periods, along with any income from his labor that he re-
ceives at time 1. Since we are concerned with the portfolio decision at time 1,
to simplify things we assume that the investor’s wealth at time 2 derives com-
pletely from the market value of the portfolio that he chooses at time 1.

It is assumed that at time 1 an investor can purchase as much or as little of
any security as he sees fit, and securities are assumed to be infinitely divisible.
It is also assumed that there are no transactions costs (e.g., brokerage fees) in
purchasing and selling securities and that any investor can buy or sell as much
as he likes of any security without affecting its price. In short, investors are
atomistic competitors in frictionless markets, a statement we summarize by
saying that the capital market is perfect. Throughout the rest of the book we
assume that the capital market is perfect in this sense.

The problem facing the investor at time 1 is to allocate his wealth w, to
consumption ¢; and to an investment (w; - ¢;) in some portfolio in such a
way as to maximize the satisfaction or welfare that he anticipates from con-
sumption at time 1 and time 2. Consumption at time 2 is, however, a random
variable at time 1, since the return from time 1 to time 2 on a portfolio
chosen at time 1 is generally unknown at time 1. In formal terms, if the inves-
tor chooses current consumption ¢, and invests (w, - ¢, ) in the portfolio p,
his wealth and consumption at time 2 are

Gr =Wy =(wy - e))(1 +R}), (1)

where the random variable IEP is the return on the portfolio p from time 1 to
time 2.* Thus, the investor’s problem is to choose an optimal combination of

*Since we are discussing a one-period world in this chapter, it is unnecessary to include
3 time subscript on the portfolio return. As usual, tildes (~) are used to denote random
variables.
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current consumption ¢, and a probability distribution on ¢,. Equivalently, he
must choose a value of ¢; and a probability distribution of portfolio return.

B. The Simplifications Obtained When Portfolio
Return Distributions Are Normal

It is assumed that the investor can rank all possible combinations of ¢; and
probability distributions of ¢, according to the level of welfare he perceives
that they provide. This assumption is so general, however, that it yields
nothing in the way of propositions about observable behavior. We would like
to simplify the decision problem so that it involves only a few potentially
measurable parameters and yields some simple propositions about how the
typical investor behaves with respect to these parameters.

One way to accomplish this goal is to assume that the joint distribution of
security returns is multivariate normal, so that probability distributions of
portfolio returns are normal (see Chapter 2). The property of normal distribu-
tions that simplifies the consumption-investment decision is the fact that any
normal distribution can be completely described from knowledge of its mean
and standard deviation.* Thus, if the distribution of the return R, on any
portfolio p is normal with mean E(ﬁp) and standard deviation o(R,), then
from (1) and the properties of the normal distribution we know that the
probability distribution of consumption at time 2 obtained with portfolio p
is normal with mean and standard deviation

E(&)=(w, - c)[1 +ERp)] 2
0(&;) = (W) - ¢1) 0(R,). ®3)

In short, when all portfolio return distributions are normai, knowledge of
¢y, E(ﬁp), and 0(13,,) is sufficient to describe completely the combination of
current consumption and probability distribution on future consumption
associated with any choice of ¢, and portfolio p. If all portfolio return distri-
butions are normal, the investor can rank the different combinations of ¢,
and probability distribution on &, available in terms of the values of ¢,,
E(R,), and 0(R ) that they imply.

C. The Simplifications Obtained When Investors
Are Risk-averse

The assumption that portfolio return distributions are normal reduces the
consumption-investment decision to a three-dimensional problem involving

*At this point the reader may want to review the discussion of normal distributions in
Chapter 1.
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the choice of ¢,, E(ﬁp), and o(ﬁp). Additional simplifications can be ob-
tained with assumptions about the investor’s tastes and, in particular, about
his attitudes toward E(ﬁp) and o(iép). We assume that for given values of ¢,
and o(ﬁp), the investor prefers more expected portfolio return to less. From
equations (2) and (3) we can see that this is equivalent to assuming that for
given values of ¢, and o(¢,), the investor prefers more expected consumption
at time 2 to less. Next we assume that the investor is risk-averse in the sense
that for given values of ¢, and E(ﬁp), he prefers less standard deviation of
portfolio return to more. From equations (2) and (3) we can again see that
this is equivalent to assuming that for given values of ¢, and E(&,), the
investor prefers less standard deviation of consumption at time 2 to more.
To characterize this assumption by saying that the investor is risk-averse is to
assume that the risk of a portfolio can be measured by the standard deviation
of its return. This is reasonable with normal portfolio return distributions,
since the dispersion of the return distribution, and thus of the distribution of
consumption at time 2, can be completely described in terms of the standard
deviation of the return.

The assumptions that portfolio return distributions are normal and that the
investor likes expected portfolio return but is averse to standard deviation of
portfolio return imply the fundamental result of the two-parameter portfolio
model. The investor’s optimal portfolio is an efficient portfolio, where to be
classified as efficient a portfolio must have the property that no other port-
folio with the same or higher expected return has lower standard deviation of
return.® The argument goes as follows. With normal portfolio return distribu-
tions, t}le consumption-investment decision reduces to choosing ¢, , £ (ﬁp),
and o(R,). If the investor’s tastes are such that conditional on any given
values of ¢, and o(ﬁp) more expected return is preferred to less, then among
all portfolios with a given value of o(ié,,) the most preferred portfolio is the
one with the largest value of E(R'p). On the other hand, if for any given values
of ¢, and E(ﬁp) less standard deviation of return is preferred to more, then
among all portfolios with a giveg E(ﬁp) the most preferred portfolio is the
one with the smallest value of a(R)).

Taken together, these two statements say that with normal return distribu-
tions, a risk-averse investor only considers a portfolio if it has the largest
possible expected return given its standard deviation of return, and if it has
the smallest possible standard deviation of return given its expected return.
A portfolio that has these two properties is called efficient, and the collection
of portfolios that have these two properties is called the efficient set. Alterna-

*The concept of portfolio efficiency should not be confused with the concept of
market efficiency discussed in Chapters 5 and 6. The terminology, if a bit unfortunate, is
standard.
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tively, the two properties of an efficient portfolio can be summarized in
terms of a single property which requires that for a portfolio to be efficient,
there must be no other portfolio with the same or higher expected return
that has lower standard deviation of return.

D. Geometric Interpretation

All of this has a convenient geometric interpretation. The curves U, to Ug
in Figure 7.1 give a possible representation of the investor’s tastes for ex-
pected return and standard deviation of return, conditional on some value of

FIGURE 7.1
The Optimal Decision

E(R,) Us Us Us Us U U,

E(AR,)

E(R,) = E(R,)

[[he of

t

o] o(R,) = o(R,) o(R,) o(R,)

current consumption ¢,. Each of the curves represents combinations of
b(Rp) and a(Rp) among which the investor is indifferent; no combination of
E(R ) and a(R ) along a curve is preferred to any other combination on the
curve. The assumptions that the investor likes expected return but is averse to
standard deviation of return imply that any such indifference curve must be
positively sloped. If the investor regards two portfolios as equivalent in the
sense that neither is preferred to the other, the portfolio with the higher

standard deviation of return must also have higher expected return. Moreover,
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with our assumptions about the investor’s tastes, higher indifference curves
imply more preferred combinations of E(ﬁp) and a(ﬁp). Or, as suggested by
the arrows in Figure 7.1, the level of the investor’s satisfaction increases as we
consider combinations of E(Rp) and a(Rp) further upward and/or further to
the left in the E(Rp) a(Rp) plane.

Having given a geometric interpretation of the investor’s tastes, we now
turn to the other ingredient in his decision problem, his portfolio opportuni-
ties, the feasible or attainable combinations of expected return and standard
deviation of return. We spend considerable space in the rest of this chapter
discussing the shapes that the opportunity set can take when plotted in the
mean-standard deviation plane, but for the moment let us just assume that
the possible combinations of expected return and standard deviation of re-
turn are on or within the rather irregularly shaped curve acqu in Flgure 7.1.
All points on or within the curve are combinations of E(Rp) and a(Rp) at-
tainable with some portfolio, but combinations outside the curve are not
attainable.

Given our assumptions about tastes, however, only a small part of the
investment opportunity set is relevant. For example, because the investor
dislikes standard deviation of return, the portfolio b is strictly preferred to
the portfolio g, since g has the same expected return as b but higher standard
deviation of return. Indeed, the investor’s aversion to standard deviation of
portfolio return allows us to rule out immediately all portfolios except those
along the left boundary of the opportunity set. However, many of the points
along the left boundary can also be ruled out as a consequence of the fact
that the investor likes expected return. Thus, the portfolio b is dominated by
the portfolio h, which has the same standard deviation of return as b but
higher expected return.

In short, the assumptions that the investor likes expected return but is
averse to standard deviation of return imply that among the investment op-
portunities shown in Figure 7.1, the only portfolios the investor might
possibly choose are those along the positively sloped segment cd of the left
boundary of the opportunity set. Each of the portfolios along this segment
has the efficiency property that no other portfolio with the same or higher
expected return has lower standard deviation of return, and only portfolios
along cd have this property. Thus the segment cd is the efficient set of port-
folios. When we later consider the geometry of the efficient set in more detail,
we find that the efficient set of portfolios is always the- positively sloped
segment of the upper left boundary of the opportunity set,

Given the representation of the investor’s tastes and portfolio opportunities
in Figure 7.1, the optimal efficient portfolio is e, which is the portfolio that
puts the investor on the highest attainable indifference curve. Recall, how-
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ever, that the indifference curves in Figure 7.1 represent the investor’s tastes
for E(Rp) and o(Rp) conditional on some assumed value of ¢,. The
consumption-investment decision, after all, involves choice of an optimal
combination of c1, E(Rp) and o(Rp) and the details of the investor’s tastes
for E(Rp) and o(Rp) need not be the same for different assumed values of ¢, .
In terms of Figure 7.1, his indifference curves may be different depending on
the value of ¢y, and the portfolio that is optimal for one assumed value of ¢,
is not necessarily optimal for other values of ¢,. Thus, if we wish to think
about the solution to the consumption-investment problem in geometric
terms, we must, in the general manner of Figure 7.1, determine the optimal
portfolio for each possible value of ¢, and then choose the optimum opti-
morum—that is, the value of current consumption ¢, and the associated
optimal portfolio that maximizes the investor’s welfare.

For our purposes, however, the important result, the one on which we build
in this and the following chapters, is that in the assumed framework, the
optimum portfolio for any and thus for the optimum choice of ¢, is an effi-
cient portfolio. The next chapter considers the characteristics of market
equilibrium in a world where investors make portfolio decisions according to
the two-parameter model. It turns out that the measurement of risk and es-
pecially the relationships between equilibrium expected returns and risk that
are relevant in a two-parameter world are direct implications of the fact that
in such a world investors hold efficient portfolios. Chapter 9 then considers
whether observed relationships between average returns and risk are in ac-
cordance with the predictions of the two-parameter model. These tests can be
interpreted as asking whether the prices of securities are in line with the
hypothesis that investors hold or attempt to hold efficient portfolios. In
short, by the time discussion of the two-parameter model is finished, the
dominant role played by the concept of portfolio efficiency and by the
characteristics of efficient portfolios will be evident.

Finally, the preceding is an intuitive and rather general discussion of how
the tastes of a risk-averse investor combine with the characteristics of his
portfolio opportunities to yield the conclusion that the optimal portfolio
must be efficient. The characteristics of portfolio opportunities in a world
where portfolio return distributions are normal are the subject matter of the
rest of this chapter. The geometry of the efficient set is developed, and then
risk and the effects of diversification on portfolio risk are discussed.
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III. The Geometry of the Efficient Set

We first consider the geometric properties of portfolios that are combinations
of two securities or portfolios. The geometric properties of the efficient set of
portfolios follow almost directly. The reader is assumed to be familiar with
the material of Chapter 2.

A. The Geometry of Combinations of Two
Securities or Portfolios

Let g and s be two securities or portfolios. For later purposes, it is impor-
tant to keep in mind that either or both ¢ and s can be portfolios. Consider
portfolios that are combinations of g and s with the proportion x of portfolio
funds w; - ¢, invested in ¢ and (1 - x) invested in s. The return, expected
return, and standard deviation of return for such portfolios are

Rp=qu+(l—x)Rs 4
ER,)=xE®Ry) +(1- x) ER,) Q)
o(Rp) = [x20*(Ry) + (1 - x)? 0*(R,) + 2x(1 - x) cov Rg, R)IM*. (6)

For current purposes, it is more convenient to express o(R ) in terms of
corr (Rq,Rs) the correlation coefficient between R and Rs, than in terms
of the covariance cov (Rq,R ). Thus, since

corr (ﬁ R = M 7)
R = R Yo®y) (

equation (6) can be rewritten as )
a(R,) = [x*0*(R,) + (1 - x)? 0*(R,)
+2x(1 - x) corr (Rq, R) 0(Ry) 0(R))V2. (8)
POSITIVELY WEIGHTED COMBINATIONS o0<x<1)

Consider now the extreme and unrealistic case where the correlation co-
efficient between R and R is [.0; that is, there is a perfect positive correla-
tion between R and Rs, so that the value oqu is perfectly predictable from
the value of R, (and vice versa). Then (8) becomes

o(Rp) = [x%0 (Rq) +(1 - x)? 0’(Rs) +2x(1 - x) O(R'q) o(R )M ©)
=1xa(Ry)+ (1 - x) o)), corr (Rq,Rg)=10. (10)

The absolute value sign is necessary to ensure that we take the positive root
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in computing the standard deviation from the variance. Standard deviations
must be nonnegative. For the moment, however, we consider only nonnega-
tive values of x and (1 - x). Since o(Rq) and o(R_,) are nonnegative, when x
and (1 - x) are nonnegative, the absolute value sign in (10) is unnecessary,
and a(Rp) is just the welghted average of the component standard deviations,
a(Rq) and o(Rx) Since E(Rp) is always just the weighted average of the
component expected returns, E(R ) and E(Rs) in the case of perfect posi-
tive correlation, both E(Rp) and o(Rp) are wexghted averages of the expected
returns and standard deviations ofR and R

This result has a simple geometric interpretation. Suppose the expected
values and standard deviations of Rq and R: are as shown in Figure 7.2. In
terms of equations (5) and (10), point q in Figure 7.2 corresponds to x = 1.0

FIGURE 7.2
Geometry of Combinations of Two Securities or Portfolios

ER,)
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and (1 - x) = 0.0, so that all portfolio funds are invested in g; point s corre-
sponds to x = 0.0, and (1 - x) = 1.0, so that all funds are invested in s. With
perfect positive correlation between R and R_,, any value of x between 1.0
and 0.0 generates a combination of E(Rp) and o(Rp) along the straight line
between g and s. For example, point B in Figure 7.2 represents the combina-
tion of E(Rp) and a(Rp) obtained with x = .5 and (1 - x) = .5, that is, when
portfolio funds are divided equally between q and s. In this case

E(Rp)= SER,)+ SER,)
is just halfway between E(Rq) and E(R_,). From equation (10),
o(Rg)= 50(Ry)+ 50(R,)

is likewise halfway between a(Rq) and a(R_,). Point 4 in Figure 7.2 repre-
sents the combination of E(R,) and 0(R,,) obtained with x = .75 and 1 - x =
.25, while C is the portfolio corresponding to x = .25 and 1 - x = .75. Point 4
is along the straight line between ¢ and s, and it is just one-quarter of the way
between g and 5. Likewise, portfolio C is three-quarters of the way between
q and s along the straight line between ¢ and s.

Suppose now that the expected values and standard deviations of Rq and
Rs are as shown in Figure 7.2 but that there is less than perfect positive corre-
lation between the two returns. What can we say about the combinations of
E(Rp) and a(Rp) obtained from portfolios of ¢ and s formed in the manner
of equatxon (4)? First of all, the correlation between R andR has no effect
on E(Rp) The expected return on any portfoho of q and s is always just the
appropriate weighted average of E(Rq) and~E(R_,). From (8), however, we
can see that the correlation between R, and R; affects the standard deviation
of the return on a portfolxo of q and s. For given x(0 < x < 1) and given
values of ¢ (R )and o (R ), the largest possible value of a(R ) occurs when
corr (Rq,R_,) = 1.0, in which case (10) holds. With less than perfect positive
correlation, o(R ) is less than the quantity given by (10),

o(Rp) <xo(Rg)+(1-x)0(Ry), 0<x<1, corr Ry,R;) < 1.0, (11)

and for given x and given values of az(Rq) and o%(R,), o(Rp) is smaller
the lower the correlation between R, and R.

These results have an important implication. Equation (10) says that when
the correlation between the returns on two assets or portfolios like ¢ and s is
1.0, diversification is ineffective in reducing dispersion: the standard devia-
tion of the return on a portfolio which is just a weighted combination of g
and s is the corresponding weighted average of o(Rq) and a(R_,) On the
other hand, (11) says that when corr (Rq,R )< 1.0, a(Rp) is less than the
weighted average of a(Rq) and a(Rx) and a(Rp) decreases as corr (Rq,R_,)
decreases. Thus, when there is less than perfect positive correlation between
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the returns on two assets or portfolios ¢ and s, diversification is an effective
way to reduce dispersion, and it is more effective the further corr (ﬁq,ﬁs) is
from 1.0.

The opposite extreme from perfect positive correlation is perfect negative
correlation, corr (ﬁq,ﬁs) = -1.0; for given x(0 < x < 1) and given values of
o(ﬁq) and a(ﬁx), perfect negative correlation gives the smallest possible value
of o(ﬁp). With perfect negative correlation, equation (8) becomes

o@®,) = (P (Ry) + (1 - x)? *(Ry) - 2x(1 - x) oRg) oRYI
= xo(Rg) - (1- x)a(Ry)l, corr (Rq,Rs)=~10. (12)

One consequence of perfect negative correlation is that there is a portfolio
of g and s, with both x and (1 - x) strictly positive, that has zero standard
deviation of return. From (12) we determine that 0(R,) = 0.0 when

o(Ry)

T oR)ro®y) (13)
Moreover, (12) also implies that when corr (ﬁq,ﬁs) =-1.0,
D D D ﬁs)
U(Rp)=XO(Rq)‘ (1-x)o(R;), when x> a—ﬁ%ﬁ(_ﬁ:)’ (14)
D 4 D (ﬁs)
o@®,)=(1- x) o) - xoR,), when x < m . (%)

In geometric terms, when x =1.0 we are at point ¢ in Figure 7.2. For
smaller values of x, the combinations of E(ﬁp) and o(ﬁp) obtained are at
first described by (5) and (14). Since these equations are both linear in x, we
move away from g along a straight line that touches the E(ﬁp) axis at y when
x takes the value given by (13). For still lower values of x, the combinations
of E(ﬁp) and o(ﬁp) obtained are given by (5) and (15), so that we move
along another straight line away from y in the direction of the point s in Fig-
ure 7.2, which is reached when x = 0.0. Thus when corr (ﬁq,ﬁx) =-1.0, the
two line segments that meet at y on the E(R) axis in Figure 7.2 describe the
combinations of E(ﬁp) and a(ﬁp) obtained by varying x in (4).

For given x(0 < x < 1) and given values of oz(ﬁq) and 0%(R,), the maxi-
mum possible value of a(ﬁp) occurs when ﬁq and ﬁ_, are perfectly positively
c~orrelated, while the minimum possible value of a(ﬁp) occurs \yvhen ﬁq and
R are perffctly negatively correlated. When -1 < corr (RqLRs)~< 1, the
value of a(R,) is greater than the value obtainedNWheE corr (Rg,R;)=-1.0
and less thNan ~the value obtained when corr (Rg,R;) = l.(l. Thus wllen
-1 < corr (Rq,R,) < 1, the plot of the combinations of E(R,) and o(R;)
obtained by varying x between 1.0 and 0.0 in (4) is a curve that starts at
point ¢ in Figure 7.2 and ends at s. The curve must be to the left of the line
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between g and s, since this line describes the combinations of E(ﬁp) and
a(ﬁp) obtained when ﬁq and ﬁ_, are perfectly positively correlated. The curve
must also be to the right of the two line segments that describe the combina-
tions of E(ﬁp) and a(ﬁp) obtained with perfect negative correlation between
ﬁq and 13_,. ln~short, with less than perfect correlation, the combinations of
E(Rp) and o(Rp) obtained from portfolios of g and s must lie along a curve
somewhat like ges in Figure 7.2.

In fact, the curve traced by portfolios of ¢ and s must have the specific
properties exhibited by the curve ges in Figure 7.2. Any positively sloped
segment of the curve (like es) must be concave, and any negatively sloped
segment (like ge) must be convex.* To establish these properties, suppose
first that they do not hold. Thus, suppose that the positively sloped segment
of the curve in Figure 7.2 has a convex section like the dashed curve between
points u and v. Since u and v are themselves portfolios of g and s, any port-
folio of g and s that gives a combination of E(ﬁp) and a(ﬁp) along the
dashed curve between u and v can be expressed as a portfolio of « and v. But
the arguments of the preceding paragraphs imply that portfolios of u and v
must plot either along a straight line between u and v (if u and v are perfectly
positively correlated) or to the left of the line between u and v (if « and v are
less than perfectly positively correlated). Thus, the dashed curve between
u and v cannot represent portfolios of u and v, so it cannot represent port-
folios of g and s. Successive application of these arguments leads to the con-
clusion that any positively sloped segment of the curve generated by port-
folios of ¢ and s must be concave, while any negatively sloped segment must
be convex.

PROBLEM II1.A
1. Show that any portfolio of g and s that yields a point between u and v
in Figure 7.2 can be expressed as a portfolio of « and v.

ANSWER

1. Let x, and x, be the proportions of portfolio funds invested in q to
form the portfolios # and v, so that | - x,, and 1 - x, are the proportions in-
vested in 5. Consider any third portfolio k of ¢ and s such that

Xy > X > Xy

*A curve or a segment of a curve is concave if a straight line between any two points is
everywhere on or below the curve. A curve or a segment of a curve is convex if a straight
line between any two points is everywhere on or above the curve. With strict concavity a
straight line between any two points lies below the curve, while with strict convexity
a straight line between any two points is above the curve.
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There is a value of y,0 < y < 1, such that
Xk =yxy t (1= y)x,.
Thus, the return on portfolio & can be expressed as
Ry =xx Ry +(1- x) R,
=[x+ (1= xR + {1 - [yxy + (1- »)x,1IR;
=yleuRq+ (1= x )R]+ (1 - »)xoRq + (1- x,) R
=yR, +(1- »)R,.

THE ANALYSIS OF SHORT-SELLING

In the preceding discussion, we assumed that x, the proportion of portfolio
funds invested in g, was between 0.0 and 1.0, so that (1 - x), the proportion
invested in s, was also nonnegative. Suppose, however, that the investor can
issue as well as purchase securities. For example, suppose ¢ is the common
stock of firm q. At time 1 we allow the investor to issue securities equivalent
to the shares of firm q. He might do this by selling a promise to pay at time 2
whatever is the market value of a share of firm q at time 2 plus any dividends
paid by the firm at time 2. If the market believes that the investor can deliver
on this promise, at time 1 it will pay him the price of a share in firm q for
every share that he issues. He can then use the proceeds from the securities he
issues to acquire an investment in s in excess of (w, - ¢;), his own initial
portfolio funds.

The mechanism whereby an investor issues a security equivalent to one al-
ready existing is a short sale. To sell short the shares of firm q, the investor
borrows the shares from someone who owns them at time 1, agreeing to re-
turn the shares at time 2 along with any dividends paid at time 2. On borrow-
ing the shares, the investor immediately sells them in the market. At this
point he has issued shares in firm g, since both the lender of the shares and
the person who purchases them from the short-seller receive returns at time 2
from ownership of the shares. At time 2 the investor pays his debt to the
lender of the shares of firm q by repurchasing in the market the shares of g to
be returned to the lender.

When he borrows the shares of firm g and sells them in the market at time
1, the investor is said to have a negative or “short” position in the shares. He
“covers” his short position when he purchases shares of ¢ at time 2 and re-
turns them to the lender. In contrast, an investor who owns the shares of firm
q has a positive or “long” position in the shares. Finally, just as an investor
uses a short sale to issue a security equivalent to one that is already outstand-
ing, we can also think of him as short-selling ¢ or s when they are portfolios
rather than individual securities. To sell short or *“issue’ a portfolio, the inves-
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tor simply sells short each of its component securities in the appropriate
proportions.

We now extend the geometric analysis of combinations of two securities or
portfolios to allow for short-selling. Note first that if we always consider x to
be the proportion of w; - ¢, invested in q and (1 - x) to be the proportion
of w, - ¢ invested in s, then (4) is always the relevant expression for the re-
turn on a portfolio of q and s, and (5) and (6) or (8) are the relevant expres-
sions for the expected value and standard deviation of the portfolio’s return.*
If x and (1 - x) are both between 0.0 and 1.0, positive amounts are invested
in both ¢ and s. A negative value of x implies that q is issued or sold short
and the proceeds are used to get an investment in s in excess of wy - ¢y.
Likewise, a negative value of (1 - x)—and thus a value of x greater than 1.0—
implies that s is issued or sold short and the proceeds used to obtain an in-
vestment in g greater than w; - ¢;.

Consider now the case where the returns on g and s are perfectly negatively
correlated. When corr (qu,ﬁs) = - 1.0, the expected return on a portfolio of
g and s is given by (5), and equation (8) for the standard deviation of the
portfolio return becomes either (14) or (15), depending on whether x, the
proportion of portfolio funds invested in g, is greater or less than the strictly
positive quantity given by equation (13). If x is negative—that is, if the port-
folio involves issuing or short-selling of g—then (15) is relevant and in Figure
7.2 the combination of E(ﬁp) and o(ﬁp) obtained with such a portfolio is
somewhere beyond the point s on the dashed extension of the line from the
vertical axis through s. On the other hand, if the portfolio involves short-
selling of s, so that (1 - x) < 0andx > 1, then (14) is relevant and the port-
folio plots along the dashed extension of the line from the vertical axis down
through point gq. Thus, when corr (ﬁq,ﬁx) = -1.0, all we must do in Figure
7.2 to cover the possibility of short-selling is to extend the two relevant line
segments that meet at y on the E(ﬁ) axis through the points corresponding to
q and s.

Consider next the case where there is perfect positive correlation between
ﬁ and ﬁ As in the case where 0 < x < 1, the combinations ofE(ﬁp) and
o(Rp) given by portfolios of ¢ and s where either q or s is sold short are de-

scribed by equatlons (5) and (10). Moreover, if as in Figure 7.2, E(Rs) >
E(Rq) and o(Rs) > o(Rq) the absolute value sign is unnecessary for x < 0.
Thus, when ¢ is sold short, the combination ofE(Rp) and o(Rp) obtained is

*If this point is not obvious, the reader should review the development of the algebra
of portfolio theory in Chapter 2. In particular, the development of expressions for the
return, expected return, and standard deviation of return on a portfolio does not impose
nonnegativity constraints on the proportions of portfolio funds invested in individual
securities.
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along the dashed extension of the straight line from g through s in Figure 7.2.
On the other hand, when s is sold short, so that x > 1 and (1-x) <0, the
absolute value sign in (10) becomes necessary when x exceeds the quantity

oRy)

=RET7ﬁ?T 0(Rs) > a(Ry), (16)

and when x takes the value glven in (16), o(Rp) 0.0. Thus, when s is sold
short, the combinations of E(Rp) and o(Rp) obtained from portfolios of g
and s plot at first along the dashed extension of the straight line from s
through ¢ in Figure 7.2. This line hits the E(ﬁ) axis at r when x takes the
value given by (16). For values of x in excess of the quantity given by (16),
the absolute value sign in (10) becomes relevant, and the combinations of
E(ﬁp) and a(ﬁp) obtained with portfolios of ¢ and s plot along the new
dashed line that goes downward and to the right from r.

Note that for portfolios that involve short sales of either q or s, the stan-
dard deviation of the return on a portfoho of g and s is larger when
corr (Rq,Rs) =-1.0 than when corr (Rq,R_‘.) =1.0. In geometric terms,
when corr (Rq,Rs) = - 1.0, the dashed lines in Figure 7.2 generated by port-
folios that involve short sales of q or s are to the right of the corresponding
dashed lines generated when corr (Rq,Rs) =1.0. This is, of course, the re-
verse of what is obtained when the proportions x and (1 - x) invested in ¢
and s are both positive. In that case, for given x, the largest possible value of
o(Rp) occurs when corr (Rq,Rs)—- 1.0, while the smallest possible value
occurs when corr (Rq,R:) =-1.0.

The reversal in the roles of perfect positive and negative correlation that
arises with short-selling is easily explained. If two securities or portfolios are
perfectly positively correlated, the return on a short position in one is per-
fectly negatively correlated with the return on a long position in the other.
Likewise, a short sale of either g or s transforms perfect negative correlation
into perfect positive correlation. In general, the correlation between the re-
turns on a short and a long position in two securities or portfolios is the
negative of the correlation between the returns obtained when both are held
long.

With less than perfect correlation, that is, when -1.0 < corr (R,,,Rs) < 1.0,
then the combinations of £ (Rp) and o(R,,) obtained when ¢ is sold short are
along the dashed extension of the solid curve through the point s in Figure
7.2, while when s is sold short, we get points along the dashed extension of
the curve through ¢. Without going into the details, which at this point the
reader should be-able to provide, the dashed extensions of the curve must lie
between the dashed extensions of the lines obtained with perfect positive and
negative correlation. Again, any positively sloped segment of the curve must
be concave, while any negatively sloped segment must be convex.
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SOME NUMERICAL EXAMPLES

The preceding analysis can be made more concrete with numerical ex-
amples. We first consider portfolios ofq and s when E(Rq) =01 E(R,) =.02,
and a(Rq) a(R:) = .05. Plots of E(R ) agamst a(R ) under five different
assumptions about the value of corr (Rq,R s) are in Figure 7.3. The straight

FIGURE 7.3
Piots of E(Rp) Against a(Rp) for Different Values of corr (Rq R,) When E(Rs) > E(Rq)
and a(Rq) a(R,)
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line between ¢ and s shows the combinations of E(R ) and o(R ) obtained
for values of x between 1.0 and 0.0 when corr (Rq,R_‘.) = 1.0. The first solid
curve to the left of this line shows the combinations ofE(Rp) and a(Rp) ob-
tained for values of x between 1.0 and 0.0 when corr (Rq,Rs) =.5; the sec-
ond solid curve to the left applies to the case corr (R,,,Rs) 0.0 (that is, R
and R are uncorrelated); the third curve applies to the case corr (Rq,R:) =
-.5; and the two straight lines from ¢ and s that meet on the verilcalwams
show the combinations of E(ﬁq) and o(ﬁp) obtained when corr (Rg, Ry) =
-1.0.

Points labeled with a given uppercase letter in Figure 7.3 show the combina-
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tions of E(ﬁ ) and o(ﬁ ) obtained for fixed values of the proportions in-
vested in K| and s, but with different assumptions about the value of
corr (Rq,R )- For example, in portfolio B the proportion of w, - ¢, invested
in q is .75, and the proportion invested in s is .25. The expected return on the
portfolio is

ERp)=T5ER,)+ 25 ER,) = .75(.01) + 25(.02) = 0125,

and E(RB) does not depend on corr (Rq,R:) However, Figure 7.3 illustrates
that o(RB) decreases as corr (Rq,R:) decreases. The same phenomenon is
observed in the portfolios labeled C, where the proportions invested in q and
s are always equal, and in the portfolios labeled D, where the proportions in-
vested in g and s are always .25 and .75.

The dashed extensions of the various lines and curves in Figure 7.3 show the
combinations of E(Rp) and o(Rp) obtained when either ¢ is sold short
(giving the dashed lines and curves above s) or s is sold short (giving the
dashed lines and curves below q). Thus, the points labeled £ give the com-
binations E(RE) and O(RE) corresponding to

Rg=-5R, + 15K,

while the points labeled A give the combinations ofE(ﬁA) and o(ffA ), corre-
sponding to

Ry=15R,- 5K,
The values of corr (ﬁq,ﬁs) are shown above the points labeled £ in Figure
7.3 and below the points labeled 4. We can see that when either q or s is sold
short, the relationship between o(R p) and corr(Rq, R :) is reversed; the
higher the value of corr (Rq , Ry), the lower the value of o(R ).

Although a little elementary calculus is required, it is easy enough to show
(and Problem III.A.3 below asks the reader to do s0) that the minimum value

of a(Rp) for portfolios of g and s occurs when x, the proportion of portfolio
funds invested in g, is

0*(Ry) - corr (R, Ry) o(R,) o(Ry)
" (R) + 0*(Rg) - 2corr Ry, Ry) 0(Ry) 0Ry)

17)

Thus, in general, the value of x that minimizes o(Rp) varies with the magni-
tude of oz(R:) relative to ¢ (R‘L) in general, it also depends on the value of
corr (Rq,Rs) But oz(Rq) 0*(Ry) is the special case where for all values of
corr (Rq,R:) the minimum value of o(Rp) occurs when x = .5, that is, when
portfolio funds are split equally between ¢ and s. Thus, in Flgure 7.3 port-
folio C has the minimum value of o(R ) for all values of corr (Rq,R:) but
this is a peculiar implication of the fact that ¢ (Rq) o (R:)
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PROBLEMS IIL.A

2. When will the value of x in (17) be between 0.0 and 1.0? The answer
to this question defines the cases where it is possible to get a portfolio of ¢
and s, with nonnegative proportions invested in botllq and s, that has a stan-
dard deviation of return less than both o(ﬁq) and o(Ry).

3. Show that equation (17) does indeed give the value of x that minimizes
o(ﬁp) for portfolios of ¢ and s.

ANSWERS
2. To get
0*(R,) - corr (Rq, Rs) 0(Rg) o(Ry)

S - DTSV <,
*T ARy + 02 (Ry) - 2cort (Rq, Ry) 0(Rg) o(R,)

we must have

0*(Rg) - corr (Ry, Ry) o(R,) o(R5) > 0.
Likewise, to get x > 0 in (17), we must have

0*(R;) - corr Ry, R;)o(Ry) o(Ry) > 0.

These two conditions are always satisfied when corr (ﬁq,ﬁs) < 0.0, but for
given values of o(ﬁ ) and o(fé:) there will also always be some range of posi-
tive values of corr (Rq,ﬁ_‘) for which the conditions are satisfied. Chapter 8
will provide an application for this result. .

3. The value of x that minimizes o? (ﬁp) also minimizes o(R ). From (8),
we have

2 R ~ ~ ~
@% = 2x02(§q) - 2(1 - x) 6*(R,) + 2corr (féq,Rs) o(Rg) 0(Ry)

- 4xcorr (féq,ﬁs) o(ﬁq) o(Ry).

Setting this expression equal to 0.0 and sol~ving for x yields (17). That (17)
yields the value of x which minimizes o? (Rp) follows from the fact (which
we state without proof but which the reader can deduce from the lengthy
geometric discussion above) that o* R p) is a convex function of x.

The numerical example in Figure 7.3 is a special case in the sense that O(Rq)
and o(R:) are assumed to be equal. Figure 7.4 shows plots of E(Rp) against
o(R ) for three different assumed values of corr (Rq,R:) when E(Rq) 01,
ER;) = 02, o(Rq) = .04, and o(R:) = .06. The straight line between q and s
(and its dashed extensions) shows the combinations of E(R )and o(R ) ob-
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FIGURE 7.4
Plots of £ (Rp) Against o(Rp) When E (Rq) < E(Rj) and o(Rg) < olRs)
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tained when there is perfect positive correlation between R and R The two
lines from ¢ and s that meet on the E(R) axis apply when corr (Rq, R_,.) =
-1.0, while the curve in the ﬁgure shows the combinations of E(R ) and
o(R ) obtained when R and R are uncorrelated. Figure 7.5 shows still a
different example in whlch as in Flgure 74, E(R )= 01 and ER,) = .02;
but in Figure 7.5 the values of o(Rq) and o(R,) are the reverse of those in
Figure 7.4; that is, in Figure 7.5, o(Rq) = .06 and a(R,) = 04. Instead of
explicitly engaging in further tedium, we leave detailed scrutiny of these
two examples to the reader.

Finally, in Figures 7.2-5, the plots of E(Rp) against a(Rp) always seem
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FIGURE 7.5 - -
Plots of E(Rp) Against oRp) When E (Rg) < E (Rs) and o(Rg) > o(R;s)
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symmetric about the portfolio that minimizes o(Rp) This is not a pecuhanty
of the examples. Merton (1972) shows that when -1.0 < corr (Rq ,R )<1.0,
the plot of E(Rp) against a(Rp) is a hyperbola. This is interesting but not
important for our purposes, so we leave the reader to pursue the details in
Merton’s excellent treatment of the topic.

B, The Efficient Set: No Risk-free Asset

This discussion of the geometric properties of portfolios that are combina-
tions of two securities or portfolios ¢ and s allows us to determine easily the
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geometric properties of the efficient set of portfolios. Recall that to be ef-
ficient a portfolio must have the dual properties that (a) no other portfolio
with the same expected return can have lower standard deviation of return,
and (b) no other portfolio with the same standard deviation of return can
have higher expected return. The collection of all efficient portfolios is called
the efficient set. The collection of feasible portfolios—that is, portfolios that
can be obtained as combinations of the r available securities—is called the
feasible set or, sometimes, the investment opportunity set. Efficient port-
folios are a subset of the feasible set.

Suppose now that we want to plot the combinations of E(ﬁp) and a(ﬁp)
that can be obtained with efficient portfolios. The portfolios that minimize
o(R ) at given levels of E(Rp) are called minimum variance portfolios. In
geometric terms, the set of minimum variance portfolios is the left boundary
of the feasible set of portfolios; that is, minimum variance portfolios are
those that are as close as possible to the E(R,,) axis at each feasible level of
E(R ). Since efficient portfolios minimize a(R ) at given levels of E(Rp)
they must be along the left boundary of the feasible set; efficient portfolios
are minimum variance portfohos Since efficient portfolios also maximize
E(Rp) at given levels of o(Rp) they must plot along positively sloped seg-
ments of the left boundary of the feasible set. Thus, there are minimum
variance portfolios that are not efficient. They are along negatively sloped
portions of the left boundary of the feasible set.

On the basis of the earlier geometric discussion, however, we now argue
that once the slope of the left boundary of the feasible set becomes positive,
it remains positive at all attainable higher levels of expected return. Thus, if
the left boundary of the feasible set has a positively sloped segment, there is
only one such segment and it covers the range of expected returns from the
point where the slope of the boundary becomes positive to the highest level
of expected return on any feasible portfolio. Even more specifically, the
earlier geometric discussion implies almost directly that this unique positively
sloped segment of the left boundary of the feasible set, which describes the
combinations of E(ﬁp) and a(ﬁp) available from efficient portfolios, is a
concave curve,

For example, the portfolio opportunities available to the investor might be
as represented in Figure 7.6. The irregularly shaped solid curve is the bound-
ary of the set of feasible portfolios. The left boundary of the feasible set,
which describes the set of minimum variance portfolios, is the solid curve abg.
The set of efficient portfolios is the positively sloped concave segment of this
boundary from b to g. That the positively sloped segment of the boundary
must be a concave curve follows directly from the geometric properties of
combinations of two securities or portfolios. For example, the left boundary
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cannot be as represented by the curves bed and deg in Figure 7.6, since it is
always possible to form portfolios of ¢ and e, and these portfolios must plot
either on or to the left of the straight line between ¢ and e, depending on
whether corr (ﬁc, ﬁe) is equal to or less than 1.0. Such arguments rule out
gaps in the boundary of the feasible set, and they also rule out indentations in
the left boundary, such as cde and hij. Indeed, the geometry of combinations
of two securities or portfolios implies that the slope of the left boundary of
the feasible set of portfolios can change sign once at most. The negatively
sloped segment is convex and covers lower levels of expected return, while
the positively sloped segment is concave and covers higher levels of expected
return.

PROBLEM I1I11.B .
1. Show that, in general, any point on the left boundary of the feasible set

is unique in the sense that there is only one portfolio with the indicated com-

bination of E(ﬁp) and o(R p)- What is the exception to this general rule?

ANSWER -
1. Suppose there are two portfolios, c:ill tBem u and v, such that E(R,) =
E(ﬁu) and o(ﬁu) = o(R,). When corr (R, R,) < 1.0, u and v cannot be on
the left boundary of the feasible set, since positively weighted combinations
of u and v have the same expected return but, from (11), lower standard
deviation of return than u and v.
When 0 < x < 1 and corr (R, R,) = 1.0, from equation (10)

o(R,)=x0(R,) + (1 - x)o(R,) = 0R,) = o(R,).

Thus, if there are two portfolios that correspond to the same point on the left
boundary of the feasible set, not only must the two portfolios have the same
expected returns and standard deviations, but their returns must also be per-
fectly positively correlated.

There are some additional assumptions implicit in the representation of the
efficient and feasible sets of portfolios as in Figure 7.6. Since there are no
feasible portfolios with a(ﬁp) = 0.0, there are no securities or portfolios
whose returns are perfectly negatively correlated. Moreover, since the bound-
ary of the feasible set has no straight line segments, there are no portfolios
on the boundary whose returns are perfectly positively correlated. Finally,
since the feasible set of portfolios pictured in Figure 7.6 is assumed to have a
right boundary, there is an implicit assumption that there is no short-selling
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FIGURE 7.6
Portfolio Opportunities When There Is No Short-Selling
ER)
o] o(R,)

or, at least, that short-selling is not unlimited.* For example, the earlier
geometric analysis of portfolios formed as combinations of two securities or
portfolios implies that with unlimited short-selling,”combinations of port-
folios b and g in which & is sold short could be used to get portfolios with
arbitrarily large values of E(Rvp) and o(ﬁp). From this we can conclude that
if there is unlimited short-selling, the efficient set of portfolios must extend
indefinitely upward and to the right in the E(ﬁ ), 0(15 ) plane. Likewise, with
unlimited short-selling, the left boundary of the feasible set of portfolios ex-
tends indefinitely downward and to the right in the E(fi), o(f(") plane. One
can see this in Figure 7.6 by noting that with combinations of portfolios b
and a in which b is sold short, one can get portfolios with arbitrarily small
values of E(fip) and arbitrarily large values of o(ﬁp).

