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NOTES AND COMMENTS

INFERENCE ON CAUSAL EFFECTS IN A GENERALIZED
REGRESSION KINK DESIGN

BY DAVID CARD, DAVID S. LEE, ZHUAN PEI, AND ANDREA WEBER1

We consider nonparametric identification and estimation in a nonseparable model
where a continuous regressor of interest is a known, deterministic, but kinked function
of an observed assignment variable. We characterize a broad class of models in which a
sharp “Regression Kink Design” (RKD or RK Design) identifies a readily interpretable
treatment-on-the-treated parameter (Florens, Heckman, Meghir, and Vytlacil (2008)).
We also introduce a “fuzzy regression kink design” generalization that allows for omit-
ted variables in the assignment rule, noncompliance, and certain types of measurement
errors in the observed values of the assignment variable and the policy variable. Our
identifying assumptions give rise to testable restrictions on the distributions of the as-
signment variable and predetermined covariates around the kink point, similar to the
restrictions delivered by Lee (2008) for the regression discontinuity design. Using a
kink in the unemployment benefit formula, we apply a fuzzy RKD to empirically esti-
mate the effect of benefit rates on unemployment durations in Austria.

KEYWORDS: Regression discontinuity design, regression kink design, treatment ef-
fects, nonseparable models, nonparametric estimation.

1. INTRODUCTION

A GROWING BODY OF RESEARCH CONSIDERS the identification and estimation
of nonseparable models with continuous endogenous regressors in semipara-
metric (e.g., Lewbel (1998, 2000)) and nonparametric settings (e.g., Blundell
and Powell (2003), Chesher (2003), Florens et al. (2008), Imbens and Newey
(2009)). The methods proposed in the literature so far rely on instrumental
variables that are independent of the unobservable terms in the model. Unfor-
tunately, independent instruments are often hard to find, particularly when the
regressor of interest is a deterministic function of an endogenous assignment
variable. Unemployment benefits, for example, are set as function of previ-
ous earnings in most countries. Any variable that is correlated with benefits
is likely to be correlated with the unobserved determinants of previous wages
and is therefore unlikely to satisfy the necessary independence assumptions for
a valid instrument.
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Nevertheless, many tax and benefit formulas are piecewise linear functions
with kinks in the relationship between the assignment variable and the policy
variable caused by minimums, maximums, and discrete shifts in the marginal
tax or benefit rate. As noted by Classen (1977), Welch (1977), Guryan (2001),
Dahlberg, Mork, Rattso, and Agren (2008), Nielsen, Sørensen, and Taber
(2010), and Simonsen, Skipper, and Skipper (2015), a kinked assignment rule
holds out the possibility for identification of the policy variable’s effect even in
the absence of traditional instruments. The idea is to look for an induced kink
in the mapping between the assignment variable and the outcome variable that
coincides with the kink in the policy rule, and compare the relative magnitudes
of the two kinks.

This paper establishes conditions under which the behavioral response to a
formulaic policy variable like unemployment benefits can be identified within
a general class of nonparametric and nonseparable regression models. Specif-
ically, we establish conditions for the regression kink design (RKD) to iden-
tify the “local average response” defined by Altonji and Matzkin (2005) or
the “treatment-on-the-treated” parameter defined by Florens et al. (2008).
The key assumptions are: (1) conditional on the unobservable determinants
of the outcome variable, the density of the assignment variable is smooth (i.e.,
continuously differentiable) at the kink point in the policy rule, and (2) the
treatment assignment rule is continuous at the kink point. We show that the
smooth density condition rules out deterministic sorting while allowing less ex-
treme forms of endogeneity—including, for example, situations where agents
endogenously sort but make small optimization errors (e.g., Chetty (2012)). We
also show that the smooth density condition generates testable predictions for
the distribution of predetermined covariates among the population of agents
located near the kink point. Thus, as in a regression discontinuity (RD) design
(Lee and Lemieux (2010), DiNardo and Lee (2011)), the validity of the regres-
sion kink design can be evaluated empirically. The second key assumption—
continuity of the treatment assignment rule—is important for RK identifica-
tion in a general model with no restriction on treatment effect heterogeneity,
but researchers can apply an RD design in its absence.

In many realistic settings, the policy rule of interest depends on unobserved
individual characteristics or is implemented with error. In addition, both the
assignment variable and the policy variable may be observed with error. We
present a generalization of the RKD—which we call a “fuzzy regression kink
design”—that allows for these features. The fuzzy RKD estimand replaces the
known change in slope of the assignment rule at the kink with an estimate
based on the observed data. Under a series of additional assumptions, includ-
ing a monotonicity condition analogous to the one introduced by Imbens and
Angrist (1994) (and implicit in latent index models (Vytlacil (2002))), we show
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that the fuzzy RKD identifies a weighted average of marginal effects, where
the weights are proportional to the magnitude of the individual-specific kinks.2

We then briefly review existing methods for the nonparametric estima-
tion of RKD using local polynomial estimation, including Fan and Gijbels
(1996)—hereafter, FG; Imbens and Kalyanaraman (2012)—hereafter, IK; and
Calonico, Cattaneo, and Titiunik (2014)—hereafter, CCT. And finally, we use
a fuzzy RKD approach to analyze the effect of unemployment insurance (UI)
benefits on the duration of registered unemployment in Austria, focusing on
the kink in the UI benefit formula at the maximum benefit level. Simple plots
of the data show visual evidence of a kink in the relationship between base
period earnings and unemployment durations around the earnings threshold
associated with the maximum benefit. We present a range of alternative esti-
mates of the behavioral effect of benefits on registered unemployment dura-
tions derived from local linear and local quadratic polynomial models obtained
with various bandwidth selection algorithms (including FG, IK, and CCT, and
extensions of IK and CCT for the fuzzy RKD case). For each of the alternative
choices of polynomial order and bandwidth selector, we show the conventional
kink estimates and the corresponding robust bias-corrected confidence inter-
vals per Calonico, Cattaneo, and Titiunik (2014).

2. NONPARAMETRIC REGRESSION AND THE REGRESSION KINK DESIGN

2.1. Background

Consider the generalized nonseparable model

Y = y(B�V �U)�(2.1)

where Y is an outcome, B is a continuous regressor of interest, V is another
observed covariate, and U is a potentially multidimensional error term that
enters the function y in a nonadditive way. This is a particular case of the
model considered by Imbens and Newey (2009); there are two observable co-
variates and interest centers on the effect of B on Y . As noted by Imbens and
Newey (2009), this setup is general enough to encompass a variety of treat-
ment effect models. When B is binary, the treatment effect for a particular
individual is given by Y1 − Y0 = y(1� V �U) − y(0� V �U); when B is continu-
ous, the treatment effect is ∂

∂b
Y = ∂

∂b
y(b�V �U). In settings with discrete out-

comes, Y could be defined as an individual-specific probability of a particular
outcome (as in a binary response model) or as an individual-specific expected
value (e.g., an expected duration) that depends on B, V , and U , where the

2The marginal effects of interest in this paper refer to derivatives of an outcome variable with
respect to a continuous endogenous regressor, and should not be confused with the marginal
treatment effects defined in Heckman and Vytlacil (2005), where the treatment is binary.
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structural function of interest is the relation between B and the probability or
expected value.3

For the continuous regressor case, Florens et al. (2008) defined the “treatment-
on-the-treated” (TT) parameter as

TTb|v(b� v)=
∫

∂y(b� v�u)

∂b
dFU |B=b�V =v(u)�

where FU |B=b�V =v(u) is the c.d.f. of U conditional on B = b�V = v. As noted by
Florens et al. (2008), this is equivalent to the “local average response” (LAR)
parameter of Altonji and Matzkin (2005). The TT (or equivalently the LAR)
gives the average effect of a marginal increase in b at some specific value of the
pair (b� v), holding fixed the distribution of the unobservables, FU |B=b�V =v(·).

Recent studies, including Florens et al. (2008) and Imbens and Newey
(2009), have proposed methods that use an instrumental variable Z to iden-
tify causal parameters such as TT or LAR. An appropriate instrument Z is
assumed to influence B but is also assumed to be independent of the nonad-
ditive errors in the model. Chesher (2003) observed that such independence
assumptions may be “strong and unpalatable,” and hence proposed the use of
local independence of Z to identify local effects.