In fact, Merton (1972) shows that if unlimited short-selling of all securities
is allowed, and if it is not possible to obtain a portfolio that has o(ﬁp) =00,
then the left boundary of the feasible set of portfolios, the set of minimum
variance portfolios, is a hyperbola, and so has the general shape shown in

*Using the geometric properties of combinations of two securities or portfolios, the
reader can determine that in the absence of short-selling, the irregular curve alkg is a
possible shape that the right boundary of the feasible set might take.
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FIGURE 7.7
Portfolio Opportunities When There Is Short-Selling
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Figure 7.7. The boundary is symmetric about the point b, which is the port-
folio that has the smallest possible standard deviation of return. The efficient
set of portfolios covers the positively sloped segment of the boundary, the
segment that starts at b and extends indefinitely upward and to the right.

From the earlier geometric discussions, the condition that it is not possible
to obtain a portfolio that has o(ﬁp) = 0.0 implies that no two securities or
portfolios have perfectly negatively correlated returns. With unlimited short-
selling, the condition also implies that no two securities or portfolios have
perfectly positively correlated returns (see Figure 7.2). Finally, the condi~tion
implies that there is no risk-free security, that is, no security j with o(R)) =
0.0.

Models based on the existence of a risk-free asset play an important role in
two-parameter theory and especially in the two-parameter models of capital
market equilibrium presented in the next chapter. Thus, we now discuss in
some detail the effect of a risk-free asset on the investment opportunity set.

C. The Efficient Set with a Risk-free Asset

Suppose the curve bd in Figure 7.8 represents the set of portfolios that
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FIGURE 7.8
The Efficient Set with a Risk-Free Security

E(R,)

0 olR))

would be efficient in the absence of a risk-free security .* Suppose, however,
that there is a risk-free security, call it F, that will pay the sure return R if
held from time 1 to time 2. Consider portfolios of the risk-free security F and
any risky security or portfolio g formed as
R, =xRp+(1 - x)R,. (18)
With x = 1.0, all portfolio funds w, - ¢y are invested in F, while with x =0.0,
all funds are in g. When 1.0 > x > 0.0, positive proportions of w, - ¢, are in-
vested in both F and g. When x < 0.0, the investor issues or sells F short and
uses the proceeds to get an investment in g in excess of w; - ¢y . Equivalently,
issuing or short-selling of F can be regarded as borrowing at the rate Rg. Thus,
a value of x < 0.0 in (18) implies that the investor borrows at the rate Rg and
uses the proceeds to get an investment in & in excess of w; - ¢, . In this view,
1.0 > x > 0.0 implies that the investor lends at the rate Rpg. The lending-
borrowing interpretation of positions involving F is the one we use almost
exclusively here.t
*Since investors only hold efficient portfolios and since we have finished our discus-
sion of what the entire boundary of the investment opportunity set looks like when

there is no risk-free asset, in the remaining geometric discussions we do not bother to
show the entire boundary.

TShort-selling or issuing of a risky security can also be viewed as borrowing, but at an
uncertain rate; and a long position in such a security can likewise be regarded as lending
at an uncertain rate. In essence, short or long positions in one security are no different
in kind from short and long positions in any other. It is, however, customary to interpret
positions in bonds in terms of lending and borrowing, with the terms long and short re-
served for positions in common stocks.
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The expected return on any portfolio formed according to (18) is
E(R,) = xRg + (1 - X)E(R,). (19)
Since 0(%= 0.0, the standard deviation of the return on any such portfolio
is
o(R,) =11 - xla(R,), (20)
and if we restrict attention to values of x < 1.0 (that is, if we do not consider
short-selling of g), then
o(Rp)=(1 - x)o(Rg), x<10. @1
It is perhaps clear from inspection of equations (19) and (21) that the com-
binations of E(ﬁp) and o(ﬁp) obtained from portfolios of andg plot along a
straight line from R through g in Figure 7.8. Thus, x = 1.0 gives the point
Rp on the E(ﬁp) axis, while x = 0.0 is the point g. Withx = .5,
E(R,) = SRp + SE(Ry)
o(R,) = 50(R,),
which is the combination of E(ﬁp) and a(ﬁp) halfway between Ry and g on
the straight line between R and g. Likewise, with x = .25,
E(R,) = 25Rg + 15E(R,)
o(R,) = 756(R,),

which is the combination of E(ﬁp) and a(ﬁp) that is three-fourths of t%le way
between Ry and g on the straight line between Rr and g. Finally, with x =
-.5, that is, when the portfolio involves borrowing .5(w, - ¢;) and putting
this plus (w; - ¢,) in g, we have

E(R,)=-5Rp+1.5E(R,)

a(ﬁp) = l.50(§g),
which is on the extension of the line from Rg through g. ‘

In short, the portfolios obtained from combinations of a riskless security ¥
with any given risky security or portfolio g plot along a straight linf from ihe
ris rate R through the point corresponding to g in the E(R)), o(R)p)
plane. Lending portfolios (portfolios with 1.0 > x > 0.0) plot on the line
between R and g. Borrowing portfolios (portfolios with x < 0.0) plot along
the extension of the line through g.

PROBLEMS III.C -

1. Derive the exact form of the linear relationship between E(R,) and
a(ﬁp) for portfolios formed according to £18) with x<1 0. _

2. The linear relationships between E(R)) and o(R) that arise from com-
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bi.nations of a risk-free security with a risky security or portfolio bring to
mind the linear relationships obtained from combinations of two risky
securities or portfolios when the returns on the two are perfectly positively
correlated. Show that, in fact, with x < 1.0 in (18), the returns on any two
portfolios of F and g are perfectly positively correlated. Interpret this result.

ANSWERS
1. First solve (19) and (21) for x to get

L ERp) - ERy)

R - E(Ry)
0(Rg) - o(R
5= 2B~ o) , x<10.
a(R,)
Equating these two expressions for x and solving for E(ﬁp) yields
. E(R,) - R
E(R,)=Rp+ (—%f R
) =Rp o o®,), x<10. (22)

This is indeed the equation for the line from R through g in Figure 7.8, since
this line has intercept R and slope (E(ﬁg) ~ RF)/o(ﬁg). ,

In intuitive terms, equation (22) describes the behavior of the expected re-
turn on portfolios formed according to (18) as the proportion x invested in
.the risk-free security F is decreased and the proportion 1 - x invested in g is
increased. When one shifts from the risk-free to the risky investment, the ex-
pected portfolio return changes at the rate E(ﬁg) - Rp: one exchar’lges Rp

f9r E(.Rg). Equation (21) tells us that such shifts toward larger holdings of the
risky investment also cause 0(R),) to increase.

2. Consider two portfolios p and p’ formed according to
R,=xRp+(1-x)R;, x<10
Ry=xRp+(1-x)Ry, x'<10,x#x".
Then
corr (ﬁp,ﬁp') = w
o(Rp)o(Rp)
_cov[(1- X)Rg, (1- x')R,]
(1 - x)o(R,)(1 - x)a(R,)
_ (1-x)(1-x")cov (ﬁg,ﬁg) _
(- x)(1-x)0*Ry)

In intuitive terms, all the uncertainty in the return on a portfolio of F and g

1.0.
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arises from g. Although the returns on two different portfolios of F and g will
not be identical, if both involve positive investment in g, the returns on the
portfolios are perfectly positively correlated. It is left to the reader to show
that any two portfolios of F and g that both involve a short position in g
(that is, x > 1.0) are likewise perfectly positively correlated; but if one of the
portfolios involves a short position in g while the other involves a long posi-
tion, their returns are perfectly negatively correlated. Completing the problem
in this way completes the analogy between the linear investment opportuni-
ties obtained with a risk-free security and those obtained from two positive
variance securities or portfolios whose returns are perfectly positively
correlated.

How might one best take advantage of the investment opportunities pro-
vided by a risk-free security? One can geta lot better results from F than are
obtained by combining it with g in Figure 7.8. For example, portfolios of
and k give combinations of E(ifp) and 0(13,,) along the straight line from Rp
through k. This line clearly dominates the combinations of E(ﬁ p)and o(ﬁ p)
along the line from Rp through g. At any given level of o(ﬁp), the portfolio
of F and k has higher expected return than the portfolio of F and g. Com-
binations of F and k likewise do not make the best possible use of F. In the
two-parameter model, since investors like maximum expected return at any
given level of standard deviation of return and minimum standard deviation
of return at any given level of expected return, the best way to use F is to
combine it with a risky portfolio so that the resulting straight line is upward
and to the left as much as possible in the E(ﬁp), o(ﬁp) plane. In geometric
terms, this involves “resting” a line on the curve bd in Figure 7.8. The point
h where this line just touches bd is the portfolio of risky securities that one
combines with F to get the combinations ofE(fZ'p) and o(ﬁp) along this line.

The line from R through A in Figure 7.8 describes the efficient set of port-
folios. Except for h, portfolios along the curve bd are not efficient, since the
portfolios along the line from Rp through h have higher expected returns at
given levels of standard deviation of return. Thus, efficient portfolios are
combinations of F and h, with returns, expected retumns, and standard devia-
tions of returns given by

R,=xRp+(l -x)R, x<10 (23)
ER,)=xRp+(1- \)ERy) x<10 (24)
o(R,) = (1 - x)o(Rn) x<10. (25)

With x = 1.0, all funds are invested in F"and we are at the point on the E(ﬁp)
axis corresponding to R in Figure 7.8. As we consider successively lower
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values of x, equations (24) and (25) give combinations of E(ﬁp) and o(ﬁp)
along the line from Ry to h, and we hit the point & when x = 0.0. For still
lower values of x, we get combinations of E(ﬁp) and o(ﬁp) along the ex-
tension of the line from R through A.

The important point is that with risk-free borrowing and lending, all effi-
cient portfolios are just combinations of the risk-free security F with the one
portfolio of risky securities h. Some efficient portfolios, those on the line
between R and h in Figure 7.8, are lending portfolios. Other efficient port-
folios, those on the extension of the line from R through A, are borrowing
portfolios; that is, the investor borrows at rate R and puts both his borrow-
ings and his investment funds w, - ¢, into k. The only difference between
one efficient portfolio and another is in how w; - ¢, is split between F and
h. The portfolio A is the only efficient portfolio of only risky assets, and A
is the risky component of every risky efficient portfolio.

In the next chapter, we find that these simplified characteristics of the
efficient set when there is risk-free borrowing and lending are important in
the analysis of market equilibrium in a world where investors make portfolio
decisions in accordance with the two-parameter model.

PROBLEM Ii1.C

3. Suppose there is risk-free lending but not borrowing; that is, suppose
that in (23), x is restricted to values between 0.0 and 1.0. What then is the
efficient set of portfolios in Figure 7.8?

ANSWER

3. When there is no risk-free borrowing, the portfolios on the line between
Rp and h are feasible, since they are lending portfolios, but portfolios on the
extension of the line through & are no longer feasible, since they are borrow-
ing portfolios. Thus, when there is no borrowing at the risk-free rate, the ef-
ficient set includes portfolios along the line from R to A. Efficient portfolios
with o(ﬁp) > o(ﬁ,,) are those portfolios above h along the curve bd.

IV. Portfolio Risk, Security Risk, and
the Effects of Diversification

Chapter 2 introduced the concepts of security risk and portfolio risk that are
relevant in a two-parameter world. We now review these concepts briefly and
provide empirical illustrations. The discussion should be useful background
for Chapter 8, which is concerned with the relationships between expected
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return and risk that arise in a two-parameter world. The discussion also ex-
pands on some earlier comments concerning the effects of diversification on
dispersion of returns.

A. Portfolio Risk and Security Risk in a Two-Parameter World

In the portfolio model, the investor is motivated by a desire to consume. He
invests at time 1 in order to consume at time 2. His only concern in his port-
folio decision is the probability distribution on consumption at time 2 that it
implies. From equation (1) we can see that is is equivalent to say that his only
concern in his portfolio decision is the probability distribution of portfolio
return that it implies. The investor is only concerned with individual securities
in terms of how they affect the distribution of the return on his portfolio.

In a world of normal portfolio return distributions, the distribution of the
return on any portfolio can be completely characterized from knowledge of
its mean and standard deviation or variance. Thus, to determine the effect of
an individual security on the distribution of a portfolio’s return, it is sufficient
to determine the contribution of the security to the expected value and vari-
ance of the return on the portfolio. The return, expected return, and variance
of return on a portfolio are

~ n ~

Ry, =3 xipR; (26)
i=1
ER,)=3" xpER) @7
i=1
*(Rp) = Z": Z": XipXjp Oj» (28)
i=1 j=1

where 0;; = cov (ﬁ,-, ﬁ,-), n is the number of securities available, and one port-
folio is different from another in terms of the proportions x;,i=1,...,n,
invested in individual securities.

The contribution of security i to E(ﬁp) is

xipE(R),
the expected return on the security weighted by x;,, the proportion of port-

folio funds wy ~ ¢, invested in security / to obtain portfolio p. To highlight
the contribution of security i to 0°(Rp), equation (28) is rewritten as

o’(ﬁp) = i x1p<i x,-po,v,-). (29)
=1

i=1
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Thus, the variance of the return on portfolio p is the sum of n terms,

n

Xip <E x,-,,oi,->, i=1,...,n, (30)
j=1

each of which represents the contribution of a security to 02(R ). This con-

tribution of security i to o (R,,) is x;p, the proportion of portfolio funds in-

vested in i, multiplied by< E x,~,,o,~,>, the weighted average of the pairwise
j=1
covariances between the return on security / and the returns on each of the
securities in p, where the weight applied to oj; is x;,, the proportion of port-
folio funds invested in security j to obtain portfolio p.

In the two-parameter model, the risk of a portfolio is measured by the vari-
ance of its return. Thus, under one interpretation, the risk of security i in
portfollo p might be measured by (30), the contribution of the security to

2
(R ). It is, however, more convenient to call the weighted average of
covariances

n
inpoii’ i=1,...,n, (31)

the risk of security i in portfolio p. Then, from (29), the risk of the portfolio,
o (R,,) is just the weighted average of the risks of the individual securities.

Several comments ought to emphasize the view of security risks one gets
when the object of concern to the investor is the distribution of the return on
his portfolio. First, to be precise, one must always talk about the risk of se-
curity / in portfolio p, since the risk of a security is different from one port-
folio to another. In formal terms, as defined by (31), the risk of security 7 in
portfolio p depends on the return covariances 0ij, J =1, , n, which are
parameters of the joint distribution of security returns and thus are the same
from portfolio to portfolio. The risk of i in p also depends on how securities
are combined to form p (that is, on the portfolio weights xj,,/=1,...,n)
and the combinations are different from one portfolio to another. ’

Second, an apparently “risky” security (that is, a security that has a positive
variance of return) may have positive, zero, or negative risk in a portfolio.
Thus, noting that one of the terms in (31) involves o;; = 0*(R;), we can re-
write (31) as

n ~ n
/Z; Xjp0ij = Xip 0 (R) + 3 xjp0;. (32)
%

Although the first term on the right of the equality is positive if x;, is posi-
tive, the value of the whole expression can be positive, zero, or neg’;tive de-
pending on the value of the weighted average of covariances in the second
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term on the right of the equality. In short, the risk of a security in a portfolio
depends on the covariances between the return on the security and the re-
turns on other securities in the portfolio, as well as on the variance of the
return on the security. A security that apparently has high “risk” in terms of
the variance of its return may have low risk when viewed as a component of
a portfolio.

In fact, inspection of equation (32) suggests that in a portfolio which con-
tains a large number of securities, and where portfolio funds are not concen-
trated in one or a few of the securities, the risk of a security might depend
more on the covariances between the return on the security and the returns
on other securities in the portfolio than on the variance of the security’s re-
turn. Thus, from (32), o’(ﬁi) is just one of n terms that determine the risk
of security i in p, with the remaining n - 1 terms being the pairwise covari-
ances. This, however, does not in itself imply that the covariances in (32)
dominate the variance. For this purpose, what constitutes a “large” n depends
on the magnitude of o’(ﬁ,-) relative to the 0;;, an empirical issue which the
examples that follow are meant to illuminate.

PROBLEMS IV.A

1. Can a security have positive risk in a portfolio and yet make a negative
contribution to the risk of the portfolio?

2. Show that the sample mean and variance of the return on a portfolio
can be written in forms exactly analogous to (27) and (28). This problem is
important for the numerical examples that follow.

ANSWERS

1. The contribution of a security to the variance of the return on a port-
folio is given by (30). We have defined the risk of the security in the portfolio
as the weighted average of covariances that appear in the parentheses in (30),
that is, as (31). Thus, even if the risk of a security in the portfolio is positive,
the security makes a negative contribution to the risk of the portfolio if (31)
is positive and x;, < 0.0; that is, portfolio p involves short-selling of security i.

In intuitive terms, when a security makes a negative contribution to the
variance of the return on a portfolio, that security is risk-reducing as far as
the portfolio is concerned. In the present example, we see that a security that
would make a positive contribution to the risk of a portfolio if held long
makes a negative contribution when held short. Thus, a short position in the
security is risk-reducing. The sword is, however, double-edged. If the ex-
pected return on the security is positive and the security is sold short, then
the security also makes a negative contribution to the expected return on the
portfolio.
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2. With a time series Ry, ¢ = 1, ..., T, of T observations of the return on
portfolio p, the sample variance of the portfolio returns is

T _
Z pt = Rp)2

s*Rp) = T , (33)

where Ep, the sample mean of the portfolio returns, is

T
> Ry
p t=1
Ry = I (34)
Since
n
Rpt =Y xipRis, (35)
i=1
T n n T
33 xipRit Y xip 3 Rix
E - t=1i=1 - i=1 t=1 _ n E 36
P T T Z} XipRi, (36)

where R; is the sample mean of the returns on security i. Thus, (33) can be

rewritten as 2

T/ n n _
Z(Z XipRir = 3 x,-,,R,-)
r=1\i=1 i=1

s’ (Rp) =

T-1

> (£ xolru-R 1)

T n n
IDD Z xipXjp(Rit = R)(Rj: - R))

T-1

T — _
z_: (Rir - R)(Rjt - R))

$*(Rp) = i f XipXjpSij> 37

where

T-1
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is the usual (see Chapter 3) sample estimate of the covariance 0;;, and when

=j, 5; = s*(R;) is the usual sample estimate of the variance ¢ 2(R)).

Equatlon (37) says that the sample variance of the return ona portfolio is
the weighted average of the sample variances and covariances of security re-
turns, just as equation (28) says that the true variance of the return on a
portfolio is the corresponding weighted average of security return variances
and covariances. And (36) says that the sample mean of the return on a port-
folio is the weighted average of the sample means of the security returns, just
as (27) says that the expected portfolio return is the weighted average of the
expected security returns.

B. Portfolio Risk and Security Risk: Empirical Examples

Using monthly data for July 1963-June 1968, Table 7.1 shows components
of the average monthly return and of the variance of monthly returns on
portfolios of increasing numbers of randomly selected securities. Results are
presented for ten portfolios, and column (7) of the table shows that the ten
portfolios include N =1, 2, 3, 4,5,6,10,15, 25, and 50 securities. Columns
(1) and (2) show that the number of securities in the portfolios is increased
by adding securities and redistributing portfolio funds equally across secu-
rities, so that in a portfolio of N securities, each security gets the proportion
x;p = 1/N of portfolio funds. We use upper case N now to indicate the num-
ber of securities that appear in a portfolio with nonzero weights. For a given
security and portfolio, the entry in column (3) of Table 7.1 shows xipl_Q;,
which equation (36) says is the contribution of security 7 to the average re-
turn on the portfolio. Thus, the average return on the portfolio is the sum of
the entries for individual securities in column (3), and for a given portfolio
the average portfolio return is shown in column (3) in the line labeled “Totals.”

For a gjiven security and portfolio, the entries in columns (4)-(6) show
components of the contribution of the security to the sample variance of the
return on the portfolio. Thus in direct analogy with equations (29) to (31),
equation (37) for the sample variance of the return on portfolio p can be
rewritten as

N N
S Rp) =2 xip(z xip‘ii>’ (38)
i=1 j=1

so that the contribution of security i to the sample variance of the return on
pis

N
xip(z xips,-,->. (39)

j=1
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If we call the weighted average of sample covariances

N
2 XipSij (40)
j=1

the estimated risk of security 7 in portfolio p, then, from (38), the estimate of
the risk of the portfolio, s%(R p)» is just the weighted average of the estimates
of security risks.

For a given security and portfolio, column (6) of Table 7.1 shows the quan-
tity in expression (39) which is the contribution of the security to the sample
variance of the portfolio’s return; and the entry on the “Totals” line of col-
umn (6) is s*(Rp). The entries in columns (4) and (5) for a given security
break the contribution of the security to sz(R,,) into a variance component
and a weighted average of covariances component. That is, expression (39) is
broken down as

N N
x,-,,(Z x/ps"f)= XipS? (R + xip 3 XjpSij. @41
j=1 j=1

j#i
The entries in the “Totals” line of columns (4) and (5) thus give a breakdown
of s*(R p) into security return variances and covariances as

N N N
s’ (Rp) = > xhsHR) + 3 XipXjpSij- “42)
i=1 i=1 j=1
j#i
Several points of interest can be drawn from Table 7.1. Note that as the
number of securities in the portfolios increases, the contributions of a secu-
rity to average portfolio return and to sample variance of portfolio return go
down. In the case of R), since the contribution of security i to R, is x;,R;
and sin_ce we are dealing with portfolios of equally weighted securities, x,,,l?, =
(1/N)R; decreases as NV, the number of securities in the portfolio, is increased.
Likewise, the contribution of security i to sz(ﬁp) is

N

2 Sij

(il
x- x. s.. = —
ip < ) YAY;

Although the estimated risk of security i in the portfolio

Mz

s,,-

N

/

N
2 XjpSij =
j=1

TABLE 7.1
Components of the Sample Mean and Variance of Monthly Returns on Portfolios
of Increasing Numbers of Randomly Selected Securities, July 1963-June 1968

(1) (2) (3) (4) (5) (6) (7)
_ N N
SECURITIES (/) Xip xipRj xipzsz(Ri) Xip Z XjpSij  Xip Z XjpSi N
=1 j=1
IPL, Inc. 1.000 0.00701 0.012341 0.000000 0.01234
Totals 1.000 0.00701 0.012341 0.000000 0.01234 1
IPL, Inc. 0.500 0.00351 0.003085 0.000524 0.00361
Lehigh Porttand Cement 0.500 0.00171 0.001376 0.000524 0.00190 2
Totais 1.000 0.00522 0.004462 0.001048 0.00551
IPL, Inc. 0.333 0.00234 0.001371 0.000274 0.00164
Lehigh Portland Cement 0.333 0.00114 0.000612 0.000470 0.00108
Hotel Corp. of America 0.333 0.01186 0.001548 0.000277 0.00183 3
Totals 1.000 0.01534 0.003531 0.001021 0.00455
IPL, Inc. 0.250 0.00175 0.000771 0.000233 0.00100
Lehigh Portland Cement 0.250 0.00085 0.000344 0.000432 0.00078
Hotel Corp. of America 0.250 0.00890 0.000871 0.000370 0.00124 4
Portec, Inc. 0.250 0.00489  0.000622 0.000461 0.00108
Totals 1.000 0.01639 0.002608 0.001495 0.00410
IPL, Inc. 0.200 0.00140  0.000494 0.000213 0.00071
Lehigh Portiand Cement 0.200 0.00068 0.000220 0.000296 0.00052
Hotel Corp. of America 0.200 0.00712 0.000557 0.000280 0.00084
Portec, Inc. 0.200 0.00391 0.000398 0.000397 0.00080 5
Bristol Myers Co. 0.200 0.00458  0.000142 0.000228 0.00037
Totals 1000 0.01769 0.001811 0.001413 0.00322
IPL, Inc. 0.167 0.00117  0.000343 0.000216 0.00056
Lehigh Portland Cement 0.167 0.00057 0.000153 0.000265 0.00042
Hotel Corp. of America 0.167 0.00593 0.000387 0.000234 0.00062
Portec, Inc. 0.167 0.00326  0.000277 0.000303 0.00058 6
Bristol Myers Co. 0.167 0.00381 0.000098 0.000178 0.00028
Van Raalte Co. 0.167 0.00347 0.000101 0.000215 0.00032
Totals 1.000 0.01821 0.001359 0.001411 0.00277
IPL, Inc. 0.100 0.00070 0.000123 0.000164 0.00029
Lehigh Portland Cement 0.100 0.00034  0.000055 0.000150 0.00021
Hotel Corp. of America 0.100 0.00356 0.000139 0.000168 0.00031
Portec, Inc. 0.100 0.00195  0.000100 0.000181 0.00028
Bristol Myers Co. 0.100 0.00229 0.000035 0.000106 0.00014
Van Raalte Co. 0.100 0.00208 0.000036  0.000122 0.00016 10
Ex-Cell-O Corp. 0.100 0.00157  0.000051 0.000164 0.00022
Keebler Co. 0.100 0.00201 0.000056 0.000191 0.00025
Canadian Breweries Ltd. 0.100 0.00253  0.000059 0.000018 0.00008
Gulf, Mobile & Ohio R.R. 0.100 0.00247 0.000061 0.000187 0.00025
Totals 1.000 0.01949 0.000716 0.001450 0.00217
IPL, Inc. 0.067 0.00047  0.000055 0.000115 0.00017
Lehigh Portiand Cement 0.067 0.00023  0.000024 0.000108 0.00013
Hotel Corp. of America 0.067 0.00237 0.000062 0.000123 0.00018
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TABLE 7.1{conTtD)
Components of the Sample Mean and Variance of Monthly Returns on Portfolios
of Increasing Numbers of Randomly Selected Securities, July 1963-June 1968

(1) (2) (3) (4) (5) (6) (7)
N N
SECURITIES (/) Xjp x;pﬁi x;pzsz(R,') "ipz XjpSij "ipz xjpsij N
j=1 =1

Portec, Inc. 0.067 0.00130  0.000044 0.000127 0.00017
Bristol Myers Co. 0.067 0.00153 0.000016 0.000067 0.00008
Van Raalte Co. 0.067 0.00139 0.000016 0.000079 0.00010
Ex-Cell-O Corp. 0.067 0.00105 0.000023 0.000109 0.00013
Keebler Co. 0.067 0.00134 0.000025 0.000127 0.00015

Canadian Breweries Ltd. 0.067 0.00168 0.000026 0.000031 0.00006 15
Gulf, Mobile & Ohio R.R. 0.067 0.00164 0.000027 0.000121 0.00015
Dana Corp. 0.067 0.00044 0.000011 0.000084 0.00009
Union Pacific R.R. 0.067 0.00057 0.000011 0.000075 0.00009
Cyclops Corp. 0.067 0.00063 0.000017 0.000085 0.00010
Ohio Edison Co. 0.067 0.00046 0.000007 0.000015 0.00002
Central Foundry 0.067 0.00125 0.000101 0.000221 0.00032
Totals 1.000 0.01635 0.000464 0.001489 0.00195
IPL, Inc. 0.040 0.00028 0.000020 0.000059 0.00008
Lehigh Portland Cement 0.040 0.00014 0.000009 0.000055 0.00006
Hotel Corp. of America 0.040 0.00142 0.000022 0.000070 0.00009
Portec, Inc. 0.040 0.00078 0.000016 0.000076 0.00009
Bristol Myers Co. 0.040 0.00092 0.000006 0.000043 0.00005
Van Raalte Co. 0.040 0.00083 0.000006 0.000041 0.00005
Ex-Cell-O Corp. 0.040 0.00063 0.000008 0.000061 0.00007
Keebler Co. 0.040  0.00080 0.000009 0.000066 0.00007
Canadian Breweries Ltd. 0.040 0.00101 0.000009 0.000011 0.00002
Guif, Mobile & Ohio R.R. 0.040 0.00099 0.000010 0.000068 0.00008

Dana Corp. 0.040 0.00026 0.000004 0.000045 0.00005 25
Union Pacific R.R. 0.040 0.00034 0.000004 0.000042 0.00005
Cyclops Corp. 0.040 0.00038 0.000006 0.000049 0.00006
Ohio Edison Co. 0.040 0.00027 0.000002 0.000014 0.00002
Central Foundry 0.040 0.00075 0.000036 0.000124 0.00016
United States Gypsum 0.040 0.00021 0.000007 0.000056 0.00006
Eversharp Inc. 0.040 0.00013 0.000019 0.000060 0.00008
Dayton Power & Light Co. 0.040 0.00029 0.000004 0.000034 0.00004
Cluett, Peabody & Co. 0.040 0.00079 0.000006 0.000038 0.00004
Washington Gas Light 0.040 -.00000 0.000001 0.000012 0.00001
Lowenstein, M., & Sons 0.040 0.00076  0.000010 0.000067 0.00008
International Telephone 0.040 0.00067 0.000006 0.000050 0.00006
Carpenter Steel Co. 0.040 0.00079 0.000009 0.000045 0.00005
Greyhound Corp. 0.040 0.00030 0.000006 0.000053 0.00006
Allegheny Ludlum Steel 0.040 0.00057 0.000006 0.000035 0.00004
Totals 1.000 0.01431 0.000242 0.001276 0.00152
IPL, Inc. 0.020 0.00014 0.000005 0.000028 0.00003
Lehigh Portiand Cement 0.020 0.00007 0.000002 0.000032 0.00003
Hotel Corp. of America 0.020 0.00071 0.000006 0.000046 0.00005
Portec, Inc. 0.020 0.00039 0.000004 0.000042 0.00005
Richardson Merrill Inc. 0.020 0.00026 0.000002 0.000017 0.00002

TABLE 7.1 (contD)
Components of the Sample Mean and Variance of Monthly Returns on Portfolios
of Increasing Numbers of Randomly Selected Securities, July 1963~June 1968

1) (2) (3) 4) (5} 6) (7)
N N
SECURITIES (/) Xip xjpRj xjp?s?{R)) x,-pz XjpSi x,-prips,-i N
=1 =1

Van Raalte Co. 0.020 0.00042  0.000001 0.000021 0.00002
Ex-Cell-O Corp. 0.020 0.00031 0.000002 0.000034 0.00004
Keebler Co. 0.020 0.00040 0.000002 0.000031 0.00003
Canadian Breweries Ltd. 0.020 0.00051 0.000002 0.000000 0.00000
Gulf, Mobile & Ohio R.R.  0.020 0.00049  0.000002 0.000036 0.00004
Dana Corp. 0.020 0.00013 0.000001 0.000025 0.00003
Union Pacific R.R. 0.020 0.00017  0.000001 0.000020 0.00002
Cyclops Corp. 0.020 0.00019  0.000002 0.000028 0.00003
Ohio Edison Co. 0.020 0.00014  0.000001 0.000008 0.00001
Central Foundry 0.020 0.00038 0.000009 0.000066 0.00007
United States Gypsum 0.020 0.00011 0.000002 0.000030 0.00003
Eversherp, Inc. 0.020 0.00006 0.000005 0.000033 0.00004
Dayton Power & Light Co. 0.020 0.00014 0.000001 0.000018 0.00002
Cluett, Peabody & Co. 0.020 0.00039 0.000002 0.000019 0.00002
Washington Gas Light 0.020 -.00000 0.000000 0.000005 0.00001
Lowenstein, M., & Sons 0020 0.00038 0.000002 0.000035 0.00004

international Telephone 0.020 0.00034 0.000001 0.000027 0.00003 50
Carpenter Steel Co. 0.020 0.00039 0.000002 0.000027 0.00003
Greyhound Corp. 0.020 0.00015  0.000002 0.000026 0.00003
Atlegheny Ludium Steel 0.020 0.00028 0.000001 0.000022 0.00002
United Airlines inc. 0.020 0.00042 0.000004 0.000037 0.00004
Adems Express 0.020 0.00024 0.000000 0.000011 0.00001
Ambac Industries, inc. 0.020 0.00057 0.000005 0.000057 0.00006
Masonite Corp. 0.020 0.00034  0.000003 0.000042 0.00005
Lehigh Valiey Industries 0.020 0.00106 0.000011 0.000040 0.00005
American Cament Corp, 0.020 0.00031 0.000004 0.000041 0.00004
Ebasco Industries, Inc. 0.020 0.00032 0.000001 0.000017 0.00002
Raybestos Manhattan 0.020 0.00022 0.000001 0.000014 0.00002
Intand Steel Co. 0.020 0.00010  0.000001 0.000028 0.00003
Sterling Drug Inc. 0.020 0.00033 0.000002 0.000024 0.00003
Walworth Co. 0.020 0.00040 0.000008 0.000047 0.00005
Carborundum Co. 0.020 0.00035 0.000003 0.000036 0.00004
Hudson Bay Mining & Smel. 0.020 0.00017  0.000001 0.000023 0.00002
MSL Industries, Inc. 0.020 0.00022 0.000002 0.000032 0.00003
Rohr Corp. 0.020 0.00050 0.000004 0.000027 0.00003
Certainteed Products Corp. 0.020 0.00038 0.000005 0.000062 0.00007
Neisner Bros. 0.020 0.00031 0.000002 0.000020 0.00002
Raxall Drug and Chemical 0.020 0.00040 0.000003 0.000046 0.00005
Laclede Gas Co. 0.020 0.00000 0.000000 0.000011 0.00001
Chemetron Corp. 0.020 0.00037 0.000002 0.000038 0.00004
Washington Gas Light 0.020 -.00000 0.000000 0.000005 0.00001
Fiscbach and Moore Inc. 0.020 0.00038 0.000002 0.000027 0.00003
C.1.T. Financial 0.020 0.00009 0.000001 0.000015 0.00002
Donneliey, R. R.,and Sons 0.020 0.00025  0.000001 0.000021 0.00002
Continental Can Co. Inc. 0.020 0.00029 0.000001 0.000027 0.00003
Totals 1.000 0.01497 0.000130 0.001426 0.00156

209
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need not change systematically as N is increased, the contribution of the
security to sz(Rp) goes down with the weight x;, = 1/V. In simplest terms,
as portfolios become increasingly diversified, as new securities are introduced
and the proportions invested in individual securities are reduced, an individual
security becomes less important in terms of its effects on portfolio return
distributions.

The decreasing importance of the role of an individual security in portfolios
of increasing numbers of securities depends, however, on the presumption
that smaller and smaller fractions of portfolio funds are invested in the secu-
rity. If the number of securities is increased but the fraction invested in some
security is not decreased, then that security will make the same contribution
to average portfolio return and about the same contribution to standard de-
viation of portfolio return for all portfolio sizes.

One of the facts that comes out of the theoretical discussion of the risks of
securities in portfolios is that in a portfolio of many securities, the variance of
a security’s return is only 1 of ¥ terms that determine the contribution of the
security to the variance of the return on the portfolio, with the remaining
N - 1 terms being the pairwise covariances between the return on the security
and the return on each of the other securities in the portfolio. However, we
cannot conclude that for any specific “large” N the covariance terms domi-
nate the variance term until we know something about the magnitudes of the
security return variances versus the covariances. Table 7.1 provides sample
information on this point.

For a given security and portfolio, columns (4) and (5) of Table 7.1 show,
respectively, the contribution of the security’s sample return variance to the
sample variance of the portfolio’s return and the contribution of its sample
covariances. As one looks across portfolios of increasing numbers of secu-
rities, the numbers in both columns (4) and (5) decline, which is just a
reflection of the fact that the contribution of an individual security to port-
folio risk declines as the number of securities in the portfolios increases and
the proportion of portfolio funds invested in an individual security decreases.
As one looks across portfolios of increasing numbers of securities, however,
one also observes a decline in the magnitude of the numbers in column “4)
relative to those in column (5), and this is direct evidence of the declining
importance of security return variances relative to covariances as the port-
folios become increasingly diversified.

Perhaps the best information on this phenomenon is in the “Totals” rows in
Table 7.1. For a given portfolio, the entries in columns (4) and (5) of the
“Totals” row show the two components of equation (42) for sz(Rp); that is,
the entry in column (4) of the “Totals” row shows the total contribution of
the sample security return variances to s2(Rp), while the entry in column (5)
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shows the total contribution of security return covariances to sz(Rp). Since
we are dealing with portfolios of equally weighted securities, equation (42)
can be rewritten as

N N
% s*(R;) ; j=1 i
PR,) = —\ L
N N N
or
$(Rp) = Lamy+ ! S (43)
N N

where s?(R;) is the average of the N values of s*(R;) in the portfolio, and

N N
2 2 Si
i=1 j=1

_ J#i

5 = MV-D (44)

is the average of the N(V - 1) pairwise covariances Sgj-

When N is large, (N - 1)/N is close to 1, so that, from (43), the total contri-
bution of covariances to the sample variance of the portfolio return is approx-
imately §j;, and this average of pairwise covariances should not change in any
particular way as a function of M. This point is well illustrated in Table 7.1
where, aside from reflecting the approach of (N - 1)/N to 1, the values of

N N -1 .
2 Xip ) XjpSi; = i
i=1 j=1

j*&i
shown in column (5) of the “Totals” rows do not change with N in any par-
ticularly systematic way for portfolios of five or more securities. In short,
once the portfolio becomes large, continuing to add securities has little effect
on the contribution of security return covariances to the variance of the re-
turn on the portfolio.

Quite the opposite conclusion applies to the security return variances. Thus,
although s2(R;) in (43) need not change systematically as NV is increased
(1/N)s*(R;), the total contribution of the security return variances to s’(Rp),
declines inexorably as N is increased. This effect is well illustrated in Table
7.1, where the values of

N ] —
> xhs'R) = N s*(Ry)
=1
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shown in column (6) of the “Totals” rows decline more or less like 1/V as N
is increased. For example, the values of (1/N)s*(R;) for the portfolios of 10,
15, 25, and 50 securities are 000716, .000464, 000242, and .000130,
respectively.

The net result of the declining contribution of security return variances to
sz(Rp) as N is increased, as compared to the relatively stable contribution of
the security return covariances, is that s’(Rp) becomes more and more a re-
flection of the covariances. Thus in columns (4) and (5) of the “Totals” rows
of Table 7.1, one finds that the covariances account for less than one-fifth of
s*(Rp) when N = 2; their contribution to s*(R,,) is about equal to that of the
security return variances when N = 6; and when N = 50 the security return
variances account for less than one-tenth of the value of s*(R,).

The fact that it takes a portfolio of 50 securities to get the security return
variances down to accounting for less than 10 percent of the value of s’(Rp)
indicates, however, that on average the pairwise covariances between security
returns are small relative to security return variances. Thus, from the “Totals”
row for the portfolio of 50 securities in Table 7.1 we find that

| E— _
m s2(R;) = 00013, sothat s*(R;)=.00650,
while
49
o %= 00142, so that ;= 00145,

In short, for these 50 securities, security return variances average about 4.5
times larger than pairwise covariances between security returns. Thus, it takes
a portfolio of many securities before the covariances dominate in determining
the variance of the return on the portfolio. One would find similar results for
other securities and portfolios.

C. The Effects of Diversification

The preceding analysis can be viewed from a different perspective. In partic-
ular, the analysis shows how diversification works to reduce the variance of
the return on a portfolio. Thus, equation (43) and the examples in Table 7.1
tell us that, aside from reflecting the approach of (¥ - 1)/N to 1.0, the contri-
bution of the pairwise covariances between the returns on individual securities
in a portfolio to the variance of the portfolio’s return generally does not
change in any systematic way as the number of securities in the portfolio is
increased. Equation (43) and the examples of Table 7.1 also tell us, however,
that the contribution of security return variances to the variance of the return
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on the portfolio goes down as the number of securities in the portfolio is in-
creased, and more or less in proportion to 1/N. With the pairwise covariances
making a steady contribution to the variance of the portfolio return, and with
the contribution of security return variances declining as the number of secu-
rities in the portfolio is increased, the net result is a decline in the variance of
the portfolio return, with the decline a direct reflection of the declining con-
tribution of security return variances.

An illustration of the effects of diversification on the variance of portfolio
returns is provided by columns (4) to (6) in the “Totals” rows of Table 7.1.
For larger values of NV, one observes smaller values of s*(R,) in column (6),
and it is clear from columns (4) and (5) that for N = 5 the decline in s*(R,)
as NV is increased is almost entirely a reflection of the decline in the contri-
bution of security return variances to the variance of portfolio returns.

The effects of diversification on the dispersion of distributions of portfolio
returns can perhaps be better appreciated from Figure 7.9, which presents a
plot of s(R,) against NV for the portfolios of the random sample of stocks in
Table 7.1, but for every value of N from 1 to 50. The important fact illus-
trated in Figure 7.9 is that most of the effects of diversification on the dis-
persion of the distribution of the portfolio return occur when the first few
securities are added to the portfolio. Once the portfolio has 20 securities,

FIGURE 7.9
The Standard Deviation of Portfolio Return as a Function of the Number of Securities in
the Portfolio: First Sample of 50 Randomly Selected Stocks
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FIGURE 7.10

The Standard Deviation of Portfolio Return as a Function of the Number of Securities in
the Portfolio: Second Sample of 50 Randomly Selected Stocks
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fuTther diversification has little effect. The reason for this phenomenon is
evident in equation (43). With portfolios of equally weighted securities, the
cont.n’bution of security return variances to the variance of portfolio re,turn
declines with NV more or less in proportion to 1/N. The function f(N) = 1/N
moves toward zero at an ever decreasing rate, accomplishing 95 percent of its
total descent as NV goes from 1 to 20.

In a sense, though, the random sample of 50 stocks in Table 7.1 might be
too well behaved: that is, in Figure 7.9, s(Rp) declines perhaps a little more
smoothly as NV is increased than we might typically expect. Although the
average secu_ri_ty return variance s2(R;) and the average of the security return
covariances §; in (43) are not expected to change in any particular systematic
way as a function of N, they will change to some extent, and this gives rise to
some amount of irregularity in the behavior of s(R,) as a function of N. We
can perhaps see this a little better in Figure 7.10, which is constructed in the
same way as Figure 7.9 but from a different sample of 50 randomly selected
stock.s. In Figure 7.10 there is a noticeable jump in s(Rp) when the eighth
sect.mty is added to the portfolio, whereas in Figure 7.9 there is a much less
noticeable jump in s(R,) when the 15th security is added.
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PROBLEM IV.C
1. Compute the values of f(N) =1/NforN= 1,2,3,4,5,10,25,50, 100,
and 1,000, and make a rough sketch of the function.

ANSWER
1. Doit!

Finally, when one examines carefully columns (4) and (5) for the portfolio
of 50 securities in Table 7.1, it seems that securities with large return var-
iances generally have large average covariances with other securities. The same
phenomenon would be observed for other securities and portfolios. A possible
explanation is as follows.

One can argue that for measuring the association between the returns on
two securities, the correlation between the returns is more relevant than the
covariance, since the square of the correlation can be interpreted as the pro-
portion of the variance of the return on either security that can be attributed
to its linear association with the return on the other security. The covariance
has no such direct interpretation. The correlation is, however, related to the
covariance, since the former is

P(ﬁi,ﬁ,') _ cov~(R,,R,) . g
o(®;)o(R))
Alternatively, the covariance is
cov By, Rp) = o(R;, R))o(R)oR;). (45)

Consider two securities, i and k, whose returns have the same correlation
with the return on security j, so that, in terms of proportion of variance ex-
plained, the returns on i and & have the same degree of association with the

return on j. Nevertheless, equation (45) tells us that if o(R;) > o(R,), then
cov (va ﬁ,-) > cov (Rvk, ﬁ,). Thus, although the returns on i and k have the
same correlation with the return on j, because the return on i has larger
standard deviation than the return on k, it also has larger covariance with
the return on j.

Suppose now that there is no systematic relationship between correlations
of returns on securities and standard deviations of security returns. Then it
follows from the discussion above that there will be a relationship between
the standard deviations of security returns and their average covariances with
the returns on other securities. As observed in Table 7.1, securities with
larger standard deviations of return will tend to have larger average covari-
ances with the returns on other securities.
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The observed relationship between standard deviations of security returns
and their average covariances with the returns on other securities takes some
of the sting out of earlier comments. Thus, in a diversified portfolio of many
securities, the contribution of an individual security to the variance of the
portfolio’s return depends to a greater extent on the security’s covariances
with the returns on other securities in the portfolios than on the variance of
the security’s return. Nevertheless, because of the relationship between
security return variances and covariances, the variance of a security’s return
is likely to be a good indication of how the security will contribute to the
variance of the return on a diversified portfolio. Similarly, although the
variance of the return on a diversified portfolio depends primarily on the
covariances between the returns on the securities in the portfolio, the vari-
ances of the component security returns are nevertheless likely to be a good
indication of the level of the variance of the return on the portfolio. Gen-
erally, the larger the variances of component security returns, the larger the
variance of the return on the portfolio.

V. Conclusions

We have considered the two-parameter portfolio model in some detail, both
theoretical and numerical. We are ready now to consider the characteristics
of equilibrium prices and the relationship between expected return and risk
in a market where investors make portfolio decisions according to the two-
parameter model.

CHAPTER

Capital Market
Equilibrium in a
Two-Parameter World

1. Introduction

Chapter 7 presents a model for portfolio decisions by investors in a world
where probability distributions of returns on portfolios are normal. In this
two-parameter model, the investor finds it possible to summarize the distribu-
tion of the return on any portfolio in terms of its mean and its standard
deviation, and he can rank portfolio return distributions solely in terms of
the values of these parameters. Moreover, the investor is assumed to like ex-
pected portfolio return, but he is risk-averse in the sense that he dislikes
standard deviation of portfolio return. These assumptions about the investor’s
tastes lead to the fundamental result of the two-parameter model—the in-
vestor’s optimal portfolio is efficient. To be efficient, a portfolio must have
the property that no other portfolio with the same or higher expected return
has lower standard deviation of return.

This chapter is concerned with the implications of the portfolio model for
capital market equilibrium. That is, if investors make portfolio decisions in
accordance with the two-parameter model, how will this affect the process
of price formation in the capital market? More specifically, if investors try to
hold efficient portfolios, what sort of relationships between expected return

257



258 FOUNDATIONS OF FINANCE

and risk can we expect to observe in the capital market? The next chapter
then considers whether the expected return-risk relationships that character-
ize the capital market in a two-parameter world are descriptive of the data
generated by the real-world capital market.

The fiist step in the present chapter is to discuss expected return and risk
from the viewpoint of an individual investor. We then find that, with a few
simplifying assumptions, the type of expected return-risk relationships that
apply to individual investors also apply to the market.

II. The Relationship Between Expected Return and Risk in
an Efficient Portfolio

The decision problem facing the investor is precisely as in Chapter 7. At time
1 the investor has wealth w; that he must allocate to current consumption
¢; and to an investment w, - ¢, in some portfolio. The market value of his
portfolio at time 2 is then his consumption ¢, at time 2. The consumption-
investment decision takes place in a capital market assumed to be perfect or
frictionless in the sense that an investor can purchase as much or as little
of any security as he sees fit (securities are infinitely divisible), there are no
transactions costs in purchasing and selling securities, and any investor can
buy or sell as much as he likes of any security without affecting its price.
Finally, the investor’s decision is assumed to be in accordance with the two-
parameter model.

A. The Risks of Securities and Portfolios

In the two-parameter model, the risk of a portfolio is measured by the
standard deviation or, equivalently, by the variance of its return. The logic
is that a risk-averse investor is averse to dispersion of portfolio return. With
normal portfolio return distributions, dispersion is completely summarized by
variance. The risk of a security in a portfolio is then determined by the con-
tribution of the security to the variance of the return on the portfolio.

In formal terms, the return, expected return, and variance of returmn on a
portfolio p are
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Rp=3 xipki 1)
E(R,)= 3 xipER) %)
i=1

M=

o n
Oz(Rp) = XipXjp Oijs (3)
=1

i=1 j

where n is the number of securities available for inclusion in portfolios, X;p is
the proportion of portfolio funds w, - ¢, invested in security i in portfolio p,
E(ﬁ,-) is the expected return on security i, and o;; = cov (ﬁ,-, R~,-) is the co-
variance between the retugns on securities / and j.

Rewriting (3) as

n

- n n ~ ~
0*(Rp) =3 x;p (Z x,-po,-,-) =2 xip cov (R, Rp), 4)
i=1 i=1

j=1

the contribution of security i to the risk or variance of the retumn on p is

n ~ ~
Xip (Z Xip o,-,) =x;p cov (R;, Rp). (5)
j=t
Thus, one could interpret (5) as the risk of security i in portfolio p. Chapter 7
suggests, however, that it is more convenient to call the weighted average of
covariances,

n -~ ~
Z Xip 0,',' =Ccov (Ri’ RP)’ (6)
j=1

the risk of security 7 in p, and we see shortly why this is the more convenient
measure of risk. If we interpret (6) as the risk of security i in portfolio p,
then from (4) the risk of the portfolio is the weighted average of the risks of
individual securities.

We have known since Chapter 2 what the two-parameter model says about
the risks of portfolios and the risks of securities in portfolios. We now want
to determine what the model says about the relationships between expected
return and risk. We find that for any efficient portfolio there is an equation
relating the expected return on any security in that portfolio to the risk of
the security in the portfolio. More specifically, the mathematical conditions
that a portfolio must satisfy to be efficient define the relationship between
expected retum and risk for individual securities in that portfolio. Much of
the rest of this chapter involves developing this point in detail.
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B. The Mathematics of Minimum Variance Portfolios

To be efficient, a portfolio must have the property that no other portfolio
with the same or higher expected return has lower standard deviation of re-
turn. Equivalently, if a portfolio is efficient, then (a) it has the maximum
possible expected return given the variance of its return, and (b) it has the
smallest possible variance of return given its expected return.

Any portfolio that satisfies condition (b) is called a minimum variance
portfolio. Any such minimum variance portfolio can be viewed as the solu-
tion to a problem of the form:

Minimize o2 (ﬁp), (7a)
x,-p
i=1,...,n
subject to the constraints
n ~ -~
Z xipE(Ri) = E(Re) (7b)
n
2 Xip=10. (7¢)

i=1

Here E(ﬁe) is some given level of expected return. The problem stated in
equations (7a) to (7c) is to choose proportions Xip,i=1, -, n,invested in
individual securities that minimize the variance of portfolio return subject
to the constraints that expected portfolio return is equal to £ (ﬁe) and that
the sum of the proportions invested in individual securities is 1.0.

In geometric terms, suppose the left boundary of the portfolio opportunity
set is the solid curve shown in Figure 8.1. (For the moment, the dashed line
in the ﬁgure is to be ignored.) The minimum variance portfolio with expected
return E(R,) is then a point along this left boundary, say the point e. The
solution to (7a) to (7c) is the set of n proportions invested in individual
securities that give the minimum variance portfolio with expected return
E(R,) Once these weights are determined, the variance of the portfolio’s
return is determined, which, in combination with the target value of the ex-
pected portfolio return, gives the geometric location of the portfolio.

Every point along the left boundary of the investment opportunity set is a
minimum variance portfolio and so can be viewed as the solution to a prob-
lem stated in the form of equations (7a-c). One can think of the boundary
in Figure 8.1 as determined by the solutions to lots of problems stated in
the form of (7a-c). The portfolio e is obtained from the solution to (7a~c)
when the target level of expected portfolio return is E(ﬁ,). Other points

FIGURE 8.1
Minimum Variance Portfolios
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along the boundary are obtained by re-solving (7a) to (7c) for different
values of the target expected portfolio return.

Note that in Figure 8.1 efficient portfolios are minimum variance port-
folios, but not all minimum variance portfolios are efficient. An efficient
portfolio, like a minimum variance portfolio, minimizes variance given its
expected return, but an efficient portfolio also maximizes expected return
given its variance. Thus, the efficient portfolios in Figure 8.1 are those along
the left boundary above the point b, but points below b along the boundary
are also minimum variance portfolios.

We now discuss the mathematical details of the solution to the problem
stated in equations (7a-c). The outcome is an equation relating the expected
return on a security to its risk in the minimum variance portfolio that has
expected return E(ﬁe). In two places, the discussion uses elementary calculus.
The nonmathematical reader can either skip down to equation (16) or, better,
try to follow the verbal discussions that accompany the mathematics.

To solve the problem stated in equations (7a) to (7¢), first form the La-
grangian expression

(R,)+ 21, [E(ﬁe)— 3 xi,,E(ﬁ,-)] +20, [1 -3 xi,,], ®)
i=1 i=1

where 2\, and 2¢, are the Lagrange multipliers for the constraints of (7b)
and (7c). The convenience of stating the Lagrange multipliers in this way is
soon apparent. Minimizing the variance of portfolio return subject to the
constraints of (7b) and (7c) involves differentiating (8) with respect to 2A,,
2¢e, and x;5, i=1,...,n, and setting these partial derivatives equal to 0.0.*
For 2, and 2¢,, this procedure simply tells us that the proportions invested
in individual securities must satisfy (7b) and (7c). For the x;,,i=1,...,n,
however, the procedure yields the n new conditions

n -~
Z XjeGij ~ )‘eE(Ri)-d’e:O-O» i=1,...,n, (9)
j=1

where xj., j=1,...,n, are the specific proportions invested in individual

securities that define the minimum variance portfolio with expected return
E(R,).

PROBLEM IL.B
1. Show that differentiating (8) with respect to x;p and setting the deriva-
tive equal to 0.0 yields (9).

*That this process leads to a minimum rather than a maximum is primarily a conse-
quence of the convexity of oz(Rp) as a function of Xip» i=1,...,n,a fact that we
state without proof.
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ANSWER
1. As a first step, differentiating (8) with respect to x;, and setting the de-

rivative equal to 0.0 leads to

aaz(ﬁe)

- 20ER;) - 2¢. = 0.0,
xe

where 30%(R,)[dx;e is aa2(§p)/ax,-,, evaluated at the values x;, =X,
i=1,...,n, that represent the solution to the problem stated in (7a) to
(7¢). Thus, all we must show is that

n
—_—=2 Z Xip Oij- (10)

-

2 .
XipOy T X pXop0iy T X1pX3p0Oi3 + " ¥ X;pXpp 01y

2
+XopX1pOp T X3p gy + XopX3p 0oy + 7"+ XgpXpp Oy

2 e
+X3pX1p 03 t X3pXop0s T X3p033 177+ X3pX,, 03,

e 2
L+xnpxlp Om Y XppXapOny Y XppX3pOpn3 T +xnpann_

For any given i, the terms involving x;,, are those in the ith row and those in
the ith column of this block:

—

X ,1pXip 01 T

T XpXip Oy

+XipX1p0n * XipXopOip ¥ ¥ Xjp 0¥ XipXnp Oip

+ xnp xip Oni
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[t is then easy to see that

30*(R,) = n n
p) _ -
Y 2 Xjp Oyt 3 Xjp 0t 2x;p05=2 3 x50,
ip j=1 j=1 j=1
J#Ei j#i

since 0;; = g;;. It is now also easy to see why it is convenient to state the
Lagrange multipliers in (8) as 2A, and 2 ¢, rather than as X, and ¢,.

The n equations described by (9), along with (7b) and (7¢), determine the
values of the Lagrange multipliers 2\, and 2¢, and the proportions invested
in individual securities that yield the minimum variance portfolio with ex-
pected return E(ﬁe). Thus, the equations of (9) are conditions on the propor-
tions invested in individual securities that must be met by a minimum var-
ance portfolio. We now show that (9) implies the relationship between the
expected return on a security and its risk in the minimum variance portfolio
e.

Since (9) holds for every security, it holds for security k

n
Z XjeOxj ~ A ERy) - ¢ =00, (1
j=1
and (9) and (11) together imply
n ~ n ~
2 XjeOkj~ N E(R) = Xje 05 = N E(R;). (12)
j=t j=1
Multiplying both sides of (12) by xy, and then summing over k, we get

~ ~ n ~
az(Re) - XE(R,) = Z XjeOij ~ AeE(R)). (13)
j=1

PROBLEM IL.B
2. Write out the details involved in going from (12) to (13).

ANSWER
2. First multiply both sides of (12) by x,, to get

n ~ n -
Xke Z XjeOkj~ )\exkeE(Rk) = Xke (Z Xje Ojj = )\eE(Ri)> . (14)
j=1 j=1

Applying equations (2) and (4) to portfolio e yields, with a change in
subscripting,
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ER)= 3 xeE(Re)

k=1

n n
0*(R,) = Z Xke Z Xje Okj-
k=1 j=1

Since none of the terms within the parentheses on the right-hand side of
(14) involve security k, and since X}_, xx, =1.0, summing (14) over k
yields (13).

We can now rearrange (13) to get

n
ERR)- E(§8)=)\L(Z Xje 0y - a2(iz”e)>, i=1,...,n. (15)
e\ j=1

Since equation (15) is a direct implication of (9), we can interpret (15) as a
condition on the weights x;, 7= 1, ..., n, that must be met if these weights
describe the minimum variance portfolio that has expected retum E(R,).
In determining the weights xj., j=1,...,n, that cause (15) to be satisfied
for every security i, the risk of portfolio e, 0*(R,), and the risk of each se-
curity in portfolio e, 2,'-':, Xje Oy, i=1,...,n, are also being determined.
Once the weights are known, however, we can interpret (15) as the relation-
ship between the expected return on any security i and the risk of the security
in the minimum variance portfolio e. The equation says that the difference
between the expected return on any security i and the expected return on e
is proportional to the difference between the risk of 7 in e and the risk of e,
and where the proportionality factor is 1/A,.

To complete the interpretation of the relationship between expected return
and risk in the minimum variance portfolio e, we must interpret the quantity
1/X\.. The Lagrange multiplier 22, in (8) is the rate of change of the mini-
mum value of az(ﬁp) in (7a) with respect to a small increase in the target

value of the expected portfolio retum;
_dd*(R,)
dE(R,)

e

This derivative is related to the slope of the boundary of the opportunity set
at the point e in Figure 8.1. If S, denotes the slope, then
_dER.)

do(R,)’

e

that is, the slope of the boundary at the point e is the rate of change of ex-
pected retum with respect to a change in the minimum value of the portfolio
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standard deviation. To show the relationship between X, and S,, we use the
chain rule for differentiation to determine that

1 _do(R,) do(R,) do*(R,)
Se dER,) do*(R,) dE(R.)
_ 1 da? (Re) e
20(R,) dERR,)  o(R,)’

so that
1 S,
—= e (16)
Ae O(Re)

In words, the proportionality factor 1/, in the expected return-risk relation-
ship (15) is the slope of the left boundary of the investment opportunity set
at the point e in Figure 8.1 divided by the standard deviation of the return
on the minimum variance portfolio e.

We can now transform (15) into an expression that has a somewhat more
intuitive interpretation and is also more in keeping with the form of the
equation used later in empirical tests. Substituting (16) and (6) into (15) and
rearranging yields the equation

ER) = [ER.) - S.0(R] + e cov Ry, R.). (17)
a(R,)

e

The square brackets are to indicate that the quantity
E(ﬁe)_ Sea(ﬁe)EE(ﬁoe) (18)

has a special interpretation. It is the expected return on any security whose
return is uncorrelated and thus has zero covariance with the retumn on the
portfolio e. Using the somewhat mnemonic notation E(ﬁo,,) for this quantity,
the slope of the left boundary of the investment opportunity set at the point
corresponding to the portfolio e is

E(R.) - E(Rq.)

Se=71€)——. (19)

PROBLEM IL.B
3. What is the geometric interpretation of (18) and (19)?

ANSWER
3. Since S is the slope of the boundary of the investment opportunity set
at the point e in Figure 8.1, we can see from inspection of the figure that
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ERR,)- S, a(Re) is the intersection on the E(Rp) axis of the (dashed) line
tangent to the boundary at e. le(R )}~ S, a(R ) is called E(ROe) to indicate
that it is also the expected return on any security whose return is uncorre-
lated with the return on e, then it is clear from Figure 8.1 that the slope of
the investment opportunity boundary at the point corresponding to the port-
folio e is as given by (19).

With (18) and (19), the expected return-risk relationship of (17) becomes

ER)=ERoe)+ [ER) - ERo) e, i=1,...,n,  (20)

where
cov (R;, R )
=5 (21

a*(R,)
is the risk of security / in the portfolio e measured relative to the risk of the
portfolio.

C. Interpretation of the Results

If the portfolio e is efficient—that is, if as in Figure 8.1 it is along the posi-
tively sloped segment of the left boundary of the opportunity set—then
(20) has an intuitive interpretation. If e is efficient, then S, >0, and it fol-
lows from (18) that E(Re) is greater than E(Roe) Thus, the term [E(Re) -
E(Roe)] Bie in (20) can be interpreted as the risk premium in the relation-
ship between the expected return on security i and its risk in the portfolio
e. Moreover, any security whose return is uncorrelated with the return on
e, and so has B;, = 0.0, is riskless as far as e is concerned, since such a security
contributes nothing to az(Re) In these terms, equation (20) says that the ex-
pected return on any security i is equal to the expected return on a security
that is riskless in e plus a risk premium that is the difference between the ex-
pected return on e and E(ﬁoe), multiplied by f;,, the risk of security i in
e measured relative to the risk of e.

This interpretation of (20) makes sense, however, only when the port-
folio e is efficient as well as of minimum variance. If e is minimum variance
but inefficient (that is, if it is along the negatively sloped portion of the
left boundary of the opportunity set), then S, <0, and, from (18) and (19),
E(R,) is less than E(Roe) so that (20) must be interpreted in terms of risk
discounts rather than premiums. Since the investor is only concerned with
efficient portfolios, no harm is done if we use the risk premium interpretation
of (20).

Figure 8.2 gives a geometric interpretation of the expected return-risk rela-
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tionship of (20). The figure emphasizes that the relationship between E(ﬁi)
and §;, is linear. It has intercept E(ﬁoe) on the £(R,) axis and slope E(R,) -
E(R 5¢). In geometric terms, the fact that e is a minimum variance portfolio
implies that the weights x;e, i=1,...,n are chosen in such a way that all
securities end up with combinations of E(ﬁi) and ;. that lie along the line in
Figure 8.2. Thus, the n available securities would be arrayed at different points
along the line.

It is instructive to look at Figures 8.1 and 8.2 from the viewpoint of the in-
vestor faced with a two-parameter world. If the boundary of the investment
opportunity set is as represented by the solid curve in Figure 8.1, then the ef-
ficient portion of the boundary, the segment above the point b, shows the
relationship between expected return and portfolio risk that is relevant when
the investor is considering which portfolio to choose. Once he chooses some
efficient portfolio, say the portfolio e, then equation (20) and Figure 8.2
show the relationship between expected security return and security risk
within the portfolio e. Thus, whereas Figure 8.1 shows the trade-offs of ex-

'pected return for risk among efficient portfolios, Figure 8.2 shows how the
expected returns on individual securities are related to their risks in a specific
efficient portfolio.

There is a different version of Figure 8.2 and equation (20) for each mini-
mum variance portfolio. Thus, using equations (3) and (6) we can rewrite
(21) and (20) as

n

2 Xjeo

cov (ﬁ,-, ﬁe) N i=1

ie 2/ n n
o*(R
(Re) 2 2 XieXje Oy

i=1 j=1

(22)

~,

n

2 XjeOij

E(R) =E[Roe) + [ER,) - E(Rye)] ——— . (23)

n n
2 2 XieXje O

i=1 j=1

~.

~.

The expected security returns E(ﬁi), i=1,...,n, and the pairwise security
return covariances g;; (i,j = 1, ..., n) are parameters of the joint distribution
of security returns and so are the same from one efficient portfolio to
another. But the weights x;, /=1, ..., n, change from one minimum vari-
ance portfolio to another; consequently, the risk of a security is different in
different portfolios. Since expected security returns do not change from one
minimum variance portfolio to another, the fact that the risks of individual
securities change means that the intercept E(ﬁoe) and the slope [E(R,)-
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E(ﬁoe)] in (20) must also change from one minimum variance portfolio to
another.

PROBLEMS II.C

1. Discuss in general terms how the intercept E(ROe) and the slope
[E(R,) - E(Roe)] in (20) change as one considers efficient portfolios with
higher levels of expected return.

2. Show that equation (20) applies to portfolios as well as to individual
securities. That is, show that for any minimum variance portfolio e and any
portfolio p

E(Rp) = E(Roe) + [E(R,) - E(Roe)] Bpe, (24)
where
_ cov (13,,, ﬁe)
pe ———a’(ﬁe) (25).

3. We interpret the intercept E(ﬁoe) in (20) as the expected return on any
security whose return is uncorrelated with the return on the portfolio e. It is
well to note that E(Roe) is indeed the expected return on such a security if
one exists, but (20) does not require the existence of such a security. Equation
(20) simply says that within an efficient portfolio there is a linear relationship
between expected security returns and security risks in that portfolio.

With the result of the preceding problem, however, the reader can easily
show that when short-selling of securities is allowed, it is always possible to
construct a portfolio whose return is uncorrelated with the return on e, and
the expected return on any such portfolio is E(ﬁoe). (Show it!) Thus, when
short-selling of securities is possible,E(ﬁoe) can be interpreted as the expected
return on any security or portfolio whose return is uncorrelated with the
return on e. The importance of this result becomes clear later.

ANSWERS

1. One can apply equations (17) to (20) to any efficient portfolio. Thus,
thinking of e as an arbitrary efficient portfolio, the intercept

E(Roe) = ER,) - S, 0(R.)

in (20) is always the intercept on the E(ﬁp) axis of a line tangent to the ef-
ficient boundary at the point corresponding to the portfolio e. Since the
efficient boundary is positively sloped and concave, this means that E(R'Oe)
is hlgher for efficient portfolios with higher levels of expected return and
that £(R,.) increases faster than E(R,), so that the slope [E(R,) - E(Ry0)]

in (20) declines as one considers portfolios further up along the efficient
boundary.
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2. First, note that

~ -~ COV(
_ cov (Rp’Re)__ i=1
MR o’(Re)

cov (1:\",~, ﬁe) n

n
= Z x‘.p ————
i=1

Oz(ﬁe) : XipBie- (26)

1
If we now multiply through both sides of (20) by x;, and then sum over i,
(24) follows directly.

Thus, equation (20), the relationship between expected security returns
and security risks within a minimum variance portfolio, turns out to apply to
portfolios as well as to securities. This result is important in the empirical
tests of the two-parameter model in the next chapter.

3. It suffices to show that when short-selling is allowed, it is always pos-
sible to use any two securities to form a portfolio whose retumn is uncorre-
lated with the return on e. The answer to the preceding problem then im-
plies that the expected return on any such portfolio is E(Ro,).

Let i and j be any two securities and let

R, =xR;+(1 - 0)R;.
From the answer to the preceding problem,
ﬁpe =xBie +(1- x)Bie-

It is clear that if the value of x is unrestricted, it is always possible to choose
x so that §,, = 0.0.

Finally, equation (20) is derived from the solution to the variance minimiza-
tion problem of equations (7a) to (7c). Since the constraints do not include
statements about the signs of the proportions of portfolio funds invested in
individual securities, unrestricted short-selling of securities is assumed. If
short-selling is ruled out and if the proportions are constrained to be non-
negative, the mathematics of the analysis of expected return-risk relationships
is more complex. The results, however, are similar. In particular, equation
(20), with precisely the same interpretation as above, is the relationship be-
tween the expected return on a security and its risk in the portfolio e. As one
might expect, however, the relationship only applies to securities that appear
in e with nonzero weights. The reader can also determine that if (20) only
applies to securities that appear in the minimum variance portfolio e at a non-
zero level, then (24), the “portfolio” version of (20), only applies to port-
folios of such securities.
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III. Market Relationships Between Expected Return and Risk
When There Is Risk-free Borrowing and Lending

The preceding can be viewed as a discussion of the relationships between ex-
pected return and risk that are relevant for an individual investor in a two-
parameter world. When the investor is choosing a portfolio, the relevant
relationship between expected return and risk is that described by the curve
of efficient portfolios. Once he chooses an efficient portfolio, there is a
relationship between expected security returns and their risks in that port-
folio which is a direct consequence of the fact that the portfolio is efficient.

It is time, however, to step beyond the analysis of risk and expected return
as seen by the individual investor and to consider what a two-parameter world
implies about the process of price formation in the capital market. That is,
if investors make portfolio decisions at time 1 according to the two-parameter
model, what does this imply about the prices of securities that are set in the
market at time 1? More specifically, we now know how to talk about expected
return and risk from the viewpoint of an investor. What remains to be de-
termined is whether the portfolio decisions of individual investors, considered
together, cause securities to be priced in such a way that there are similar ex-
pected return-risk relationships that apply to the market.

Note the change in perspective in going from the investor to the market.
From the viewpoint of the investor, security prices at time 1 are taken as
given. The investor is assumed to be small relative to the market, so that
security prices are given parameters in his decision problem. When we look at
the two-parameter world from the viewpoint of the market, however, we
must recognize that security prices are determined by the decisions of inves-
tors. The effect of any investor on prices is negligible, but the portfolio de-
cisions of all investors, considered together, determine prices.

A. Complete Agreement

The task of the market at time 1 is to determine a market-clearing or
market equilibrium set of prices, that is, prices where supply equals demand
for each security. Once equilibrium prices are determined, the picture of the
efficient set facing an investor is determined. The investor considers this
picture as showing the relationship between expected portfolio return and
portfolio risk. For the purposes of his own investment decision, this view is
entirely correct. Given the prices of securities set at time 1, however, each
investor’s view of the efficient set depends on an assessment of the joint
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distribution of the time 2 prices or values of securities that may be unique
to him.* If disagreement among investors about the joint distribution of
security prices at time 2 is substantial, there may be no meaningful sense in
which one can talk about expected return and risk from the viewpoint of
the market.

One can reasonably argue, however, that investors would only make port-
folio decisions according to the two-parameter model if their assessments of
the joint distribution of future security prices were descriptively valid. Al-
though we present the two-parameter model in a one-period framework, we
have in mind a multiperiod world where, period after period, the investor
makes portfolio decisions in accordance with the two-parameter model.t It
does not make sense for the investor to behave in this way unless his assess-
ments of portfolio opportunities are accurate. If he is consistently inaccurate,
he will come to feel that the whole decision-making framework is of little
value.¥ In short, if one assumes that investors make portfolio decisioty ac-
cording to the two-parameter model, then one must assume that they can
obtain reasonably accurate assessments of the parameters that the model
requires as inputs to a portfolio decision. This in turn implies that there is
considerable consensus among investors in their assessments of the joint
distribution of future values of securities and thus considerable consensus
in how they view the efficient set of portfolios.§

Although “considerable consensus” is the general notion we have in mind,
such a concept is too vague for a formal model. To make life simple, we as-
sume that the degree of agreement among investors is complete rather than
just considerable; that is, at time 1 there is complete agreement among inves-
tors with respect to the joint distribution of security values at time 2. Given
the equilibrium prices set at time 1, this means that every investor has the
same view of the set of efficient portfolios available at time 1. The common

*When we talk about the prices or values of securities at time 2, we mean to include
any dividends or interest paid on the securities at time 2.

The conditions under which the two-parameter model applies period after period are
discussed in Fama (1970) and Merton (1973). These papers are rather difficult mathe-
matically, and so the topic is not considered in this book, which is meant to be more
of an introduction to theory and empirical work. Suffice it to say that the empirical
evidence of Fama and MacBeth (1974) seems to be consistent with the conditions re-
quired for period-by-period application of the one-period model.

The argument is not special to the two-parameter model. Any framework for rational
decision-making must assume that accurate assessments of relevant parameters are avail-
able. Otherwise, the formal decision-making apparatus has little value.

It is, of course, reasonable to ask how such a consensus might arise. In a multi-
period framework, the simplest case is when, period after period, the equilibrium cur-
rent prices of securities and the joint distribution of next period’s prices are such that
the efficient-set curve facing the investor is the same every period. The empirical rele-
vance of this situation is discussed by Fama and MacBeth (1974).
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picture of the efficient set shows the relationship between expected portfolio
return and portfolio risk for every investor and thus for the market.

The complete agreement assumption also helps us to determine which of
the various portfolios available are efficient. There are two basic approaches.
We consider first the simpler approach, which is based on the assumed exis-
tence of risk-free borrowing and lending.

B.  The Efficient Set When There Is Risk-free Borrowing
and Lending

Suppose that at time 1 investors can borrow and lend at a risk-free rate of
interest Rp. Like the prices of other securities, the value of the risk-free
rate is determined as part of the market-clearing process at time 1. As in the
case of other securities, an equilibrium or market-clearing value of R implies
a value such that supply equals demand; the total quantity that investors
want to borrow is equal to the quantity that others want to lend.

FIGURE 8.3
Market Equilibrium with Unrestricted Risk-free Borrowing and Lending

o \a(ﬁp)
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We know from Chapter 7 that with risk-free borrowing and lending the
efficient set has a simple form. For example, suppose that the curve from b
through d in Figure 8.3 shows the portfolios that would be efficient in the
absence of risk-free borrowing and lending. With risk-free borrowing and
lending, however, efficient portfolios are along the line from Rg that just
sits on or is tangent to the curve, that is, the line from R through M in
Figure 8.3. Portfolios along this line are combinations of risk-free borrowing
or lending with the portfolio M, where the proportion x of portfolio funds is
invested in £ and (1 - x) is in M. The returns, expected returns, and standard
deviations of returns on such portfolios of F and M are

R, =xRp+(1- x)Ry 27
ER,) =xRp +(1 - x)E(Rp) (28)
o(R,) =(1- x)a(Ry), x<l. (29)

When x = 1.0, all portfolio funds are invested in F; when x = 0.0, all funds
are in M. Portfolios with 0.0 <x < 1.0 are lending portfolios, since such
values of x imply that a positive fraction of portfolio funds is lent at the rate
Rpg. Portfolios with x < 0.0 are borrowing portfolios; the investor borrows
-x(w; - ¢1) and puts this plus the portfolio funds w; - ¢, into M. Lending
portfolios give combinations of E(ﬁp) and o(ﬁp) that are on the straight
line between Ry and M in Figure 8.3. Borrowing portfolios give combina-
tions of E(ﬁp) and o(ﬁp) that are along the extension of the line through
M. Efficient portfolios differ in terms of how portfolio funds are split between
F and M, but all efficient portfolios are just combinations of F and M. M is
the only efficient portfolio of all positive variance securities, that is, securities
with strictly positive return variances.

C. Market Equilibrium When There Is Risk-free Borrowing
and Lending

Consider now what this result implies about the characteristics of a market
equilibrium at time 1. Since there is assumed to be complete agreement
among investors with respect to the joint distribution of security values at
time 2, given a set of security prices and a value for the risk-free rate at time
1, there is a tangency portfolio like M in Figure 8.3 that all investors try to
combine with F. Some investors want to combine the tangency portfolio
with borrowing at the risk-free rate, while others want to combine it with
lending, but the tangency portfolio is the only portfolio of only positive
variance securities for which investors enter demands.

Remember, though, that a market equilibrium requires a market-clearing
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set of prices; a market equilibrium requires that, in aggregate, investors de-
mand all securities and demand them in the proportions in which they are
outstanding. Given the nature of the efficient set when there is risk-free
borrowing and lending, this market-clearing condition means that a market
equilibrium is not attained until the one tangency portfolio that all investors
try to combine with risk-free borrowing or lending is a portfolio of all the
positive variance securities in the market, where each security is weighted by
the ratio of the total market value at time 1 of all its outstanding units to
the total market value of all outstanding units of all securities. In short, a
market equilibrium is not reached until the tangency portfolio M in Figure
8.3 is the value-weighted version of the market portfolio. In addition, the
value of R must be such that the aggregates of demands and supplies of loans
are equal.

In slightly different terms, given the common assessment by investors of the
joint distribution of security values at time 2, a set of prices for securities at
time 1 and a value of Ry imply a representation of investment opportunities
like that in Figure 8.3. A different risk-free rate and a different set of security
prices imply a different picture of investment opportunities, but one that is
always similar to Figure 8.3 in the sense that all efficient portfolios are
combinations of borrowing or lending with one tangency portfolio of positive
variance securities. The tangency portfolio is, however, different for different
sets of security prices at time 1 and different values of R-. A market equilib-
rium-a set of security prices that clears the securities market and a value of
R that clears the borrowing-lending market—requires that the tangency port-
folio be the value-weighted version of the market portfolio.

Since the market portfolio M is efficient, equation (20), which shows the
relationship between expected security returns and their risks in an arbitrary
minimum variance portfolio e, can be applied to M. We have

ER)=E®Rom) + [ERM) - ERop) Biprs, i=1,....n,  (30)

where
_ Cov (ﬁi: ﬁM)
0*(Ry)

is the risk of security / in M measured relative to the risk of M, and E(ﬁoM)
is the expected return on any security or portfolio whose return is uncor-
related with the return on M.

In the present view of the world, there indeed exists a security, F, whose
return is uncorrelated with Ry,. Substituting Ry for E(ﬁoM) in (30) yields

(3D

iM

E(ﬁi)=RF+ [E(ﬁM)'RF]ﬁiM, i=1,...,n. (32)
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In words, the expected return on any security i is the risk-free rate Rg plus
a risk premium which is the risk measure ;) multiplied by the difference
between the expected return on M and R.

Equation (32) is just (20) applied to M, but the interpretation of (32)
goes far beyond that of (20). With the assumption that investors agree on the
joint distribution of security values at time 2, and with the assumed existence
of risk-free borrowing and lending, it is not happenstance that the value-
weighted market portfolio M is efficient. The efficiency of M is a necessary
condition for a market equilibrium. With complete agreement and risk-free
borrowing and lending, a market equilibrium requires that R and the prices
of securities at time 1 are set so that M is efficient, which means that R and
the prices of securities must be set in such a way that (32) holds for every
security. Thus, with complete agreement and risk-free borrowing and lending,
the expected return-risk relationship (32) is the implication of the two-
parameter model for the process of price formation in the capital market at
time 1.

PROBLEM II1.C

1. In the present model, what is the formal expression for the relationship
between the expected return E(R,) on an efficient portfolio and its risk
o(R,)?

ANSWER
1. From inspection of Figure 8.3, the relationship is

E(Ry)- Rp

E(iée) =Rpt [ O(ﬁ O(ﬁe)s (33)

M)

where M is the value-weighted market portfolio, the subscript e indicates an
arbitrary efficient portfolio, and

E(Rp) - Rp _
0(§M)

is the slope of the efficient-set at the point corresponding to M and at every
other point.

Be clear on the difference between (33) and (32). Equation (33) is the
relationship between the expected returns and risks of efficient portfolios,
while (32) is the relationship between expected security returns and security
risks within the particular efficient portfotio M.

Sy (34)
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D. Criticisms of the Model

The two-parameter model of market equilibrium discussed above is credited
to Sharpe (1964) and Lintner (1965a), and it is usually called the Sharpe-
Lintner model. The model is also often called the capital asset pricing model,
although we do not use the term here. There are two common criticisms of
the model. First, the model says that all investors hold the market portfolio
in combination with different amounts of borrowing or lending, and one
does not observe that all investors hold the market portfolio. Second, borrow-
ing or lending is never completely risk-free. Any funds borrowed at time 1
must be repaid from the market value of the portfolio at time 2. Since we
assume that return distributions are normal and since normal distributions
are unbounded, there is always some chance that the borrower cannot de-
liver in full to the lender. Moreover, in the real-world capital market, the
promises of the borrower are usually stated in terms of money. The investor
values money, however, only for the “real” consumption (that is, goods and
services) that it will buy. Thus, if the purchasing power of money at time 2 is
uncertain, at time 1 a contract that pays a perfectly certain amount of money
at time 2 is not perfectly certain in “real” terms and so is not considered as
risk-free by the investor.*

There are several responses to these criticisms of the Sharpe-Lintner model.
I offer just one, and by now it is familiar. Throughout the book I have em-
phasized that any model proposes a simplified view of the world but that
this is not sufficient basis for its rejection. Thus, even though it is not realistic
in all of its details, we may be willing to go along with the Sharpe-Lintner
model of market equilibrium as long as its implications for equilibrium prices
of securities are empirically descriptive. The primary purpose of the Sharpe-
Lintner model is to develop testable implications of the two-parameter port-
folio model for the process of price formation in the capital market. Despite
the fact that in many respects it is oversimplified, the model is vindicated if
its implication about equilibrium security prices—in particular, the expected
return-risk relationship of (32)-seems to be a good description of real-world
data.

The Sharpe-Lintner model is, however, just one view of the implications of
the two-parameter portfolio model for the process of price formation in the
capital market. There are other two-parameter models of market equilibrium
that likewise yield testable propositions concerning how the attempts of

*The implication of these comments is that the portfolio model itself should be de-
veloped in “real” terms rather than in terms of dollars of consumption at time 1 and

time 2. When we speak of “dollars” in the context of the model, we have in mind the
general notion of a unit of purchasing power.
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investors to hold efficient portfolios affect equilibrium prices of securities,
and the testable propositions of these models differ somewhat from those of
the Sharpe-Lintner model. When we confront the two-parameter model with
real-world data in Chapter 9, we want to be armed with the implications of
as many two-parameter models of market equilibrium as possible. In this
way we minimize the chance of falsely rejecting the proposition that prices
and returns reflect the attempts of investors to hold efficient portfolios
when, in fact, the failure of the tests is due to a bad specific model of market
equilibrium.

In short, testing the implications of the two-parameter portfolio model
for the process of price formation in the capital market requires a two-
parameter model of market equilibrium, and such models of market equilib-
rium require more restrictive assumptions than the portfolio model. If our
basic interest is to test whether the process of price formation is dominated
by investors concerned with portfolio efficiency, then we want to be aware
of the various two-parameter models of market equilibrium that are con-
sistent with this basic proposition.

IV. Market Relationships Between Expected Return and Risk
When Short-Selling of Positive Variance Securities Is
Unrestricted

The implications of the Sharpe-Lintner model for the nature of a market
equilibrium at time | follow from the fact that with complete agreement
among investors with respect to the joint distribution of security values at
time 2 and with unrestricted risk-free borrowing and lending, all efficient
portfolios are combinations of borrowing or lending with one efficient
portfolio of positive variance securities. The requirement that all securities
be cleared from the market then implies that in a market equilibrium the one
efficient portfolio of only positive variance securities is the market port-
folio. This line of reasoning does not require that positive variance securities
can be sold short. The major alternative to the Sharpe-Lintner model of
market equilibrium is less restrictive than the Sharpe-Lintner model in the
sense that it does not assume the existence of a risk-free security; but in
another sense it is more restrictive, since it assumes that short-selling of
positive variance securities is unrestricted. The alternative model is credited
primarily to Black (1972).

In the Sharpe-Lintner model, a market equilibrium at time 1 requires the ef-
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ficiency of the market portfolio. Thus, equation (20), when applied to M,
can be interpreted as a condition on equilibrium prices of securities at time 1
rather than as just the expected return-risk relationship that holds for securi-
ties within an efficient portfolio. Equivalently, to show that a market equilib-
rium requires the efficiency of M is to transform (20) into a market equilib-
rium expected return-risk relationship. The implications of the Black model
for equilibrium security prices are likewise based on the efficiency of the
market portfolio in a market equilibrium. We now see, however, that the
path to showing that a market equilibrium requires the efficiency of M is
more tortuous than in the Sharpe-Lintner model.

A. The Efficiency of the Market Portfolio

OVERVIEW

Since the formal arguments quickly get rather involved, we begin with a
brief informal discussion of the basis of the efficiency of the market port-
folio in the Black model. Suppose that when a market equilibrium is es-
tablished at time 1, the set of minimum variance portfolios is the solid curve
in Figure 8.1. Since the Black model, like the Sharpe-Lintner model, assumes
complete agreement among investors with respect to the joint distribution of
security prices at time 2, when a market equilibrium is attained at time 1,
each investor perceives that Figure 8.1 is the relevant picture of portfolio op-
portunities. Depending on tastes, each investor then chooses some efficient
portfolio, so we can think of investors as choosing different points from along
the efficient segment of the curve of minimum variance portfolios, the seg-
ment above point 5.

A market equilibrium requires that total investor demand for each security
be equal to total supply. Equivalently, in a market equilibrium, the port-
folio of the efficient portfolios chosen by investors, where each investor’s
portfolio is weighted by the ratio of his invested wealth to the total invested
wealth of all investors, must be the market portfolio M. It follows that to
show that a market equilibrium requires that M be efficient, it is sufficient
to show that any portfolio of efficient portfolios, with component efficient
portfolios receiving positive weights, is itself efficient. This is what we now do.