As noted in the Introduction, there are some important contexts where no
instruments can plausibly satisfy the independence assumption, either globally
or locally. For example, consider the case where Y represents the expected
duration of unemployment for a job loser, B represents the level of unemploy-
ment benefits, and V represents pre-job-loss earnings. Assume (as in many
institutional settings) that unemployment benefits are a linear function of pre-
job-loss earnings up to some maximum, that is, B = b(V )= ρmin(V �T). Con-
ditional on V , there is no variation in the benefit level, so model (2.1) is not
nonparametrically identified. One could try to get around this fundamental
nonidentification by treating V as an error component correlated with B. But
in this case, any variable that is independent of V will, by construction, be
independent of the regressor of interest B, so it will not be possible to find
instruments for B, holding constant the policy regime.

Nevertheless, it may be possible to exploit the kink in the benefit rule to iden-
tify the causal effect of B on Y . The idea is that if B exerts a causal effect on Y ,
and there is a kink in the deterministic relation between B and V at v = T , then
we should expect to see an induced kink in the relationship between Y and V at
v = T .4 Using the kink for identification is in a similar spirit to the regression

3In these cases, one would use the observed outcome Y 0 (a discrete outcome, or an observed
duration), and use the fact that the expectations of Y 0 and Y are equivalent given the same
conditioning statement, in applying all of the identification results below.

4Without loss of generality, we normalize the kink threshold T to 0 in the remainder of our
theoretical presentation.
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discontinuity design of Thistlethwaite and Campbell (1960), but the RD ap-
proach cannot be directly applied when the benefit formula b(·) is continuous.
This kink-based identification strategy has been employed in a few empirical
studies. Guryan (2001), for example, used kinks in state education aid formu-
las as part of an instrumental variables strategy to study the effect of public
school spending.5  Dahlberg et al. (2008) used the same approach to estimate
the impact of intergovernmental grants on local spending and taxes. More re-
cently, Simonsen, Skipper, and Skipper (2015) used a kinked relationship be-
tween total expenditure on prescription drugs and their marginal price to study
the price sensitivity of demand for prescription drugs. Nielsen, Sørensen, and
Taber (2010), who introduced the term “Regression Kink Design” for this ap-
proach, used a kinked student aid scheme to identify the effect of direct costs
on college enrollment.

Nielsen, Sørensen, and Taber (2010) made precise the assumptions needed
to identify the causal effects in the constant-effect, additive model

Y = τB + g(V )+ ε�(2.2)

where B = b(V ) is assumed to be a deterministic (and continuous) function of
V with a kink at V = 0. They showed that if g(·) and E[ε|V = v] have deriva-
tives that are continuous in v at v = 0, then

τ =
lim

v0→0+
dE[Y |V = v]

dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)
�

The expression on the right-hand side of this equation—the RKD estimand—is
simply the change in slope of the conditional expectation function E[Y |V = v]
at the kink point (v = 0), divided by the change in the slope of the deterministic
assignment function b(·) at 0.6

Also related are papers by Dong and Lewbel (2014) and Dong (2013), which
derive identification results using kinks in a regression discontinuity setting.
Dong and Lewbel (2014) showed that the derivative of the RD treatment ef-
fect with respect to the running variable, which the authors called “TED,”

5Guryan (2001) described the identification strategy as follows: “In the case of the Overburden
Aid formula, the regression includes controls for the valuation ratio, 1989 per-capita income,
and the difference between the gross standard and 1993 education expenditures (the standard of
effort gap). Because these are the only variables on which Overburden Aid is based, the exclusion
restriction only requires that the functional form of the direct relationship between test scores and
any of these variables is not the same as the functional form in the Overburden Aid formula.”

6In an earlier working paper version, Nielsen, Sørensen, and Taber (2010) provided similar
conditions for identification for a less restrictive, additive model, Y = g(B�V )+ ε.
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is nonparametrically identified. Under a local policy invariance assumption,
TED can be interpreted as the change in the treatment effect that would re-
sult from a marginal change in the RD threshold. More closely related to our
study is Dong (2013), which showed that identification in an RD design can be
achieved in the absence of a first-stage discontinuity, provided there is a kink in
the treatment probability at the RD cutoff. In Remark 6 below, we provide an
example where such a kink could be expected. Dong (2013) also showed that a
slope and level change in the treatment probability can both be used to identify
the RD treatment effect with a local constant treatment effect restriction; we
discuss an analogous point in the RK design in Remark 3.

Below, we provide the following new identification results. First, we estab-
lish identification conditions for the RK design in the context of the general
nonseparable model (2.1). By allowing the error term to enter nonseparably,
we permit unrestricted heterogeneity in the structural relation between the en-
dogenous regressor and the outcome. As an example of the relevance of this
generalization, consider the case of modeling the impact of UI benefits on un-
employment durations with a proportional hazards model. Even if UI benefits
enter the hazard function with a constant coefficient, the shape of the base-
line hazard will, in general, cause the true model for expected durations to be
incompatible with the constant-effects, additive specification in (2.2). The ad-
dition of multiplicative unobservable heterogeneity (as in Meyer (1990)) to the
baseline hazard poses an even greater challenge to the justification of paramet-
ric specifications such as (2.2). The nonseparable model (2.1), however, con-
tains the implied model for durations in Meyer (1990) as a special case, and
goes further by allowing (among other things) the unobserved heterogeneity
to be correlated with V and B. Having introduced unobserved heterogeneity
in the structural relation, we show that the RKD estimand τ identifies an effect
that can be viewed as the TT (or LAR) parameter. Given that the identified
effect is an average of marginal effects across a heterogeneous population, we
also make precise how the RKD estimand implicitly weights these heteroge-
neous marginal effects. The weights are intuitive and correspond to the weights
that would determine the slope of the experimental response function in a ran-
domized experiment.

Second, we generalize the RK design to allow for the presence of unob-
served determinants of B and measurement errors in B and V . That is, while
maintaining the model in (2.1), we allow for the possibility that the observed
value for B deviates from the amount predicted by the formula using V , ei-
ther because of unobserved inputs in the formula, noncompliance behavior,
or measurement errors in V or B. This “fuzzy RKD” generalization may have
broader applicability than the “sharp RKD.”7

7The sharp/fuzzy distinction in the RKD is analogous to that for the RD Design (see Hahn,
Todd, and der Klaauw (2001)).
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Finally, we provide testable implications for a valid RK design. As we discuss
below, a key condition for identification in the RKD is that the distribution
of V for each individual is sufficiently smooth. This smooth density condition
rules out the case where an individual can precisely manipulate V , but allows
individuals to exert some influence over V .8 We provide two tests that can be
useful in assessing whether this key identifying assumption holds in practice.

2.2. Identification of Regression Kink Designs

2.2.1. Sharp RKD

We begin by stating the identifying assumptions for the RKD and making
precise the interpretation of the resulting causal effect. In particular, we pro-
vide conditions under which the RKD identifies the TTb|v parameter defined
above.

Sharp RK Design: Let (V �U) be a pair of random variables (with V observ-
able and U unobservable). While the running variable V is one-dimensional,
the error term U need not be, and this unrestricted dimensionality of hetero-
geneity makes the nonseparable model (2.1) equivalent to treatment effects
models as mentioned in Section 2.1. Denote the c.d.f. and p.d.f. of V condi-
tional on U = u by FV |U=u(v) and fV |U=u(v). Define B ≡ b(V ), Y ≡ y(B�V �U),
y1(b� v�u) ≡ ∂y(b�v�u)

∂b
, and y2(b� v�u) ≡ ∂y(b�v�u)

∂v
. Let IV be an arbitrarily small

closed interval around the cutoff 0 and Ib(V ) ≡ {b|b = b(v) for some v ∈ IV } be
the image of IV under the mapping b. In the remainder of this section, we use
the notation IS1�����Sk to denote the product space IS1 × · · · × ISk , where the Sj ’s
are random variables.

ASSUMPTION 1—Regularity: (i) The support of U is bounded: it is a subset
of the arbitrarily large compact set IU ⊂ R

m. (ii) y(·� ·� ·) is a continuous function
and is partially differentiable w.r.t. its first and second arguments. In addition,
y1(b� v�u) is continuous on Ib(V )�V �U .

ASSUMPTION 2—Smooth Effect of V : y2(b� v�u) is continuous on Ib(V )�V �U .

ASSUMPTION 3—First Stage and Nonnegligible Population at the Kink:
(i) b(·) is a known function, everywhere continuous and continuously differ-
entiable on IV \ {0}, but limv→0+ b′(v) �= limv→0− b′(v). (ii) The set AU = {u :
fV |U=u(v) > 0 ∀v ∈ IV } has a positive measure under U :

∫
AU

dFU(u) > 0.

8Lee (2008) required a similar identifying condition in a regression discontinuity design. Even
though the smooth density condition is not necessary for an RD design, it leads to many intuitive
testable implications, which the minimal continuity assumptions in Hahn, Todd, and der Klaauw
(2001) do not.
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ASSUMPTION 4—Smooth Density: The conditional density fV |U=u(v) and its
partial derivative w.r.t. v, ∂fV |U=u(v)

∂v
, are continuous on IV �U .

Assumption 1(i) can be relaxed, but other regularity conditions, such as the
dominance of y1 by an integrable function with respect to FU , will be needed
instead to allow for the interchange of differentiation and integration in prov-
ing Proposition 1 below. Assumption 1(ii) states that the marginal effect of B
must be a continuous function of the observables and the unobserved error U .
Assumption 2 is considerably weaker than an exclusion restriction that dictates
V not enter as an argument, because here V is allowed to affect Y , as long as
its marginal effect is continuous.

Assumption 3(i) states that the researcher knows the function b(v), and that
there is a kink in the relationship between B and V at the threshold V = 0.
The continuity of b(v) is important and rules out the case where the level of
b(v) also changes at v = 0. Its necessity stems from the flexibility of our model,
which we discuss in more detail in Remark 3. Assumption 3(ii) states that the
density of V must be positive around the threshold for a nontrivial subpopula-
tion.

Assumption 4 is another key identifying assumption for a valid RK design.
But whereas continuity of fV |U=u(v) in v is sufficient for identification in the
RD design, it is insufficient in the RK design. Instead, the sufficient condition
is the continuity of the partial derivative of fV |U=u(v) with respect to v. In Card,
Lee, Pei, and Weber (2012), we discussed a simple equilibrium search model
where Assumption 4 may or may not hold. The importance of this assumption
underscores the need to be able to empirically test its implications.

PROPOSITION 1: In a valid Sharp RKD, that is, when Assumptions 1–4 hold:
(a) Pr(U ≤ u|V = v) is continuously differentiable in v at v = 0 ∀u ∈ IU .
(b)

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

db(v)

dv

∣∣∣∣
v=v0

− lim
v0→0−

db(v)

dv

∣∣∣∣
v=v0

=E
[
y1(b0�0�U)|V = 0

] =
∫
u

y1(b0�0�u)
fV |U=u(0)
fV (0)

dFU(u)

= TTb0|0�

where b0 = b(0).

PROOF: For part (a), we apply Bayes’ rule and write

Pr(U ≤ u|V = v) =
∫
A

fV |U=u′(v)

fV (v)
dFU

(
u′)�
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where A = {u′ : u′ ≤ u}. The continuous differentiability of Pr(U ≤ u|V = v)
in v follows from Lemma 1 and Lemma 2 in Section A.2 of the Supplemental
Material (Card, Lee, Pei, and Weber (2015b)).

For part (b), in the numerator

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

= lim
v0→0+

d

dv

∫
y
(
b(v)� v�u

)fV |U=u(v)

fV (v)
dFU(u)

∣∣∣∣
v=v0

= lim
v0→0+

∫
∂

∂v
y
(
b(v)� v�u

)fV |U=u(v)

fV (v)
dFU(u)

∣∣∣∣
v=v0

= lim
v0→0+ b

′(v0)

∫
y1

(
b(v0)� v0�u

)fV |U=u(v0)

fV (v0)
dFU(u)

+ lim
v0→0+

∫ {
y2

(
b(v0)� v0�u

)fV |U=u(v0)

fV (v0)

+ y
(
b(v0)� v0�u

) ∂

∂v

fV |U=u(v0)

fV (v0)

}
dFU(u)�

A similar expression is obtained for limv0→0− dE[Y |V =v]
dv

|v=v0 . The bounded sup-
port and continuity in Assumptions 1–4 allow differentiating under the inte-
gral sign per Roussas (2004, p. 97). We also invoke the dominated convergence
theorem allowed by the continuity conditions over a compact set in order to
exchange the limit operator and the integral. It implies that the difference in
slopes above and below the kink threshold can be simplified to

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

=
(

lim
v→0+ b

′(v0)− lim
v→0− b

′(v0)
)∫

y1

(
b(0)�0�u

)fV |U=u(0)
fV (0)

dFU(u)�

Assumption 3(i) states that the denominator limv0→0+ b′(v0)− limv0→0− b′(v0)
is nonzero, and hence we have

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+ b

′(v0)− lim
v0→0− b

′(v0)

=E
[
y1

(
b(0)�0�U

)|V = 0
] =

∫
y1

(
b(0)�0�u

)fV |U=u(0)
fV (0)

dFU(u)�
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which completes the proof. Q.E.D.

Part (a) states that the rate of change in the probability distribution of indi-
vidual types with respect to the assignment variable V is continuous at V = 0.9

This leads directly to part (b): as a consequence of the smoothness in the un-
derlying distribution of types around the kink, the discontinuous change in the
slope of E[Y |V = v] at v = 0 divided by the discontinuous change in slope in
b(V ) at the kink point identifies TTb0|0.10

REMARK 1: It is tempting to interpret TTb0|0 as the “average marginal effect
of B for individuals with V = 0,” which may seem very restrictive because the
smooth density condition implies that V = 0 is a measure-zero event. However,
part (b) implies that TTb0|0 is a weighted average of marginal effects across the
entire population, where the weight assigned to an individual of type U re-
flects the relative likelihood that he or she has V = 0. In settings where U is
highly correlated with V , TTb0|0 is only representative of the treatment effect
for agents with realizations of U that are associated with values of V close to 0.
In settings where V and U are independent, the weights for different individ-
uals are equal, and RKD identifies the average marginal effect evaluated at
B = b0 and V = 0.

REMARK 2: The weights in Proposition 1 are the same ones that would be
obtained from using a randomized experiment to identify the average marginal
effect of B, evaluated at B = b0, V = 0. That is, suppose that B was assigned
randomly so that fB|V �U(b) = f (b). In such an experiment, the identification of
an average marginal effect of b at V = 0 would involve taking the derivative
of the experimental response surface E[Y |B = b�V = v] with respect to b for

9Note also that Proposition 1(a) implies Proposition 2(a) in Lee (2008), that is, the continuity
of Pr(U ≤ u|V = v) at v = 0 for all u. This is a consequence of the stronger smoothness assump-
tion we have imposed on the conditional distribution of V on U .

10Technically, the TT and LAR parameters do not condition on a second variable V . But
in the case where there is a one-to-one relationship between B and V , the trivial integration
over the (degenerate) distribution of V conditional on B = b0 will imply that TTb0 |0 = TTb0 ≡
E[y1(b0�V �U)|B = b0], which is literally the TT parameter discussed in Florens et al. (2008) and
the LAR discussed in Altonji and Matzkin (2005). In our application to unemployment benefits,
B and V are not one-to-one, since beyond V = 0, B is at the maximum benefit level. In this case,
TTb will, in general, be discontinuous with respect to b at b0:

TTb =
⎧⎨
⎩

TTb|v� b < b0,∫
TTb0 |vfV |B(v|b0)dv� b = b0,

and the RKD estimand identifies limb↑b0 TTb.
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units with V = 0. This would yield

∂E[Y |B = b�V = 0]
∂b

∣∣∣∣
b=b0

=
∂

(∫
y(b�0�u)dFU |V =0�B=b(u)

)
∂b

∣∣∣∣∣
b=b0

=
∂

(∫
y(b�0�u)

fB|V =0�U=u(b)

fB|V =0(b)

fV |U=u(0)
fV (0)

dFU(u)

)
∂b

∣∣∣∣∣
b=b0

=
∂

(∫
y(b�0�u)

fV |U=u(0)
fV (0)

dFU(u)

)
∂b

∣∣∣∣∣
b=b0

=
∫

y1(b0�0�u)
fV |U=u(0)
fV (0)

dFU(u)�

Even though B is randomized in this hypothetical experiment, V is not. Intu-
itively, although randomization allows one to identify marginal effects of B, it
cannot resolve the fact that units with V = 0 will, in general, have a particular
distribution of U . Of course, the advantage of this hypothetical randomized
experiment is that one could potentially identify the average marginal effect of
B at all values of B and V , and not just at B = b0 and V = 0.