PROPERTIES OF THE MINIMUM VARIANCE BOUNDARY

Go back to equations (7) to (9). Recall that the n conditions of (9), along
with (7b) and (7c¢), determine the n proportions of portfolio funds invested
in individual securities that define the minimum variance portfolio with ex-
pected return E(R,). These N + 2 equations also determine the values of the
Lagrange multipliers 2\, and 2¢, for this portfolio. For the moment, how-
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ever, let us assume that someone gives us the values of A, and ¢,. Then we

can use the n equations of (9) to solve for the values of x;.,i=1,...,n.*
Stating (9) in matrix form, we get
A X, =X ER)*+¢. (1], (35)
(nXn)(nxi (nx1 nx1)

where A4 is the n X n matrix of the pairwise security return covariances g;;
(i,7=1,...,n); X, is the n X 1 vector of the proportions of portfolio funds
invested in individual securities; E(R) is the n X 1 vector of expected security
returns; and [1] is an 7 X 1 vector of ones. If D is the inverse of 4 with typi-
cal element d;;, we can solve (35) for X, to get

X.=\.DER)+¢,D[1], (36)

n n

X,'e':)\e[z diiE(ﬁi)]+¢e [Z d,‘,’], i=1,...,n. (37)
j=1 j=1

Thus, if someone gives us the values of A, and ¢, the n equations of (37)

give the values of the proportions invested in individual securities that define

the minimum variance portfolio with expected return E(R,).

There is a better way to look at equation (37). If we only consider values
of A, and @, that are consistent with solutions to the problem stated in equa-
tions (7a-c) for different values of the target expected portfolio retumn
E(R.), then by varying A, and ¢, in (37) we generate the different values of
the proportion of portfolio funds invested in security i (i=1, ..., n) in dif-
ferent minimum variance portfolios. By varying A, and ¢, through all the
feasible values of these Lagrange multipliers, we generate the proportions
invested in individual securities in each of the portfolios along the minimum
variance boundary. In effect, this is how the boundary is determined, and a
better understanding of the process allows us to attain easily the goal of es-
tablishing that in a market equilibrium the market portfolio M is efficient.

The problem comes down to identifying the feasible combinations of A,
and ¢.. For A., the answer follows from equation (16) and the discussion in
Chapter 7 of the nature of the minimum variance boundary when unlimited
short-selling is possible. In particular, the boundary of minimum variance
portfolios in Figure 8.1 is a hyperbola that extends indefinitely upward and
to the right and indefinitely downward and to the right. As one moves from
the point b upward on the boundary, the slope S, of the curve goes from =
toward a finite positive asymptote; when one moves downward from b,
Se goes from - oo toward a finite negative asymptote. As one moves either

*The next paragraph requires a little matrix algebra. The reader should follow along
so that the line of reasoning and the notation become familiar, even if the mathematics
is not completely comprehensible.
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up or down the boundary away from b, o(ﬁe) increases continuously. With
these observations, we can then infer from (16) that A, = o(Rve)/Se can
take any positive or negative value.

Thus, the set of minimum variance portfolios is generated by varying A,
in (37) between - = and «, combining each value of A\, with the appropriate
value of ¢,. To determine the appropriate value of ¢,, we simply note from
(8) that 2¢, is the Lagrange multiplier for the constraint (7c). For any given
A, the appropriate ¢, is the value that makes the sum of the n values of x;,
equal to 1.0.

With a little new notation, we can now obtain a simple description of how
the set of minimum variance portfolios is generated when short-selling of
securities is unrestricted. First, define two new portfolios « and v as

~ n ~ ~ n ~
R,= 2 xpuR;and R, = xR, (38)
i=1 i=1

n ~ n n ~
Xy = Y d.—,-E(R,-)/ 2 2 diERY, i=1,...,n, (39)
j=1 i=1 j=1

3

n n
Xip = 2 di//Z
j=1 i=t j

From inspection of these two expressions we can see that

di[" i=l,.‘.,n. (40)
1

n n
> xpy=10and ) x;, =10, @n
i=1

i=1

so that v and v are standard portfolios. If we next define

n n ~
Yeu=1Ae [ diiE(Ri)] (42)
i=1 j=1
n n
Vev =0 [ di,], (43)
i=1 j=t
then (37) can be rewritten as
Xie *VYeuXiu t YeXiw, i=1,...,n. (44)

Since the double sum in (42) is a constant and so is independent of Ae,
the fact that X, can take any value between - o and > means that Yeu in (44)
can take any value between - and . Since the double sum in (43) is a
constant and so is independent of ¢,, for any given value of Yeu in (42)
the appropriate value of y,, in (43) involves choosing ¢, so that
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n
3 Xie=10. (45)
i=1

But from (41) and (44)

n n
Z Xie = Z GeuXiu ¥ VeuXiv) = Veu ¥ Yeu- (46)
i=t

i=1

Thus, to satisfy (45) for any given value of y,, in (44), y,., must be chosen
to satisfy

YVeutVer = 1.0. (47)
In words, to determine the proportion of portfolio funds invested in se-
curity 7 (i=1,...,n) in different minimum variance portfolios, we simply

vary Y., in (44), combining each value of y,, with the value of y,, that
satisfies (47). Equivalently, with (44) the return on any minimum variance,
portfolio e can be written as

-~ n -~
R.= 3" xieR;
i=1
n ~
= Z (yeuxiu + yeuxiu)Ri
i=1
n - n -~
=Veu <Z xiuRi) * Veu (Z xiuRi)
i=1 i=1
Re=yaRyt yeR,. (48)

Thus, any minimum variance portfolio e is a combination of the portfolios u
and v, where the proportion y,, of portfolio funds is invested in « and

Yeu = 1.0- y,, is invested in v. Any such combination of # and v is a mini-

mum variance portfolio and the set of minimum variance portfolios includes
all combinations of « and v that satisfy (47).

PROBLEMS IV.A
1. Show that v and v are themselves minimum variance portfolios.
2. Show that vis in fact the minimum variance portfolio b in Figure 8.1.

ANSWERS

1. The portfolio u is a portfolio of 4 and v with y,, =1.0 and y,, = 0.0,
and v is a portfolio of # and v with y,, =0.0 and y, = 1.0. Since any combi-
nations of u and v that satisfy (47) are minimum variance portfolios, u and
v are minimum variance portfolios.
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2. At the point b in Figure 8.1, X, = a(R,)/S, =0, so that, from (42),
n
Xip =y D dij-
j=1
Since ¢, must be chosen so that X7 x;, =1, we can conclude from (40)

that x;, =x;,. Thus, the portfolio v defined by (40) is the minimum vari-
ance portfolio that has the smallest possible return variance.

With these results it is now easy to show that any portfolio of minimum
variance portfolios is a minimum variance portfolio. The return on any
portfolio p of minimum variance portfolios can be written as

ﬁp =3 xR, (49)
(-4

3 xe=10, (50)

where x, is the proportion of portfolio funds invested in minimum variance
portfolio e and where the notation X, is meant to indicate that we are taking
a sum over some finite number of minimum variance portfolios. Substituting
(48) into (49) yields

ﬁp = Z xe(yeuﬁu +yevﬁu) = (Z xeyeu) ﬁu + (Z xeyeu)ﬁu-
€ 3 e

Any combination of u« and v with proportions invested in « and v that sum to
1.0 is a minimum variance portfolio. Thus p is a minimum variance portfolio
if

Z XeVeut Z XeYew = 1.0.
e e

But as stated in (48), each of the component portfolios e in (49) is a portfolio
of u and v that satisfies (47). Thus, from (50) and (47),

Z XeVeu t Z XeVev = Z Xe(Veut Veu) = Z xe = 1.0.
e e e e

If any portfolio of minimum variance portfolios is a minimum variance

portfolio, then any portfolio of efficient portfolios is a minimum variance

portfolio, since efficient portfolios are minimum variance portfolios. More-

over, any portfolio of efficient portfolios where the proportions invested in

component efficient portfolios are all nonnegative is an efficient portfolio,
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since such a combination of efficient portfolios is a minimum variance port-
folio and it necessarily has an expected return within the range of expected
returns covered by the efficient segment of the minimum variance boundary.

MARKET EQUILIBRIUM AND THE MARKET PORTFOLIO

It follows almost directly that with complete agreement among investors
concerning the joint distribution of security values at time 2, and with no
restrictions on short-selling, a market equilibrium at time 1 implies that the
market portfolio M is efficient. A market equilibrium at time 1 requires a
set of security prices such that the aggregate demand for each security by in-
vestors is equal to the supply of the security. Equivalently, a market equilib-
rium requires that when one combines the portfolios chosen by investors,
weighting each investor’s portfolio by the ratio of his invested wealth to the
sum of the invested wealths of all investors, then the resulting portfolio is
the market portfolio. Since investors choose efficient portfolios, and since
the invested wealth of each investor is assumed to be nonnegative, from the
above analysis we can conclude that in a market equilibrium the market
portfolio is efficient.

In geometric terms, suppose that when a market equilibrium is attained
at time 1, minimum variance portfolios are as shown by the solid curve in
Figure 8.1. Then the market portfolio M is along the positively stoped seg-
ment of the curve, which describes the set of efficient portfolios. Since M
is efficient, equation (30) holds, showing the relationship between expected
returns on securities and their risks in M. Moreover, since a market equilib-
rium requires that M is efficient, (30) can be interpreted as a condition on
equilibrium security prices. Equivalently, as in the Sharpe-Lintner model,
equation (30) can be interpreted in the Black model as the market equilib-
rium relationship between expected security returns and their risks in M.

The difference between the Sharpe-Lintner model and the Black model is
that in the Sharpe-Lintner model the intercept E(ﬁoM) in (30) can be identi-
fied as the risk-free rate of interest, whereas in the Black model there is no
risk-free security, so that E(ﬁoM) is the return on any positive variance se-
curity that has f4ys = 0.0, that is, on any positive variance security whose
return is uncorrelated with the return on M. Remember that since such a
security contributes nothing to the variance of the return on M, it is riskless
in M even though it is not risk-free in the sense of having a zero variance of
return.
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B.  Efficient Portfolios as Combinations of the
Market Portfolio M and the Minimum
Variance Portfolio Z

The remaining models of market equilibrium are variants of the Black model
in the sense that arguments similar to those above are used to show that a
market equilibrium generally requires the market portfolio to be efficient.
Before proceeding to these models, however, it is convenient to discuss
further the nature of minimum variance and efficient portfolios in a market
equilibrium when short-selling of securities is unrestricted. This will improve
our perspective both on the Black model and on the variants of the model
that are discussed later.

The goal is to show that with unrestricted short-selling, in a market equilib-
rium any minimum variance portfolio can be expressed as a combination of
the market portfolio M and the minimum variance zerof3pp portfolio—that
is, the minimum variance portfolio, call it Z, whose return is uncorrelated
with the return on M. The first step is to show that the set of minimum
variance portfolios can be generated as combinations of any two minimum
variance portfolios. Next we show that a minimum variance zero-f,p port-
folio always exists. Since M and this zero-f,py portfolio Z are minimum vari-
ance portfolios, it then follows that the set of minimum variance portfolios
can be generated as combinations of M and Z.

In the preceding section we found that with unrestricted short-selling, any
portfolio of minimum variance portfolios is a minimum variance portfolio.
Thus, any portfolio of two different minimum variance portfolios is a mini-
mum variance portfolio. Since any two different minimum variance port-
folios have different expected returns, with the appropriate weights assigned
to these two portfolios we can generate a minimum variance portfolio with
any specified level of expected return. It follows that any two minimum vari-
ance portfolios can be used to generate the entire set of minimum variance
portfolios.

With unrestricted short-selling, in a market equilibrium the market port-
folio M is efficient. Thus, one of the two portfolios used to generate mini-
mum variance portfolios can be M. The other can be the minimum variance
zero-fppy portfolio Z, as long as we can show that there is indeed a minimum
variance portfolio whose return is uncorrelated with the return on M. The
existence of such a portfolio is implied by the fact that the range of ex-
pected retums covered by minimum variance portfolios is unbounded both
from above and from below, so that there is necessarily a minimum variance
portfolio with any specified level of expected return. Thus, there is a mini-
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mum variance portfolio with expected return equal to E(ﬁoM). Since (30)
applies to any security or portfolio, any portfolio with expected return equal
to E(ﬁoM) must have fp5 = 0.0. The existence of the minimum variance
zero-fppr portfolio Z is thus established.

In short, the returns on different minimum variance portfolios can be ob-
tained by varying x in

R.=xRz+(1-x)Ry. 1)

When minimum variance portfolios are formed in this way, the expected
value and variance of the return on a minimum variance portfolio are

ER,) =xE(Rz)+ (1 - x)E(Ry) (52)
0*(R,) =x20*(Rz) + (1 - x)*0*(Ry), (53)

where the absence of the usual covariance term in equation (53) follows
from the fact that R and R, are uncorrelated.

PROBLEMS IV.B

1. Show that the portfolio Z must be below M on the minimum variance
boundary; that is, E(R ;) < ERp).

2. Show that the portfolio Z cannot be efficient.

ANSWERS

1. Since M is efficient, E(ﬁM) - E(ﬁoM) in (30) is positive. Since E(ﬁz) =
E(ﬁoM), it follows that Z is below M on the minimum variance boundary.

2. Since R, and Ry are uncorrelated, in (51) the portfolio of Z and M
that has the smallest possible variance has (from Problem I1I.A.3 of Chapter
7,

a?(Rpr)
T ARt ' Ry)
M z
Since this value of x is greater than 0.0 and less than 1.0, it follows that there
are portfolios of Z and M formed according to (51) that have smaller vari-
ances than either Z or M and that fail between Z and M on the minimum vari-

ance boundary. Since E(EM) > E(R ), such portfolios must also have larger
expected returns than Z. Thus Z cannot be efficient.

Since E(ﬁz) = E(ﬁoM), Black (1972) suggests that (30) be rewritten as
ER)=ER)+ [ERp)~ ERD B, i=1,....n. (59

In words, with unrestricted short-selling, in a market equilibrium the prices
of securities are set so that the expected return on any security is the ex-

Capital Market Equilibrium in a Two-Parameter World 287

pected return on Z, the minimum variance portfolio whose return is uncor-
related with the return on the market portfolio M, plus a risk premium which
is B;pr, the risk of security / in M measured relative to the risk of M, times
the difference between the expected returns on M and Z.

In geometric terms, the set of minimum variance portfolios available in a
market equilibrium might be as shown by the solid curve in Figure 8.4. All

FIGURE 8.4
Market Equilibrium with Unrestricted Short-Selling of Positive Variance Securities
E(Rp)
/
//
ERoy) = E(Ry)
0 o(R,)

minimum variance portfolios can be obtained as combinations of M and Z.
With x = 1.0 in (51) we get Z, while with x = 0.0 we get M. Portfolios between
Z and M on the minimum variance curve have 0 <x < |; that is, positive
fractions of portfolio funds are invested in both Z and M. Points above M
on the curve involve short-selling of Z; that is, x < 0.0 in (51). Points below
Z involve short-selling of M; that is, x > 1.0 and (I - x) <0.0. The market
portfolio is on the efficient segment of the minimum variance curve, but from
Problem IV.B.2 above we know that Z is not. Finally, applying the analysis
of equations (17) to (19) to M tells us that the (dashed) line tangent to the
minimum variance boundary at the point M in Figure 8.4 must intersect the
E(R,) axis at E(R ) = E(Rop).



288 FOUNDATIONS OF FINANCE

V. Variants of the Model of Market Equilibrium When There
Is Unrestricted Short-Selling of Positive
Variance Securities

There are several other two-parameter models of market equilibrium that are
closely related to the Black model presented above. Like the Black model,
they assume that short-selling of positive variance securities (securities whose
return distributions have positive variances) is unrestricted and that there is
complete agreement among investors with respect to the joint distribution of
security values at time 2. The key result in each of these models is that in a
market equilibrium the market portfolio M is a minimum variance portfolio,
so that (30) or (54) can be interpreted as a market equilibrium relationship
between the expected returns on securities and their risks in M. These models
differ from the Black model in that they assume the existence of a risk-free
security, but they also differ from the Sharpe-Lintner model in that they do
not allow unrestricted risk-free borrowing and lending at the same interest
rate.

A. Market Equilibrium When There Is a Risk-free
Security But It Cannot Be Sold Short

For example, Black (1972) discusses a model in which there is a risk-free
security F which investors can hold long but cannot sell short. Thus, there is
risk-free “lending” but not “borrowing.” The risk-free securities might be the
securities of firms whose activities have perfectly certain market values at
time 2, or they might be bonds issued and guaranteed by the government.
In either case, the portfolio opportunities facing investors in a market equilib-
rium might be as shown in Figure 8.5.

The solid curve in the figure is the set of minimum variance portfolios of
only positive variance securities—that is, portfolios which minimize variance
at different levels of expected return but are subject to the additional con-
straint that they not contain any of the risk-free security F. Henceforth, these
portfolios are what we refer to when we use the term minimum variance port-
folios. These minimum variance portfolios of positive variance securities have
the same properties as the minimum variance portfolios of the preceding
section. In particular, precisely the same arguments imply that with unre-
stricted short-selling of positive variance securities, (a) any portfolio of mini-
mum variance portfolios is itself a minimum variance portfolio; (b) any port-
folio of positively weighted minimum variance portfolios from along the
positively sloped segment of the minimum variance boundary is likewise
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FIGURE 8.5
Market Equilibrium with Risk-free Lending But Not Borrowing

ER,)

E(Agy) = ERy)

R

a(Rp)

along the positively sloped segment of the boundary;and (c) the set of mini-
mum variance portfolios can be generated as portfolios of any two different
minimum variance portfolios.

The set of efficient portfolios in Figure 8.5 includes, first, the portfolios
along the line from Rp to the tangency portfolio T. Such portfolios of  and
T are lending portfolios; positive fractions of portfolio funds are invested in
both F and T. Portfolios along the dashed extension of the line from Rg
through T are not feasible, however, since they would require borrowing or
short-selling of the risk-free security F. To get efficient portfolios with ex-
pected returns greater than E(IE'T), one must move from T up along the
boundary of minimum variance portfolios of positive variance securities.

In Figure 8.5 the portfolio M, which is now defined as the market portfolio
of only positive variance securities, is efficient. In a market equilibrium, this
portfolio must be efficient. As always, a market equilibrium requires a set of
security prices such that demand equals supply for each security. Equivalently,
if one weights the risky component of each investor’s portfolio by the ratio
of the funds invested by that investor in positive variance securities to the
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total investment in positive variance securities by all investors, then in a mar-
ket equilibrium the portfolio of the risky components of investor portfolios
must be the market portfolio of positive variance securities. The risky compo-
nent of any portfolio along the line from R to T in Figure 8.5 is the tangency
portfolio T. The risky components of other efficient portfolios chosen by in-
vestors are the portfolios themselves, the chosen points along the efficient
boundary above T. Thus, in a market equilibrium the market portfolio of
positive variance securities is a portfolio of efficient minimum variance port-
folios where each component portfolio receives a positive weight. When short-
selling of positive variance securities is unrestricted, any such portfolio of
efficient minimum variance portfolios is efficient.

PROBLEM V.A

1. Show that in general the market portfolio M is above the tangency port-
folio T on the curve of minimum variance portfolios.

ANSWER

1. If all investors choose portfolios along the line from Ry to T in Figure
8.5, then in a market equilibrium 7" must be the market portfolio M. If some
investors choose efficient portfolios above 7, then in a market equilibrium M
is a portfolio of T and portfolios above T along the minimum variance bound-
ary. In this case, which I call the general case, M has higher expected return
than T and so is above T on the minimum variance boundary.

With unrestricted short-selling of positive variance securities, the set of
minimum variance portfolios of positive variance securities can be generated
as combinations of any two minimum variance portfolios. We have just shown
that in a market equilibrium, one of these two minimum variance portfolios
can be the market portfolio M. Moreover, the arguments of the preceding sec-
tion can be used to show that there is a minimum variance (but inefficient)
zero-fppy portfolio Z of only positive variance securities, so that the set of
minimum variance portfolios can be generated from combinations of M and
Z.

In the present model, however, E(ﬁz) is generally greater than the risk-free
rate Rp. As illustrated in Figure 8.5, E(§0M) is the intercept on the E(ﬁp)
axis of the dashed line tangent to the minimum variance boundary at the
point corresponding to M. As in the preceding section, E(§0M) is the expected
return on any risky security or on any portfolio of risky securities whose
return is uncorrelated with the return on M. In essence, a market equilibrium
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requires that M be a minimum variance portfolio, which means that (30)
applies to each of the securities in M and to portfolios of the securities in M.
Since M includes all positive variance securities, (30) applies to all positive
variance securities and to portfolios of positive variance securities. The mini-
mum variance zero-f,ps portfolio Z is just a special case of such a portfolio;
and since ﬁZM =0.0, E(ﬁz) = E(ﬁoM)

The market portfolio M, however, does not include the risk-free security F.
Thus, even though the return on F is uncorrelated with the return on M, there
is no reason to expect (30) and (54) to apply to F, and so there is no reason
to expect that R = E(ﬁz). In fact, since the positively sloped segment of the
minimum variance boundary is concave, and since M is generally above the
tangency portfolio T on the minimum variance boundary, in general E(ﬁz) >
Rp. Only in the special case where M and T coincide do we get E(i?'z) =Rp.

We can contrast these results of what might be called the modified Black
model with those of the Sharpe-Lintner model. In the Sharpe-Lintner model,
there is unrestricted borrowing as well as lending at the risk-free rate Rg. In
terms of Figure 8.5, this means that portfolios along the dashed extension of
the line from R through T are now feasible. Since T is the risky component
of every efficient portfolio, in a market equilibrium 7 must be the market
portfolio of positive variance securities M. In this case, although M does not
include F, Rp = E(ﬁz) = E(f?'OM), since Rg, E(ﬁz), and E(ﬁOM) all corre-
spond to the intercept on the E(ﬁp) axis of the line tangent to the minimum
variance boundary at the point M. Thus, equation (32) holds for any security
or portfolio, and Rg is the expected return on any security or portfolio
whose return is uncorrelated with the return on M. In short, in the Sharpe-
Lintner model the investment opportunities available in a market equilibrium
are as shown in Figure 8.3, whereas in the modified Black model the world is
as shown in Figure 8.5.

Finally, we should note one further thing about the modified Black model.
In Figure 8.5 any portfolio of positively weighted efficient portfolios, where
each component efficient portfolio is T or a portfolio above T on the efficient
boundary, is itself an efficient portfolio. Any portfolio of positively weighted
efficient portfolios from along the line between F and T is itself efficient. Un-
like the Sharpe-Lintner model and the basic Black model, however, in the
modified Black model it is not the case that any portfolio of positively
weighted efficient portfolios is efficient. For example, portfolios of F and
any efficient portfolio above T are inefficient, since such portfolios are al-
ways dominated either by portfolios along the line between F and T or by
portfolios along the boundary from T through M. In short, the tangency
portfolio T is our first instance of what is called a “corner” portfolio. Effi-
cient portfolios below T contain a security, F, which does not appear in
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portfolios above T. Such corner portfolios appear consistently in the two-
parameter models that we consider below.

PROBLEMS V.A

2. In the modified Black model, since there is risk-free lending but not bor-
rowing, there must be a positive amount of the risk-free security F in the
market. Show that the market portfolio of both risk-free and positive vari-
ance securities is not efficient.

3. In the Sharpe-Lintner model it is usually assumed that the risk-free secu-
rity is borrowing and lending among investors, so that in a market equilibrium
aggregate borrowing is equal to aggregate lending and the net outstanding
amount of the risk-free security is zero. How must the model be modified if
the values at time 2 of the activities of some firms are perfectly certain at
time 1, so that the net outstanding amount of risk-free securities is positive?

ANSWERS

2. In the modified Black model the market portfolio M in Figure 8.5 in-
cludes only positive variance securities. The market portfolio of all securities
is a portfolio of F and M, where F is weighted by the ratio of the total market
value at time 1 of outstanding risk-free securities to the total market value of
all outstanding units of all securities, and where M is weighted by the ratio of
the total market value of all outstanding units of all positive variance secu-
rities to the total market value of all outstanding units of all securities. This
combined market portfolio of risk-free and positive variance securities is on
the straight line (not shown) between F and M in Figure 8.5, so it is only
efficient in the special case where M and T coincide.

3. The Sharpe-Lintner model changes little when the net outstanding
amount of risk-free securities is positive rather than zero. In geometric terms,
the relevant picture of investment opportunities in a market equilibrium is
again Figure 8.3. Now we must say that M is the market portfolio of only
positive variance securities, and the solid curve through Z and M is the curve
of minimum variance portfolios of positive variance securities. The only new
wrinkle in the Sharpe-Lintner model when there is a positive outstanding
amount of risk-free securities is that, as in the preceding problem, the market
portfolio of risk-free and risky securities is the appropriately weighted com-
bination of F and M, and it would be somewhere on the straight line between
Rp and M in Figure 8.3 Unlike the results for the modified Black model in
the preceding problem, however, in the Sharpe-Lintner model the market
portfolio of all securities, like the market portfolio of only positive variance
securities, is efficient.
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B. Market Equilibrium When There Is Risk-free
Borrowing and Lending But at Different Interest Rates

Another variant of the Black model, developed by Brennan (1971), allows
for risk-free borrowing and lending, but at different interest rates. The sim-
plest way to set up the Brennan model is to assume that there is risk-free bor-
rowing and lending among investors, so that aggregate borrowing equals lend-
ing and there is no net outstanding supply of risk-free securities, but that
there is a middleman or broker who exacts a fee from both borrowers and
lenders. The same market rate is quoted to borrowers and lenders, but broker-
age fees, assumed to be a fixed fraction of the amount borrowed or lent, have
the effect of making the rate received by lenders less than the quoted rate,
while the rate paid by borrowers is higher than the quoted rate. The as-
sumption of the Brennan model is that there are only brokerage fees in the
borrowing-lending market. Positive variance securities can be bought or sold
without such transactions costs. Moreover, as in the two variants of the Black
model discussed above, short-selling of positive variance securities is unre-
stricted. Finally, as in all the models of market equilibrium discussed so far,
at time 1 there is assumed to be complete agreement among investors with
respect to the joint distribution of securities values at time 2.

In the present model, the picture of the investment opportunities available
at time 1 might be as shown in Figure 8.6. There are now two different tan-
gency portfolios, Ty, and Tg, and three different types of efficient portfolios.
The lowest-expected-return efficient portfolios are lending portfolios. These
start at the point Ry, (the net rate received by lenders) on the vertical axis in
Figure 8.6 and go up to the first tangency portfolio Ty, on the curve of mini-
mum variance portfolios of positive variance securities. The dashed extension
of the line from Ry, through T} does not describe feasible portfolios, since
such portfolios imply borrowing at the rate Ry, and borrowers must pay the
higher rate Rg. The highest-expected-return efficient portfolios are borrow-
ing portfolios. These are along the solid extension of the line from R through
the second tangency portfolio Ts. The dashed segment of the line between
Rp and T does not represent feasible portfolios, since such portfolios imply
lending at the rate Rg, and lenders only net the rate R, . Finally, the remain-
ing efficient portfolios are those between Tg and T, along the boundary of
minimum variance portfolios of positive variance securities.

In Figure 8.6 the market portfolio M is one of the efficient portfolios be-
tween Tg and Tp,. In a market equilibrium M must indeed be efficient, and
the reasoning is similar to that of the modified Black model of the preceding
section. In particular, a market equilibrium requires that the portfolio of the
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FIGURE 8.6
Market Equilibrium When the Risk-free Borrowing Rate Is Greater Than the Risk-free
Lending Rate
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risky components of investor portfolios, where the risky component of each
investor’s portfolio is weighted by the ratio of his total investment in positive
variance securities to the total investment in positive variance securities by all
investors, be the market portfolio M. The risky component of every efficient
portfolio that involves lending is the tangency portfolio T;, . The risky compo-
nent of every efficient portfolio that involves borrowing is the tangency port-
folio Ts. The risky components of other efficient portfolios are simply the
portfolios themselves, that is, points along the efficient boundary between T,
and Tp. Thus, in a market equilibrium, the market portfolio can be expressed
as a portfolio of positively weighted efficient portfolios between T, and T.
Any such portfolio of efficient portfolios of positive variance securities
is efficient; as shown in Figure 8.6, the market portfolio must lie some-
where along the efficient boundary between 7}, and Tg. Thus, as in the two-
parameter models of market equilibrium discussed in preceding sections, we
once again have the result that a market equilibrium requires that the market
portfolio be efficient, which means that we can interpret (30) or (54) as the
market equilibrium relationship between the expected returns on securities
and their risks in M.
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PROBLEM V.B
1. Show that Ry <E(Rop) =E(Rz)<Rp.

ANSWER

1. The inequality follows from three facts. First, the order of the portfolios
Ty, M, and Ty along the efficient boundary must be as shown in Figure 8.6.
Second, the efficient boundary between Ty and Tp is strictly concave. Third,
Ry, E(§0M), and Rp are, respectively, the intercepts on the E(ﬁp) axis of
lines tangent to the boundary at the points 7, ,M, and Tg.

In the Brennan model there are two “corner” portfolios along the efficient
boundary, T}, and Tg. Portfolios above Tz on the efficient boundary contain
a “security” (borrowing at the rate Rg) which does not appear in any port-
folios below T on the boundary, while portfolios below T, on the efficient
boundary contain a “security” (lending at the rate Ry ) which does not appear
in portfolios above T} on the boundary. Any portfolio of positively weighted
portfolios from along the line between R; and T}, is efficient, and likewise
for portfolios of positively weighted portfolios on the curve between T}, and
Tg, or for portfolios of efficient portfolios above Tg. But not all portfolios
of positively weighted efficient portfolios are efficient. For example, combin-
ing risk-free lending at the rate R; with any minimum variance portfolio
above T}, yields an inefficient portfolio.

Finally, note that the borrowing rate Rg and the lending rate R; do not
conform to the expected return-risk equation (54). Since (54) is a relation-
ship between expected return and risk for securities in M, and since M does
not include either risk-free borrowing or lending, there is no reason to expect
that (54) will apply to these activities.

C. Market Equilibrium When There Is Risk-free Borrowing and
Lending But There Are Margin Requirements

The next two-parameter model of market equilibrium is similar to the
Black model in that short-selling of positive variance securities is unrestricted,
but it is also similar to the Sharpe-Lintner model in that there is risk-free bor-
rowing and lending at a common interest rate. The amount of borrowing,
however, is assumed to be restricted to some fixed fraction of an investor’s
portfolio funds (w; - ¢;). The fraction is the same for all investors, and it is
independent of which portfolio of positive variance securities an investor
chooses. Finally, at time 1 there is complete agreement among investors with
respect to the joint distribution of security values at time 2.
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FIGURE 8.7
Market Equilibrium with Risk-free Lending and Margin Requirements on Risk-free
Borrowing
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In this model, which we call the restricted borrowing model, the portfolio
opportunities facing investors in a market equilibrium might be as shown in
Figure 8.7. The solid curve through the points Q and S shows minimum vari-
ance portfolios of positive variance securities. Efficient portfolios are first
along the line from the risk-free rate R through the tangency portfolio 7.
Portfolios between £ and T on the line are combinations of F and T involving
different fractions of lending at the rate R . Portfolios above T on the line from
R are borrowing portfolios. The point 7" is the portfolio of F and T that
involves the maximum allowable fraction of borrowing at the rate Rp. Ef-
ficient portfolios along the continuation of the boundary from T’ involve
combining maximum borrowing with successive minimum variance portfolios
of positive variance securities above T on the minimum variance boundary.
For example, the efficient portfolio S’ involves combining the minimum
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variance portfolio S with the maximum allowable fraction of borrowing at
the risk-free rate Rg.

In Figure 8.7, the market portfolio M of only risky securities is on the
minimum variance boundary. In a market equilibrium this must be the case,
and the reasoning is similar to that used in the two preceding models. In
particular, in a market equilibrium the portfolio of the risky components of
investor portfolios, where the risky component of each investor’s portfolio
is weighted by the ratio of his investment of his own funds in positive variance
securities to the total of such investments by all investors, must be the market
portfolio M. The risky components of efficient portfolios are the minimum
variance portfolio T and portfolios above T on the curve of minimum vari-
ance portfolios of only positive variance securities. Any portfolio of posi-
tively weighted minimum variance portfolios where the component portfolios
are T and minimum variance portfolios above T is a minimum variance port-
folio, and in general it is above T on the minimum variance boundary. Thus,
in a market equilibrium, the market portfolio M is a minimum variance
portfolio, and in general it is above the tangency portfolio 7 on the minimum
variance boundary.

For the first time, however, the market portfolio of positive variance secu-
rities is not efficient. It is the risky component of the efficient portfolio M',
but M itself is not efficient. Nevertheless, as long as M is a minimum variance
portfolio, (30) or (54) applies. Moreover, since market equilibrium requires
that M be a minimum variance portfolio, we can make the by now familiar
comments concerning (30) or (54). Since these are conditions that must hold
in a market equilibrium, they can be interpreted as conditions on equilibrium
prices, or as market equilibrium relationships between the expected returns
on positive variance securities and their risks in M. Again, however, since M
does not include risk-free securities, (30) and (54) do not apply to F. In fact,
recalling that E(ﬁOM) = E(ﬁz) is the intercept on the E(ﬁp) axis of a line
tangent to the curve of minimum variance portfolios at the point M, we can
see from Figure 8.7 that in the present model, as in the modified Black model
(where there is risk-free lending but not borrowing), the risk-free rate R is
equal to or less than E(ﬁz).

PROBLEM V.C
1. In the restricted borrowing model, when will a market equilibrium imply
RF = E(Rz)?

ANSWER

1. From inspection of Figure 8.7 and the definition ofE(§0M) =E(ﬁz) in
(18), we can see that the condition Rg = E(Rz) requires that the tangency
portfolio 7 be the market portfolio M. This will happen when the only ef-
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ficient portfolios investors choose to hold are those along the segment of the
efficient boundary from Rp to T'. Then T will be the risky component of
every efficient portfolio which any investor holds, so that in a market equilib-
rium 7" must be the market portfolio M. In this case the present model and
the Sharpe-Lintner model are indistinguishable; (32) is the appropriate mar-
ket equilibrium condition for both models.

VI. Comparison of and Comments on the Various
Two-Parameter Models of Market Equilibrium

In all the models of market equilibrium considered so far, a market equilib-
rium requires that the market portfolio M of positive variance securities be a
minimum variance portfolio of positive variance securities, and M is always
on the positively sloped segment of the minimum variance boundary. In all
models but one, the restricted borrowing model of the preceding section, M
is also efficient. The fact that a market equilibrium requires that the market
portfolio M be a minimum variance portfolio means that when applied to M,
equation (20), which is basically a mathematical condition on the proportions
of portfolio funds invested in individual securities that must be met by a mini-
mum variance portfolio, can be interpreted as a condition on equilibrium
prices. The fact that a market equilibrium requires that M be a minimum vari-
ance portfolio means that in a market equilibrium securities must be priced so
that (30), which is (20) applied to M, holds for every positive variance security.
Thus, (30) can be interpreted as the implication of the various two-parameter
models of market equilibrium for equilibrium prices of securities at time 1.
Alternatively, (30) can be interpreted as the market equilibrium relationship
between the expected return on any positive variance security and its risk in
M.

The differences between the various two-parameter models of market equi-
librium, in terms of what they say about prices at time 1, center on additional
statements that they make about E(§0M) in (30). In all models, E(ﬁoM) is
the intercept on the E(ﬁp) axis of the line tangent to the curve of minimum
variance portfolios at the point corresponding to the market portfolio M. In
all models, E(§0M) is the expected return on any positive variance security
or on any portfolio of positive variance securities whose return is uncor-
related with the return on M. In the Sharpe-Lintner model, in which there is
assumed to be unrestricted risk-free borrowing and lending, E(§0M) is equal
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to Rp, the rate of interest that lenders receive and borrowers pay. Thus, in
this model the expected return on positive variance zero-f;;; securities and on
zero-B,y portfolios of positive variance securities is equal to the return on
risk-free securities. In the modified Black model, in which there is risk-free
lending but not borrowing, in general E(§0M) > Rp, where R is now the
rate on risk-free lending. The same result, E(ﬁOM) > Rp, applies to the re-
stricted borrowing model, in which there is borrowing and lending at the
common rate Ry but the amount of borrowing is restricted to a fixed frac-
tion of the investor’s portfolio funds w; ~ ¢;. Thus, in these models, posi-
tive variance zero-f;; securities and zero-8,4 portfolios of positive variance
securities have higher expected returns than risk-free securities. Finally, in
the Brennan model, in which there is unrestricted risk-free borrowing and
lending but the rate paid by borrowers is higher than the rate required by
lenders, R; < E(ﬁOM) < Rp, where R;, and Rpg are the lending and borrow-
ing rates.

There are, however, basically just two different types of models. First, there
is the Sharpe-Lintner model, in which there is assumed to be unrestricted bor-
rowing and lending at a common risk-free rate Rg but in which it is not
necessary that positive variance securities can be sold short. Then there is the
Black model and variants thereof, in which unrestricted short-selling of posi-
tive variance securities is always assumed. In the basic Black model there are
no risk-free securities. In the variants of the model there are risk-free secu-
rities, but borrowing is either impossible or restricted, or lending and borrow-
ing are subject to transactions costs.

Given that these models consistently assume that short-selling of positive
variance securities is unrestricted and that there are no transactions costs in
trading such securities, the assumptions that the variants of the Black model
then make about the borrowing-lending market are somewhat contrived. For
example, in the Brennan model there are transactions costs for risk-free secu-
rities such that the risk-free rate paid by borrowers is greater than the rate
received by lenders, but there are no transactions costs in trading positive
variance securities. In real-world capital markets there are brokerage fees in
trading all securities, and in general they are higher on common stocks than
on bonds. Thus, although introducing transactions costs seems to move the
model in the direction of greater realism, one can argue that quite the oppo-
site is true if such costs are assumed to exist only for risk-free securities,
since this has the effect of assuming the reverse of the actual relationship
between the costs of trading risk-free and positive variance securities.

In the other two variants of the Black model, either there is no risk-free
borrowing, or risk-free borrowing is restricted to some fixed fraction of
portfolio funds. Risk-free lending is unrestricted, and there are no restric-
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tions on either long or short positions in positive variance securities. In
the real world, of course, it is impossible for an investor to borrow unlimited
amounts at a risk-free rate. Nevertheless, restrictions on short-selling of posi-
tive variance securities like common stocks are even more severe. In truth,
short-selling of common stocks, in the manner in which we use that term,
does not exist. We assume that when an investor sells short a security—that
is, borrows the security and sells it on the open market—he gets to use the
proceeds from the sale to increase his investments in other securities. In
reality, when an investor sells a common stock short, not only does he not
get the proceeds from the sale of the security (they reside with the broker),
but he must also put up collateral as if he were buying the security long.
Given that the funds required are the same asin a long position, a real-world
short sale of a common stock is in effect a “long” position in the stock, but
one where the short-seller arranges to get the negative of the return on the
usual type of purchase.

In any case, the point is that although risk-free borrowing is not unre-
stricted in the real world, it is less restricted than short-selling of positive
variance securities like common stocks. Thus, models that incorporate re-
strictions on borrowing but allow unrestricted short-selling of positive vari-
ance securities are a step away from the real world, since they reverse the
real relative degrees of restrictiveness in risk-free borrowing and short-selling
of positive variance securities.

The Sharpe-Lintner model and the basic Black model are much more con-
sistent in this respect than the variants of the Black model discussed above.
In the Sharpe-Lintner model, borrowing and lending at a common risk-free
fate are unrestricted, and the implication of the model for market equilib-
rium, the expected return-risk equation (32), does not require the assump-
tion that positive variance securities can be sold short. Thus, although real-
world borrowing is certainly not unrestricted, this model is at least consistent
with the fact that real-world borrowing is less restricted than real-world short-
selling of positive variance securities. In the basic Black model, risk-free
securities are not assumed to exist, and short-selling of positive variance se-
curities is unrestricted. Thus, although the assumption of unrestricted short-
selling is unrealistic, this model, unlike its variants, is at least consistent in
that it assumes that all available securities can be sold short.

We do not, however, judge the Sharpe-Lintner and Black models on the
basis of whether the assumptions of one or the other seem more appealing.
Both are to some extent unrealistic, and it is best to choose between them
on the basis of which does a better job explaining real-world data on average
returns and risk. Indeed, in the empirical tests of the next chapter we do not
hesitate to invoke implications of variants of the Black model when these
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help to explain what is observed in the data. The fact that we do not find
the assumptions of these models as pleasing as those of the Sharpe-Lintner
and Black models does not mean that the variants of the Black model cannot
offer some insight into what we observe in the data. Such insight, as always,
is the basis on which we judge whether a model is useful.

VII. Market Equilibrium When There Are No Risk-free
Securities and Short-Selling of Positive Variance
Securities Is Prohibited

A. Preliminary Discussion

The implications of the Sharpe-Lintner model and the Black model and its
variants for equilibrium security prices and for equilibrium relationships be-
tween the expected returns on securities and their risks derive from the fact
that in these models a market equilibrium requires that M, the market port-
folio of positive variance securities, be a minimum variance portfolio and
usually an efficient portfolio. Thus, in equilibrium, securities must be priced
so that the mathematical relationship between the expected returns on secu-
rities and their risks in a minimum variance portfolio applies to M. In the
Sharpe-Lintner model the efficiency of M is a consequence of the fact that
with unrestricted risk-free borrowing and lending, there is only one efficient
portfolio of only positive variance securities, and this portfolio is the risky
component of every efficient portfolio. If the market is to clear, this “tan-
gency” portfolio must be M. In the Black model and its variants, the mini-
mum variance property of the market portfolio is a consequence of the facts
that (a) in a market equilibrium the portfolio of the risky components of
investor portfolios must be the market portfolio; (b) the risky components
of investor portfolios are minimum variance portfolios; and (c) with unre-
stricted short-selling of positive variance securities, any portfolio of minimum
variance portfolios is a minimum variance portfolio. All models are also based
on the assumption that there is complete agreement among investors with re-
spect to the joint distribution of security prices at time 2.

In addition to the assumption of complete agreement, in the Black model
and its variants the key ingredient for the result that M must be a minimum
variance portfolio is the assumption that short-selling of positive variance
securities is unrestricted, while the key ingredient in the Sharpe-Lintner
model is the assumption that risk-free borrowing and lending is unrestricted.
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We now examine what we can say about market equilibrium when there are
no risk-free securities and there is no short-selling of positive variance secu-
rities. We find that in general the market portfolio is neither efficient nor
minimum variance.