REMARK 3: In the proof of Proposition 1, we need the continuity of b(v)
to ensure that the left and right limits of y1(b(v0)� v0�u), y2(b(v0)� v0�u), and
y(b(v0)� v0�u) are the same as v0 approaches 0. In the case where both the
slope and the level of b(v) change at v = 0, the RK estimand does not point
identify an interpretable treatment effect in the nonseparable model (2.1). The
RD estimand, however, still identifies an average treatment effect. In Sec-
tion A.2 of the Supplemental Material, we show

lim
v0→0+ E[Y |V = v0] − lim

v0→0− E[Y |V = v0]
lim

v0→0+ b(v0)− lim
v0→0− b(v0)

=E
[
y1(b̃�0�U)|V = 0

]
�

where b̃ is a value between limv0→0− b(v0) and limv0→0+ b(v0). In the special case
of a constant treatment effect model like (2.2), the RD and RK design both
identify the same causal effect parameter. In the absence of strong a priori
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knowledge about treatment effect homogeneity, however, it seems advisable
to use an RD design.11

2.2.2. Fuzzy Regression Kink Design

Although many important policy variables are set according to a determin-
istic formula, in practice there is often some slippage between the theoretical
value of the variable as computed by the stated rule and its observed value.
This can arise when the formula—while deterministic—depends on other (un-
known) variables in addition to the primary assignment variable, when there
is noncompliance with the policy formula, or when measurement errors are
present. This motivates the extension to a fuzzy RKD.12

Specifically, assume now that B = b(V �ε), where the presence of ε in the for-
mula for B allows for unobserved determinants of the policy formula and non-
compliant behavior. The vector ε is potentially correlated with U and there-
fore also with the outcome variable Y . As an illustration, consider the simple
case where the UI benefit formula depends on whether or not a claimant has
dependents. Let D be a claimant with dependents and let N be a claimant
with no dependents, and let b1(v) and b0(v) be the benefit formulas for D
and N, respectively. Suppose D and N both have base period earnings of v0

and that the only noncompliant behavior allowed is for D to claim b0(v0) or
for N to claim b1(v0). In this case, we have two potentially unobserved vari-
ables that determine treatment: (1) whether a claimant has dependents or not,
and (2) whether a claimant “correctly” claims her benefits. We can represent
these two variables with a two-dimensional vector ε = (ε1� ε2). The binary in-
dicator ε1 is equal to 1 if a claimant truly has dependents, whereas ε2 takes
four values denoting whether a claimant with base period earnings v is an “al-
ways taker” (always claiming b1(v)), a “never taker” (always claiming b0(v)), a
“complier” (claiming bε1(v)), or a “defier” (claiming b1−ε1(v)). The representa-
tion B = b(V �ε1� ε2) effectively captures the treatment assignment mechanism
described in this simple example. With suitable definition of ε, it can also be
used to allow for many other types of deviations from a deterministic rule. Ex-
cept for a bounded support assumption similar to that for U , we do not need
to impose any other restrictions on the distribution of ε. We will use FU�ε to
denote the measure induced by the joint distribution of U and ε.

11Turner (2013) studied the effect of the Pell Grant program in the United States. The formula
for these grants has both a discontinuity and a slope change at the Grant eligibility threshold. She
argued that the status of being a Pell Grant recipient, D, may impact Y independently from the
marginal financial effect of B on Y (i.e., Y = y(B�D�V �U)), and she studied the identification
of the two treatment effects in a special case that restricts treatment effect heterogeneity.

12See Hahn, Todd, and der Klaauw (2001) for a definition of the fuzzy regression discontinuity
design.
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We also assume that the observed values of B and V , B∗ and V ∗ respectively,
differ from their true values as follows:

V ∗ ≡ V +UV � B∗ ≡ B +UB�

UV ≡ GV ·UV ′� UB ≡GB ·UB′�

where UV ′ and UB′ are continuously distributed, and that their joint den-
sity conditional on U and ε is continuous and supported on an arbitrar-
ily large compact rectangle IUV ′ �UB′ ⊂ R2; GV and GB are binary indica-
tors whose joint conditional distribution is given by the four probabilities
πij(V �U�ε�UV ′�UB′)≡ Pr(GV = i�GB = j|V �U�ε�UV ′�UB′). Note that the er-
rors in the observed values of V and B are assumed to be mixtures of conven-
tional (continuously distributed) measurement error and a point mass at 0.
The random variables (V �U�ε�UV ′�UB′�GV �GB) determine (B�B∗� V ∗�Y),
and we observe (B∗� V ∗�Y).

ASSUMPTION 1a—Regularity: In addition to the conditions in Assumption 1,
the support of ε is bounded: it is a subset of the arbitrarily large compact set
Iε ⊂ R

k.

ASSUMPTION 3a—First Stage and Nonnegligible Population at the Kink:
b(v� e) is continuous on IV �ε and b1(v� e) is continuous on (IV \ {0}) × Iε. Let
b+

1 (e) ≡ limv→0+ b1(v� e), b−
1 (e) ≡ limv→0− b1(v� e), and Aε = {e : fV |ε=e(0) > 0},

then
∫
Aε

Pr[UV = 0|V = 0� ε = e]|b+
1 (e)− b−

1 (e)|fV |ε=e(0)dFε(e) > 0.

ASSUMPTION 4a—Smooth Density: Let V �UV ′�UB′ have a well-defined joint
p.d.f. conditional on each U = u and ε = e, fV �UV ′ �UB′ |U=u�ε=e(v�uB�uV ′). The den-
sity function fV �UV ′ �UB′ |U=u�ε=e(v�uB�uV ′) and its partial derivative w.r.t. v are con-
tinuous on IV �UV ′ �UB′ �U�ε.

ASSUMPTION 5—Smooth Probability of No Measurement Error: πij(v�u� e�
uV ′�uB′) and its partial derivative w.r.t. v are continuous on IV �U�ε�UV ′ �UB′ for all
i� j = 0�1.

ASSUMPTION 6—Monotonicity: Either b+
1 (e) ≥ b−

1 (e) for all e or b+
1 (e) ≤

b−
1 (e) for all e.

Extending Assumption 1, Assumption 1a imposes the bounded support as-
sumption for ε in order to allow the interchange of differentiation and inte-
gration. Assumption 3a modifies Assumption 3 and forbids a discontinuity in
b(·� e) at the threshold. Analogously to the sharp case discussed in Remark 3,
in the absence of continuity in b(·� e), the RK estimand does not identify a
weighted average of the causal effect of interest, y1, but the RD estimand does;
see Section A.2 of the Supplemental Material for details. Assumption 3a also
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requires a nonnegligible subset of individuals who simultaneously have a non-
trivial first stage, have UV = 0, and have positive probability that V is in a
neighborhood of 0. It is critical that there is a mass point in the distribution of
the measurement error UV at 0. In the absence of such a mass point, we will
not observe a kink in the first-stage relationship, and further assumptions must
be made about the measurement error to achieve identification (as in the case
with the RD design). In contrast, there is no need for a mass point in the distri-
bution of UB at 0, but we simply allow for the possibility here. In our empirical
example based on UI benefits paid to job losers, we find that the majority of
the data points appear to lie precisely on the benefit schedule (see Figure 1 of
Card, Lee, Pei, and Weber (2015a)), a feature that we interpret as evidence of
a mass point at zero in the joint distribution of (UV �UB). Assumption 3a can be
formally tested by the existence of a first-stage kink in E[B∗|V ∗ = v∗] as stated
in Remark 4 below.

Assumption 4a modifies Assumption 4: for each U = u and ε = e, there is a
joint density of V and the measurement error components that is continuously
differentiable in v. Note that this allows a relatively general measurement error
structure in the sense that V �UV ′�UB′ can be arbitrarily correlated. Assump-
tion 5 states that the mass point probabilities, while potentially dependent on
all other variables, are smooth with respect to V .

Assumption 6 states that the direction of the kink is either nonnegative or
nonpositive for the entire population, and it is analogous to the monotonicity
condition of Imbens and Angrist (1994). In particular, Assumption 6 rules out
situations where some individuals experience a positive kink at V = 0, but oth-
ers experience a negative kink at V = 0. In our application below, where actual
UI benefits depend on the (unobserved) number of dependents, this condition
is satisfied since the benefit schedules for different numbers of dependents are
all parallel.

PROPOSITION 2: In a valid Fuzzy RK Design, that is, when Assumptions 1a, 2,
3a, 4a, 5, and 6 hold:

(a) Pr(U ≤ u�ε ≤ e|V ∗ = v∗) is continuously differentiable in v∗ at v∗ = 0
∀(u� e) ∈ IU�ε.

(b)

lim
v0→0+

dE[Y |V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

− lim
v0→0−

dE[Y |V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

lim
v0→0+

dE[B∗|V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

− lim
v0→0−

dE[B∗|V ∗ = v∗]
dv∗

∣∣∣∣
v∗=v0

=
∫

y1

(
b(0� e)�0�u

)
ϕ(u�e)dFU�ε(u� e)�
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where

ϕ(u�e)

=
Pr[UV = 0|V = 0�U = u�ε = e](b+

1 (e)− b−
1 (e)

)fV |U=u�ε=e(0)
fV (0)∫

Pr[UV = 0|V = 0� ε= ω](b+
1 (ω)− b−

1 (ω)
)fV |ε=ω(0)

fV (0)
dFε(ω)

�

The proof is in Section A.1 of the Supplemental Material.

REMARK 4: The fuzzy RKD continues to estimate a weighted average of
marginal effects of B on Y , but the weight is now given by ϕ(u�e). Assump-
tions 3a and 6 ensure that the denominator of ϕ(u�e) is nonzero. They also
ensure a kink at v∗ = 0 in the first-stage relationship between B∗ and V ∗, as
seen from the proof of Proposition 2. It follows that the existence of a first-
stage kink serves as a test of Assumptions 3a and 6.

REMARK 5: The weight ϕ(u�e) has three components. The first component,
fV |U=u�ε=e(0)

fV (0) , is analogous to the weight in a sharp RKD and reflects the relative
likelihood that an individual of type U = u�ε = e is situated at the kink (i.e.,
has V = 0). The second component, b+

1 (e)−b−
0 (e), reflects the size of the kink

in the benefit schedule at V = 0 for an individual of type e. Analogously to
the LATE interpretation of a standard instrumental variables setting, the fuzzy
RKD estimand upweights types with a larger kink at the threshold V = 0. In-
dividuals whose benefit schedule is not kinked at V = 0 do not contribute to
the estimand. An important potential difference from a standard LATE set-
ting is that non-compliers may still receive positive weights if the schedule
they follow as non-compliers has a kink at V = 0. Finally, the third component
Pr[UV = 0|V = 0�U = u�ε = e] represents the probability that the assignment
variable is correctly measured at V = 0. Again, this has the intuitive implica-
tion that observations with a mismeasured value of the assignment variable do
not contribute to the fuzzy RKD estimand.

REMARK 6: So far, we have focused on a continuous treatment variable B,
but the RKD framework may be applied to estimate the treatment effect of a
binary variable as well. As mentioned above, Dong (2013) discussed the iden-
tification of the treatment effect within an RD framework where the treatment
probability conditional on the running variable is continuous but kinked. Un-
der certain regularity conditions, Dong (2013) showed that the RK estimand
identifies the treatment effect at the RD cutoff for the group of compliers. In
practice, it may be difficult to find policies where the probability of a binary
treatment is statutorily mandated to have a kink in an observed running vari-
able. One possibility, suggested by a referee, is that the kinked relationship
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between two continuous variables B and V may induce a kinked relationship
between T and V where T is a binary treatment variable of interest. In this
case, we may apply the RK design to measure the treatment effect of T . To be
more specific, let

Y = y(T�V �U)�

T = 1[T ∗≥0] where T ∗ = t(B�V �η)�

B = b(V ) is continuous in V with a kink at V = 0�

As an example, B is the amount of financial aid available, which is a kinked
function of parental income V . T ∗ is a latent index function of B, V , and a
one-dimensional error term η. A student will choose to attend college (T = 1)
if T ∗ ≥ 0. We are interested in estimating the average returns to college educa-
tion, an expectation of y(1� V �U) − y(0� V �U). Assuming that t is monotoni-
cally increasing in its third argument and that, for every (b� v) ∈ Ib(V )×IV , there
exists an n such that t(b(v)� v�n) = 0, we can define a continuously differen-
tiable function η̃ : Ib(V ) × IV → R such that t(b� v� η̃(b� v)) = 0 by the implicit
function theorem. We show in Section A.3 of the Supplemental Material that,
under additional regularity conditions, we have the following identification re-
sult for the fuzzy RK estimand:

lim
v0→0+

dE[Y |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[Y |V = v]
dv

∣∣∣∣
v=v0

lim
v0→0+

dE[T |V = v]
dv

∣∣∣∣
v=v0

− lim
v0→0−

dE[T |V = v]
dv

∣∣∣∣
v=v0

(2.3)

=
∫
u

[
y(1�0�u)− y(0�0�u)

]fV �η|U=u

(
0� n0

)
fV �η

(
0� n0

) dFU(u)�

where n0 ≡ η̃(b0�0) is the threshold value of η when V = 0 such that n≥ n0 ⇔
T(b0�0� n) = 1. The right-hand side of equation (2.3) is similar to that in part
(b) of Proposition 1, and the weights reflect the relative likelihood of V = 0
and η = n0 for a student of type U .

Crucial to the point identification result above is the exclusion restriction
that B does not enter the function y as an argument, that is, that the amount
of financial aid does not have an independent effect on future earnings condi-
tional on parental income and college attendance. When this restriction is not
met, the RK estimand can be used to bound the effect of T on Y if theory can
shed light on the sign of the independent effect of B on Y . The details are in
Section A.3 of the Supplemental Material.

We can also allow the relationship between B and V to be fuzzy by writing
B = b(V �ε) and introducing measurement error in V as above. Similarly to
Proposition 2, we show that the fuzzy RK estimand still identifies a weighted
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average of treatment effects under certain regularity assumptions. The weights
are similar to those in Proposition 2, and the exact expression is in the Supple-
mental Material.

2.3. Testable Implications of the RKD

In this section, we formalize the testable implications of a valid RK design.
Specifically, we show that the key smoothness conditions given by Assump-
tions 4 and 4a lead to two strong testable predictions. The first prediction is
given by the following corollary of Propositions 1 and 2:

COROLLARY 1: In a valid Sharp RKD, fV (v) is continuously differentiable in v.
In a valid Fuzzy RKD, fV ∗(v∗) is continuously differentiable in v∗.

The key identifying assumption of the sharp RKD is that the density of V
is sufficiently smooth for every individual. This smoothness condition cannot
be true if we observe either a kink or a discontinuity in the density of V . That
is, evidence that there is “deterministic sorting” in V at the kink point im-
plies a violation of the key identifying sharp RKD assumption. This is anal-
ogous to the test of manipulation of the assignment variable for RD de-
signs, discussed in McCrary (2008). In a fuzzy RKD, both Assumption 4a,
the smooth-density condition, and Assumption 5, the smooth-probability-of-
no-measurement-error condition, are needed to ensure the smoothness of fV ∗
(see the proof of Lemma 5), and a kink or a discontinuity in fV ∗ indicates that
either or both of the assumptions are violated.

The second prediction presumes the existence of data on “baseline charac-
teristics”—analogous to characteristics measured prior to treatment assign-
ment in an idealized randomized controlled trial—that are determined prior
to V .

ASSUMPTION 7: There exists an observable random vector, X = x(U) in the
sharp design and X = x(U�ε) in the fuzzy design, that is determined prior to V .
X does not include V or B, since it is determined prior to those variables.

In conjunction with our basic identifying assumptions, this leads to the fol-
lowing prediction:

COROLLARY 2: In a valid Sharp RKD, if Assumption 7 holds, then dPr[X≤x|V =v]
dv

is continuous in v at v = 0 for all x. In a valid Fuzzy RKD, if Assumption 7 holds,
then dPr[X≤x|V ∗=v∗]

dv∗ is continuous in v∗ at v∗ = 0 for all x.