This result is not necessarily troublesome. In the various two-parameter
models, the implications of a model for equilibrium prices of securities are
obtained by showing that a market equilibrium requires that some portfolio,
with proportions invested in individual securities that are known, is a mini-
mum variance portfolio. Then we say that when applied to this portfolio,
equation (20), which otherwise is just a mathematical condition that is met
by securities in a minimum variance portfolio, can be interpreted as a condi-
tion on security prices that must be met in a market equilibrium. Since it
contains all securities and in the proportions in which they are outstanding,
the market portfolio is a convenient and appealing candidate for this market
equilibrium interpretation of the minimum variance condition. However, the
same interpretation of (20) would apply to any portfolio that must be a mini-
mum variance portfolio in a market equilibrium. Unfortunately, at least as
the state of the art stands now, when there are no risk-free securities and
there is no short-selling of positive variance securities, we cannot identify
such portfolios.

This result presents some cause for concern. The basic goal of the empirical
work in the next chapter is to test whether security prices and returns behave
as if investors choose portfolios in conformance with the two-parameter port-
folio model. The goal is to test whether the behavior of prices and returns
seems to reflect the attempts of investors to hold efficient portfolios. Such
tests require some two-parameter model of market equilibrium. To date, the
models of market equilibrium that produce testable propositions about secu-
rity prices and expected returns require either the assumption that there is
unrestricted risk-free borrowing and lending or the assumption that short-
selling of positive variance securities is unrestricted. The portfolio model it-
self requires neither of these assumptions. Thus, in the empirical tests of the
next chapter, we run the danger of rejecting the basic proposition that the
behavior of returns is as if investors attempt to hold efficient portfolios,
when the real problem is that we do not have a suitable two-parameter model
of market equilibrium. On the other hand, if the tests turn out well, and we
argue in Chapter 9 that they do, then they provide some vindication both for
the models of market equilibrium that are used and for the more basic pro-
position that the prices of securities reflect the attempts of investors to hold
efficient portfolios.
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B. The Efficient Set Without Short-Selling
or Risk-free Securities

When short-selling of positive variance securities is not allowed, the set of
minimum variance portfolios is generated by a sequence of “corner” port-
folios. For example, in Figure 8.8 the corner portfolios are assumed to be the
points a, b, ¢, d, e, f, g. The portfolio g is the security with the highest ex-
pected return, or, if there is more than one security with the highest expected
return, g can be a portfolio of these. Moving down the boundary, the next
corner portfolio, £, contains all the securities in g plus one security not con-
tained in g. In general, adjacent corner portfolios differ by one security (that
is, one of them contains a security not included in the other), but in some
cases adjacent corner portfolios differ by two securities (that is, each contains
a security not included in the other). Equivalently, as one moves down the
minimum variance boundary, each new comer portfolio involves adding a
new security to the immediately preceding corner portfolio and/or dropping
a security that appears in the immediately preceding corner portfolio.

When short-selling is not allowed, portfolios on the minimum variance
boundary that are between two corner portfolios are just combinations of
these two adjacent corner portfolios. For example, all the points along the
boundary between the corner portfolios d and e in Figure 8.8 are portfolios
of d and e. In general, however, only combinations of adjacent corner port-
folios are on the minimum variance boundary. For example, combinations of
the nonadjacent corner portfolios d and f in Figure 8.8 are not on the mini-
mum variance boundary. This is in contrast with the situation when short-
selling is unrestricted. Then any portfolio of minimum variance portfolios
is a minimum variance portfolio. In the Black model and its variants, it is
this property of minimum variance portfolios that allows us to reason that
in a market equilibrium the market portfolio must be a minimum variance
portfolio. When short-selling is prohibited, the fact that portfolios of non-
adajacent corner portfolios are not minimum variance portfolios allows us
to conclude that in general the market portfolio cannot be a minimum vari-
ance portfolio.

Thus, suppose that there is complete agreement among investors with re-
spect to the joint distribution of security prices at time 2 and that the com-
mon picture of the portfolio opportunities facing investors in a market equilib-
rium is Figure 8.8. Different investors choose different portfolios from along
the efficient or positively sloped segment of the minimum variance boundary.
Since Figure 8.8 is supposed to represent a market equilibrium, the portfolio
of the portfolios chosen by investors, where the portfolio chosen by an in-
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FIGURE 8.8
The Efficient Set When There Is No Short-Selling
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vestor is weighted by the ratio of his portfolio funds to the portfolio funds of
all investors, must be the market portfolio. Thus, the market portfolio is a
portfolio of minimum variance portfolios. Unless investors all choose mini-
mum variance portfolios between the same two adjacent corner portfolios,
when short-selling is prohibited such a portfolio of minimum variance port-
folios cannot itself be a minimum variance portfolio.

So much for the market portfolio! As discussed above, the cause is not lost
if we can identify some portfolio or portfolios that must be of minimum vari-
ance or efficient in a market equilibrium. So far as I know, this task has met
with no success. The problem is that, aside from the general comments above,
we know little about the characteristics of minimum variance portfolios when
short-selling is prohibited. For example, as one moves down the minimum
variance boundary, minimum variance portfolios at first become more diversi-
fied; then they become less diversified as one approaches the bottom point
on the boundary, which is the security with the lowest expected return or a
portfolio of securities with the same lowest possible expected return. Beyond
this, however, one can, at the moment, say nothing.
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In short, a market equilibrium requires that aggregate investor demand for
each security be equal to the outstanding supply of the security. This in turn
means that securities must be priced so that each security is in some efficient
portfolios that are chosen by investors. These statements fall substantially
short of interesting and testable propositions about the nature of capital mar-
ket equilibrium. For such propositions, we have to rely on the Sharpe-Lintner
model and on the Black model and its variants.

VIII. Market Equilibrium: Mathematical Treatment

In the preceding sections, the implications of the two-parameter model for
equilibrium prices of securities are derived from a combination of geometric
arguments with the properties of minimum variance portfolios. This approach
is best for developing an intuitive appreciation for what the portfolio model
and the derived two-parameter models of capital market equilibrium are all
about. In this section, we consider a more “elegant” (i.e., mathematical)
approach which derives market equilibrium prices more or less directly from
the solutions to the consumption-investment decision problems that investors
are presumed to face. Although this approach obscures some of the more in-
teresting aspects of the model, it is more useful for attacking some questions
than the geometric approach of the preceding sections.

The nonmathematical reader who is taking a first pass at this book might
skip this section, since the new insights that it provides are not critical to a
good understanding of two-parameter theory. The nonmathematical reader
who is interested in the new insights can, however, continue on. He can get
what he wants from the verbal discussions, especially those of Section VIII.C.
The mathematical reader may find the present approach more appealing than
that of the preceding sections.

A. Consumption-Investment Decisions and Equilibrium Prices

Begin with a few definitions:

17',- = market value of firm j at time 2. Firms are assumed to have
only common stock outstanding at time 1; and 17, is the
total market value of the common stock of firm j at time
2, including any dividends paid at time 2. We assume that
there is complete agreement among investors with respect
to the joint distribution of ¥;,j=1,... n.
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P; = market value of firm j at time 1. Market equilibrium at
time 1 involves determination of a set of market-clearing
prices P; for each of the j =1, ..., n firms in the market.

X;j = fraction of P; and thus of I7,- demanded by investor / at
time 1. Xj; is the fraction of firm j owned by investor i
after he chooses his portfolio at time 1. We assume that
short-selling of all securities is unrestricted, so that Xij can
take positive or negative values.

C1i, €2 = consumption of investor 7 at times 1 and 2.
E(I7,~) = expected market value of firm j at time 2.
cov (V;, Vi) = covariance between the market values of firms j and k at
time 2, with cov (I7j, I7,-) = 02(I7,~).

The investor’s consumption at time 2 is the total value of his holdings in all
firms

n
=3 XV, (55)

and &; and V; are random variables at time 1. The mean and variance of the
distribution of ¢&,; are

L ~
E;=E() =3 XiE(V) (56)
i1
2 2, 2 & 5o
0f T0° () = - 3 XijXik cov(V}, V). (57)
j=1 k=1

In the present framework, we assume that the joint distribution of firm val-
ues I7,-, j=1,...,n,is multivariate normal. This in turn means that for any
choice of Xy, j=1,...,n, the distribution of &,; is normal. Following the
arguments of Chapter 7, the investor’s decision problem reduces to a choice
of current consumption ¢,;, expected future consumption £;, and variance of
future consumption o7 . We assume that the tastes of investor i for ¢,;, E;, and
a7 can be summarized by a welfare function Gy(c,i, E;, 67) which is increas-
ing in ¢y; and E; but decreasing in 67. In words, the investor likes consump-
tion at time 1 and expected consumption at time 2, but he is averse to dis-
persion in the distribution of consumption at time 2. Finally, the welfare
function G is assumed to be differentiable at least once in each of its
arguments.

The investor’s decision problem at time 1 is to choose values of ¢,; and
Xij, j=1,...,n, that maximize his welfare subject to the constraint that the
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total of his current consumption and his investment in firms is equal to w,;,
the market value of his wealth at time I. In formal terms, the investor must
choose ¢y;and X5,/ =1, ..., n, which

maximize Gy(c,;, E;, 0?) (58)

subject to the budget constraint
n
wii= D XiyPitey. (59)
j=1
To solve the problem, we form the Lagrangian expression
2 n
G, By 0f ) + Nwyi - ¢y = 3 XyP)),
f=1
differentiate the expression partially with respect to A, cyi» and

Xij, j=1,...,n, and then set these partial derivatives equal to zero. This
yields (59) and the n + 1 equations

X =0 60

e (60)
3G, . 3G =~ Lo ,
'aEE(V,-)'f'aTiszZ::lX,'kCOV(V]',Vk)“X,'PI'=0, j=1,...,n, (61)

where the partial derivatives 8G;/dc,;, 8G;/dE; and 8G;/d0* are rates of
change of welfare with respect to changes in ¢,;, E;, and of . Substituting (60)
into (61), we get

aG;

aG'.E V) +
3E; ¥ a?

n "~ oG;
23 Xicov(V, Vy)- a——P,-=0, j=1,...,n (62)
k=1 C1i
Each investor is presumed to solve a problem like that stated in (58) and
(59). Thus, there is a set of equations like (59), (60), and (62) for each in-
vestor i; conditional on some set of values for firms at time 1, these equations
determine the optimal values of current consumption and fractions of firms
chosen by investor / at time 1. To get the implications of optimal decisions by
investors for market equilibrium values of firms at time 1, we shall aggregate
(62) across all investors, invoke the market-clearing constraints

I
Z}X,~=1, ji=1,...,n, (63)

=1

and then solve the resulting aggregate equations for Pij=1,...,n. Asafirst
step, we divide through equation (62) by 3G,/d07, to get
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3G;/oc;
BG,/bo,z

9G;[oE;
bG,/ao,z

- n ~ ~ .
E(V,.)+22Xikcov(V,~,Vk)- Pj'_'o, Jj=L,...,n
k=1

(64)

To interpret the two ratios of partial derivatives in (64), first set the differ-
ential of G; equal to zero:
. . 3G:
gz—'idcl,-+ %dE,- + 5-0—';d0,- =0, (65)
where dcy;, dE; and do? represent “‘small” changes in c,;, E;, and o} . Equa-
tion (65) tells us how we can vary current consumption, expected consump-
tion at time 2, and variance of consumption at time 2, while keeping the wel-
fare of investor i constant. The equation allows us to determine marginal rates
of substitution of one variable for another; that is, it can be used to deter-
mine how any two of the three variables can be varied while keeping the in-
vestor’s welfare constant. For example, do? /dE;, the marginal rate of substi-
tution of expected consumption at time 2 for variance of consumption at
time 2, is obtained by setting dc,; equal to zero in (65) and then solving to

get
do}  3G;/dE;

dE;  3G[d0? "

(66)

Likewise, do? /dc,;, the marginal rate of substitution of consumption at time
1 for variance of consumption at time 2, is obtained by setting dE; equal to
zero and then solving (65) to get

dO,2 _ bGi/bc,,-

dey; 9G,/30}

(67)

PROBLEM VIILA
1. Give an intuitive explanation for the minus signs in (66) and (67).

ANSWER

1. The marginal rate of substitution in (66) is concerned with changes
dE; and do} in the mean and variance of consumption at time 2, holding con-
sumption constant at time 1, that leave welfare unchanged. Since the investor
is assumed to like expected consumption (3G;/9E; > 0) but to dislike vari-
ance of consumption (3G;/d07 <0), keeping welfare constant implies that
dE; and do} in equation (65) must have the same sign. Since 3G;/3E; and
3G;/d0} have opposite signs, this means that we must have a minus sign on
the right of the equality in (66). Similar comments apply to (67).
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We can now see that the two ratios of partial derivatives in (64) are the
marginal rates of substitution of equations (66) and (67). If we interpret the
n equations of (64) as the security demand equations for investor i, we can
say that the fraction of the total securities of firm j demanded by investor i
depends on the expected market value of the firm at time 2, the covariances
of its market value at time 2 with the market values of all firms, the market
value of the firm at time 1, and investor ’s marginal rates of substitution be-
tween mean and variance of consumption at time 2 and between consump-
tion at time 1 and variance of consumption at time 2.

To get an expression for the value of firm j in a market equilibrium, we ag-
gregate the demand equations of (64) across all investors i,i=1,...,1, in-
voking the market-clearing constraints of (63). The result is

~ n ~ ~
YE(V)+2 3 cov(V, Vi)+8P;=0, j=1,...,n, (68)
k=1

where
I do} 1 do?
=Y = and 6=3 —* 6
P 2P My )

Equation (68) shows the relationship between the market equilibrium value
of firm j at time 1, its expected value at time 2, the covariances of its value at
time 2 with the values of all firms, and the tastes of investors as summarized
by v and 8. To get an explicit equation for the market equilibrium value of
firm j at time 1, we solve (68) for P;,

Yo N
P;= 3 E(V)- cov (¥}, Vy). (70)

|
Ma

k=1

A more intuitive -version of this pricing equation can be obtained by devel-
oping interpretations of /8 and 2/5. The aggregate values of all firms at time
1 and time 2 are

n ~ noo.
PM:Z Pf and VM:Z V, (71)
j=1 j=t

Pps and VM can also be interpreted as the values of invested wealth at time 1
and time 2. The mean and variance of the distribution of VM are

E(Vy) = f; E(V}) and OZ(VM)=£ ﬁ cov(V;, Vo). (72)
j=1 j=1 k=1

Thus, if we aggregate (70) across firms, we determine that
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Y o 2 .5
PM"EE(VM)"EU Vm), (73)

3_%5(‘71”)‘1’»1
5 (M) (74)

With (74), equation (70) can be rewritten as

v '}E(VM)‘PM o
PI=—6-E(VI)-— _ow— kz=:l COV(VI', Vk). (75)

Or better, using (71) we can determine that

cov (¥, Va) = cov <l7, Z": ~/¢)= Zn: cov (V;, Vi), (76)

k=1 k=1
so that
Y ~
v EE(VM)‘PM
=S E(V) - - Vi V).
5 EDD | =g | v (7 Pan) (77
Better yet, if we let
r_1
L=o (78)
then
1 . (E(Vp)- 0Py S ]
=—E(V))-|—5——— iV .
0[ ) ( ) v ) (79

It is an easy matter to develop an interpretation of 6. Suppose there is a
firm, call it firm O, whose market value at time 2 is uncorrelated with VM, )
that cov (Vy, VM) 0. From (79), for this firm we have

Py =5 E(T) (80)

so that

E(V, ~ ~
oz—p—O):l’fE(Ro):l‘fE(RoM)- (81)
o
In words, 0 can be interpreted as 1 plus the expected return on the securities

of a firm whose market value at time 2 is uncorrelated with the total market
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value of all firms at time 2. If the market value of a firm at time 2 is uncorre-
lated with the total market value of all firms, the return on the firm’s securi-
ties is uncorrelated with the return on the market portfoho Thus, E(Ro) is
E(Rop) of preceding sections; that is, ERy)=ERop) is the expected re-
turn on any security (or firm) whose return is uncorrelated with the return on
the market portfolio M.

PROBLEM VIII.A
2. Show that cov (V,, Var) =0 implies cov (R, Rpyy) = 0.

ANSWER
2.

L Z Vu Lo~
cov (R;, Rpr) = cov . 1,—-1 cov (V, Vum). (82)

1
P Py ) PPy

It follows that cov (¥, I7M) =0 implies cov (Ry, Rp) = 0.

Substituting (81) into (79), we get
1 )[E(V_)_<E(VM)— [1 + ERom)] Py

) cov (I7,», VM)].
(83)

This equation has an interesting interpretation. From (72) and (76), we can
determine that

2(Vy) = Z": i cov
j=1 k=1

Since VM is the market value of invested wealth at time 2, az(VM) can be in-
terpreted as the risk of invested wealth. Then cov ( I7, I7M) can be interpreted
as the risk of the market value of firm j at time 2 in the sense that it is the
contribution of the securities of firm j to the risk of market wealth. Thus,
(83) says that the market value of firm j at time 1 is determined by first ad-
justing the expected market value of the firm at time 2 for the risk of the
market value of the firm at time 2, then discounting this risk-adjusted ex-
pected market value at a rate equal to the expected return on a riskless
security, that is, a security which contributes nothing to the risk of market
wealth at time 2.

Alternatively, (83) says that a firm sells two things in the capital market at
time 1: its expected market value at time 2, £( I7,-), and the risk of its market

Pz —— =
1+ ERom o*(Vy)

n

~ ~ A

) z Vi, P (84)

‘2
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value at time 2, cov(l7j, I7M). The price at time 1 of a unit of expected
market value at time 2 is

1/[1+E@Rom)],
and the price of a unit of risk is
i (E(VM)— [1 + EQRop)] Prr
o*( 17'M)
Finally, suppose there is unrestricted risk-free borrowing and lending. Then
the value at time 1 of ¥ dollars to be delivered for certain at time 2 is, from

(83),

)/[1 +ERom)].

Pr = —VL—- . (85)
[1+ERom)]
Since Vg/Pg is just 1 plus the risk-free rate of interest,
1+E@Ropm)=1+Rp. (86)

In short, we have rederived the Sharpe-Lintner result that £ (ﬁoM), the ex-
pected return on any positive variance security whose return is uncorrelated
with the return on the market portfolio M, is equal to the risk-free rate of
interest Rp. We simply follow a different approach to the Sharpe-Lintner
model here.

Substituting (86) into (83), we get

N E(Py)- (1 +Rp)P
t [E(V,-)~( ( M)OZEVM) F)Pum

ov 17-,17 , J=1,...,n.
IS 1+Rp )c 7 Mﬂ i

(87

In words, as in (83), the market value of firm j at time 1 is the present value
of the risk-adjusted expected market value of the firm at time 2. In (87),
however, the discount rate is the risk-free rate of interest Rg. Thus, in (87)
we first adjust E'( 171-), the expected market value of the firm at time 2, for the
risk of 17,-, and then discount this risk-adjusted expected value back to time 1
at the risk-free rate.

PROBLEM VIILA

3. Since it is based on the assumptions of complete agreement and unre-
stricted short-selling of all securities, (83) must be the market equilibrium
pricing equation for the Black model. We earlier interpreted equation (30) in
this way. Show that (30) can be obtained from (83). Likewise, show that
(32), which we earlier interpreted as the market equilibrium pricing equation
fur the Sharpe-Lintner model, can be derived from (87).
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ANSWER
3. Rearranging (83), we can determine that

. E(W)-P; N EWuy) - [1 +ER P v,V
E(Rj)E———( ;Z, ’=E(R0M)+( (Vr) <[72(17M() o)} M) c—*———OV(;j M).

(88)
Since
Vs = Pu(l +Rp),
E(Vu)=Pu[1 +EQRpm)] and 0*(Vpy) = Poyo? (Rpy).
Thus, equation (88) can be rewritten as
ERwm) - ERom) ) cov (¥}, V)
FRy) | PPy

ER;)=E®Rom) + [

Then from (82) it follows that
ERm) - ERom)]

——5=——— ] cov (ﬁ n ﬁM),
02(RM) J !

ER;)=E®Rom) + [

which is just (30).

Thus, (83) and (30) are equivalent statements about the implications of the
Black model for market equilibrium prices. Equation (83) states the equilib-
rium condition in terms of prices, whereas (30) states the equilibrium condi-
tion in terms of expected returns. Likewise, when the preceding analysis is
applied to (87), we get (32) as the implied market equilibrium condition for
expected returns in the Sharpe-Lintner model. Thus, (87) and (32) are equiva-
lent statements of the implications of the Sharpe-Lintner model for market
equilibrium prices and expected returns.

B. Counting Equations and Unknowns

As the first-order conditions for a solution to the maximization problem
stated in (58) and (59), equations (59) to (61) determine optimal values of
current consumption cy; and fractions X;; (f=1,...,n) of firms demanded
by investor i/ at time 1, conditional on some set of market values
Pi(j=1,...,n) of firms at time 1. Thus, equations (59) to (61) are the con-
ditions for investor equilibrium, and there is a set of such equations for each
investor. The conditions for a market equilibrium are the n market-clearing
equations of (63). When these are appended to the conditions for investor
equilibrium, we have a system of equations which determine the n market
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equilibrium values of firms at time 1, as well as the equilibrium fractions of
firms demanded by individual investors and the equilibrium consumptions of
individual investors at time 1.

The conditions for investor equilibrium given by (59) to (61) are n+2
equations in 7 + | unknowns, ¢,; and Xij(j=1,...,n).One of the n demand
equations of (61) is redundant. Given the optimal value of ¢;; and of n - 1 of
the X;;, the nth fraction Xij can be implied from the budget constraint of
(59). Thus, we can arbitrarily drop one of the n demand equations of (61),
and the remaining 7 - 1 equations along with (59) and (60) determine c,; and
Xi/'(j= 1, [ ,n).

There is one remaining puzzle. When the n equations of (63) are appended
to the system obtained when (59) to (61) are applied to each investor, we
have a sufficient number of equations to determine the market equilibrium
values of each of the n firms in the market. In most models of market equilib-
rium, we usually can only determine relative prices. Here we seem to be able
to determine all » security prices. In fact, the model does determine relative
prices only. There are n + | goods in the market at time 1: the n common
stocks of individual firms plus current consumption. The model determines
the prices of the common stocks in terms of—that is, in units of—current con-
sumption, so that current consumption is the numeraire.

C. Market Equilibrium Without Complete Agreement

The models of market equilibrium discussed so far are based on the assump-
tion that there is complete agreement among investors with respect to the
joint distribution of the market values of firms at time 2. This assumption is
not a necessary ingredient for a market equilibrium. A market equilibrium
simply requires a set of market-clearing values of firms at time 1. Equilibrium
prices set at time 1 must cause equation (63) to be met for each security.

The method used above to derive equations (83) and (87) allows us to
develop explicit pricing equations for a two-parameter world where complete
agreement among investors is not assumed. Although the pricing equations
are similar in form to those obtained with complete agreement, the equations
obtained when complete agreement is not assumed contain parameters that
cannot be estimated from market data. We conclude that meaningful empiri-
cal tests of the two-parameter model probably must be based on models of
market equilibrium that assume complete agreement.

When the complete agreement assumption is dropped, the statement of the
decision problem facing the investor at time 1 is to a large extent unchanged.
Each investor is assumed to behave as if the joint distribution of the market
values of firms at time 2 were multivariate normal, but each investor assesses
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his own values for the parameters of the distribution, and the assessed values
of the parameters are different from one investor to another. The investor
still behaves as if he were solving the maximization problem stated in (58)
and (59), but now, instead of (56) and (57), the equations for the expected
value and variance of his consumption at time 2 are

n ~
E,=E(¢cy)= 3 XyEi(V)) (89)
=
n n ~ ~
of =0*(Ew) =3 3 XijXux covi (¥}, Vo) (50)
=1 &=

that is, E,'(I7,~) and cov; (I7,-, I7k) now contain / subscripts to indicate that they
are the assessments of investor /. i

The conditions for a solution to the investor’s expected utility maximiza-
tion problem are again (59) to (61), but in (61) we substitute E,-(I7',~) and
cov; (I7,-, I7k) for E(I7,-) and cov (171, I7k). Then, following the steps that lead
from (61) to (64) and substituting (66) and (67) into (64), in the absence of
complete agreement, the security demand equations for investor 7 are

de} = . n ~ o dol .
‘EEE[(VI‘)"‘zkzﬂXikCOV,'(VI',Vk)"‘(‘i’g;PI‘—O, ]—1,...,’1.
on
To get an expression for the value of firm j in a market equilibrium, we
aggregate the demand equations of (91) across all investors i, i=1, . . . , 1, and
then solve for P; as
I do,-zE 7
’-_g dE, g I) 2 n I -
P/' =- s - - E Z Z)Xik cov,-(V/, Vi), (92)

where § is as defined in (69). Equation (92) is similar in form to the pricing
equation (70) obtained when complete agreement is assumed. The common
assessed expected market value £( I7,-) of firm j at time 2 that appears in (70)
is replaced in (92) by a weighted average of the expected values assessed by
individual investors, with Ei(l7/) weighted by investor s marginal rate of
substitution of expected consumption at time 2 for variance of consumption
at time 2. Likewise, the sum of covariances between the market value of firm
J at time 2 and the market values of all firms that appears in (70) is replaced
by a weighted average of investor-assessed covariances, with investor /s
assessment of cov; (17/, I7k), weighted by the fraction of firm k that he holds.
The similarity of (70) and (92) is apparent when one notes that (92) reduces
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to (70) when complete agreement is assumed; that is, (70) can be obtained
from (92) by dropping the 7 subscripts that appear on Ei(l7i) and cov; (l7,-, V)
in (92) and then making use of (69) and (63).

The analogy between the pricing equations obtained with and without the
complete agreement assumption can be pressed even further by developing
(92) into an equation similar to (79). Since

n

~ . ~ n ~ ~
cov; (V;, €34) = cov; (V/', > X Vk) 3 X cov; (V, Vi),  (93)
= k=1

we can rewrite (92) as

Pi = ————— - Z Ccov; ( 82,'). (94)

If we sum (94) across firms and then solve the resulting expression for 2/8,
we get

N

I o,
> ”E‘E {(Vu)
=,
1)
%= (95)
> covi(Vy, &2

~

where E;(Vyy) is investor s assessment of expected market wealth at time 2,
and cov; (VM, C3;) is investor i’s assessment of the covariance between market
wealth and his consumption at time 2. Substituting (95) into (94), we get

d 2
E; 1% 5P,
) ZdE i(Vam) - 8Py , o
(V) Z cov; (¥, €34) |.
Z cov; (Var, €21) -

i=1

[

?
0

0')]»—-

& I

Multiplying and dividing through this expression by vy of (69) and then mak-
ing use of the definition of @ in (78), we get
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I do} . 7
3 Ei(Vu)
R 6P
I do? M
.;1 dE; ! S
Pf = P Z cov; (V,’, C2i) .
3 covi (Var, 62:) =
i=1 o

(96)

Since market wealth at time 2 is also aggregate consumption at time 2, that
is, since

- noo.. I
V=3 Vj= 3.6 97
j=1 i=1
with the assumption of complete agreement we would have
I . I -
> cov (Va, €)= cov (VM, > C:i) =0*(Vu) (98)
= i=1
I . I -
3. cov(V;, €)= cov ( Z ¢ ) = cov( , V). (99)
i=1 i=1

Thus, with complete agreement, (96) reduces to (79), and this makes it clear
that the pricing equations obtained with and without complete agreement
again have the same form.

In the absence of complete agreement, however, one cannot reduce the sum
of covariances

Z’ cov; (Var, &;) (100)

i=

to 02(I7M) in the manner of (98). The i subscripts that appear on the covari-
ances in (100) prevent us from interpreting this expression as anything but
the sum across investors of each investor’s perceived covariance between his
consumption at time 2 and aggregate consumption or market wealth at time
2. Likewise, in the absence of complete agreement, the i subscripts on the
individual covariances in

I had ~
3. covi (¥, &) (101)
i=]

prevent us from reducing this sum to cov (I7,-, I7M) in the manner of (99).
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Nevertheless, it is possible to develop an interpretation of (96) which is
similar to the interpretation of the pricing equations obtained when complete
agreement is assumed. Thus, if we interpret cov,~(l7M, C,;) as investor i’s
perception of the risk of his consumption at time 2 relative to aggregate con-
sumption, then we can interpret the sum of covariances in (100) as aggregate
risk, but keeping in mind that this aggregate risk is not perceived by any par-
ticular market participant. Likewise, since

n I ~ I noL I ~ -
2 2 covi(Vy, &)=3 cov,-(Z Vi, Cz.-) =2 cov; (Vy, &),
f { i=1 j=1

i=1

we can interpret the sum of covariances in (101) as the risk of firm j (al-
though again this risk is not perceived by any particular investor) since it is
the contribution of the securities of firm j to what we have called aggregate
risk.

With these interpretations of the two sums of covariances in (96), we can
then say that this pricing equation represents the market value of firm j at
time 1 as 1/0 multiplied by the risk-adjusted weighted average of investor ex-
pectations of the value of the firm at time 2. Moreover, we can interpret g as
I plus a weighted average of investor-expected returns on a firm that is “risk-
less” in the sense that its risk, as measured by the sum of covariances in
(i01), is zero, even though none of the individual terms of (101) need be
equal to zero. Specifically, with such a firm, call it firm O, we can determine
from (96) that

I do} Ei(Vy) I do} .
e — Ei(R,)
) ,Z, dE; P, | ;di e
= = +
do? do}

Better yet, if there is borrowing and lending, and all investors perceive such
borrowing and lending to be risk-free, so that there is complete agreement
with respect to risk-free securities, then

dU,'2 VF

i dEi F
T
I dg
2 G,

i=1 !

M~

]
-

Substituting 1 + R for 8 in (96), we get
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S 1
/ 1 +RF
[ I do} . ]
S —Ei(Vy)
iz dE;
' do? Lar (1 +Rp)Py
f ~
Z _Ei( /) Z T
=1 dE; i=1 dE; ! _—
! d 2 - I Z COV"(‘/", Czi)
O; ~ ~ i=1
—_— cov; (Vi €20)
|z Z v : )

(102)

It is clear that (102) is an equation for the market value of firm j at time 1}
which is in the same form as equation (87), the pricing equation that is ob-
tained when there is complete agreement and risk-free borrowing and lending.

IX. Conclusions

Having pricing equations which have the same form and similar interpreta-
tions as those obtained under the assumption of complete agreement does not
mean, however, that empirical tests of the implications of the two-parameter
model for the process of price formation in the capital market can be based
on models in which complete agreement is not assumed. Empirical tests re-
quire that the quantities that appear in pricing equations be estimable from
observable market data. The expected values and covariances that appear in
(96) or (102) are investor assessments of parameters that vary from one in-
vestor to another. It is not even logical to talk about estimates of these
assessments obtained from market data.

In contrast, with complete agreement the assessed values of the parameters
E(V}), cov (V}, Viy), E(Vy), and 0*(Vy) that appear in the pricing equa-
tions (83) and (87) are common to all investors, and they are presumed to be
based on correct perception of the joint distribution of the market values of
firms at time 2. The fact that assessments are assumed to be common to all
investors and that investor perceptions are assumed to be correct allows us to
go from theory to data. This is the subject of the next and last chapter.



CHAPTER

The Two-Parameter

Model:
Empirical Tests

I. Introduction

In the two-parameter portfolio model of Chapter 7 the capital market is per-
fect, distributions of returns on all portfolios are normal, and investors are
risk-averse. These assumptions imply that the optimal portfolio for any
investor is efficient in the sense that no other portfolio with the same or
higher expected return has lower variance of return. In Chapter 8 we studied
how the presumed attempts of investors to hold efficient portfolios are re-
flected in the process of price formation in the capital market. In the present
chapter we test these implications of the two-parameter model for the be-
havior of returns on securities and portfolios.

The results that we report are from Fama and MacBeth (1973). A detailed
discussion of the problems that arise in tests of the two-parameter model was
first given by Miller and Scholes (1972). The first empirical study to provide
solutions to these problems was Black, Jensen, and Scholes (1972). The ap-
proach of Fama and MacBeth is similar to that of Black, Jensen, and Scholes.
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II. Testing the Model: General Discussion

All of the testable two-parameter models of market equilibrium discussed in
Chapter 8 have a common implication: Market equilibrium requires that the
value-weighted market portfolio M be a minimum variance portfolio and,
generally, an efficient portfolio. This means that the mathematical condition
that defines a minimum variance portfolio necessarily applies to M, so that
the expected return from time I to time 2 on any positive variance security™®
iis
ER)=ERom) * [ERM) - ERop)I i, i=1,....n. (1)
As in Chapter 8, n is the number of positive variance securities in the market;
E(ﬁ,-) and E(ﬁM) are the expected returns on security i and on the market
portfolio M; E (ﬁoM) is the expected return on any positive variance security
or any portfolio of such securities whose return is uncorrelated with the re-
turn on M; and
_cov (R;, Rpy)
iMT T 5 s
o*(Ry)
is the risk of security / in the market portfolio M measured relative to the risk
of M.

The fact that a market equilibrium requires that M be a minimum variance
portfolio transforms (1) from a condition on portfolio weights that must be
met if a portfolio is to minimize variance at a given level of expected return
to a condition on equilibrium prices and expected returns. Since a market
equilibrium requires that M be minimum variance, prices must be set in
such a way that (1) holds for every positive variance security. The purpose
of this chapter is to test whether actual average returns conform to the im-
plications of this expected retumn-risk relationship.

(2

A. Hypotheses about Expected Returns

Most of the testable implications of (1) can be noted from inspection.
First, the equation says that securities are priced so that the relationship be-
tween the expected return on security i and its risk in M, f;y, is linear.
Second, since ;s is the only measure of risk that appears in (1), it is the only
measure of risk that we need in order to explain differences among the ex-

*Positive variance securities are securities whose return distributions have strictly
positive variances.
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pected returns on securities, Third, since the models of market equilibrium
say that securities must be priced so that M is on the positively sloped seg-
ment of the boundary of minimum variance portfolios, in a market equilib-
rium E(ﬁM) >E(§OM); that is, securities are priced so that (1) implies a posi-
tive relationship between the expected return on any security and its risk in
M.

Finally, we also test the implications of the various models of market
equilibrium for the expected returns on securities and portfolios that have
Birs =0.0. In the Sharpe-Lintner model there is unrestricted borrowing and
lending at a common risk-free rate Rg, and Ry is also the expected return
E(ﬁoM) on any positive variance securities and portfolios that have Bim =
0.0. In the basic Black model there are no risk-free securities, but all zero-fipy
securities and portfolios have the common expected return E(ﬁoM). In the
variants of the Black model there are risk-free securities, but there are restric-
tions on the amount of borrowing at the risk-free rate. In one variant there is
no borrowing at the risk-free rate, while in another borrowing is limited to a
fixed fraction of the investor’s portfolio funds. In either case (1) is the rele-
vant market equilibrium condition for the expected returns on positive
variance securities, so that E(ﬁoM) is the expected return on all positive vari-
ance securities and portfolios that have Bivs = 0.0. In these models, however,
R is less than E(ﬁoM).

Tests of the implications of the Sharpe-Lintner model for expected returns
On positive variance securities and portfolios that have Biar = 0.0 against the
corresponding implications of the “restricted borrowing” variants of the
Black model are tests of differing implications of different models of market
equilibrium. Of course, it is well to know which of the various models of
market equilibrium best describes the world. However, we are more interested
in the general question of whether the behavior of returns is consistent with
a world where investors attempt to hold efficient portfolios. This is the
fundamental empirical question of the two-parameter model. To give it test-
able content, some model of market equilibrium s required. We must know
specifically what it means to say that the prices of securities reflect the at-
tempts of investors to hold efficient portfolios. Finding which mode] of mar-

ket equilibrium works best is important but secondary to the fundamental
issue.

B Competing H ypotheses

To test the implications drawn from (1) concerning the pricing of securities
in a two-parameter world, we need an alternative hypothesis about expected
returns that includes (1) as a special case but allows us to reject (1) if it is in-
appropriate. We propose the following:
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EQR) = ERon) + [E(Ry) ~ ERopn)] Birs + Bl +do(8).  (3)

This representation of the expected return on security / includes two ex-
planatory variables, ﬁ,-zM and o(&,;), that do not appear in (1). The quadratic
term ﬁfM is included to test the proposition of (1) that the expected~ returr.l-
risk relationship is linear in By,. If this proposition is true, then ¢ in (3) 1s‘
zero. Likewise, o(€;) is meant to be some measure of the “risk” of security i
which is not an exact function of §;y,. It is included in (3) to test the proposi-
tion of (1) that B, is the only measure of risk needed to explain the expected
return on security i. If this proposition is correct, then d, the coefficient of
a(€;) in (3), is zero.

The measure of “non-B;, risk,” o(§)), that we propose to use in (3) comes
out of the market model of Chapters 3 and 4. The two-parameter model as-
sumes that the joint distribution of security returns is multivariate normal.
This implies that the joint distribution of the return on any security and .the
return on the market portfolio M is bivariate norrgal. Bivariate normality im-
plies a market model relationship between ﬁi and Ry, of the form

ﬁi=aiM+ﬁiM§M+gi’ i=1,...,n, (4)
where

ain = ER) - BimE(Ryp), (5)
Binr is the relative risk measure of (2), and € is a randorll disturbanie that Eas
expected value equal to zero and is independent of Ryr. Since €; and Ry,

are independent,
0*(Ry) = By, 0* (Ryp) + 0* (). ©)
Portfolio theory implies a world where the pricing of securities reflects the
attempts of investors to hold efficient portfolios. An alternative model, com-
pletely antithetical to portfolio theory, says that the pricing of securities is
dominated by investors who hold single-security portfolios. Given a market
of risk-averse investors, this model says that a security’s expected return is
positively related to the variance of its return rather than to Birs- We can
see from (6) that the variance of the return on security 7 can be split into two
components. One depends directly on f;3;, but the other, the disturbance
variance ¢2(€;), does not. Thus, under the alternative model, 0*(§;) or,
equivalently, the standard deviation of the disturbance, o(€;), is a measure
of the non-B;y, risk of security i, and o(€;) is the measure that appears in (3).

C. The Portfolio Approach to the Tests

To test whether the coefficients ¢ and d in (3) are, as implied by (1), equal
to zero, we need estimates of these coefficients. We obtain them by forming
portfolios whose returns have expected values equal to ¢ or d and whose ex-
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pected returns reflect only the effects of Bhy or of (&) in (3). We can then
compute the time series of the returns on these portfolios and test whether
the mean returns are different from zero.

Specifically, multiply through (3) by the portfolio weight X;p and sum over
ito get

E®Rp)= 3 xipER) = EGon) 32 iy + 1EGo) - Eopn)] 3 xipbi

i=1 i=1
n n
+q Z xipﬁizM +d Z xip U(Gi)- (7)
i=1 i=1

To get a portfolio that has expected return equal to q, we choose the Xip in
such a way that the weighted average of ﬂ,?M' is 1.0, and all other variables

that appear in (3) are “zeroed out.” Thus, we choose Xip,i=1,...,n,s0
that
n
Z x;p=0 (8a)
i=1
n
2 XipBiy =0 (8b)
i=1
n
Z x,'pﬂ'-zM =1 (8C)
i=1
n -~
2 xip0(€)=0. (84d)
i=1

To get a portfolio that has expected return equal to d, we choose another set
of x;, in such a way that the weighted average of the 0(&)) is 1.0 but all other
variables in (3) are “zeroed out.” This implies choosing the x;, so that

ip

£ 5pmo o
i}; XipBin =0 (9b)
g XipBiy =0 (%)
i};“; Xipo(€)=1. (9d)
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From (8b) and (9b) we see that the portfolios described by equations (8) and
(9) are zero-B,p portfolios: that is, they are portfolios that have f,,, =

n

> Xxpbar =0.0. From (8a) and (9a) we see that they are also “zero in-
i=1

vestment” portfolios: the investor puts up no personal funds but rather ob-
tains long positions in some securities (x;p > 0) by taking short positions
(xip <0) in others. This is in contrast to a “standard portfolio,” where
the sum of the weights invested in individual securities is 1.

PROBLEMS II.C

1. Does condition (8d) imply a portfolio whose return is perfectly corre-
lated with the return on M, that is, a portfolio whose market model distur-
bance is always zero?

2. Use equation (7) to show that equation (3) is only a legitimate repre-
sentation of expected returns on securities when q and d in (3) are equal to
zero.

ANSWERS

1. Equation (8d) is a condition on the weighted average of the standard
deviations of market model disturbances for individual securities. It implies
nothing in particular about the market model disturbance for the resulting
portfolio. Thus, if we multiply through (4) by X;ip and sum over i, the mar-
ket model disturbance for the resulting portfolio is

n
gp = Z xip gl's
i=1
which has standard deviation
n n 1/2
0(&p) = [ XipX;p cov (€, ?,)] .
i=1 j=1

It is then clear that the constraint on the portfolio weights described by (8d)
does not imply 0(€,) = 0.

In the same vein, note that equation (8c) implies nothing about the value of
ﬁ;M that results when a portfolio is formed according to the equations of (8).
Indeed, since (8b) implies Bpm = 0.0, it implies B347 = 0, while (8c) says that
the x;, must be chosen so that the weighted average of the §7,, of individual
securities is 1.

2.~ If x;, in (7) is set equal to x;3,;, we have the market portfolio M with
E(Rp) = E(Rpy). Equation (7) will only lead us to this conclysion when q
and d are both equal to zero. Thus, strictly speaking, (3) is only a legitimate
representation of expected returns on securities when it reduces to (1). To
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make the notation in (3) rigorous, we could change E(§0M) to, say, & and
[E(Ryy) - E(§0M)] to, say, k. The notation in (3), however, maintains a
convenient analogy with (1), and switching to a more rigorous notation
would not change anything that follows.

The equations of (8) impose four constraints on the weights given to indj-
vidual securities in the portfolio whose expected return concentrates on the
effects of nonlinearities. Since the number of available securities # is much
greater than four, there are many portfolios that satisfy (8). We are not in-
different among them. We use the average return on the chosen portfolio to
test the hypothesis that the nonlinearity coefficient ¢ in (3) is zero. To make
the most reliable possible inference, we want the portfolio whose average
retum gives the most reliable estimate of q. This means choosing the portfolio
that has the smallest variance of return among all portfolios that satisfy (8).
Likewise, to make the most reliable inference about the hypothesis that the
coefficient d of 6(&)) in (3) is zero, we want the portfolio that has the smallest
variance of return among all portfolios where the weights applied to indi-
vidual securities satisfy 9).

D.  Least Squares Coefficients as Portfolio Rerurns

Finding the portfolios that have these properties seems a formidable task,
but the approach generally taken is straightforward.