The smoothness conditions required for a valid RKD imply that the condi-
tional distribution function of any predetermined covariates X (given V or V ∗)
cannot exhibit a kink at V = 0 or V ∗ = 0. Therefore, Corollary 2 can be used to
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test Assumption 4 in a sharp design and Assumption 4a and 5 jointly in a fuzzy
design. This test is analogous to the simple “test for random assignment” that
is often conducted in a randomized trial, based on comparisons of the base-
line covariates in the treatment and control groups. It also parallels the test
for continuity of Pr[X ≤ x|V = v] emphasized by Lee (2008) for a regression
discontinuity design. Importantly, however, the assumptions for a valid RKD
imply that the derivatives of the conditional expectation functions (or the con-
ditional quantiles) of X with respect to V (or V ∗) are continuous at the kink
point—a stronger implication than the continuity implied by the sufficient con-
ditions for a valid RDD.

3. NONPARAMETRIC ESTIMATION AND INFERENCE IN A REGRESSION
KINK DESIGN

In this section, we review the theory of estimation and inference in a regres-
sion kink design. We assume that estimation is carried out via local polynomial
regressions. For a sharp RK design, the first-stage relationship b(·) is a known
function, and we only need to solve the following least squares problems:

min
{β̃−

j }

n−∑
i=1

{
Y−

i −
p∑

j=0

β̃−
j

(
V −
i

)j}2

K

(
V −
i

h

)
�(3.1)

min
{β̃+

j }

n+∑
i=1

{
Y+

i −
p∑

j=0

β̃+
j

(
V +
i

)j}2

K

(
V +
i

h

)
�(3.2)

where the − and + superscripts denote quantities in the regression on the
left and right side of the kink point, respectively, p is the order of the poly-
nomial, K the kernel, and h the bandwidth. Since κ+

1 = limv→0+ b′(v) and
κ−

1 = limv→0− b′(v) are known quantities in a sharp design, the sharp RKD es-
timator is defined as

τ̂SRKD = β̂+
1 − β̂−

1

κ+
1 − κ−

1

�

In a fuzzy RKD, the first-stage relationship is no longer deterministic. We
need to estimate the first-stage slopes on two sides of the threshold by solving13

min
κ̃−
j

n−∑
i=1

{
B−

i −
p∑

j=0

κ̃−
j

(
V −
i

)j}2

K

(
V −
i

h

)
�(3.3)

13We omit the asterisk in B∗ and V ∗ notations in the fuzzy design to ease exposition.
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min
κ̃+
j

n+∑
i=1

{
B+

i −
p∑

j=0

κ̃+
j

(
V +
i

)j}2

K

(
V +
i

h

)
�(3.4)

The fuzzy RKD estimator τ̂FRKD can then be defined as

τ̂FRKD = β̂+
1 − β̂−

1

κ̂+
1 − κ̂−

1

�(3.5)

Lemmas A1 and A2 of Calonico, Cattaneo, and Titiunik (2014) establish the
asymptotic distributions of the sharp and fuzzy RKD estimators, respectively.
It is shown that, under certain regularity conditions, the estimators obtained
from local polynomial regressions of order p are asymptotically normal:

√
nh3

(
τ̂SRKD�p − τSRKD − hp�SRKD�p

) ⇒ N(0�ΩSRKD�p)�
√
nh3

(
τ̂FRKD�p − τFRKD − hp�FRKD�p

) ⇒N(0�ΩFRKD�p)�

where � and Ω denote the asymptotic bias and variance, respectively.14 Given
the identification assumptions above, one expects the conditional expectation
of Y given V to be continuous at the threshold. A natural question is whether
imposing continuity in estimation (as opposed to estimating separate local
polynomials on either side of the threshold) may affect the asymptotic bias
and variance of the kink estimator. Card et al. (2012) showed that when K
is uniform, the asymptotic variances are not affected by imposing continuity.
A similar calculation reveals that the asymptotic biases are not affected either.

When implementing the RKD estimator in practice, one must make choices
for the polynomial order p, kernel K, and bandwidth h. In the RD context
where the quantities of interest are the intercept terms on two sides of the
threshold, Hahn, Todd, and der Klaauw (2001) proposed local linear (p = 1)
over local constant (p = 0) regression because the former leads to a smaller
order of bias (Op(h

2)) than the latter (Op(h)). Consequently, the local lin-
ear model affords the econometrician a sequence of bandwidths that shrinks
at a slower rate, which in turn delivers a smaller order of the asymptotic
mean squared error (MSE). The same logic would imply that a local quadratic
(p = 2) should be preferred to local linear (p = 1) in estimating boundary
derivatives in the RK design. As noted by Ruppert and Wand (1994) and Fan
and Gijbels (1996) and as we discussed in detail in Card, Lee, Pei, and We-
ber (2014), however, arguments based solely on asymptotic rates cannot justify

14In categorizing the asymptotic behavior of fuzzy estimators, both Card et al. (2012) and
Calonico, Cattaneo, and Titiunik (2014) assumed that the researcher observes the joint distri-
bution (Y�B�V ). In practice, there may be applications where (B�V ) is observed in one data
source whereas (Y�V ) is observed in another, and the three variables do not appear in the same
data set. We investigate the two-sample estimation problem in Section B.1 of the Supplemental
Material.
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p = 1 as the universally preferred choice for RDD or p = 2 as the universally
preferred choice for RKD. Rather, the best choice of p in the mean squared
error sense depends on the sample size and the derivatives of the conditional
expectation functions, E[Y |V = v] and E[B|V = v], in the particular data set
of interest. In Card et al. (2014), we proposed two methods for picking the
polynomial order for interested empiricists: (1) evaluate the empirical perfor-
mance of the alternative estimators using simulation studies of DGPs closely
based on the actual data;15 (2) estimate the asymptotic mean squared error
(AMSE) and compare it across alternative estimators.

For the choice of K, we adopt a uniform kernel following Imbens and
Lemieux (2008) and the common practice in the RD literature. The results
are similar when the boundary optimal triangular kernel (cf. Cheng, Fan, and
Marron (1997)) is used.

For the bandwidth choice h, we use and extend existing selectors in the
literature. Imbens and Kalyanaraman (2012) proposed an algorithm to com-
pute the MSE-optimal RD bandwidth. Building on Imbens and Kalyanaraman
(2012), Calonico, Cattaneo, and Titiunik (2014) developed an optimal band-
width algorithm for the estimation of the discontinuity in the νth derivative,
which contains RKD (ν = 1) as a special case.16

We examine alternatives to the direct analogs of the default IK and the CCT
bandwidths for RKD, addressing two specific issues that are relevant for our
setting. First, both bandwidth selectors involve a regularization term, which re-
flects the variance in the bias estimation and guards against large bandwidths.
While IK and CCT argued that the regularized bandwidth selector performs
well for several well-known regression discontinuity designs, we find that the
RK counterparts of these regularized selectors yield bandwidths that tend to be
too small in our empirical setting. Since omitting the regularization term does
not affect the asymptotic properties of the bandwidth selector, we also investi-
gate the performance of bandwidth selectors without the regularization term.
Second, the CCT bandwidth is asymptotically MSE-optimal for the reduced-
form kink in a fuzzy design, even though the fuzzy estimator τ̂FRKD defined in
(3.5) is the main object of interest. Based on the asymptotic theory in Calonico,
Cattaneo, and Titiunik (2014), we propose fuzzy analogs of the IK and CCT
bandwidths that are optimal for τ̂FRKD and state their asymptotic properties—
see Section B.2 of the Supplemental Material for details.

A complication of using the optimal bandwidth is that the asymptotic bias
is, in general, nonzero. As a result, conventional confidence intervals that ig-
nore the bias may not have correct coverage rates. Calonico, Cattaneo, and

15Clearly, this method depends on how a researcher specifies the approximating DGP, but
whether the “right” DGP is specified is to some degree untestable.