INFORMAL DISCUSSION
Let us recognize that we use data for many time periods (actually months)

to test the implications of (1). Let us represent the return on security i for
month ¢ as

ﬁir = '71!*' '72r3iM + '73:3,?/;4 + 74:0(51') + ﬁin i=1,...,n (10)
Suppose we know the values of Bim By and o(E;) for each of the securi-
ties in the market, and Suppose we take ¥\, ¥,;, ¥, and Yar to be the least
squares coefficients from a multiple regression of the n security returns for
month ¢ on the n combinations of Bir, B}y, and o(E;). Then Y3 and ¥, are
the returns for month r on portfolios that, respectively, conform to the con-
straints of (8) and (9). Under certain assumptions about the disturbances
;¢ for different securities, the least squares values of %3, and ¥,, are also the
returns for month ¢ on the portfolios with the smallest possible return vari-
ances among all portfolios that satisfy (8) and (9).
Note that, although we usually think of “least squares” as a method of estj-
mation, we do not use the term *‘estimates” when talking about the least
Squares values of ¥;, and ¥,, in (10). The appropriate view is that the least

——‘
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squares method just provides a convenient way to obtain portfolio returns
that have the desired properties.

We now discuss more formally the properties claimed for the least squares
values of Y3, and ¥,,. In the process, we uncover interesting properties of the
least squares values of ¥,, and Yar in (10). Unfortunately, any reasonably
concise exposition of the arguments requires some matrix algebra. The mathe-
matically disinclined can skip down to the discussion that follows equation
(22).

FORMAL DISCUSSION
Let

R=| - (1)

Ry
be the (7 X 1) vector of returns on individual securities for month r. Let

L Bim Bim o(&))
c=l - - T (12)
1 Bopg ﬁrle U(En)

be the (7 X 4) matrix of the values of the explanatory variables in (10). Let

~

LT

(13)

|32
-
I

Tint
be the (n X 1) vector of security return disturbances for month ¢ in (10), and
let

;yvlt
'?21
:\7’3t

Yar

(14)

[=¢
-
[}

be the (4 X 1) vector of the least squares values of ¥,,, ¥,,, ¥,,, and Yaz
for month ¢. Then the matrix representation of (10) is
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R,=CH,+7,. (15)
The least squares value of y, is*
7, =(C'O7CR,. (16)
Equivalently, if we define the (4 X n) matrix
X=(Cco'c, (17)
then
7.=XR, (18)
or
n ~
o= ’5_: xRy, j=1,2,3,4, (19)
Wwhere x;; is the element of row j(j=1,2,3,4) and column ii=1,...,n)

of X. This is the reverse of the more common notation, where the first sub-
script on x would refer to a row of the matrix X, and the second subscript
would refer to a column. The choice here reflects the fact that we shall
interpret x;; as the portfolio weight assigned to security i to get the least
squares value of the portfolio return %+ In the notation for portfolio weights
it is our practice to use the first subscript to refer to the security and the sec-
ond to refer to the portfolio.

Equation (19) says that the least Squares value of ¥, is the return on a
portfolio where the weights assigned to the n individual securities are the n
elements of the jth row of the matrix X. To determine the properties of the
Yje» we study the properties of X. Note first that

XC=(C'O'cc=1, (20)
where / is the (4 X 4) identity matrix; that is, / has 1’ along its diagonal

and O’s elsewhere. From (12), the first column of Cis an (n X 1) vector of
I’s. Thus from (12) and (20), it follows that

n
2 Xi = {
i=1

In words, the least Squares value of ¥,, in (19) is the return on a standard
portfolio, that is, a portfolio where the sum of the weights assigned to indj-
vidual securities is 1. The least Squares values of 7,,, ¥,,, and ¥,, given by
(19) are returns on zero-investment portfolios, that is, portfolios where the
sum of the weights assigned to individual securities is zero.,

1 forj=1

. (21)
Oforj=2,3 4

*See, for example, Theil (1971, chap. 3).
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Next note that if c; is the element of row i and column k of C, then (20)
can be written as

1forj=k

. (22)
Oforj#k

n
Z XijCri = {
i=1
From (19), Xij, =1,...,n are the weights applied to individual security
retumns to get the least squares values of '?/,,j= 1,2, 3,4. If we enumerate
(22) forj=3 and k =1, 2, 3, 4, we find that the least squares value of ¥, is
the return on a portfolio that satisfies the constraints of (8), and thus it has
expected return equal to g, the coefficient of 6‘.2M in (3). Likewise, enumera-
tion of (22) forj=4 and k=1, 2, 3, 4 shows that the least squares value of
Y4, is the return on a portfolio where the proportions invested in individual
securities satisfy the constraints of (9), so that the portfolio has expected
return equal to d, the coefficient of 0(&;) in (3). Thus, if for each month ¢
we calculate the cross-sectional regression of security retums on Bir s 6,?M,
and o(€;), the means of the times series of the least squares values of ¥,, and
Yar can be used to test the propositions of (1) that the relationship between
the expected returns on securities and their risks in M is linear, and that
Bias is the only measure of risk needed to explain differences between the ex-
pected retumns on different securities.

E. Getting the Most Powerful Tests: General Discussion

TESTING E(Rpp) > E(Ropr) AND E(Rqp) = Rps

If we enumerate (22) forj=1 and j=2, we find that the least squares
values of ¥,, and ¥,, in (10) are also the returns on portfolios that have de-
sirable properties. The weights Xi,i=1,...,n, applied to individual security
retumns to get 7, ,, satisfy

i x,-, =1 (238)
i=1
i Xi1 Bipr =0 (23b)
i=1
> xi By =0 (23¢)
i=1
3 % 0(3) = 0. (234)
i=1
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In words, (23a) says that the least squares value of Y1s is the return on a
standard portfoljo; (23b) says that the Bpar of this portfolio is zero; and
(23¢) and (23d) say that the weights invested in individual securities are also
chosen so as to “zero out” any effects of g7,/ and 0(€;) on expected returns.
In terms of (3) or (7), the least squares value of Y1115 the return on a portfolio
where securities are weighted so that E(?,,)=E(§0M). The mean of the
time series of i,, can be used to test the proposition of the Sharpe-Lintner
model that E(R,,), the expected return on any positive variance security or
portfolio whose return is uncorrelated with the return on M, is equal to the
risk-free rate R .

Likewise, (22) says that the weights applied to individual security returns to
get ¥z, in (19) satisfy

fi Xiz = (24a)
,f; Xi2Bim =1 (24b)
é Xi2Bipy =0 (24¢)
’Z:} xi20(€) = 0. (244)

Thus the least squares value of 7, , is the return on a zero-investment portfolio
that has f,5; = 1 and that zeroes out any effects of 87,; and 0(€;) on expected
retumns. If we substitute the conditions described by (24) into (7), we find
that the expected value of Yar is E(ﬁM) - E(ﬁoM). We can, then, use the
mean value of the time series of Y2r to test the proposition that E(IsM) >
E(Ropm).

Tests of the hypotheses that E(ﬁoM) =Rg and E(ﬁM) >E(1?0M) are not
of great interestLhowever,Nunless q and d in (3) are equal to zero. The hy-
pothesis that £(R,,) > E(Rgpr) is concerned with whether M is on the posi-
tively slgped segment of the minimum variance boundary. The proposition
that E(Rop) = Ry is concemned with whether M is at the point on the posi-
tively sloped segment of the boundary where a straight line from R is tan-
gent to the boundary. Tests of these two propositions only make sense when
the data are consistent with the hypothesis that M is somewhere on the
minimum variance boundary; that is, the data must be consistent with the
propositions that the relationship between the expected returns on securities
and their risks in M is linear (9 =0.0) and that Bipr is the only measure of
risk needed to explain expected security returns (4 = 0.0).

L S—
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If the data are consistent with the hypothesis that ¢ and d in (3) are zero,
then the time series of the least squares values of 7, and ¥,, in (10) provide
the basis for tests of the hypotheses that E(ﬁoM) = Rg and E(ﬁM) >
E(ﬁOM). The inferences obtained, however, are not likely to be the most
reliable possible. From (23), the least squares value of %, , in (10) is the return
on a standard portfolio that has Bpar = 0.0 and that also zeroes out any ef-
fects ofﬁfM and ¢(€;) on expected returns; the portfolio weights satisfy (23¢)
and (23d) as well as (23a) and (23b). If ¢ and d in (3) are zero, then when
testing the hypothesis that E(ﬁoM) =Rg, we do not have to worry about
zeroing out the effects ofﬁfM and o(€;). If the constraints of (23c¢) and (23d)
do not need to be met, we can probably find a standard zero-fpy portfolio
that has a smaller variance of return than any standard zero-f, portfolio
that also satisfies (23c) and (23d). Likewise, although the least squares value
of 73, in (10) is the return on a zero-investment portfolio that has Bpr =
1.0 and expected return equal to E(ﬁM) - E(ﬁoM), it is also a portfolio that
satisfies the constraints of (24¢) and (24d). If the tests indicate that these
constraints can be ignored, we can probably find a portfolio that has a
smaller variance of return and so provides more reliable tests of the hypo-
thesis that E(Rps) > E(R o).

One way to obtain portfolio returns appropriate for testing the hypoth-
eses that E(ﬁM)>E(§OM) and E(ﬁoM)=Rp, while ignoring possibly re-
dundant constraints, is from cross-sectional regressions of security returns on
their B;3s. Consider

~

Rit=71r+;ztﬁiM+ﬁib i=1,...,n (25)

If %,, is defined as the intercept in the least squares regression of the n
values of 13,-, for month ¢ on the corresponding 7 values of §;,, then Yy is
the return on a standard zero-f,py portfolio, but one that imposes no parti-
cular constraints on the weighted averages of ﬁfM and o(¢€;). The weights
assigned to individual security returns satisfy (23a) and (23b) but not (23c¢)
and (23d). If ¢ and 4 in (7) are equal to zero, the expected returmn on this
portfolio is E(EoM). If we calculate the time series of cross-sectional regres-
sions described by (25), the mean of the resulting time series of Y1¢ can be
used to test the Sharpe-Lintner proposition that E(ﬁoM)=Rp. Likewise,
the least squares value of Y2¢ in (25) is the return on a zero-investment port-
folio that has Bpar = 1.0 butimposes no particular constraints on the weighted
averages of ﬁizM and o(€;). The weights assigned to individual security returns
satisfy (24a) and (24b) but not (24c¢) and (244). If g and d in (7) are zero, the
expected value of ,, is E(ﬁM) - E(ﬁoM), and the mean of the time series of
Y2 can be used to test the hypothesis that £(R,,) > ERop).
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PROBLEM ILE

1. The expected retumn-risk equation (1) holds for portfolios as well as for
individual securities. (See Problem I1.C.2 of Chapter 8.) The least squares
value of 7,, in (25) is the return on a pgrtfolio that has Bpp = 1.0. Wlly is
the expected return on this portfolio E(Rys) - E(Rop) rather than E(Ry),
as (1) would seem to imply?

ANSWER
1. Multiplying through (1) by x;, and summing over / yields

Z": xipE(R)=ERom) 3. Xip + [E(Ry) - E(Ropp)) 2 XipBim
in

i=1 i=1

~ ~ n ~ —~
EQRp)=ERopm) 2_ xip + [ERp) - ERop)] By
i=t
The expected return on any standard portfolio (£ Xjp = 1.0) that has 8,y =
1.0 is E(Rpy), but the expected return on a zero-investment portfolio Exipp=
0) that has 8pps = 1.0 is E(Rpy) - E(Ropp).

TESTING FOR THE EFFECTS OF NONLINEARITIES AND NON-8;3s RISKS

The idea that better tests can be obtained when irrelevant constraints are
ignored also applies to tests of the propositions that the coefficients q and
d in (3) are equal to zero. The least squares value of ¥, in

R’it=”;u+§2tﬁiM+’731ﬁ,-2M+ﬁih i=1,...,n, (26)
is the return on a zero-investment portfolio that has Bpam = 0.0 and where
the weighted average of B,?M is 1.0. Hence the portfolio satisfies the con-
straints of (8a), (8b), and (8c), but the constraint of (8d) is ignored. If d
in (3) is zero, then from (7) and (8a-c) we can determine that E(,) =q.
Thus, the mean of the time series of the portfolio return Y3¢ can be used to
test the proposition that the nonlinearity coefficient ¢ in (3) is zero.

Finally, if q in (3) is zero, there is no need to “zero out” the effects of
B2y when testing the proposition that Bism is the only measure of risk needed
to explain differences among expected security retumns. To test the proposi-
tion that d in (3) is zero, we can form a portfolio that satisfies (9a), (9b),
and (9d) but ignores (9c). One such portfolio is given by the least squares
value of ¥,, in

ﬁit =Yt Y2:eBimt * Yar0o(€)+ e, i=1,...,n. (27)
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When g in (3) is zero, the mean of the time series of the Ya¢ can be used to
test the hypothesis that o(¢;) contributes nothing to the explanation of dif-
ferences in expected security returns.

We have claimed, without proof, some properties for the least squares val-
ues of the various ¥;, in (25) to (27). To establish these properties, we would
repeat the arguments of equations (11) to (22), deleting some explanatory
variables from the matrix C of (12). For example, to establish the properties
claimed for ¥, in (26), one would delete the column of C corresponding to
0(¢€;). The analysis that leads to (22) would then imply that the least squares
value of ¥, satisfies the conditions of (8a-c); but since a(€;) is not included
as an explanatory variable, the relevant version of (22) implies no constraint,
like (8d), on the weighted average of the o(&;). In short, when one deletes
o(€;) and/or B}, from (10), the analysis of (11) to (22) still applies, but the
least squares procedure only imposes constraints on variables that are ex-
plicitly included in the return equation.

In this respect, there is nothing special about equations (10) and (25) to
(27). Anytime one does a cross-sectional regression of security returns on their
Bips and on other variables, an analysis similar to (11) to (22) leads to the con-
clusion that the least squares intercept is the return on a standard portfolio
that has B, = 0.0 and that zeros out the effects of other variables. The least
squares value of the coefficient of any other variable is the return on a zero-
investment portfolio where the weights assigned to individual securities have
the effect of setting the weighted average of the values of the variable for dif-
ferent securities equal to 1, while zeroing out the effects of all other variables.
An excellent example of this general property of cross-sectional risk-return
regressions, outside the context of the concerns of this chapter, is provided
by Black and Scholes (1974).

PROBLEMS IL.E
2. The least squares values of ¥, and 7,, in (25) can be written as

n -~ o —

2 Ry~ R) Bis - Byr)
~ i=1
Y2 = " (28)

Bins - Bm)?
=1
Yie=R,- %tEM, (29)

where ﬁ, is the average of the returns on the n securities for month  and
Bp is the average of the B;ps. Use (28) and (29) to show that the least squares
value of ¥;, in (25) is the return on a standard portfolio that has 8,y =
0.0, while ¥,, is the return on a zero-investment portfolio that has Bpm =

.
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1.0. The analysis above has already discussed these properties of ¥,, and

Y2¢- The present approach, however, does not require the matrix algebra of

eci]uations (11) to (22), and it is better for the second task of this problem

which is to interpret the weights assi indivi ities in ¥ ,

w gned to individual securit

ot rities in 7y, , and
3. Tests of the propositions that ¢ and 4 in (3) are zero are tests of the

propositionwthat Miswon the minimum variance boundary. Do these tests make
sense if E(Rp) ~ E(Rypy) < 0.0

ANSWERS
2. First rewrite (28) as

5, = E_: . Bins - Bn_l g, - Z": _ Bim - By ﬁr
=t 2. Bim - By)? =1 2. Bim - By)?
i=1 i=1
_ & Bim - Bu ~
2 [ —\R,,. (30)

= ‘ (Bim ~ Buy)?
=1

il

With (30), (29) can be developed as follows:
- ~ n ﬁ Y TAY]
Fie=R- 3 Bim - Br)Bag 7

. it

= Z (Bins - By)?
=1

=§'i 1 Bim - BBy B

>l . (31)
! Z Birs - By )?
=1
and
E’_L, 1 Bim - BBy -1 E'.L. (Bim ~ Bar)By
] e SRR IEP)
g_} Birt - Bar) =1 Z (Bim - Buy)?
=1

for any portfoli(.),' this portfolio has a Bpar which is just a weighted average of
the B, for individual securities. Since the appropriate weights are given by
the expression within the brackets of (31), the value of Bppy for 3,, is

e
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o " By - B2
OB\, o

n 1 i=
Bim =B~
=1

DB -
i=1 2. (Bim - Bu)

i=1 i

—Bm =0.
Bim - Bm)?

To interpret the weights assigned to individual security returns in ¥,,,
note from (31) that the first term in any weight is 1/n, which implies equal
weights for individual securities. The second term adjusts these equal weights
according to the difference between By, and By,. The effect is to lower the
investment in securities with above-average values of B;», and increase the
investment in securities with below-average values of ;. Thus, securities
with values of B,y close to f, get a weight approximately equal to 1/n.
Securities with high values of f;3; are sold short, with proceeds from short
sales used to increase the investment in securities with low values of Biag-

A similar analysis shows that ¥,,, as defined by (28), is the return on a
zero-investment portfolio that has 8,y = 1.0. We can see from (30) that the
sum of the weights assigned to individual security returns in ¥, is zero, so
that ¥,, is the return on a zero-investment portfolio. We can then use the
weights in (30) to determine that Sy, for ¥,, is

n
Z ﬁ,?M - "Efw
ks =1.0.

Bim - Bm)?

1

.’l M 6iM= ;

2 Bim - Bu)?
in1

Since ¥,, is the return on a zero-investment portfolio, the investor puts up
no money of his own; rather, he sells some securities short and uses the pro-
ceeds to buy others. From (30) we can see that ¥,, involves short positions in
securities with below-average values of B;s and long positions in securities
with above-average values of f;;, which reverses the general pattern of
weights assigned to individual securities in ¥, ,.

3. All the models of market equilibrium say that M is on the positively
sloped segment of the minimum variance boundary, so that E(ﬁM) >
E(ﬁoM). If this is not true, then tests of the linearity and non-8;, risk
propositions implied by (1) are not of great interest.

If E(ﬁM) >E(§0M) in (1), then when testing the propositions that ¢ and
d in (3) are zero, it is necessary to form portfolios that zero out the effects
of By on expected returns. Including ;3 in the cross-sectional regressions
guarantees this result. The least squares values of ¥5, and 7,4, in (10), (26),
and (27) are the returns on portfolios that have Bpam =0.0.
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F. The Reliability of the Least Squares Portfolio Returns

We have shown that the least squares values of the various 7jr in equations
(10) and (25) to (27) are the returns on portfolios that concentrate on the
effects on expected returns of the different variables in (3). We have, however,
provided no justification for the presumption that the least squares values
of the ¥, are also the returns on the portfolios that have the smallest possible
return variances among portfolios that concentrate on the effects of the
different variables on expected returns. Providing some justification for the
“smallest variance” properties of the least squares approach is important,
since it will imply that the least squares portfolio returns provide more re-
liable inferences about the various hypotheses than other portfolios we
might use. Unfortunately, the arguments require more statistical sophistica-
tion than is generally assumed in this book. The reader should nevertheless
be able to grasp the sense of the discussion, especially when we eventually
make comparisons of the reliability of the least squares :;/'t of (10), (25),
(26), and (27).

The “smallest variance” property of the least squares portfolio returns
follows from an assumption on the properties of the disturbances #;, in equa-
tions (10), (25), (26), and (27). For example, if the disturbance 7;, in (10) is
independent from one security to another and if the distribution of 7, is
the same for all securities, then a slightly sophisticated appeal to the Gauss-
Markov theorem® can be used to imply that the least squares values of
Yit> Y2t Y31, and ¥, are the returns on the portfolios that have the smallest
possible return variances among portfolios that satisfy, respectively, the con-
straints on portfolio weights described by (23), (24), (8), and (9).

The Gauss-Markov theorem concerns the properties of the least squares
estimators of the coefficients in a regression where the estimators are based
on a sample from the process of interest. The trick in applying the theorem in
the present case is to note that although the least squares ;¢ are portfolio
returns that are computed from the entire population of returns for month
¢, the process itself generates returns each month, so that the population of
time periods from which the Yj¢ are drawn is in principle infinite. In this
view, we can regard ;¢ as an estimator ofE('?,-). Given the appropriate prop-
erties of the disturbances, the Gauss-Markov theorem then says that the least
squares value of ¥;, minimizes the variance of Yjt - £(3)), the error in Ve as
an estimator of £(y;). For any given Y¥j¢» this is precisely the variance we
wish to minimize.

*See, for example, Theil (1971, p. 119) for a general discussion of 1he Gauss-Markov
Theorem.
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With these formalities behind us, we can now look at things from a more
intuitive perspective. In effect, when applied to (10), the least squares pro-
cedure attempts to find portfolio returns ¥,,, ¥,;, ¥;;, and ¥,, that have
the smallest variances subject to the constraints of (23), (24), (8), and (9),
but where the search is carried out under the assumption that the disturb-
ances 7;, for different securities are independent and identically distributed.

Analogous comments apply to the least squares values of Y¥j¢ in (25) to
(27). For example, when applied to (26), the least squares approach searches
for the values of ¥,,, ¥,,, and ¥, that have the smallest possible variances
subject to the constraints of (23), (24), and (8). Since o(€;) does not appear
as an explanatory variable in (26), the constraints (23d), (24d), and (8d)
are ignored. Since there are fewer constraints on the portfolio weights, we
expect that the least squares portfolio retums ¥,,, %,,, and ¥;, obtained
from (26) will have smaller variances than the ¥,,, ¥,,, and ¥;, obtained
from (10). Likewise, when applied to (27), the least squares approach tries
to find the smallest variance ¥,;, ¥,¢, and ¥,, that satisfy the constraints of
(23), (24), and (9), except that the constrdints (23c), (24c), and (9¢) on the
weighted average of the 6,?M are ignored. Again, we expect that ignoring these
constraints will lead to 7¥,;, ¥,;, and 7¥,, which have smaller variances than
those obtained from (10). Finally, when applied to (25), the least squares ap-
proach searches for ¥,; and ¥,, which have the smallest possible variances,
subject only to the constraints of (23a) and (23b) for ¥,, and (24a) and
(24b) for 7,,. Because fewer constraints are imposed on the portfolio weights,
we expect the ¥,, and 7,, obtained from (25) to have smaller variances than
the ¥,, and ¥,, obtained from (10), (26), and (27).

In searching for the smallest variance values of the je, the least squares
approach makes the same assumption about the disturbances 7;; in (25) to
(27) that is made for (10). The 7;, are assumed to be independent and identi-
cally distributed across securities i. This assumption, like any assumption, is
not a completely accurate description of the world. To the extent that it is
inaccurate, the least squares approach can be misled in its search for smallest
variance portfolio returns. Moreover, since the extent to which the assump-
tion is valid is likely to be different for (10), (25), (26), and (27), we might
find that adding and dropping constraints does not, in fact, have the predicted
effects on the variances of the resulting portfolio returns. There is, however,
no need to speculate. We carry out time series of cross-sectional regressions
for each of the equations (10), (25), (26), and (27). We can compute the vari-
ances of the time series of given 7;¢ in different equations and use these vari-
ances to decide which equation provides the most reliable inferences about
any given hypothesis.
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G. Capital Market Efficiency.: The Behavior of Returns
Through Time

The tests discussed so far propose to use average values of the ;¢ in equa-
tions (10) and (25) to (27) in order to test the propositions of the two-
parameter model about expected returns. It is also possible to obtain tests
based on the period-by-period behavior of the %;,. The analysis takes us back
to the market efficiency concept introduced in Chapter 5.

The models of capital market equilibrium of Chapter 8 assume a perfect
capital market in which information available at any time is costlessly avail-
able to all investors. Moreover, the complete agreement assumption of these
models says that at any time ¢ - 1, investors agree on the implications of the
available information for the joint distribution of security prices at time ¢.
From here it is a short and logical step to assume that the market is also
efficient in the sense that the common assessment of the joint distribution of
security prices makes full and correct use of all information available at ¢ - 1 *

In the notation of Chapter 5, market efficiency says that

D11 =iy, (32)
SmPyr, ... ,p,,,l(b',".l):f(p”, e P @), 33)

where ¢7., is the information used by the market in setting prices at - 1,
@, is the information available at ¢ - L fn(oyy, . .. »Pnt19721) is the joint
distribution of security prices for time ¢ assessed by the market at ¢ - 1,and
Sy, ... »Pnt!®;_y) is the true joint distribution implied by ¢,_,. Equations
(32) and (33) say that in assessing the joint distribution of prices for ¢, the
market correctly uses all information available atr-1.

If the market correctly uses all information in assessing the joint distribu-
tion of security prices for time ¢, then when prices are set at ¢ - |,

EmRifl97) = ERppl¢y),  i=1,. . .m, (34)

the market’s perception of the expected return on security i from 1 - 1 to ¢ is
the true expected return. If the market sets prices at ¢ - 1 so that the market
portfolio M is on the minimum variance boundary, then

Ep (Eit o7l = Ep (RVOMI lo71))

+ [Em(ﬁMr“ﬁ;"-l) - E,,,(ﬁf)"M, '¢;"-1)] ﬂiM

‘This use of the word “efficient” is not to be confused with portfolio efficiency. The
terminology is unfortunately standard.
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=E(§i,l¢,-,) = E(ﬁoMr (¢r-1)
+ [ERwme160-1) - ERome|$1-1)) B (35)

In words, the market’s view of the expected return-risk relationship for
securities in M is the correct view. *

The general implication of (35) is that there is no way to use information
available at ¢ -1 to make meaningful predictions about how the returns on
securities at time ¢ will deviate from the expected return-risk relationship for
securities in M that characterizes the various models of market equilibrium.
Thus, if (35) is valid, then in (10) and (26), E(¥3¢1¢,-1) = 0. If the market
correctly uses all the available information ®:-) in setting pricesat ¢ - 1, and
if prices are set so that the market’s expected returns conform to the two-
parameter model, then there is no way to use information in ¢, as the basis
of a correct assessment that the relationship between the expected returns on
securities and their risks in M is nonlinear. Likewise, if (35) is valid, then in
(10) and (27), E(Yar|$;-,) =0,and in (10) and (25) to QN E([i o) =0;
that is, there is no way to use information in & -1 as the basis of correct non-
zero assessments of the means of the distributions of the non-8;, risk coeffi-
cient 4, and of the disturbances 7;,.

In testing these hypotheses about ¥5;, ¥4;, and the 7;,, we concentrate on
one subset of ¢,_,, the time series of past values of ¥5;, ¥4, and 7i;,. As sum-
marized by (35), capital market efficiency in the two-parameter model implies
that there is no way to use the period-by-period behavior of past values of
Y3 as the basis of correct nonzero assessments of expected future values of
7315 the sequence of past values carries no information about expected future
values. Likewise, the time series of past values of ¥,, and %;, have no informa-
tion about the expected future values of these variables. Recall from Chapters
4 and 5 that serial correlations are a natural way to test whether the expected
future values of a random variable depend on past values. If (35) is valid, the
autocorrelations of ¥s;, Yay, and 7j;, are zero for all lags. We use sample auto-
correlations to test these propositions.

The hypothesis that the capital market is efficient and that the market sets
prices at time ¢ - | so that the market portfolio M is on the positively sloped
segment of the boundary of minimum variance portfolios has implications for
the behavior of ¥,, in (10) and (25) to (27). In each of these equations, v,, is
a portfolio return with expected value equal to E(ﬁM)— E(§0M). If securi-
ties are priced so that the market perceives M to be on the positively sloped

*Since B;ys depends on the joint distribution of prices at time ¢, we should also note
that (32) and (33) imply ﬁiM(da;"_ ) = Bip(é,_); that is, the market correctly uses all
information in assessing the risk 01} any security in the market portfolio M. For the mo-
ment, however, we choose not to complicate the notation in the text in this way. A
detailed discussion of problems that arise in assessing risk measures comes later.




340 FOUNDATIONS OF FINANCE

segmentNOf the minimuin variance boundary, and if the market is efficient,
then E(Rpseld,-,) - ERopmel¢,-y) =E(¥2:10:-,) > 00; there is no way to
use any information available at ¢ - | as the basis of a correct negative assess-
ment of the expected value o£ Yar We test only a specialized form of this
hypothesis. We assume that ERppeldry) - E(I?,,M,Igb,_l) is not only positive
but constant through time. We then test this proposition with sample auto-
correlations of ¥,,, all of which should be indistinguishable from zero if the
proposition is valid.

Finally, in equations (10) and (25) to (27) the least squares values of ¥,,
are the returns on standard zero-fpay portfolios. If the Sharpe-Lintner version
of the two-parameter model s valid, £, (ﬁOM,I(b',"_l) = Rpy; that is the mar-
ket sets prices so that it perceives the expected return on any security or
portfolio whose return is uncorrelated with the return on M to be equal to
RFL‘ If the market correctly uses available information, £, (ﬁOM,I ¢ ,)=
E(Roprd $¢-1) = Rpy; the true expected return on zero-fi, securities and
portfolios is R,. One implication of this is that the time series of past values
of ¥y, ~ Rp; cannot be used as the basis of correct nonzero assessments of
expected future values of 7, - Rpy, which in tum implies that the auto-
correlations of ¥,, - R, are zero for all lags.

Introducing the concept of market efficiency has not produced hypotheses
about expected returns that are different from those developed in the initial
discussion of (1). Equation (35), after all, is just the expected return-risk
equation (1) with some additional notation whose purpose is to emphasize
the characteristics of the pricing process in an efficient market. Discussing
market efficiency in the context of the two-parameter model has, however,
made us aware of tests that were not apparent in the initial discussion of (1).
The tests that came out of the discussion of (1) involve using averages of the
least squares values of ¥,,, Y2t» ¥3r, and 7,4, in equations (10) and (25) to
(27) to test the propositions of (1) about the expected values of these vari-
ables. The discussion of market efficiency leads to tests based on the period-
by-period behavior of the variables.

III. Details of the Methodology

The least squares values of the ;¢ in equations (10) and (25) to (27) give us
the inputs for testing the implications of a two-parameter world for expected
returns. Empirical realities, however, present us with unavoidable complica-
tions. We assume above that the values of the risk measures Bim and o(&;) of
different securities are known. In fact they must be estimated from return
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data. We also assume that the components of the returns on the market port-
folio M, the returns on all investment assets, and their corresponding value
weights are available. In fact, the empirical tests deal only with common
stocks on the New York Stock Exchange, and in the absence of the appro-
priate value weights, an equally weighted portfolio of these stocks, the port-
folio we have heretofore called m, is used instead of M. We discuss first the
problems that this causes and then the problems that arise from using esti-
mates of risk measures.

A. Application of the Approach to the Equally
Weighted Market Portfolio m

The role of the value-weighted market portfolio in the preceding analysis
can be played by any portfolio that must be efficient, or at least minimum
variance, when a market equilibrium is established at time ¢ - 1. Although the
supposition has no rigorous justification, suppose a market equilibrium
requires that m, the equally weighted portfolio of NYSE stocks, be a mini-
mum variance portfolio. Then the expected return-risk equation for a mini-
mum variance portfolio applies to m. For any security i in m, we have

E(Rit) = ERomp) + [ERme) = ERome)) Bim (36)
where
cov (R;, R.)
T PR
is the risk of security i in m measured relative to the risk or variance of the

portfolio’s return, and E(ﬁo,,,,) is the expected return on any security in m,
or any portfolios of the securities in m, whose return is uncorrelated with the

Bim (37)

return on m.

Like (1), equation (36) is linear in the risk measure Bim ; Bim is the only
measure of the risk of security i that appears in (36); and if we assume that m
isalong the positively sloped segment of the minimum variance boundary, then
[E(ﬁm,) - E(ﬁOM,)] >0, so that (36) implies a positive relationship between
the expected returns on securities and their risk in m. In short, the testable
implications of (36) are the same as those of (1), the expected return-risk
equation implied by the fact that a market equilibrium requires that the
value-weighted market portfolio M be a minimum variance portfolio.

Moreover, the approach described in Section 1l for testing whether M is a
minimum variance portfolio can be used to test whether the pricing of NYSE
common stocks is consistent with the proposition that m is a minimum vari-
ance portfolio. Thus, consider
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R, = Yie t FaeBim * V3183 + Yar0(€) + 7y (38)

Rit =%11 + 331 Bimm + Vot Bhm + Tii (39)

Rit =9+ Y2:Bim + Yar 0(&) + 7y (40)

Rvit=:;lt+?21ﬁim + i, (41)

~

where 6(€;) is now the standard deviation of the disturbance in the market

~

model relationship between ﬁi, and R,,,,,

~ ~

Rit = Qjm + ﬁim Rmt + git (42)
Um = E(R;,) - ﬁ.—)(E(ﬁm,), (43)

and where the assumption that the joint di's?ribution of security returns is
multivariate normal implies all the properties of (42) discussed in Chapters
3 and 4.

Equations (38) to (41) are just (10) and (25) to (27), but with g;,,, 82,,
and the new version of 0(¢;) used as explanatory variables. If the same substi-
tution of explanatory variables is made in the matrix C of (12), then the
analysis of (11) to (22) implies that the least squares values of the ¥, in (38)
to (41), obtained from cross-sectional regressions of security returns on the
relevant explanatory variables, are the returns on portfolios that have proper-
ties analogous to the least squares values of the 7;, in equations (10) and (25)
to (27). For example, the least squares value of ¥, in (38) is the return on a
standard portfolio that has Bpm =0.0; ¥,, is the return on a zero-investment
portfolio where the weighted average value of §;,, is 1.0; 73, is the return on
a zero-investment portfolio where the weighted average value of B%. is 1.0;
and 7,4, is the return on a zero-investment portfolio where the weighted
average of a(€;) for individual securities is 1.0, As in equations (10) and 25)
to (27), the least squares value of a given ¥, in (38) to (41) focuses on the
effects of the explanatory variable of interest by choosing portfolio weights
that zero out the effects of other explanatory variables in the equation.
Moreover, as in equations (10) and (25) to (27), if the Ty in (38) to (41) are
independent and identically distributed for different securities i, the least
squares ¥;, are the “smallest variance” portfolios that focus on different ex-
planatory variables in the manner described above, so they provide the most
reliable tests of the proposition that securities are priced so that m is a mini-
mum variance portfolio. The only problem with all of this is that we don’t
have a model of market equilibrium that tells us that m must be a minimum
variance portfolio.

Given that m is to be used in the tests, there are two justifications. First,
in empirical work one usually must settle for proxies for the variables called
for by a theory. The equally weighted portfolio of NYSE stocks, m, might
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be viewed as a proxy for M, the value-weighted portfolio of all investment
assests. This tack is, however, open to valid arguments as to whether m is a
reasonable proxy for M. An equally weighted portfolio is rather different
from a value-weighted portfolio. More important, although investment in
NYSE stocks is a large fraction of the total investment in the common stocks
of publicly held companies, the NYSE does not cover investments in bonds,
privately held real estate, and consumer durables, which together are a much
larger fraction of invested wealth than common stocks.

The second approach to justifying the use of m in the tests is to say that
since m is a diversified portfolio of many securities, perhaps it is reasonable to
assume that it is “close enough” to a minimum variance portfolio to be a
meaningful basis for tests of the two-parameter model. For those with tastes
for rigor (and I include myself in that group), this approach is unaesthetic.
Nevertheless, from the viewpoint of the empiricist (and I also include myself
in that group), the approach can provide its own justification. If the testable
hypotheses drawn from (36) are upheld by the data, then it seems reasonable
to conclude both that the two-parameter model is a meaningful approxima-
tion of how securities are priced in the capital market and that securities are
priced so that the equally weighted portfolio m of NYSE stocks is a minimum
variance portfolio.

Finally, there is an important exception to the statement that (1) and (36)
have the same testable implications, and the exception acquires some impor-
tance in the empirical results. The Sharpe-Lintner hypothesis that E(§0M,) =
Ry cannot be applied to the portfolio m. Even if the Sharpe-Lintner model is
the relevant view of the world, it is not the case that E(ﬁoM,) = Rp,. Recall
that E(§0M,) is the intercept on the E(ﬁp) axis of the line tangent to the
boundary of minimum variance portfolios of positive variance securities at
the point corresponding to the value-weighted market portfolio M. In the
Sharpe-Lintner model, a market equilibrium requires that this intercept also
be the risk-free rate of interest Rp,. If the equally weighted portfolio m is
also a minimum variance portfolio, then E(Eo,,,,) is the intercept on the
E(Ii,,) axis of the line tangent to the minimum variance boundary at the point
corresponding to m. Since m and M are not the same portfolio, E(Ropy) #
ERope) = Rpy. We shall have more to say later about where E(Rop,) is likely
to be relative to Rg,.

B. The Portfolio Approach to Estimating Risk Measures

To test the implications of (36), we must still face another serious problem.
Equation (36) is in terms of the true values of the risk measure Bim, and
empirical tests require that estimates b, be used.
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ESTIMATES OF RISK FROM THE MARKET MODEL

One approach is to build on the assumption underlying the two-parameter
model that the joint distribution of security returns is multivariate normal.
This means that the joint distribution of the return on any security and the
return on the portfolio m is bivariate normal. If the bivariate normal joint dis-
tribution ova,-, and 15,,,, is also the same or stationary through time, then the
market model of (42) and the methods of Chapters 3 and 4 can be used to
estimate f,,, and to assess the sampling properties of the estimates. We should
note, however, that empirical realities have forced on us an assumption--that
the joint distribution ofﬁ,-, and ﬁm, is stationary through time—which is not
required by the two-parameter model. If we are to use the methods of
Chapters 3 and 4 to estimate f;,,, the stationarity assumption is required, at
least for the sampling period to be used in the estimation.

It is interesting at this point to recall the discussion of the complete agree-
ment assumption in Chapter 8. We argued there that this assumption is a
sensible approximation to the world when the joint distribution of security
returns is the same through time. Then history leads investors to a correct
consensus about the joint distribution of future returns. We are now arguing
that the stationarity assumption is a necessary ingredient for successful tests
of the two-parameter model. Thus, although this assumption is not an explicit
part of two-parameter theory, it makes the assumptions of the theory more
palatable, and it is pretty much a precondition for tests of the theory.

THE ERRORS-IN-THE-VARIABLES PROBLEM

The most direct approach to the tests would seem to be to obtain estimates
bim of the f;, of individual securities, plug these into equations (38) to (41),
and then proceed. The problem with such a brute force approach is that any
estimate b;,, differs from the true 8;,, by an estimation error. If the errors
are typically large, there is a serious “errors-in-the-variables” problem.

There is a large statistical literature on the errors-in-the-variables problem
that we do not need to consider in any formal way here. In intuitive terms,
the problem centers on the fact that if a proxy explanatory variable is used in
a least squares regression (e.g., by, rather than B;,), the computed coeffi-
cients do not have the same properties as if the true explanatory variable were
used. For example, the least squares value of ¥,, for (41) is the return for
month ¢ on a zero-f,,, portfolio; the true value of Bpm for this portfolio is
zero. Suppose, however, that we substitute estimates b;,, for the true values
of Bim that appear in (41) and then carry out the cross-sectional regression.
It will then turn out that the least squares value of ¥,, is the return on a
standard portfolio where the weights assigned to individual securities are such
that the weighted average of the by, is zero; that is, ¥,, is the return on a
zero-bp,, portfolio. Since each of the b;,, is just an estimate of the corre-
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sponding true B, , ¥,; is not the return on a portfolio where the true Bpp, is
zero.

The arguments are quite general. If one uses estimates instead of the true
values of the explanatory variables that appear in (38) to (41), then the analy-
sis of equations (11) to (22) will imply that the least squares values of the %;;
are portfolio returns that focus on the effects of given explanatory variables
while zeroing out the effects of others. All the focusing and zeroing out,
however, will be in terms of the estimates rather than the true values of the
explanatory variables. To the extent that the estimates differ from the true
values of the explanatory variables, the least squares portfolio returns are out
of focus for the purpose of testing the implications of (36).

PROBLEM IILB
1. We have long known that for any portfolio p,

_cov (R, Rpn) cov (R;, Rn)

= inp ”‘m—z inpﬁim-

i 02(R'm) i=1 i=1

Show that the same relationship holds between the estimates bp,,, and the b;,,
of individual securities.

ANSWER
1. For any portfolio p,
T T n T
Rpr Z inpRit Z Rir
R _ =1 _t=li=1 _ n . r=1 - ix_ R,
P T T i=1 vor i=1 o
Thus,
T —
> Rpi = Rp) Roms - Rim)
=1
bpm =
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T — _
2 (Rit = R)Rpps - R,,,)
t=1

T —
Z: (Rmt - Rm)2
=1

The general idea behind the solution to the errors-in-the-variables problem
is direct. We try to minimize the problem by reducing the errors in the esti-
mates of the risk measures. Since, from Chapter 3, the sampling variance of
b, as an estimator of By, is

2/~
~ o‘(€;)
0* (bim) = : , (44)
(Rt~ Rm)?

M~

t

"
—_

it would seem that one way to accomplish this goal is to compute b;,, from
long time series of monthly returns. This ensures that the sum of squares in
the denominator of (44) is large, so that oz(Eim) is small. We know from
Chapter 4, however, that this approach leans too heavily on the assumption
that the value of Bim is stationary through time. The values of Bim of indi-
vidual securities do wander slightly through time, and the optimal period for
estimation from monthly data is roughly 5-10 years. Recall from Chapter 4
that with 5-10 years of monthly data, the estimates bim leave substantial
uncertainty about the true values; that is, the errors in the b;,, of individual
securities are likely to be large relative to the true Bim -

An alternative approach to reducing the errors in estimates of risk measures
is to work on the numerator in (44), that is, to reduce 0?(&;), the variance of
the market mode| disturbance. The way we do this is to work with portfolios
rather than individual securities. To see the basis of the approach, recall that
multivariate normality of security returns implies that the joint distribution
of the return on any portfolio p and the return on the portfolio m is bivari-
ate normal, so that there are market model relationships like (42) for port-
folios as well as for individual securities. For any portfolio p, we have

Rpt Sapy, t ﬁpm Ry + gpt' (45)
The portfolio return disturbance €p; in (45) is, however, just the weighted
average of security return disturbances €ir- To the extent that the €, for dif-
ferent securities are less than perfectly positively correlated, there is a “diver-
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sification effect,” and 02(2-",,) can be expected to be smaller than the 0% (&)
of individual securities. The result is that 02(5,,,,,) is generally smaller for
portfolios than for individual securities. This means that the errors-in-the-
variables problem is likely to be less serious if tests of (36) are carried out in
terms of portfolios rather than individual securities.

In brief, then, the intention is to calculate the least squares values of the
coefficients ¥, in (38) to (41) and to use these to test the various hypotheses
implied by (36) about the relationship between expected return and risk
within the portfolio m. In place of the returns on individual securities that
appear on the left of these equations, we substitute returns on portfolios; and
the security risk measures Bim that appear on the right in these equations are
replaced by estimates bpm relevant for the portfolios that appear on the left
of the equations.

CHOOSING PORTFOLIOS AND THE REGRESSION PHENOMENON

We present evidence shortly that the estimates bpm for portfolios are in-
deed much more reliable than those for individual securities. The portfolio
approach, however, also raises problems that center in large part on how the
portfolios used in the analysis are chosen. When securities are combined into
portfolios, some of the information in the data about the relationship be-
tween risk and expected return is lost. For example, if the allocation of
securities to portfolios is random, and if the portfolios formed contain many
securities, the portfolios will have bpm much more closely concentrated
about one than individual securities, which means that we can expect to ob-
serve only a narrow range of the expected return-risk relationship. In the
extreme case where all the portfolio risk measures turn out to have about the
same value, forming portfolios destroys all of the information about the
expected return-risk relationship that is potentially contained in the security
return data.

To reduce the loss of information caused by working with portfolios, one
forms portfolios in such a way as to guarantee that a wide range of bpm is
obtained. This is done by allocating securities to portfolios on the basis of
ranked values of b;,,. If naively executed, however, such a procedure could
result in what is called a “regression phenomenon.” When one ranks the bim
of all securities, one is to some extent ranking the estimation errors in the
bim - A large positive estimation error is likely to result in a high b, , while
the reverse is true of a large negative estimation error. Forming portfolios on
the basis of ranked b, thus causes bunching of positive and negative sampl-
ing errors within portfolios, especially at the extremes of the b;m range. The
result is that the larger values of bpm would tend to overestimate the true
Bpm » while the lower bpm would tend to be underestimated.
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The regression phenomenon can be avoided by forming portfoljos from
ranked b,, Computed from data for one time period, but then using a sub-
Sequent period to obtajn the bpm for these portfolios that are used in the
tests. The errors in the estimates from the fresh data are likely to be inde-
pendent of the estimation errors for the portfolio formation period, so that jn
the new portfolio bpm there is no regression phenomenon. We also expect
that when fresh data are used, the extreme bpm will be less extreme than for
the period of portfolio formation. In the new data there will be some ten-
dency for all the bpm to “regress” toward 1, that is, to become less extreme.
This is the basis of the term “regression phenomenon.”

The errors-in-the-variables problem and the regression phenomenon that

the basis of ranked bim for individual securities. The middle 18 portfolios
each have int (n/20) securities. If nis even, the first and last portfolios each
have int (n/20)+% [n-20 int (2/20)] securities. The last (highest &
portfolio gets an additional security if n is odd.

The following five years (1930—1934) of data are then used to recompute
the b, and these are averaged across securitjes within portfolios to obtain
20 initial portfolio bpm, for the risk-return tests. Thus, within portfolios,

pm)

1938) these bpmy are fecomputed as simple averages of individua] security
bim , thus adjusting the portfolio bom: month-by-month to allow for delisting
of individual securities. The component vajues of b, for securities are them-

selves updated yearly; that js, they are recomputed from monthly returns
from 1930 through 1935, 1936, or 1937.

The month-by-month returns on the 20 portfolios

to compute Yje in*

*Since we are talking about results for a gi i ic i i
given historical period, the tildes th -
fore appeared are henceforth dropped. #t hereto

e
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Rpr =7y, + Y2tbpm,eo; + 73rb;m,r—x + YarSp,e-1(e;) + Mpe (46)
Rp, Vet Yabpm, ey +731b;27m,r-1 * Npe 47)

Rpr =Y t 72rbpm,t—1 + 74!Ep,t—1 (e;) + Npe (48)
Rpt='7lt+721bpm,t~1 tpes p=1,2,...,20. (49)

The explanatory variable bpm, ¢~y Is the average b;,,, for securities in portfolio
p discussed above; b;m,,_l is the average of the squared values of these Dipm
and is thus somewhat mislabeled; and Sp,e-1(e;) is likewise the average of
s(e;) for securities in portfolio p. The s(e;) are sample standard deviations of
market model residuals for individual securities; that is, they are the usual
estimates of o(€;) in (42). They are computed from data for the same period
as the component bim of bpm,¢-y; and, like these bim, they are updated
annually.

Equations (46) to (49) are equations (38) to (41) averaged across the securi-
ties in a portfolio, with estimates bpm,t-1,bpm, 4, and Sp,e-1(€;) used as
explanatory variables. The results from these equations, the time series of
month-by-month values of Yit> Y2¢5 Y3r, and 74, for the four-year period
1935-1938 are the inputs for the tests of the implications of (36) for this
period. To get results for other periods, the general steps described above are
repeated. Specifically, seven years of data are used to form portfolios; the
next five years are used to compute initial values of the explanatory variables:
and then the least squares values of the Yje are computed month-by-month
for the following four-year period.

The nine different portfolio formation periods (all except the first are seven
years in length), initial five-year estimation periods, and testing periods (all
except the last are four years in length) are shown in Table 9.1. Fama and
MacBeth explain the choice of four-year testing periods as a balance of com-
putation costs against the desire to reform portfolios frequently. The choice
of seven-year portfolio formation periods and five- to eight-year periods for
the estimates bpm, -y reflects the desire to balance the statistical power ob-
tained with a large sample from a stationary process against potential prob-
lems caused by any nonconstancy of the 8,,,. The choices here are in line
with the results of Gonedes (1973). His results also led Fama and MacBeth to
require that to be included in a portfolio, a security available in the first
month of a testing period must also have data for all five years of the preced-
ing estimation period and for at least four years of the portfolio formation
period. The total number of securities available in the first month of each
testing period and the number (n) of securities meeting the data requirement
are shown in Table 9.1,

Finally, all the tests are “predictive™ in the sense that the explanatory
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gm §§ 5 § go variables bpm, sy, bjm,1-y and 3p, ,_, (e;) that appear in (46) to (49) are com-
*8,, ,9; alz s §, puted from a period prior to the month of the returns, the R, that appear on
:_g;,} 8 § k: g E,’« the left-hand side of these equations. Thus, in computing the least squares
o @ G188 3 values of the 7, in (46) to (49), we are looking at the relationships between
pg z’ %_ 3 g" returns for month ¢ and estimates of risk measures that were available at the

nl& § o beginning of the month. Having emphasized the predictive nature of the tests,
g 83’ we can simplify the notation by henceforth referring to the explanatory
§ variables in (46) to (49) as by , b3 and 3,(e;).

& ® o0 SOME EVIDENCE ON THE EFFECTIVENESS OF THE PORTFOLIO APPROACH
§ Qg (‘?'““SE - Table 9.2 shows the values of the 20 portfolio bpm and their standard
o 8L errors s(bpy,) for each of the nine five-year estimation periods of Table 9.1.
z Also shown are p(Rp,R,,,)?, the coefficient of determination between Rp;
'g’ N % é g ol » and R,,;; s(Rp), the standard deviation of Ry, s(ep), the standard dev‘iati.on
3]0 3 A § & i of the portfolio residuals from the market model, not to be confusec with
D mEe 3 $p(e;), the average of the residual standard deviations for individual securities
2 - o 31 in p, which is also shown. The b,,,, and $p(e;) are the explanatory variables in
Y 'é’ "g" ‘?“: g § w § (46) to (49) for the first month of the testing periods following the estima-
5 589 g tion periods shf)wn. . .

§ «'I' ; Since the estimate of the variance of a b,,,, or a bpm is

m P PD §2 2

AEH IR ey —TO (50)
& 1 § o T _

g > Rone - Ry ).

3 Q 1=1

m ~|oo® o

g. 38 (T’" igng o § we can see that if data from a given period are used to compute b;,, for
ﬁ' TTIR G "} securities and bp,, for portfolios, the denominator in the expression for s2(b)
é §' is the same for all of the estimates, while the numerator is just the relevant
8 = (‘-’;‘. é ‘-é ° sample variance of the market model residuals for the security or portfolio.
: § § g E :7: @ Thus, the fact that in Table 9.2 s(ep) is generally on the order of one-third to
g © one-seventh 5,(e;) implies that s(bp) is one-third to one-seventh s(b;). Esti-
8 —-—— mates of f,,,, for portfolios are indeed more reliable than the estimates of the
9{, °°§ § i‘q’ g - B of individual securities.

S8R5 6 4 Note, however, that if the market model disturbances €, were independent
8 nEe from security to security, the “effects of diversification” in reducing s(ep)
g lega would be about the same for all portfolios. More precisely, the ra'tio
S ﬁ‘;,‘, g; §’3 ‘7’-' ® s(ep)/5p(e;) would be about the same for all portfolios, so that the rclat}ve
N N1ggg increase in the precision of the risk estimates obtained by using portfolios
= rather than individual securities would be about the same for all portfolios.
%’g - é g é We argue later, however, that the market model disturbances for securities are
3 g E” yRele interdependent, and the interdependence is strongest among high-8;,, securi-
® 882 ties and among low-g;,, securities. For the moment we note that this shows



€7 Ol ¢el” 00T 61 9SL° o0Sl°  Zg8L €1 (91" ovl' s8L° 807 692 96l 96L° 80T £8Z° S6Z° o00¢ A.\&Qm\AQ&w

880° 9.0° 890" S%0° ¥90° $90° 090° 990° £50° 990" [S0° $SO° €50 2SO LSO LSO° 8p0° wvou vvo ovo.. ¢ M ) Qm
20" 910" €10° €10 $L0° OLO 600 Zl0° (00" LLO° 800" OLO LLO 410" oLo" oto opo.. n—o. m—o. N—o. . M\&u
090" 950" 0S0° 6Y0° (¥O b0 ZpO' Ev0" LY0" 2ZYO' 8E0' L£O' 9g0° 980" 0€£0° 0£O’ mmo. wmo. mmo. m—o. w M\ QW.
Lv8 LLE ¥E€6 €€6° SL6  tvv6 256 616 896 PE6 vS6 €££6 £lE 958 S68° 8.8 /8 mmn. nmn. me. ! tE%t(
980° B8SO' 90" SYO' 600 LE0°  ££0° vv0"  L20° 6€0° 6Z0° SEO' 8EO 0S5O S€0° 8£0° L£O mvo. nvo. Nvo. ( Eﬁw
LZS°L 8LP'L ¥ZEL S6Z'L SEZ'L 9811 peL'L LEL'L EZL'L LLL') vIOL 966 0S6 626 8L LLL \SLT ¥69° 065 8iv q

¥S61-0961 QOIH3d NOILVINILST

. . . . . . d.
€€ 9z vz 6L 6L 4 1T s 4 o o el oz L0z 1z vz vz oog ze ('9)%/(%a)s

Zol° 8L0° 28O 990" LL0° 0LO° 690 690° 690" t90° +90° (90" Z90 850" 650" ZSOT €50 mmo.. Nmo.. mvo.. A\Mvnm
€O 120" 0200 €10 IO ZLO® SLO° LLO® ZL0° 110" 11O €10 £10° OLO clo Lo glo n—o. w—o. w—o. vau
¥80° LL0° €L0° 0L0° 990" £90° 85O 950° GSO° £50° 1S0°  0S0° 600 9t0" PPO° E00° LYO° wmo. mno. Nmo. w .A tﬂ

€8 €6 €6 96’ 96 96’ €6’ 96’ S6° 96 S6° €6 €6 S6 €6 6 06 wm. mn. wn. 7Y E% )\
980° ZS0° 6¥0° YED' SEO' 0LO'  LE0° L20° 0€0" (20" 8ZO' ££0° ZEO' SZO° 620" 820" zgo nmo. Fvo. ovo. ( Eﬁw
6LY'L YEV'L 6YEL SZE'L €¥ZL $8LL SLO'L ZSO' L (20l T0O0'L SS6' L£6' 616 (Sg ¢ 18" 018 S¥L° v69° 809 8eS q

0S61-9v6L QOIH3d NOILYWILST

. . . . . . . de /10
S6Z° SZ€ 16T 12T LT 9l zgu ¢l 9T z6l' 192 0l 0SZ 0§2 8EZ ¥IT €6T LlE Sve z8c (‘9) s/(99)s

ZZL' LI vELT 980" €80 960" LLO° 980" vL0° €L0° 690" Z90° $90° v90" £90° 8S0° 8SO° mwo.. mmo.. mmo” A.\Mv 9
9€0° 8E0" 6£0° 610 8LO 9L0° vLO 810" 910 ¢ILO° 8L0° €10 9LO° 910" SIL0° €107 L10 omo. mpo. _No. M\&u
90L° SOL° (60" 180" L8O (L0 90’ €90° 090" 6S0° (500 0SO° 0SO 6v0 90" vv0' LbO" L vo. nmo. mmo. w M\ s
(88" (98 6€8 SV6 1S6 8S6 PSE ¢ L6 £26° 2Zv6' 968 vE6 868 68% 868" 616° 68 nmn. mvn. mvw. (Y E%Zw
LL0° €80 ¥BO" L¥O' 6E0° €O OF0 0v0°  9€0° LEO' OV0° 8Z0' SEO° SE0° [AXV XA} nmo.. vvo. —vo. mvo‘ ( E@w
199°L LEY'L €L¥°L 9LEL ZIE'L $ST'L 8EO'L O0L0'L ¢s6 6v6 68 S08° z6L OLL L2 LOL 829 €65 (£S (9v q

9v6L-Z¥6lL QOIHId NOILYWILST

9¢’ L 8¢ 9z’ 9l s’ €T 8L’ 143 4% oz & ee Tz sz 0 (g 8y gg .\vaW\AQ&u

18l 8YL° (OL° g0l 6Ll €1° SEL' 9Ll po1I°  geo 00L" 580" 880" €80° /g0 CL0° €L0° €80° 990" .0 {/2)%
990° L¥O" 0€0° (20" o0Zo LE0" Z€0° 1200 sS10°  zio 020" 610" 0Z0 820° o0zO L20" zZzo' 1€0° zeo 9zo {%a)s
S8L°  LLLT el 9glT  gg el ser ogl izt gy L' 901" (60" 680" g0 v80° 0L0° 0L0° 650" vvo° (9y)s

[A:% 6 96’ 96’ 86 S6° v6 L6 66 66 L6 L6 96 06 6 6 L6 08 1t gy Yy 412
080" 0S0° (€00 €£0° s§zO° 880" 6£0° S5zZ00  gL0° SL0° 920 £20° SZ0° veo S20° 9Z0' 920° 8e0' 6€0° [4x0) {(Wdg)s
29l 095°L Le€L 1921 (521 SSTL KTl 90Z'L ezZ1°L v80'L (SO'L 186 668 86! 18L° 89L° ££9° 88S o/ sge” wdg

Zv6L-8€61 QOIN3d NOILVINI 1S3

€SC° 12Tzt zoz  soz 8L 88l zvz oLz SvT (2T ST 9z ser bZC° 9ST° vpZ' 1bT g6z 65z A.\SQW\AQ&.,.

0LL" syl gsL™ ezt gz eV zzi ozt vz v60°  £60° LLL° 901" 601 S60° 060° 8.0° £80° S0 5807 {'2)%
Ev0° 220" £v0° 9200 9zo vZo' €200 6200 9zo' gzor 20" 820 ¥ZO' 9Z0° 120 €20° 6L0° 020° zzZo© zzo (%a)s
09" 9GS  $SL° ppLt opL 6z1” gzl gzL zzLt gL 60L° 901" g0l 1oL ¢£go" L0 vLO° ZLO0' 8SOT opO {9y)s
{26 8S6° 26 196 996 996" 696" 1S6 956 656" 856 €£6 9v6 zce L6 ZL6 9¢6 Iz6' 1og 60L LWy .QQG
€50° 6£0° €SO0 z£O' zgo 620" 8z0' S£0° IEO° 820° (z0' ve0' 6200 zZEO 920° 8z0° €20° sZO' 1Zo° Lo (Wg)s
8Sv’l Svv'L 9681 segl sz 96L°L Z6L'L 1811 zzl'y 90t S00'L 0L6 ZvE lZ6' 2Z6L° S69° tL9 159 805" zzg- wdg

BE6L-vE6L AOIHaY NOILVIILS3

T oz Sz 8z’ (¥4 vZ €2 9T (44 9T Ly ¢ 9T oz ¢ 0 vz 8z o9z A.\w.Q..,..\AQmI

S0Z°  v6l° £y £0Z  wiL £8l° S8l g0z 1910 g1 voL' 8Pl 9/’ s/t zoy Evl’ 8SL° (el 951" g/t {/a)%
(v0°  6€0° €90° (S0° /g0 Sv0'  €v0° €50° 9go Lv0'" 6200 ¥E£0 8E£O Lo 980" ¥¥0' 8Y0' ££0' £pO° S0 (%a)s
SYZ 19z 8eT  1zz' 91z 0lz" Zoz voz© 00z el S8l S8LT 841 (L1t oL 99L° g9 Lyl 6EL° 9gy- (9y)s

96 L6 €6 €6 L6 S6° 96’ €6’ L6 v6 86’ (6 96 €6 96 g6 L6 S6° 06 68 Wy 9y g
€60° 820" vO' OvO' 9z0° CEO" 0E0° (800 520 g£eo 020" vZo' 9z0' ££0° szoO LE0" v€0" €20° 0£0' Lgo {Wdg)s

162t 08Z'L SSZ'L 6vL°L gpL'L 901"

-

€90't 650t 850°L 10| €86° (L6 S£6 (16 z6® €98° OV8 1Ll ZOL €69 wdq

PE6L-0861 QOIH3Y NOILVYILST

(+14 61 8L 43 91 Si vi €l [4) Li o] 6 8 L 9 S v € 4 i OiLsSIivis

0iI7041H04d

) «5€
Potiad uonews3 1o sansiels 9jdwes
Z'6 371g9vL




'1€9-029

SI53 ] |edtidw3 (wnuqiinb3 pue ‘uInlay ‘ysiy,, ‘ylagoew "Q sswer pue ewe4 "4 auabng 304

nog

‘(ELBL 3unr-Aew) L Awouod3 1eantog 4o jeusnor

8L L L v e ze v (9a)s
15y9s

{SO° 6S0° LSO (SO £S0° 9v0° 9Y0' £SO

6L
Lo

aL’
SSO°

81’

090

8L’
£50°

(1% 61" 8t (4%
290" v90° 950
oLo’

£90°

(410

Ly
SLO

4%
890°

Lz
120’
SLo

(<A

oz

680"

(fa) s/

{

90

(9a)s
9y)s

¥y Ty

LLO" 0LO" OL0° €1L0° 9L0° SLO° €LO°

600

Lo

Lo oLy

(412

€10

oLo’

L0

810

620" 660" LEO" 980" SEO° 2£0° ZSO© OSO° SZO°

lv0"  1PO°  LPO

%403

090" (SO SSO° £SO

S90°

90" 9v0°

M
(“9q)s

¥v8 SL s
wdq

I
620° E€E0° $EO° ZEO' ZEO' OPO' 0SO° 9bO° Zt0°

916 888 ¢£v8 I8

6 €6 6 6 6 pe 26 L6 6 6
980" 9€0° 8EO0' 0S0 ZEO' HEO
€6  1v6  OvE L6L (69 S99 529 tIS

v6
Lp0”
L6Z°L 9I1Z°L 0L0°L 290'L 9.6

9
g0

43

€6
ZS0°  9v0°
98Y'L S9¢°L 9lLEL

6
950"

9961-2961 QOIY3d NOILVYIILST

t/2)% /(95)s

veZ VST ZeT 80¢ 98T

vLL LV 08l

e¢SL°  88L° 8sL’  zal’

490" 990" 690 ©90° 890 690" 0L0

L°o08L" LV v el
0L0
Zio

L6
9.0’

82 o0eT

692"

1319

(%9)s
Py)s

¥y 9y)

{

190" ¥90° 6S0° 950" 250" 6v0°

LLO® SLO° SLO° €L0° 910 »pLO

290’

(443

040" 8S0°

8L0°

L' ZLo ciLo

€100 ZLo

oLo

€100 20" 110
60" 8v0
16

L06
SP0°

88E°'L 692°L 860°L Z60'L

910" SI10° SLoO

120

LE0" 0£0

IS8 SbL €8L°

Lv0" 8E0° 8EOD' LE£O° £€0°

6€6° SlE €L6 026 9£9 se8

(PO 9Y0' 90 SYO SPO YYD £HO° ZbO'
Sv6 ve6 8v6 IZ6 STE
€€0°

9¢g6

950" 6v0°
¢Z6  0L6

988"

g
(Wg)s

CE0° 880" LE0° €£0° (PO 90" 6E0° 80" YO

SL6' 0S6° 0Z6 098 (18

LEO

180" B0

9€0

90

SY0 8€0°
180°L 690°'L 8Y0'L LSOl 6LO°L

S80°  8v0

wdqg

108" 6LL° S£9° 929

S66°

eLo't

2961L-8561 QOIY3Id NOILVYWILSI

(a9

8 S Sl' 9l €2 vz 8 vz (a9

SL°

$90° SSO' LSO0° 9S0° £S0° LpO' 6v0° 9YO' SpO°

0l0° 0OLO' 600" 600" 600

9l L 14% vi
{90 €90° €90° Z90°
L0 600 600

Lo

9l
£90°

218 (24 AN 14} 8L
LLOT 9407 90" 0L0° 990

(074
180"
L0’

(9a)s
Gyys

¥y 9y

Lo

110" Z10° gLo

107 L0 0L0°  ZIoT 110
St0°
v6

zs0’
o

£Lo’

69° 89

9L

PO SPO° LY0° ZvO

LEY VI9 wS [SY

26 6 16 06 o8

S€0° 980" ¥E€0° ZEO' 8Z0' SZO° SZO° £20° OZO
6
LED" 8ED" vEO' SEO vED

ov0" (807 980
€6 6’

6

o' ovo
€6’
Zro

S0’
€6

S0’
S6

S0
6

153
90"

850"

M
(wg)s

ov0" €£0° vEO

ovo’

St0’

8€0
{8S°L OSYv'L Z6E'L 8SZ'L LYZTL SETL 9LL'L 8601

Zv0

6v0° S90°

u./dq

L00'L €66 L6 ¥Z6 659 89L

1zo'L

160t

8S61-¥561 QOIY3d NOILVYWILS3

JIlSILlvisS

3

61 8l L1 :1) St 14} €L zi L oL

(074

OIM041H04d

The Two-Parameter Model: Empirical Tests 355

up in Table 9.2 in terms of ratios s(ep)/3p(e;) that are always highest at the
extremes of the by, range and lowest for by, close to 1. Since these ratios
are generally less than .33, however, interdependence among the market
model disturbances for different securities does not destroy the value of using
portfolios to reduce the dispersion of the errors in estimates of risk measures.

PROBLEMS II1.B

2. What is the formal basis for the statement that if the market model
disturbances €;, were independent from security to security, then the ratio
5(ep)/35p(e;) would be about the same for all portfolios?

3. Make some specific comments about the reliability of the b, of port-
folios versus the b,,, of individual securities. Don't be afraid to look back at
the results in Chapter 4.

4. With the switch from securities to portfolios, are there any dramatic
changes in the interpretation of the least squares values of y,,, 74y, 73, and
“Yar in (46) to (49) as portfolio returns?

ANSWERS

2. The disturbance in the market model relationship between the return on
portfolio p and the return on the portfolio m is related to the corresponding
market model disturbances for the securities in D according to

K
E'p, = Z xlpglh
=1
where K is the number of securities in the portfolio. In the Fama-MacBeth
tests, K is approximately the same for all portfolios and there is equal weight-
ing of securities within portfolios. Thus, if the €;¢ were independent across
securities,

K
0¥ (&)= xho¥(&) = - o%(5)),

1
i=1 .
where 6%(€,) is the average of the 02(€) for the K securities in the portfolio
p. Since this analysis would be the same for all the Fama-MacBeth portfolios
if within each portfolio the €, were independent across securities, then for
each portfolio az(é'p) would be the fraction 1/K of the average of the 0%(&)
for individual securities. This statement also holds (at least approximately)
for the ratio 0(€,)/0(€;) if within given portfolios the values of 0%(€;) for
individual securities are not too different.
The evidence in Table 9.2 suggests, however, that the simple expression
above for oz(E'p) is not valid. Within portfolios that have bpw much different




357
356 FOUNDATIONS OF FINANCE TABLE 9.3
The Month-by-Month Record of the Relationship Between Return and
from 1, there must on average be positive covariances between the €;, of dif- Risk on the NYSE, Rpe = Y1t * Yatbpm * npt
ferent securities which cause the 02(& for these portfolios to be greater than
- , (&) p o g t it Y2t plRpt, bpm)? t Tie T2t o{Rpt. bpm)*
implied by the expression above.
3. To get a more direct appreciation for the effectiveness of the portfolio 3501 0.0064  -0.0413 0.007 3903 00152 -0.1880 0.931
o ing th - ) . 3502 0.0369  -0.0997 0.328 3904 -0.0074 0.0072 -0.033
approach in increasing the reliability of the risk estimates, one can compare 3503  -0.0657 -0.0126 ~0.045 3905 00683 00147 0.032
the s(bp,,,) for portfolios in Table 9.2 with the s(b;) for individual securities 3504  -0.0007 0.1040 0.192 3906 0.0321  -0.1213 0.944
in Tables 4.3 and 4.4. In Table 9.2, the $(bpm ) for portfolios for the five-year 3505 01129 -0.0889 0.151 3907 0.0138  0.1202 0.834
eriod 1962-1966 range f, bout .03, when b, is close to | to 056 3506 0.0277 0.0105 -0.051 3908 -0.0212 -0.0827 0.656
p -19 r. nge ronF aoout .03, when by, is close to 1, up .o. 3507  -0.0348 0.1370 0.191 3909  -0.2040 06295 0.758
for the portfolio with the highest b,,,,. Except for the portfolios with the 3508 -0.0092 0.0973 0.085 3910 0.0737  -0.0899 0.689
highest by, , the values of the $(bpm) are generally about 4 percent of the 3509 -0.0790  0.0945 0.174 3911 00427  -0.1312 0.855
. 3510 -0.0142 0.0869 0.185 3912 0.0526  -0.0433 0.298
.vall'le's of bp,,,.”On the other hand, in Tables 4.3 and 44, the ..c(b,,,,) for 3511 0.1585 00060 0,085 2001 00319  -00543 0.458
individual securities range from .110 to .522. In Table 4.3 s(b,,,,) is, on aver- 3512 0.0472 0.0021 -0.055 4002 0.0242 0.0069 _0.042
age, about 25 percent as large as bim , whereas in Table 4.4, s(b,) is on average 3601 0.0368 0.1342 0.125 4003 0.0318  -0.0076 -0.024
T is . X | -0.054 4004 0.0058 0.0038 ~0.053
about 22 percent as large as by, . In short, for individual securities the estima- 3602 0.0471 0.0047 0
: P 5 ATBE 83 Dim : . ) 3603 0.0165 -0.0219 -0.039 4005 -0.1816  -0.0898 0.765
tion error in by, is likely to be a substantial fraction of the estimate, whereas 3604 0.0179  -0.1398 0436 4006 0.0424 0.0333 0.184
for portfolios the estimation error is likely to be a small fraction of the 3605 0.1004  -0.0433 0.024 4007 0.0346  -0.0010 ~0.055
estimate. 3606 00102 -0.0096 -0.048 4008 00022  0.0226 0.134
. 3607 0.0397 0.0292 -0.029 4009 -0.0014 0.0365 0.140
4. T}?e least squares values (‘)f the v, in (46) to (49) are the returns on 3608 0.0159 0.0098 _0.051 4010  -00190 0.0692 0647
portfolios, but they are portfolios of the 20 component portfolios used in the 3609 0.0247 0.0113 -0.043 4011 0.0140  -0.0206 0.042
computations. Moreover, the least squares values of the Yj¢ in (46) to (49) 3610  0.0133  0.0458 0.042 4012 0.0232  -0.0438 0.334
; : 3611 -0.0841 0.1763 0.341 4101 -0.0110 0.0118 -0.044
have the same properties as the least squ'ares values of the Yj in (38).to 41), 3612 -00626 0.0905 0219 4102 -00181  -0.0010 0055
except that for (46) to (49), the properties of the v, must be stated in terms 3701  -0.0530 0.1400 0.265 4103 0.0023 0.0165 0.045
of the 20 component portfolios and the bpms b, and Sp(e;) for these 20 3702 -0.0197 0.0572 0.050 4104 0.0063  -0.0609 0.594
. . R — 4105 ~0.0301 0.0432 0.504
ortfolios. For example, the least squ es value of y,, in (46) is the return o 3703 0.0792 0.0898 0.248
p amp ast squares value o Tie n (46) is the re urn on 3704 00170 -0.1279 0.641 4106 00135 00518 0.335
a standard portfolio of the 20 component portfolios, where the weights 3705 0.0055 -0.0295 0012 4107 0.0357 0.0987 0.562
assigned to the component portfolios yield zero-weighted average values of 3706  -0.0599  -0.0220 -0.014 4108 0.0079  -0.0163 0.152
the 20 values of b,,, the 20 b2, and the 20 Spe;). To substantiate these 3707 -0.0489  0.1531 0.481 ::?g g-g’;;g ‘g'gggg g'ggl"
. . e s 3708 ~-0.0134 -0.0449 0.129 0. =0. .
claJms,. the reader cazn work 1hrough the analysis of(li) to (22), substituting 3709 00738 -0.1197 0630 4111 _00096 -0.0258 0.119
the estimates bpm > bpm , and 5p(e;) for By, Bis and o(€;). 3710  -0.0675 -0.0333 0.061 4112 -0.0260 -0.0623 0.479
3711 -0.0380 -0.0659 0.183 4201  -0.0768 0.2445 0.426
3712 0.0110  -0.1122 0.374 4202  -0.0395 0.0240 0.165
3801 0.0305 0.0144 -0.043 4203 -0.0778 0.0266 0.019
3802 0.0200 0.0365 0.005 4204  -0.0225 -0.0226 0.066
IV. Resul 3803 -0.164z -0.1357 0.457 4205 0.0960 -0.0633 0.447
. csults 3804 0.1524 0.0786 ~0.028 4206 0.0360 -0.0126 0.017
3805 0.0682 -0.1338 0.362 4207 0.0207 0.0274 0.273
A Prelimi Di , 3806 0.0405 0.2677 0.694 4208 0.0205 0.0083 -0.037
- treiiminary Discussion 3807 00461  0.0746 0.091 4209 -00281 00859 0.417
THE MONTHLY RECORD 3808 -0.0666 -0.0053 -0.051 4210 -0.0022 0.1036 0.635
. 3809 -0.0208 0.0085 ~-0.047 4211 0.0679 -~0.0865 0.661
We are ready to consider the results of the tests of the two-parameter 3810  -0.0869 0.2235 0.368 4212 0.0316 0.0001 ~0.056
model. As a warm-up, Table 9.3 shows the month-by-month record of the 3811 0.0079  -0.0520 0.048 4301 00064  0.1840 0.661
least squares values of Y1¢ and 7y, in (49). The table also shows the month- ! 3812 00722 -0.0380 0.013 4302 -0.0067 0.2402 0.622
b h val f o(R.,. b 2 th ffici . . . 3901 0.0195 -0.0946 0.841 4303 0.0395 0.0746 0.352
y-month values of p(R,;, bp, )?, the coefficient of determination, adjusted 3902 00406  0.0000 ~0.056 4304 00244 00631 0.667
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TABLE 9.3 (conTD)

t it Y2t o(Rpe bpm)? t 1t Y2t PRyt bpm)?
4305 00105  0.0759 0.469 4709 -0.0120 0.0188 0.265
4306 0.0441 -0.0357 0.289 4710 0.0147  0.0189 0.366
4307 0.0295 -0.0950 0.786 4711 0.0016 -0.0284 0.289
4308  0.0247 -0.0222 0.282 4712 0.0097  0.0132 0.078
4309  0.0140  0.0222 0.327 4801 -0.0435 0.0249 0.432
4310 00092 -0.0133 0.033 4802 -0.0109 -0.0507 0.879
4311 00115  -0.1024 0.847 4803 0.0307 0.0684 0.551
4312 00239  0.0720 0.713 4804 0.0140  0.0272 0.338
4401 -0.0025  0.0495 0.466 4805 0.0310  0.0614 0.668
4402  0.0011 0.0125 0.031 4806  -0.0226 0.0064 -0.017
4403 00115  0.0335 0.462 4807 -0.0272  -0.0256 0.202
4404  0.0038 -0.0348 0.694 ::gg gg?g:- -g-gggg 817“1517*
4405  0.0359 0.0319 0.299 -0. -0. .
4406 -0.0122  0.1177 0.779 4810  0.0306  0.0240 0.384
4407 0.0204 —0.0355 0.752 4811 -0.0182 -0.0903 0.863

0029 0.0259 0.219 4812 0.0278 -0.0160 0.125
::gg —g.ooos ~0.0019 -0.047 :gg; ggfgg -g-gggg —g-ggg
4410 00229 —0.0233 0.333 - -0. .
4903 0.0155  0.0448 0.563

::: ; _828(1)23 3j8;3§ 3233 4904  0.0265 -0.0594 0.839
4501 0.0171 0.0269 0.236 4905 0.0302 -0.0735 0.875
4502 0.0117 0.0770 0.783 4906 0.0174 -0.0230 0.430
4503 -0.0021 -0.0551 0.587 4907 0.0429 0.0190 0.201
4504 0.0332 0.0577 0.605 4908 0.0288 -0.0051 -0.029
4505  0.0137 0.0174 0.109 4909 0.0237 0.0203 0.209
4506 -0.0528  0.0877 0.688 4910 0.0088 0.0312 0.418
4507 -0.0026 -0.0290 0570 4911 0.0208 -0.0118 0.060
4508  0.0599  0.0037 -0.051 4912 0.0237 0.0470 0.631
4509 00339  0.0272 0.380 5001 -0.0235 0.0603 0.799
4510  0.0622 0.0023 -0.054 5002 0.0153  -0.0009 -0.055
4511 0.0227  0.0720 0.687 5003 0.0087 -0.0105 0.072
4512 -0.0308  0.0633 0.109 5004 -0.0156 0.0646 0.587
4601 —0.0065  0.1036 0.659 5005 0.0156 0.0201 0.135
4602 -0.0169 -0.0518 0.799 5006 -0.0362 -0.0399 0.712
4603  0.0883 -0.0303 0.200 5007 -0.0933 0.1501 0.735
4604  0.0546 -0.0029 -0.052 5008 0.0487 0.0044 -0.046
4605  0.0226  0.0318 0.310 5009 0.0509 0.0037 -0.049
4606 -0.0418 -0.0070 -0.008 5010 -0.0032 -0.0001 -0.056
4607  0.0000 -0.0427 0.661 5011  -0.0068 0.0397 0.435
4608 -0.0291 -0.0477 0.695 5012 -0.0377 0.1200 0.875
4609 -0.0517 -0.0839 0.896 5101 0.0379 0.0382 0.266
4610 -0.0181 0.0104 0.036 5102 0.0331  -0.0239 0.333
4611 0.0182 -0.0190 0.192 5103 0.0190  -0.0544 0.774
4612  0.0548 -0.0116 0.004 5104 -0.0004 0.0420 0.384
4701 -0.0208  0.0543 0.653 5105 0.0162  -0.0413 0.524
4702 -0.0101 0.0026 -0.038 5106 0.02562 -0.0727 0.894
4703  0.0019 -0.0311 0.756 5107 0.0135 0.0498 0.601
4704 -0.0254 -0.0584 0.767 5108 0.0143 0.0366 0.344
4705  0.0119 -0.0494 0.858 5109 -0.0108 0.0317 0.570
4706  0.0438  0.0173 0.121 5110 -0.0105 -0.0126 0.107
4707  0.0093 0.0538 0616 5111 0.0047 0.0018 -0.049
4708 -0.0083 -0.0082 0.028 5112 0.0347  -0.0206 0.180
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t Y1t Y2t p(Rpt. bpm}? t it T2t p{Rpt. bpm)?
5201 0.0145 0.0013 -0.054 5605 -0.0210 -0.0207 0.398
5202 -0.0120 -0.0095 0.029 5606 0.0229 ~0.0022 -0.052
5203 0.0197 0.0111 0.049 5607 0.0375 0.0019 -0.051
5204 -0.0204 -0.0267 0.377 5608 -0.0038 -0.0130 0.124
5205 0.0201 0.0036 -0.037 5609 -0.0344 0.0001 -0.056
5206 0.0030 0.0296 0.454 5610 0.0129 -0.0062 -0.028
5207 0.0199 -0.0075 -0.003 5611 0.0087 0.0042 -0.043
5208 0.0218 -0.0248 0.403 5612 0.0180 0.0002 -0.055
5209 0.0019 ~0.0199 0.301 5701 ~0.0035 0.0060 -0.032
5210 -0.0065 -0.0053 -0.016 5702 0.0114 -0.0346 0.500
5211 0.0338 0.0228 0.220 5703 0.0102 0.0120 0.025
5212 0.0164 0.0054 -0.033 5704 0.0254 0.0010 -0.055
5301 -0.0033 0.0291 0.274 5705 0.0131 0.0082 Q..014
5302 0.0075 0.0027 -0.051 5706 0.0007 -0.0044 ~0.042
5303 0.0145 -0.0261 0.180 5707 0.0184 -0.0118 0.013
5304 -0.0150 ~0.0070 -0.012 5708 0.0003 -~0.0506 0.740
5305 -0.0103 0.0175 0.222 5709 0.0127 -0.0646 0.747
5306 0.0039 ~0.0353 0.671 5710 0.0370 -0.1023 0.824
5307 0.0289 -0.0128 0.102 5711 0.0300 ~0.0119 0.058
5308 0.0452 -0.0993 0.875 5712 0.0364 -0.0876 0.833
5309 0.0259 -0.0375 0.461 5801 0.0037 0.1024 0.856
6310 0.0128 0.0261 0.368 65802 0.0400 -0.0518 0.609
6311 0.0270 -0.0067 -0.034 5803 0.0394 -0.0017 -0.053
6312 0.0462 -0.0618 0.775 5804 0.0197 0.0111 -0.019
5401 -0.0008 0.0743 0.866 5805 -0.0033 0.0404 0410
5402 0.0127 -0.0004 -0.055 5806 0.0006 0.0317 0.497
5403 0.0282 0.0016 -0.054 5807 0.0017 0.0547 0.740
5404 0.0228 -0.0026 -0.051 5808 0.0104 0.0216 0.224
5405 0.0044 0.0388 0.431 5809 -0.0065 0.0607 0.693
5406 0.0190 -0.0065 -0.033 5810 -0.0066 0.0361 0.258
5407 0.0341 0.0359 0.280 65811 0.0384 -0.0002 -0.056
5408 -0.0070 -0.0032 -0.046 5812 0.0497 -0.0096 -0.003
5409 0.0431 0.0035 -0.048 5901 0.0157 0.0260 0.153
5410 -0.0031 -0.0026 -0.048 5902 0.0139 0.0120 0.030
5411 0.0465 0.0491. 0.504 5903 0.0071 0.0038 -0.048
5412 -0.0321 0.1222 0.888 5904 0.0122 0.0125 0.043
5501 -0.0004 0.0162 0.111 5905 0.0037 0.0054 -0.030
5502 -0.0063 0.0463 0.497 5906 -0.0131 0.0177 0.119
5503 -0.0021 0.0053 -0.032 5907 0.0356 -0.0057 0.001
5504 0.0451 -0.0230 0.194 5908 0.0345 -0.0483 0.783
5505 0.0009 0.0059 -0.037 5909 -0.0247 -0.0203 0.27
5506 0.0250 0.0102 0.001 5910 0.0064 0.0145 0.128
5507 0.0107 -0.0005 -0.055 5911 0.0202 -0.0069 -0.034
5508 0.0094 -0.0057 -0.035 5912 0.0091 0.0133 0.114
5509 -0.0265 0.0187 0.113 6001 -0.0184 ~0.0205 0.136
5510 0.0002 ~0.0164 0.208 6002 0.0175 -0.0110 0.030
65511 " 0.0412 0.0139 0.040 6003 0.0270 -0.0520 0.690
5512 0.0025 0.0188 0.095 6004 0.0335 ~-0.0548 0.723
5601 -0.0063 -0.0152 0.113 6005 0.0216 ~0.0030 -0.048
5602 0.0292 0.0056 -0.031 6006 0.0559 -0.0354 0.332
5603 0.0493 0.0039 ~-0.047 6007 0.0098 -0.0262 0.536
5604 -0.0035 0.0088 -0.010 6008 0.0422 -0.0059 -0.029
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t Y1t Y2t o(Rpt. bpm)? t Y1t vt pRpt. bpm)?
6009 -0.0146 -0.0440 0.627 6408 0.0147  -0.0236 0.193
6010  0.0156 -0.0362 0.663 6403  -0.0491 0.0914 0.748
6011 0.0435 -0.0019 -0.052 6410 0.0055 0.0122 0.009
6012  0.0477 -0.0110 0.009 6411 0.0531 -0.0543 0.414
6101 0.0269 0.0547 0.535 6412 0.0181 -0.0276 0.304
6102  0.0356 0.0243 0.222 6501 0.0344 0.0231 0.171
6103  0.0164 0.0291 0.218 6502 -0.0084 0.0373 0.266
6104  0.0158 -0.0106 -0.007 6503  -0.0006 0.0060 -0.048
6105  0.0016 0.0398 0.565 6504 -0.0198 0.0578 0.423
6106  0.0063 -0.0452 0.582 6505 ~0.0019 -0.0066 -0.028
6107 0.0220 -0.0072 -0.001 6506 ~0.0094 -0.0627 0.670
6108  0.0603 -0.0385 0.319 6507 -0.0445 0.0773 0.715
6109 00183 -0.0463 0.709 6508 -0.0201 0.0599 0.602
€110  0.0603 -0.0381 0.426 6509 -0.0161 0.0487 0.234
6111 0.0619 -0.0171 0.097 6510 -0.0496 0.0978 0.645
6112 -0.0314 0.0295 0.300 6511 -0.0429 0.0718 0.388
6201 -0.0580 0.0538 0.699 6512 -0.0530 0.0903 0.493
6202  0.0249 -0.0079 -0.016 6601  -0.0241 0.0720 0.405
6203  0.0034 -0.0087 0.002 6602 -0.0507 0.0637 0.560
6204 -0.0257 -0.0411 0.753 6603 -0.0063 -0.0139 0.068
6205 -0.0709 -0.0226 0.199 6604 -0.0602 0.0933 0.717
6206 -0.0540 -0.0277 0.373 6605 0.0257 -0.0991 0.832
6207 0.0511 0.0090 -0.009 6606 -0.0379 0.0317 0.295
6208  0.0067 0.0151 0.079 6607 0.0132 -0.0252 0.143
6209 -0.0184 -0.0392 0.595 6608 -0.0436 —0.0486 0.456
6210 -0.0207 0.0032 -0.038 6609 0.0494 -0.0638 0.679
6211 0.0305 0.1051 0.819 6610 0.0728  -0.0500 0.373
6212  0.0320 -0.0402 0.662 6611  -0.0353 0.0611 0.408
6301 0.0197 0.0615 0.461 6612  -0.0001 0.0141 0.001
6302 -0.0174 0.0061 -0.038 6701 -0.0049 0.1371 0.818
6303 -0.0053 0.0274 0.287 6702 0.0154  -0.0027 -0.050
6304 0.0225 0.0174 0.040 6703 0.0149 0.0373 0.216
6305 -0.0349 0.0695 0.610 6704 0.0292 0.0060 -0.026
6306 -0.0116 -0.0041 -0.044 6705 -0.0328 0.0154 0.024
6307  0.0142  -0.0220 0.059 6706  -0.0139 0.0640 0.621
6308 -0.0084 0.0603 0.485 6707 0.0315 0.0398 0.308
6309  0.0168 -0.0344 0.236 6708 -0.0069  0.0102 0.001
6310 -0.0011 0.0219 0.156 6709 0.0202 0.0093 -0.018
6311  -0.0273 0.0230 0.080 6710 -0.0272 -0.0125 0.014
6312 -0.0213 0.0313 0.248 6711 0.0084  -0.0032 JO.MS
6401 -0.0303  0.0558 0.464 6712 0.0103  0.0445 ,0.368
6402 -0.0423 0.0728 0.590 6801 0.0501 -0.0561 #0.414
6403 -0.0479 0.0815 0.547 6802 0.0171  -0.0577 0.549
6404  0.0405 -0.0394 0.168 6803 -0.0224 0.0146 0.101
6405 -0.0171 0.0309 0.302 6804  -0.0005 0.1127 0.838
6406  0.0095 0.0076 -0.029 6805 0.0184 0.0378 0.142
6407  0.0340 -0.0049 -0.050 6806 0.1000 -0.0809 0.730

)
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for degrees of freedom, in the regression of the 20 portfolio returns for

month ¢ on the corresponding bpm - Table 9.3 can be viewed as the monthly

record of the relationship between return and risk on the New York Stock

Exchange and, as such, has several points of interest.