16The optimal bandwidth in Calonico, Cattaneo, and Titiunik (2014) is developed for the un-
constrained RKD estimator, that is, without imposing continuity in the conditional expectation
of Y , but the bandwidth is also optimal for the constrained RKD estimator because it has the
same asymptotic distribution as stated above.
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Titiunik (2014) offered a solution by deriving robust confidence intervals for
the RD and RK estimands that account for this asymptotic bias. For an RK
design, they first estimated the asymptotic bias �p of a pth order local polyno-
mial estimator τ̂p by using a qth order local polynomial regression (q ≥ p+ 1)
with pilot bandwidth hq, then estimated the variance varbcp of the bias-corrected
estimator τ̂bc

p ≡ τ̂p − hp�̂p, by accounting for the sampling variation in both
τ̂p and hp�̂p.17 Finally, they constructed a robust 95% confidence interval as

τ̂bc
p ± 1�96

√
varbcp . Using Monte Carlo simulations, Calonico, Cattaneo, and

Titiunik (2014) demonstrated that the confidence intervals constructed using
their bias-corrected procedure perform well in RDDs, and that the associated
coverage rates are robust to different choices of h.18

In the following section, we present a variety of alternative estimates of
the behavioral effect of higher benefits on unemployment durations. We em-
ploy the local linear and local quadratic estimators with several bandwidth
selectors—default CCT, CCT without regularization, Fuzzy CCT, Fuzzy IK,
and the rule of thumb FG bandwidth.19 We report uncorrected RKD estimates
and the associated (conventional) sampling errors, as well as the robust bias-
corrected confidence intervals per Calonico, Cattaneo, and Titiunik (2014).

4. THE EFFECT OF UI BENEFITS ON UNEMPLOYMENT DURATIONS

In this section, we illustrate the estimation procedures by using a fuzzy RKD
approach to estimate the effect of higher unemployment benefits on the dura-
tion of registered unemployment among UI claimants in Austria. The precise
magnitude of the disincentive effect of UI benefits is of substantial policy inter-
est. As shown by Baily (1978), for example, an optimal unemployment insur-
ance system trades off the moral hazard costs of reduced search effort against
the risk-sharing benefits of more generous payments to the unemployed. Ob-
taining credible estimates of this effect is difficult, however, because UI ben-
efits are determined by previous earnings, and are likely to be correlated with
unobserved characteristics of workers that affect both wages and the expected
duration of unemployment. Since the Austrian UI benefit formula—similar to

17A crucial assumption in estimating varbcp is that the pilot bandwidth hq and the optimal band-
width h have the same shrinkage rate, that is, hq

h
→ ρ ∈ (0�∞) as n → ∞.

18In a related study, Ganong and Jäger (2014) raised concerns about the sensitivity of the
RKD estimates when the relationship between the running variable and the outcome is highly
nonlinear. They proposed a permutation test to account for the estimation bias. We perform the
test on our data and discuss the details in Card et al. (2015a).

19See Card et al. (2012) for the definition of the FG bandwidth. We apply the same logic to
derive the pilot FG bandwidth for bias estimation.



2474 CARD, LEE, PEI, AND WEBER

those of many other countries—has a maximum, a regression kink approach
can provide new evidence on the impact of higher UI benefits.20

4.1. Institutional Setting and Data

Job losers in Austria who have worked at least 52 weeks in the past 24 months
are eligible for UI benefits, with a rate that depends on their average daily
earnings in the “base year” for their benefit claim. The daily UI benefit is cal-
culated as 55% of net daily earnings, subject to a maximum benefit level that is
adjusted each year. Claimants with dependent family members are eligible for
supplemental benefits based on the number of dependents.

This rule creates a piecewise linear relationship between base year earnings
and UI benefits that depends on the Social Security and income tax rates as
well as the replacement rate and the maximum benefit amount. Since we do
not observe the number of dependents claimed by a job loser, we adopt a fuzzy
RKD approach in which the number of dependents is treated as an unobserved
determinant of benefits.

Our data are drawn from the Austrian Social Security Database (ASSD),
which records employment and unemployment spells on a daily basis for all
individuals employed in the Austrian private sector (see Zweimüller, Winter-
Ebmer, Lalive, Kuhn, Wuellrich, Ruf, and Büchi (2009)). The ASSD contains
information on starting and ending dates of employment spells and earnings
(up to the Social Security contribution cap) received by each individual from
each employer in a calendar year. We merge the ASSD with UI claims records
that include the claim date, the daily UI benefit received by the claimant, and
the duration of the registered unemployment spell. We use the UI claim dates
to assign the base year for each claim and then calculate base year earnings
for the claim, which is the observed assignment variable for our RKD analysis
(i.e., V ∗ in the notation of Section 2). The outcome variable we analyze here is
the duration of registered unemployment (which we censor at one year).

Our analysis sample includes claimants from 2001 to 2012 with at least one
year of tenure on their previous job who initiated their claim within four weeks
of the job ending date (eliminating job quitters, who face a four-week waiting
period). We drop individuals with zero earnings in the base year, claimants
older than 50, and those whose earnings are above the Social Security earnings
cap or whose earnings are so low that they are affected by other nonlinearities
in the benefit schedule (see Card et al. (2015a) for analysis of further kinks).
We pool observations from different years by centering around the respective
income thresholds for the maximum benefit level. This yields a sample of about
275,000 observations.

20Due to space constraints, we include only a short empirical illustration. For a detailed em-
pirical analysis of the effects of UI benefits on labor market outcomes in Austria, see Card et al.
(2015a).
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FIGURE 1.—Frequency distribution of base year earnings. Note: Figure shows estimated and
predicted frequency distributions, using 300 Euro bins. Predicted frequencies are from a fourth
order polynomial model with unrestricted first and higher-order derivatives on each side of the
threshold. T-test statistic for change in derivative at the threshold is 1.61.

A key assumption for valid inference in an RK design is that the density of
the assignment variable is smooth at the kink point. Figure 1 shows the fre-
quency distribution of base year earnings around the threshold for maximum
benefits using 300-Euro bins with an average of 4200 observations per bin.
While the histogram looks quite smooth, we test this more formally by fitting
a series of polynomial models that allow the first- and higher-order derivatives
of the binned density function to jump at the kink point. This test confirms the
smoothness of the density.21

4.2. Graphical Overview and Estimation Results

Figure 2 shows the relationships between base year earnings and actual UI
benefits around the kink. We plot the data using the same bin sizes as in Fig-
ure 1.22 The figure shows a clear kink in the empirical relationship between
average benefits and base year earnings, with a sharp decrease in the slope

21We fit a series of polynomial models of different orders by minimum chi-squared, imposing
continuity but allowing the first derivative and all higher-order derivatives to vary at the threshold.
An Akaike criterion selects a fourth-order polynomial model, which has an overall goodness of
fit statistic of 75.6 (p-value = 0.05). The estimated change in the first derivative of the density
function at the threshold is 2�00 × 10−4, with a standard error of 1�24 × 10−4.

22See Calonico, Cattaneo, and Titiunik (2015) for nonparametric procedures for picking the
bin size in RD-type plots.
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FIGURE 2.—Daily UI benefits.

as they pass through the threshold Tmax.23 Figure 3 presents the parallel pic-
ture for mean unemployment durations, which also shows a discernible kink,
though there is clearly more variability in the relationship with base year earn-
ings.24

FIGURE 3.—Unemployment duration.

23The slope in the mean benefit function to the right of the threshold for the maximum benefit
is attributable to family allowances, which are added to the base benefit amount (and are not
capped). Moving right from the threshold, the average number of allowances is rising, reflecting
larger family sizes for higher-earning claimants.

24For additional graphical analyses and robustness checks, see Card et al. (2015a).
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4.2.1. Fuzzy RKD Estimates and Comparison of Alternative Estimators

In Table I, we present fuzzy RKD estimates of the elasticity of the unem-
ployment duration with respect to the level of UI benefits along with first-stage
estimates. We present estimates from local linear models in columns 1 and 2,
and estimates from local quadratic models in columns 3 and 4. We present re-
sults under five alternative bandwidth selection procedures: default CCT, CCT

TABLE I

IV (FUZZY KINK) ESTIMATES OF BENEFIT ELASTICITY,
ALTERNATIVE ESTIMATORS AND BANDWIDTHSa

Local Linear Local Quadratic

First Stage First Stage
(Coeff. × 105) Struct. Model (Coeff. × 105) Struct. Model

(1) (2) (3) (4)

A. Default CCT (with regularization)
Main bandwidth (pilot) 1460 (2976) 2033 (3160)

Estimated kink −1.5 0.1 −3.1 −2.2
(conventional std error) (0.6) (2.4) (1.4) (3.0)

CCT robust confidence interval [−3�4�0�2] [−8�4�6�0] [−8�5�−0�7] [−10�1�6�5]
B. CCT with no regularization

Main bandwidth (pilot) 2947 (4898) 5058 (3870)

Estimated kink −1.1 2.7 −0.9 0.1
(conventional std error) (0.2) (1.2) (0.4) (2.4)

CCT robust confidence interval [−1�4�0�2] [−3�9�5�6] [−5�0�3�3] [−28�7�31�2]
C. Fuzzy CCT (no regularization)

Main bandwidth (pilot) 4091 (7162) 3095 (3112)

Estimated kink −1.4 1.9 −0.6 −2.4
(conventional std error) (0.1) (0.6) (0.8) (7.7)

CCT robust confidence interval [−1�8�−0�8] [0�1�5�1] [−7�9�−0�5] [−34�6�47�4]
D. Fuzzy IK (no regularization)

Main bandwidth (pilot) 5411 (5210) 4990 (5070)

Estimated kink −1.4 1.7 −0.8 −0.8
(conventional std error) (0.1) (0.4) (0.4) (2.8)

CCT robust confidence interval [−1�7�−0�3] [−2�0�4�6] [−3�2�1�1] [−17�3�11�8]
E. FG (no regularization)

Main bandwidth (pilot) 8959 (8482) 9365 (13,276)

Estimated kink −1.5 1.4 −1.3 2.1
(conventional std error) (0.1) (0.2) (0.2) (1.0)

CCT robust confidence interval [−1�9�−0�9] [−0�6�3�4] [−1�9�0�3] [−6�1�5�0]
aSee text for description of estimation methods.
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with no regularization, Fuzzy CCT, Fuzzy IK, and FG. (Expressions for the
Fuzzy CCT and IK bandwidths are given in Section B.2 of the Supplemental
Material.) For each bandwidth selector, we present the value of the main and
pilot bandwidth (the pilot bandwidth is for bias estimation in constructing the
CCT robust confidence interval), the uncorrected first stage coefficient and
structural elasticity (with their associated standard errors), and the CCT ro-
bust 95% confidence intervals for the bias corrected first stage coefficient and
structural elasticity.25

Despite the strong visual evidence of the kink in the benefit formula in Fig-
ure 2, an examination of the estimated “first-stage” kinks in Table I suggests
that not all the procedures yield statistically significant kink estimates. In par-
ticular, the default CCT bandwidth selector (panel A) chooses relatively small
bandwidths for the local linear model and yields only a marginally significant
estimate (t = 2�5). The corresponding bias-corrected kink estimate is even less
precise, and its confidence interval, shown in square brackets, includes 0. The
default CCT procedure chooses a somewhat larger bandwidth for the local
quadratic model, but this is offset by the difficulty of precisely estimating the
slopes on either side of the kink point once the quadratic terms are included,
resulting in a first-stage kink estimate that is only marginally significant.

As shown in panel B, use of the CCT selector without regularization yields
substantially larger bandwidths than when the regularization term is included.
These larger bandwidths lead to some gain in precision, but allowance for the
bias-correction term again yields CCT robust confidence intervals for the first-
stage model that include 0. By comparison, the bandwidths selected by the
Fuzzy CCT, Fuzzy IK, and the FG procedures (panels C, D, and E) are rela-
tively large and deliver relatively stable and significant first-stage estimates in
the local linear case even under the bias correction. The local quadratic esti-
mates are still much less precise, however. The bias-corrected estimates are, in
all but one case, insignificant.

Turning to the elasticity estimates, we observe that they are generally less
precisely estimated than the first-stage coefficients. In the local linear case, es-
timates from procedures selecting small bandwidths, such as the default CCT
estimator and the CCT estimator without regularization, are very unstable
and have large standard errors. Estimates that are based on larger selected
bandwidths yield more stable point estimates of the elasticity, ranging from 1.4
to 1.9. The CCT robust confidence intervals indicate a large degree of uncer-
tainty, however, with only one of three estimates being statistically significant.

Figure 4 visualizes the structural estimates in the local linear case for a range
of different bandwidths along with estimated confidence intervals based on the
conventional standard errors. This graph highlights that point estimates sta-
bilize for bandwidths in the range from 4000 to 9000, which are selected by

25CCT robust confidence intervals and the CCT bandwidths are obtained based on a variant of
the Stata package described in Calonico, Cattaneo, and Titiunik (2014) with the nearest neighbor
variance estimator. Using the CCT Stata package generates very similar empirical results.
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FIGURE 4.—Fuzzy estimation with varying bandwidth. Notes: local linear estimation, estimated
elasticity (solid line with triangles) with conventional confidence bounds (dash).

the Fuzzy CCT, Fuzzy IK, and the FG procedures. But they are highly volatile
at smaller bandwidth levels. The local quadratic elasticity estimates, although
based on larger bandwidths, are much less precise. We get negative point es-
timates for the elasticity in three out of five cases, which renders the local
quadratic procedures uninformative.

Overall, the pattern of estimates in Table I points to three main conclu-
sions. First, many of the bandwidth selectors choose relatively small band-
widths that lead to relatively imprecise first-stage and structural coefficient es-
timates. A second observation is that the local quadratic estimators are gen-
erally quite noisy. Third, the bias-corrected estimates from the local linear
models are typically not too different from the uncorrected estimates, but the
added imprecision associated with uncertainty about the magnitude of the bias-
correction factor is large, leading to relatively wide confidence intervals for the
bias-corrected estimates.

5. CONCLUSION

In many institutional settings, a key policy variable (like unemployment ben-
efits or public pensions) is set by a deterministic formula that depends on an
endogenous assignment variable (like previous earnings). Conventional ap-
proaches to causal inference, which rely on the existence of an instrumental
variable that is correlated with the covariate of interest but independent of
underlying errors in the outcome, will not work in these settings. When the
policy function is continuous but kinked (i.e., non-differentiable) at a known
threshold, a regression kink design provides a potential way forward (Guryan
(2001), Nielsen, Sørensen, and Taber (2010), Simonsen, Skipper, and Skipper
(2015)). The sharp RKD estimand is simply the ratio of the estimated kink
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in the relationship between the assignment variable and the outcome of in-
terest at the threshold point, divided by the corresponding kink in the pol-
icy function. In settings where there is incomplete compliance with the pol-
icy rule (or measurement error in the actual assignment variable), a fuzzy
RKD replaces the denominator of the RKD estimand with the estimated
kink in the relationship between the assignment variable and the policy vari-
able.

In this paper, we provide sufficient conditions for a sharp and fuzzy RKD
to identify interpretable causal effects in a general nonseparable model (e.g.,
Blundell and Powell (2003)). A key assumption is that the conditional den-
sity of the assignment variable, given the unobserved error in the outcome, is
continuously differentiable at the kink point. This smooth density condition
rules out situations where the value of the assignment variable can be precisely
manipulated, while allowing the assignment variable to be correlated with the
latent errors in the outcome. Thus, extreme forms of “bunching” predicted by
certain behavioral models (e.g., Saez (2010)) violate the smooth density condi-
tion, whereas similar models with errors in optimization (e.g., Chetty (2010))
are potentially consistent with an RKD approach. In addition to yielding a
testable smoothness prediction for the observed distribution of the assignment
variable, we show that the smooth density condition also implies that the condi-
tional distributions of any predetermined covariates will be smooth functions
of the assignment variable at the kink point. These two predictions are very
similar in spirit to the predictions for the density of the assignment variable
and the distribution of predetermined covariates in a regression discontinuity
design (Lee (2008)).

We also provide a precise characterization of the treatment effects identi-
fied by a sharp or fuzzy RKD. The sharp RKD identifies a weighted average
of marginal effects, where the weight for a given unit reflects the relative prob-
ability of having a value of the assignment variable close to the kink point.
Under an additional monotonicity assumption, we show that the fuzzy RKD
identifies a slightly more complex weighted average of marginal effects, where
the weight also incorporates the relative size of the kink induced in the actual
value of the policy variable for that unit.

We illustrate the use of a fuzzy RKD approach by studying the effect of un-
employment benefits on the duration of registered unemployment in Austria,
where the benefit schedule has a kink at the maximum benefit level. We present
simple graphical evidence showing that this kink induces a kink in the duration
of unemployment. We also present a test of the smooth density assumption
around the maximum benefit threshold. Finally, we report a range of estimates
of the behavioral effect of higher benefits on unemployment durations by using
alternative local nonparametric estimators.
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