First, the strength of the relationship, as measured by P(Rp;, bp,,,)z,seems
on average low and quite variable from month to month. There are many
months when p(Rp¢, bpy,)* is negative.* Second, there are many months
(149 out of 402) when 7,, is negative, and, more interesting, there are many
months (185 out of 402) when v,, is negative, so that for these months there
is a negative relationship between return and risk. The variability of the v,,
and v,, and the low P(Rpt, b‘,,,,,)2 indicate that if one were to plot risk-return
lines (R,, against bpm), one would find that the characteristics of the lines
(intercept ,, and slope 7,,) change dramatically from month to month and
that there is substantial dispersion of points, the 20 portfolio returns, about
any given line.

None of this is particularly surprising nor, in itself, contrary to the two-
parameter model. All of the hypotheses drawn from the model are statements
about the relationship between expected returns and risk, and not about the
relationships between return and risk. Thus, it may well be the case that risk,
as measured by by, , does not account for much of the differences among the
returns on the 20 portfolios for any given month. If securities are priced
according to the theory, however, and if they are priced so that = is a mini-
mum variance portfolio, then 8,,, should be sufficient to explain differences
among the expected returns on the 20 portfolios.

Moreover, it is not at all surprising that v,, and ,, are quite variable from
month to month. The least squares values of 7y, and 7,, are the returns on
portfolios of NYSE stocks. We have known since Chapter 1 that even highly
diversified portfolios of NYSE stocks show substantial variability of monthly
returns. Thus, we expect v,, to be quite variable through time and even nega-
tive in a large fraction of months. The hypothesis that there is a positive
relationship between expected return and risk is nevertheless upheld as long
as E(Y2,) >0, that is, as long as “on average” there is a positive relationship
between return and risk.

Since the hypotheses of the model concern relationships between expected
returns and risk, we have to do some manipulation of the time series of Y1t
and 7v,, in Table 9.3 to get tests of these hypotheses. In essence, average
values of 7y,, and v,, and summary measures of the time series properties af
Y1r and 7y,, are the basis of the relevant tests. Moreover, to test all of the

*Negative values of the coefficient of determination are possible when the coefficient
is adjusted for degrees of freedom.
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different hypotheses, we need to do similar manipulations of the time series
of the least squares values of the Yje in (46) to (48).

THE NATURE OF THE TESTS

The major tests are summarized in Table 9.4. Results are presented for ten
periods: the overall period 1935-June 1968; three long subperiods, 1935-
1945, 1946-1955, and 1956-June 1968; and six subperiods, which, except
for the first and last, cover five years each. Results are presented for each of
the equations (46) to (49). For each period and equation, the table shows:
¥, the average of the month-by-month least squares values of Ve sCvp), the
sample standard deviation of the monthly v;,; 5% and s(?), the mean and
the standard deviation of month-by-month coefficients of determination for
the regressions of the 20 portfolio returns on the relevant risk measures.

The table also shows first-order autocorrelations of the various monthly
Yje» where the autocorrelations are computed either about the sample mean
of Yje» in which case they are labeled F ('y/,), or about an assumed mean of
zero, in which case they are labeled i)‘o(ﬁ,-,). The reasons for doing this are
discussed below. Finally, t-statistics for testing the hypothesis that E(y),) =
0 are presented. These 7-statistics are

t(7y) (51)

- i
s(PINT
where T is the number of months in the period. If successive values of Ve are
independent and identically distributed normal random variables, the ¢-
statistic of (51) is a drawing from the student distribution with 7- | degrees
of freedom. Since the time periods in Table 9.4 are all five years or longer,
T - 1 is always greater than 59 and the student distribution is well approxi-

mated by the unit normal distribution.

B. Tests of the Major H 'ypotheses

TESTS BASED ON AVERAGE RETURNS

Consider first the proposition that if securities are priced so that m is a
minimum variance portfolio, then no measure of risk, in addition to g,,,,, is
needed to explain expected returns. The results in Panels C and D of Table
9.4 are consistent with this hypothesis. For both (48) and (46), the r-statistics
for the mean values of 7Ya¢, the coefficient of 55(e;), are small, and the signs of
the ¢(¥;) for subperiods are randomly positive and negative. Thus, one can-
not reject the hypothesis that in both (48) and (46), £(74,) = 0.

Likewise, the results in Panels B and D of Table 9.4 do not reject the pro-
position that the relationship between expected return and f,,,, is linear. In
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Yar, computed about means that are assumed to be zero, test the proposition
that there is no information in the time series of past values of 3, and v,,
that ever warrants nonzero assessments of expected future values. Consistent
with this proposition, So(y;) and Po(vs) in Table 9.4 are always low in terms
of explanatory power and generally low in terms of statistical significance.

Recall from Chapter 4 that the proportion of the variance of a variable ex-
plained by first-order autocorrelation is estimated by the square of the esti-
mated first-order coefficient. In all cases, So(y3)? and Po(ys)? are small. As
for statistical significance, if the true autocorrelation is zero, the standard
deviation of the sample coefficient can be approximated by a(p) = 1/\/T.
For the overall period, ¢(?) is approximately .05, while for the ten- and five-
year subperiods, o(p) is approximately .09 and .13, respectively. Thus, the
values of Do(y3;) and Po(ya) are generally also statistically close to zero.
There are exceptions to this statement, but they involve primarily periods
that include the 1935-1940 subperiod, and the results for these periods are
not independent. Moreover, even though the true autocorrelation may be
close to zero, some autocorrelations are expected to be large on a purely
chance basis when many sample autocorrelations are computed.

The proposition that securities are priced so that m is on the positively
sloped segment of the minimum variance boundary only says that £(¥,,) =
(ER ) - E(ﬁom,)] > 0; the model does not hypothesize a specific value of
E(Y2,). If we are willing to assume that the equilibrium expected value of the
risk premium is constant through time, then sample autocorrelations of v,,,
computed about the sample mean of Ya2r, lest the proposition that the
time series of past values of 7,, never warrants an assessment of the expected
future value of ¥,,, which is different from the assumed constant equilibrium
expected value of v,,. Since the sample values of 2(72,) in Table 9.4 are
small, both statistically and in terms of explanatory power, the proposition is
not rejected by the evidence.

Market efficiency in a world where securities are priced so that m is a mini-
mum variance portfolio also implies that the disturbances Tipe in (46) to (49)
should be uncorrelated through time. If this is not the case, then the time
series of past values of 7,, can be used as the basis of correct nonzero assess-
ments of expected future values, which means that the future expected return
on the portfolio is not simply as predicted by the expected return-risk rela-
tionship (36). In this case, if the market is trying to price securities according
to (36), then it is inefficient in the sense that it is ignoring information in past
returns.

Fama and MacBeth do not show autocorrelations for the Tlpe» but they re-
port that, like the autocorrelations of the 7jz» those of the Tpe are close to
zero. They also compute higher-order autocorrelations for the Yjr and np,,
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that is, autocorrelations for lags greater than one, and they report that these
are likewise never systematically large.

EVIDENCE ON THE RELIABILITY OF THE v,
OF DIFFERENT RETURN EQUATIONS

Since the results from (46) to (49) are mutually consistent, we need not be
too concerned with determining which version of a particular v, provides the
most reliable test of a specific implication of (36). Nevertheless, it is interest-
ing to note that the results in Table 9.4 are consistent with our earlier discus-
sion of reliability. Thus, for any given j, the least squares Yje in (46), (47),
(48), or (49) is the return on a portfolio that focuses on one testable implica-
tion of (36), while “zeroing out” the effects of any other explanatory vari-
ables that appear in (46), (47), (48), or (49). The fewer the explanatory vari-
ables in an equation, the fewer “zeroing out” constraints imposed on the least
Squares procedure in its search for a “smallest variance” 7je- Thus, the search
is likely to be more successful.

For example, in each of the equations (46) to (49), the least squares 7y, is
the return on a portfolio that has bpm = 1.0 and that zeroes out the effects of
any other variables that appear in the return equation. In Panel A of Table
9.4, we find indeed that the less constrained 7Y2¢ of (49) has standard devia-
tions s(y,) much smaller than the 5(y2) from (46) or (47) in Panels B and D,
and usually at least a little smaller than 5(y,) from (48). Similar comparisons
can be carried out, by the reader, between the values of s(y,) in Panels B and
D of Table 9.4 and between the values of 5(7v4) in Panels C and D.

PROBLEM IV.B
1. How can one explain the fact that s(7,) increases more when one goes
from Panel A to Panel B than when one goes from Panel A to Panel C?

ANSWER

1. When an additional variable is included in a return equation, its effect on
5(72) depends on the strength of the relationship between the additional
variable, b},m or 5,(e;), and bpy . If the relationship is strong, then the addi-
tional constraint that the weighted average of the 20 values of bim or sp(e)
must be zero is a strong constraint on the way the 20 component portfolios
can be combined to get the smallest variance portfolio that has bpm = 1.0.
The evidence from the s(72) in Table 9.4 is that the relationship between
bpm and b}, is (obviously) strong, but the relationship between bp, and
Sp(e;) is not so strong. The statistically sophisticated reader recognizes that
this is just an intuitive discussion of the statistical phenomenon called
multicollinearity.
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C. The Sharpe-Lintner Hypothesis

STATISTICAL CONSIDERATIONS
In the Sharpe-Lintner model of market equilibrium there is unrestricted

borrowing and lending at the risk-free rate of interest Rp,. The testable impli- -

cation of this assumption is that the expected return on any security or port-
folio whose return is uncorrelated with the return on the market portfolio M
is Rp,. If we are willing to assume that m, the equally weighted portfolio of
NYSE stocks, is a good proxy for M, the value-weighted portfolio of all in-
vestment assets, then Table 9.4 contains tests of the Sharpe-Lintner hypo-
thesis. Thus, the least squares value of v, for (49) is the return on a standard
portfolio where the weights assigned to the 20 component Fama-MacBeth
portfolios yield a weighted average value of the 20 component b, equal to
zero. The least squares values of v,, for (46), (47), and (48) are likewise the
returns on zero-b,,, portfolios, but these portfolios are constructed under
the additional constraints that the weighted average of the 20 b2, must be
zero [(46) and (47)] and/or the weighted average of the 20 component
5p(e;) must be zero [(46) and (48)].

Since we could not reject the linearity and non- risk hypotheses of the
two-parameter model, we are free to choose any of the return models as the
basis of the tests of the Sharpe-Lintner hypothesis. That is, in constructing
a zero-bp,, portfolio, there is no need to “zero out” the effects of non-
linearities and non-8 risk on expected returns; we can make our decision
about the Sharpe-Lintner hypothesis by determining which return model
seems to provide the most convincing evidence. As judged by the values of
5(7), the most reliable tests are indeed from the simplest model (49), and in
these the hypothesis takes a sound thumping. For the overall period, the
value of £(y, - Rg) in Panel A of Table 9.4 is 2.55, which is reliably different
from zero. In practical terms, the average value of Y1: - Rp for 1935-June
1968 is .0048; on average, the premium in the return on the zero-b,,, port-
folio produced by the least squares computations is almost half of one per-
cent per month. In the results from (49), there is only one subperiod, 1961-
June 1968, when the Sharpe-Lintner hypothesis does well. In all other sub-
periods, and especially those covering 1951-1960, the premium of 7y, over
R, is substantial.

On the basis of tests similar to those of Fama and MacBeth, Black, Jensen,
and Scholes (1972) and Friend and Blume (1970) likewise come to a negative
conclusion with respect to the Sharpe-Lintne; hypothesis.

THEORETICAL CONSIDERATIONS

Under the assumption that m, the equally weighted portfolio of NYSE
stocks, is an adequate proxy for M, the value-weighted portfolio of all invest-
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ment assets, there are at least two versions of the two-parameter model con-
sistent with the preceding evidence; that is, there are at least two models of
market equilibrium in which E(§0M,), the expected return on zero- positive
variance securities and portfolios, is greater than the risk-free rate Rp,.

Thus, in the restricted borrowing version of the Black model there is risk-
free lending at the rate Rpy, but there is no risk-free borrowing. The picture
of market equilibrium is Figure 8.5. The value-weighted market portfolio M is
efficient, but it is above the tangency portfolio T on the efficient boundary.
As a consequence, E(ﬁOM,), which is just the intercept on the E(ﬁp,) axis of
the line tangent to the boundary at M, is greater than Rp,. Similarly, in the
“margin” version of the model, there is unrestricted risk-free lending, but
risk-free borrowing is restricted to some fixed fraction of portfolio funds.
Market equilibrium is as pictured in Figure 8.7. The market portfolio M is
one of the minimum variance portfolios of positive variance securities; but
since it is above the tangency portfolio T on the minimum variance boundary,
we again have the condition E(§0M,) > Rpy. Since there are at least two
models of market equilibrium that are consistent with the evidence, rejec-
tion of the Sharpe-Lintner model is not a telling blow to two-parameter
theory.

There is, however, good reason to believe that the Fama-MacBeth tests of
the Sharpe-Lintner hypothesis are inappropriate, and the arguments that fol-
low apply equally to the results of Black, Jensen, and Scholes (1972) and
Friend and Blume (1970). In particular, there is good evidence that m is not

FIGURE 9.1
A View of the Sharpe-Lintner Mode! That Is Consistent with the Empirical Evidence

ER,)

a(Rp)
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a good proxy for M. Lawrence Fisher (1966) reports that the standard devia-
tion of the return on a value-weighted portfolio of NYSE stocks is about
80 percent as large as the standard deviation of the return on an equally
weighted portfolio of NYSE stocks. NYSE stocks would be among the more
risky securities in a market portfolio that included all investment assets. Thus,
there is little doubt that m, the equally weighted portfolio of NYSE stocks, is
substantially more risky than M, the value-weighted portfolio of all invest-
ment assets. In this light, the empirical evidence might be interpreted as con-
sistent with the picture of market equilibrium shown in Figure 9.1. The port-
folio m is along the positively sloped segment of the boundary of minimum
variance portfolios of positive variance securities, but m is pictured as sub-
stantially more risky than M. The overall view of market equilibrium is that
of the Sharpe-Lintner model.

In truth, all we can really say at this time is that the literature has not yet
produced a meaningful test of the Sharpe-Lintner hypothesis.

V. Some Applications of the Measured Risk-Return Relationships

The general objective of this chapter is to test the implications of the port-
folio model of Chapters 2 and 7 for the pricing of securities in the capital
market. We want to test whether the pricing of securities reflects the attempts
of investors to hold efficient portfolios. To give this hypothesis testable con-
tent, we need some specific model of market equilibrium. The testable impli-
cation of the models of market equilibrium presented in Chapter 8 is that a
market equilibrium requires that the value-weighted market portfolio M be a
minimum variance portfolio, and in most models M is also an efficient port-
folio. Thus, securities must be priced so that the expected return-risk equation
(1) of this chapter applies to securities and portfolios.

The original goal of this chapter was to test whether observed relationships
between average returns and estimates of risk are consistent with (1). What
we have in fact tested is whether the pricing of securities is consistent with
the hypothesis that m, the equally weighted portfolio of NYSE stocks, is a
minimum variance portfolio. That is, we end up testing whether (36) is an
appropriate representation of the relationship between expected return and
risk for NYSE stocks. The evidence seems to be consistent with
this proposition, which gives us some confidence that the two-parameter
model captures important aspects of the pricing of securities. On the other
hand, since there is no formal model of market equilibrium that tells us that

A o S ——— Ak | —————
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securities are priced so that m is a minimum +ariance portfolio, it is not clear
how much support for the two-parameter model should be imputed to the
results.

Like all the empirical issues raised in this book, this is an issue that the
reader can judge. My task is completed if I have presented a reasonably co-
herent introduction to the theory and evidence. I shall, however, now try
to bias the reader’s judgment with respect to the usefulness of the risk-
return tests with a brief discussion of some of the applications that have been
made of the results.

The applications use the month-by-month relationships between risk and
return obtained from the preceding results (a) to test the efficiency of the
capital market in adjusting prices to specific types of new information and
(b) to measure the performance of managed portfolios. Before discussing
these applications, however, we must develop a better understanding of the
nature of the measured risk-return relationships that come out of the preced-
ing results.

A. A Two-Factor Market Model

We found in Chapter 3 that if the joint distribution of security returns is
multivariate normal, the joint distribution of the return on any security and
the return on any portfolio is bivariate normal. Although we need not go into
the details,* multivariate normality of security returns also implies that the
joint distribution of the return on any security and the returns on any two
(or three, or four or n - 1) portfolios is multivariate normal.

We are interested in a specific application of this result. As in Chapter 8,
let Z be the minimum variance portfolio of positive variance securities whose
return is uncorrelated with the return on the market portfolio M. With multi-
variate normality of security returns, the joint distribution of the return on
any security 7 and the returns on Z and M is multivariate (trivariate) normal,
which can be shown to imply a relationship among E,,,ﬁz,, and R ; of the
form

Rip =0y +Biz Rz, + Birg Rygy + iy, (52)
where
o; = ERi¢) - Biz ERzs) ~ Bipg ERpgy)s (53)
cov (ﬁi,ﬁz) cov (Ei,EM)
iz= =~ ——,ad gy =——=—, 54
' 0*(Rz) bimt o*(Ryr) 4

5 ‘ngose interested can consult Anderson (1958, chaps. 1-2) or Cramer (1946, chaps.
1, 24).
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and where the disturbance 7;, has expected value equal to zero and is inde-
pendent ofﬁz, and ﬁM,.

Note that §;7 is the risk of security i in the portfolio Z, measured relative
to the risk or variance of the return on Z, just as ;4 is the risk of security i
in M measured relative to the risk of M. That the coefficients in (52) corre-
spond to these risk measures is a special consequence of the fact that ﬁz, and
ﬁM, are uncorrelated. Note also that (52) can be interpreted as a “two-
factor” version of the market model of (4). In (52) the return on security i
is related to the returns on the portfolios Z and M, whereas in (4) only M is
used. Finally, it is also important to note that if security returns have a multi-
variate normal distribution, then the market models of (4) and (52) are both
valid representations of the return on security i.

The fact that Z is the minimum variance zero-8,ys portfolio will soon be
shown to imply that

Biz=1-Bim- (59)

Thus, (52) can be rewritten as
Rig =0+ (1= Bisg)Rze * Bisg Rge + Tt (56a)
= a; + Ryy + BusRose - Rze) + i (56b)

If the world is as described by any of the models of market equilibrium of
Chapter 8—that is, if the relationship between expected return and risk in M
is as described by (1)—then for every security i, o; = 0.0 and (56a-b) become

Ryt = (1~ Bipg)Rzs + Birg Rage + Tie (57a)
ﬁir = ﬁzr + ﬁiM(ﬁMt - ﬁz:) + Ty (57b)

PROBLEMS V.A

1. Show that if Z is the minimum variance zero-fp portfolio, then (55)
holds.

2. Show that in (56)

n n
> xime; =0, 3 xipmMi =0.
=1 i1

3. Interpret the constant o; and the disturbance €;, in the one-factor mar-
ket model of (4) in terms of quantities from the two-factor model of (57).

4. Assume that the equally weighted portfolio m of NYSE stocks is a mini-
mum variance portfolio, and let z be the minimum variance portfolio whose
return is uncorrelated with the return on m. Show that the return on any
NYSE stock can then be expressed as
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ﬁir = (1 - ﬁim )ﬁzt + ﬁimﬁmt + 771‘1 (583)
Ez’t = ﬁzt + Bim (ﬁmt - Ezt) + Tz (58b)

where 7;, has expected value equal to zero and is independent of ﬁz, and ﬁm,.

ANSWERS
1. The minimum variance zero-g y, portfolio Z is given by the set of weights
x;z,i=1,---,n, that constitute the solution to the problem

min 6*(R z) = min

{

XizXjz Ojj

n
= 1

n
1j=
subject to the constraints
n n
Bzm = 2 XizBipy =0and 3~ x;z =1.
i=1 i=1
The Lagrangian expression for this problem can be written as
2 ~ n n
o'(Rz)+ 2’\1(0 - xiZﬁiM) + 27\2(1 - xiz> .
i=1 i=1

Differentiating this expression with respect to x;z, and then setting the
derivative equal to zero, we get

n
ijza,j-klﬁ,-M—k2=0, i=1,--',n, (59)
j=1
or - .
cov(Ri, Rz) =M By + Az (60)
If we multiply through (59) or (60) by x;z and then sum over i, we find that
*Rz)=1;. ©1)

If we multiply through (60) by x;,s and sum over 7, we find that
0=cov (R'M,sz) =AL t Ay,

which, with (61), implies

>\l =‘>\2 ='02(§Z). (62)
With (61) and (62), (60) becomes

cov (R, Rz) == 0*Rz)Bins + 0*Ryz),

so that

_ cov (R,', Rz)

Ly = = =1 - B:as.
iZ Oz(Rz) ﬁ!M
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2. Multiply through (56) by x;s and then sum over i to get

~ n ~ n
Rye =2 Xim@i + Rype + Y Xipg iy
i=1 i=1
Since the a; are constants and the 7;, are random variables, the two weighted
averages must separately be equal to zero. The fact that the weighted sum of
the disturbances must be zero implies that the 7, of different securities can-
not be independent. Recall the similar result that we found in Section I1.C of
Chapter 3 for the disturbances from the one-factor market model of 4).
3. If we take expected values in (4) and (57a), we find that the intercept a;
in the one-factor market model is

a;=(1 - Biy)ERz). (63)

If we substitute (63) into (4) and then subtract (57a) from (4), we find that
the disturbance €, in the one-factor model of (4) is related to Rz, and the
disturbance %;; in the two-factor model according to

€ir =(1 = Bis)IRz: = E(Rz,)] + T (64)

Thus, in the one-factor market model of (4), there isan ormtted variable,”
RZ,, which shows up in the disturbance €. Since RZ, and RM, are uncorre-
lated, the omitted variable does not lead to any particular statistical problems
in (4). Since RZ, and 7, are independent, 02 (%;,) < 62(E},); that is, the two-
factor model necessarily “explains” at least as much of oz(R,,) as the one-
factor model. The improvement in explanatory power that one gets from in-
cluding R z¢ in the equation depends on the size of the variance of R 7y Telative
to that of ;.

Finally, the presence of the common variable ﬁz, in the disturbance €;,
tends to produce correlation between the one-factor market model distur-
bances of different securities. From (64) we can see that the presence ofﬁz,
in €, will tend to produce positive correlation between the &;, of securities
that have values of §;)y on the same side of 1.0 and negative correlation be-
tween the €, of securities that have values of f;;, on opposite sides of 1.0.
We can also see from (64) that these effects are larger the further the values
of B;p are from 1. This may explain our earlier observation (Table 9.2) that
when portfolios are formed from securities with very high or very low values
of @, there is a smaller reduction in the variance of the one-factor market
model disturbances than when portfolios are formed from securities with
values of § closer to 1.

4. Multivariate normality of security returns implies that there is a rela-
tionship between 13,—,, ﬁz,, and ﬁm, in the form of (52), with coefficients
given by (53) and (54), but where one simply substitutes z for Z and m for
M. The same substitutions in Problem V.A.J produce the conclusion that
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cov (R;, R,)
iz = Tﬁ@)— = Bim» (65)

so that the step from (52) to (56) is valid. If securities are priced so that m is
a minimum variance portfolio, then (36) applies to securities in m, from
which it follows that the constant a; in the relevant version of (56) is zero
for securities in m; that is, the returns on securities in m can be represented
as in (58). Finally, substitution of z for Z and m for M also allows us to apply
the results of Problems V.A.2 and 3 to the two-factor market model relation-
ship between ﬁi,, R:,, and ﬁm,.

We might emphasize that all of the properties ascribed to (56) are implica-
tions of multivariate normality and of the fact that Z is the minimum variance
portfolio whose return is uncorrelated with the return on M. In adding the
assumption that securities are priced according to some two-parameter model
of market equilibrium, we get the implication that a; is zero for all securities.
In the applications, however, this additional implication is important.

B. Market Efficiency and the Two-Factor Models

We found in Chapter 8 that in the Black model and its variants, in a market
equilibrium the retumns on all minimum variance portfolios can be expressed
as combinations of Z and M:

Ret =xeRz: + (1 = x )Ry, (66)
where x, and (1 - x,) are the proportions invested in Z and M to get the
minimum variance portfolio e. With (66) we can determine that

cov (R,, Rar)
eM= T oo

*(Rp)
_ oV (xeRz + (1~ x )Ry, Ray) _ (1= %) 0*(Riy) _
i 0*Ror) Ry
Thus (66) can be rewritten as
Ree = (1= Bepg)Rz¢ + BemRyse = Rz + Bt Rogy - Rz0). (67)

Equation (67) says that there is an exact relationship between the return on
any minimum variance portfolio e, its 8.5, the return on the minimum vari-
ance zero-f,py portfolio Z, and the return on the market portfolio M. Equa-
tions (57) say that there is a similar risk-return relationship for any security i,
except that the relatlonshlp is not exact; it is subject to a disturbance 7;,. In
intuitive terms, RZ, and RM, capture the effects of marketwide factors on
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ﬁ,-,, while factors more specific to the prospects of security i show up in 7;,.
The applications discussed below are concerned with the efficiency of the
market in adjusting security prices to information specific to the prospects
of security /. Thus, they are concerned with testing the implications of mar-
ket efficiency for the properties of 7;;. By applying (35) to (57) we determine
that if the market is efficient, and if market equilibrium is characterized by
the expected return-risk equation (1), then in (57),

E(ﬁirmr-n) =0. (68)

In words, there is no way to use ¢,_,, the set of information available at ¢ - 1,
or any subset of ¢,_;, as the basis of a correct nonzero assessment of the ex-
pected value of the disturbance 7j;, in (57).

The applications discussed below test whether (68) is a correct description
of the world. One set of tests is concerned with whether (68) holds with re-
spect to particular items of company-specific information. For example, if a
merger is announced by firm iat ¢ - 1, can it be used as the basis of a correct
nonzero assessment of the expected value of #;, for that firm’s stock? If the
market is efficient the answer to this question is, of course, no. The price of
the stock of firm / will fully adjust at ¢ - 1 to any information in a merger, so
that at time r the deviation of #;, from zero cannot be predicted from the
information available at ¢ - 1.

The other types of tests of market efficiency are concerned with the per-
formance of managed portfolios. These tests ask whether portfolio managers
can use any of the information available at r - 1 to make correct nonzero
assessments of the expected values of the 7;, of different securities. In prac-
tical terms, are the portfolio managers able to utilize information available
at t - 1 to choose portfolios that on average have higher returns at ¢ than the
combinations of Z and M that have the same level of risk? A positive answer
to this question would imply an inefficient market: it is possible to use in-
formation available at ¢ - 1 to predict how the disturbance 7i;; for some secu-
rities will differ from zero.

The preceding is, of course, similar in tone to most of Chapter 5. To test
market efficiency, some model of market equilibrium is required. The two-
parameter models of market equilibrium are more sophisticated than those
used in Chapter 5, but the approach to testing market efficiency is the same.

C. Market Efficiency and Company-Specific Information

As usual, in carrying out the tests of market efficiency discussed above,
some concessions must be made to the data. First, to date, the tests of the
market’s reaction to company-specific information are based on the proposi-
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tion that m, the equally weighted portfolio of NYSE stocks, is a minimum
variance portfolio. Thus, the expected return equation is (36), and (58) is the
corresponding version of the two-factor market model. Given that m is a
minimum variance portfolio, the switch from M to m is legitimate, and the
approach to tests of market efficiency based on m is precisely the same as
that based on M.

The second concession made to the data is in the definition of z, the mini-
mum variance zero-f,,, portfolio in (58). In the tests to date, R, is taken to
be 71, of (49), that is, the intercept in the least squares regression of the 20
Fama-MacBeth portfolio returns on the estimates of § pm for these portfolios.
Recall that the least squares v,, is the return on a portfolio that has an esti-
mated value of §,,, equal to zero, but the true Bpm of this portfolio is not
zero. Moreover, even ignoring the loss of information caused by the fact that
the regressions are carried out on portfolios rather than individual securities,
and even ignoring the fact that we use estimates bpm rather than the true
values Bpm , the least squares Y1¢ is only the minimum variance zero-fpy, port-
folio when the disturbances T in (41) are independent and identically dis-
tributed across securities. In short, v,, from (49) is a proxy for R, in (58).

The mechanics of the approach to tests of market efficiency based on the
two-factor model of (58) are in most respects identical to the mechanics of
the approach based on the one-factor model, as described in Chapter S. In
brief, instead of examining the behavior of the average and cumulative aver-
age residuals from the one-factor model in months surrounding an event of
interest, one examines the behavior of the average and cumulative average
i from

Rit=R; + bim(Rmt “R;)t Nit» (69)

which is (58) but with the estimate b;,, substituted for the true value Bim and
with the understanding that R, is the least squares value of v,, in (49).

Thus, Ball (1972) uses average and cumulative average values of 7, in (69)
to study the reaction of the market to changes in accounting techniques by
firms. He finds that there is no unusual subsequent behavior in the returns on
the shares of firms carrying out such changes, in the sense that average and
cumulative average values of n;, do not depart much from zero in the months
following the accounting change. Moreover, in cases where the accounting
changes have no real effect on the net returns to the firm, there is no unusual
behavior of share returns before or after the accounting change. Ball interprets
this as evidence that the market reacts efficiently to any information in a
change in accounting techniques, and the market is not misled when such a
change has no information content.

Mandelker (1974) uses more or less the same technique to study the behav-
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ior of the returns on both acquiring and acquired firms in a merger. He finds
that acquired firms experience abnormal returns when a merger is announced
(cumulative average values of n;, that reach about .15, or 15 percent, by the
time the merger takes place). The acquiring firms, however, do not on average
experience abnormal returns at any time reasonably close to the release of
information about the merger. Mandelker interprets this as evidence that any
gains from mergers go to the acquired firms. One possible explanation is that
the synergy in a merger is in many cases improved management of the ac-
quired firm. If the acquisitions market for poorly managed firms is perfectly
competitive, competition among acquiring firms will cause all the gains from
the merger (removal of the poor management of the acquired firm) to be
passed on to the shareholders of the acquired firm.

In another study that uses more or less the same techniques, Ibbotson
(1974) finds that when a firm goes public for the first time—that is, when a
firm makes its first public issue of common stock—the stock is on average
underpriced by the underwriters. From the date of issue to the end of the
month of issue, the average value of 7;, in (69) for such securities is about
-14. Thus, there is an “abnormal” average return of 14 percent in the month
of issue. As a result, during the 1960s, the period that lbbotson studies, new
issues were typically oversubscribed and had to be rationed by underwriters
to their customers. Ibbotson admits that he has no good explanation for this
phenomenon. More important for the issue of capital market efficiency, he
does find that once a newly public security is available in the open market
(after it passes from the hands of the underwriter), the market for it seems to
be efficient; that is, once they are available in the open market, the average
n;¢ for these securities are not significantly different from zero.

Although it probably has no major effect on his results, there is one problem
in Ibbotson’s work that should be mentioned. When firms first go public,
their shares are almost always traded in the over-the-counter market. Even if
(58) is a valid risk-return relationship, it refers only to NYSE common stocks,
and in principle it should only be the basis of tests of efficiency for NYSE
stocks. For Ibbotson’s data, this is probably not an important criticism. The
14 percent average initial underpricing that he observes is so large that it
would probably be significant under any method of analysis. Moroever, the
variability of the returns on securities newly gone public is generally so large
that the method of abstracting from the effects of risk has little impact on
the results.

Finally, Jaffe (1974) uses (69) to study the returns on insider trading—that
is, trading by company managers and directors in the shares of their own
firms. He finds that, on average, the n;, in (69) are negative subsequent to
heavy sales by insiders and positive subsequent to heavy purchases. Strictly
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speaking, this is evidence of market inefficiency: insiders typically have in-
formation that the market has not utilized in setting prices. In itself, it is
not surprising that insiders can beat the market. However, Jaffe also finds
that correct nonzero assessments of the expected values of future 7;, can be
made on the basis of Securities and Exchange Commission publications of
insider activity. This is somewhat more impressive evidence of a market inef-
ficiency. As far as I know, Jaffe’s is the only test of market efficiency that
finds that the market ignores some obviously publicly available information
in setting prices.

PROBLEM V.C
1. In fact, the tests of market efficiency discussed above are based on the
n;; from

Rir = Y1t ¥ Yarbim + it (70)

where 7,; and 7, are the (generally Fama-MacBeth) least squares values from
(49). Given that R, in (69) is taken to be vy, in (49), when will the n;, in
(69) and (70) be identical?

ANSWER
I. Suppose the 20 Fama-MacBeth portfolios include all the stocks on the
NYSE. Then, multiplying through (49) by 1/20 and summing over p leads to

1 20 1 20 1 20
%pzﬂkpt=kzt+72r%pz=:lbpm+%pz=lﬂpr

Rt = Rzt =724

Here we make use of the facts that (a) if the 20 portfolios include all NYSE
stocks, the average of the 20 portfolio returns is R,,;; and the average of the
bpm is 1; (b) the sum of the residuals in any least squares regression is zero.
We find, then, that the least squares value of v,, in (49) is R,,, - R, so that
the n;, in (69) and (70) are identical.

In fact, because of the data requirements imposed on the securities included
in the 20 portfolios, the Fama-MacBeth portfolios cover most but not all of
the stocks on the NYSE for month r. Fama-MacBeth indicate, however, that
the average of their 20 portfolio retums is always quite close to R,ns, and the
average of their b, is close to 1. Thus, the relationships between (69) and
(70) developed above hold to a close approximation.
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D. Portfolio Selection and Performance Evaluation

GENERAL COMMENTS

In an efficient market and with securities priced according to the Black
model, portfolio selection is a simple matter. All efficient portfolios are com-
binations of the market portfolio M and the minimum variance zero-,p
portfolio Z. The investor simply chooses the combination of Z and M that
has the desired combination of mean and standard deviation of return.

Some investors and portfolio managers may feel, however, that the market
is inefficient. They feel that they have more information or are better able to
evaluate existing information than the market. If securities are priced accord-
ing to the Black model, it is, in principle, easy to test whether in fact partic-
ular investors and portfolio managers can beat the market. The returns on
minimum variance portfolios are related to their ., as in (67). There is a
corresponding risk-return relationship, (57), for individual securities and for
nonminimum variance portfolios, which is the same as (67), except that it is
subject to a disturbance 7j;,. If the market is efficient, (68) holds and there
is no way to use information available at ¢ - 1 to predict how 7;, will differ
from zero. If the market is inefficient, however, and if some investors are
shrewd enough to capitalize on the inefficiency, then we should find that the
securities and portfolios they choose have measurably higher average returns
than the combinations of Z and M that have the same level of 5. In other
words, such investors should be able to use information available at £ - I to
assess correct nonzero expected values for the 7;, in (57).

If we take the position that m, the equally weighted portfolio of NYSE
stocks, is a minimum variance portfolio, then the statements above apply,
but with the usual change from Z to z and M to m, and where we talk in
terms of the disturbances from (58) rather than (57). However, there is
also a more substantive change. Since (58) refers to NYSE stocks, we should
only use it to evaluate security and portfolio selections of NYSE stocks.

THE INVESTMENT PERFORMANCE OF MUTUAL FUNDS

The major application of these ideas, in Jensen (1968; 1969), is based on
the Sharpe-Lintner model of market equilibrium. In this model, one substi-
tutes the risk-free rate R, for Rz, in (66) and (67), so that (67) becomes

Rer = (1 - Bert)Rpr + BenaRase = Rpr + (Rags = Re)Bens. (71)

Moreover, from Problem V.A.3 we know that if we are in the Sharpe-Lintner
world, the intercept «; in the one-factor market model is

a; = R (1 - Bipg), (72)
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so that (4) can be rewritten as
Riy = Rpo(1 = Bing) + BigRogs + &y (73)
If the market is efficient,
E(€irl¢1-1) = 0; (74)

that is, there is no way to use any information available at ¢ - 1 as the basis
of a correct nonzero assessment of the expected value of &;,.

Jensen tries to use the performance of mutual fund portfolios to find con-
tradictions of (74). He tests whether mutual funds, or particular funds, seem
to have access to information that allows them to earn higher average returns
(positive average €,,) than they would get simply by buying the combinations
of F and M that have the same level of Bpm as their chosen portfolios. As
usual, some concessions must be made to the data. He must use estimates of
Bpa for mutual fund portfolios, and he must choose a proxy for the market
portfolio M. He chooses the Standard and Poor’s value-weighted index of
NYSE stocks.

Jensen uses the risk-return framework described above to evaluate the per-
formance of 115 mutual funds over the ten-year period 1955-1964. The gen-
eral question to be answered is whether mutual fund managers have any
special insights or information that allows them to earn average returns above
the norm provided by the Sharpe-Lintner model. But Jensen attacks the ques-
tion on several levels. First, can the funds generally do well enough to com-
pensate investors for loading charges, management fees, and other costs that
might be avoided by simply choosing the combination of the risk-free asset F
and the market portfolio M with risk level comparable to that of the fund’s
actual portfolio? The answer seems to be an emphatic no. As far as net returns
to investors are concerned, in 89 out of 115 cases the fund’s average return
for the ten-year period was below what would have been obtained from the
combination of F and M with the same level of bpm, and on average the in-
vestor’s wealth after ten years of holding mutual funds is about 15 percent
less than if he held the appropriate combinations of Fand M.

The loading charge that an investor pays on buying into a fund is usually
a salesman’s commission that the fund itself never gets to invest. One might
ask whether, if one ignores loading charges—that is, if one assumes no such
charges are paid by the investor—fund managers can earn returns sufficiently
above the norm to cover other expenses that are presumably more directly
related to the management of the fund portfolios. Again, the answer seems to
be no. When loading charges are ignored in computing returns, the average
returns for 72 out of 115 funds are still below what would have been ob-
tained from the combinations of F and M with the same level of bpa, and on
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average the investor’s wealth after ten years is about 9 percent less than if he
held the appropriate combinations of F and M.

Finally, as a somewhat stronger test of market efficiency, one would like
to know whether, ignoring all expenses, fund managements show any ability
to pick securities that outperform the norm. Unfortunately, this question
cannot be answered with precision for individual funds, since data on bro-
kerage commissions are not published regularly. But Jensen suggests that
available evidence indicates that the answer to the question is negative. Spe-
cifically, adding back all other published expenses of funds to their returns,
the average returns for 58 out of 115 funds were below those for the corre-
sponding combinations of F and M, and average wealth was about 2.5 percent
less. Part of this result is due to the absence of a correction for brokerage
commissions. Estimating these commissions from average portfolio turnover
rates for all funds for 1953-1958 and adding them to returns for all funds
just about wipes out the deficit that the funds have vis-d-vis the relevant
naive combinations of F and M, which is consistent with the proposition that
the fund managers do not have access to special information.

Although mutual fund managers generally do not seem to have access to
information not already fully reflected in prices, perhaps there are individual
funds that consistently do better than the norm, thus providing at least some
evidence against market efficiency. If there are such funds, however, they
escape Jensen’s search. For example, returns above the norm for individual
funds in one subperiod do not seem to be associated with performance above
the norm by those same funds in other subperiods.

VI. Conclusion

There is much more that could be said about how the two-parameter models
of market equilibrium can and have been used to test market efficiency (cf.
Ellert 1975). We could also go into much more detail on how the models
can be used to evaluate the performance of managed portfolios (cf. Fama
1972). T hope, however, that the book has given the reader the base of
sophistication that will enable him to continue investigation of these topics
in the original literature.
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